Supplementary materials

Evaluating the antimicrobial activity and cytotoxicity of polydopamine capped silver and silver/polydopamine core-shell nanocomposites

Ndivhuwo P. Shumbula^a, Siyabonga S. Nkabinde^a, Zakhele B. Ndala^a, Siyasanga Mpelane^b, Morgan P. Shumbula^c, Phumlani S. Mdluli^d, Zikhona Njengele-Tetyana^e, Phumlani Tetyana^d, Thulani Hlatshwayo^f, Mbuso Mlambo^{*g}, Nosipho Moloto^{*a}

^a Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa

^bAnalytical Facility, University of Johannesburg, P.O. Box: 524, Auckland Park 2006, South Africa

^cDepartment of Chemistry, University of Limpopo, Private Bag x1106, Sovenga 0727, South Africa

^d DST/Mintek NIC, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg, South Africa,

^eCenter for Metal-Based Drug Discovery, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg, South Africa

^fPhysics Department, University of Pretoria, Pretoria 0002, South Africa

^g Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa

*Corresponding authors: Mbuso Mlambo and Nosipho Moloto

Tel: +2711 717 6774

E-mail address: mlambm@unisa.ac.za; nosipho.moloto@wits.ac.za

Figure S1: TEM micrograph (A) and particle size distribution (B) of PDA spheres

Figure S2: Particle size distributions of (a-c) Ag-PDA and (d-f) Ag@PDA nanocomposites at different AgNO₃ concentrations. [(a, d) 1 mM, (b, e) 5 mM and (c, f) 10 mM].

Figure S3: SAED and EDS of (a, c) Ag@PDA and (b, d) Ag@PDA nanocomposites [At AgNO₃ concentrations of 1 mM].

Figure S4: PXRD pattern of PDA spheres

Figure S5: The XPS survey spectra of (a) PDA, (b) Ag@PDA [1 mM], (c) Ag@PDA [10 mM], (d) Ag-PDA [1 mM] and (e) Ag-PDA [10 mM].

Figure S6: Ag3d high resolution XPS spectra of (a) Ag@PDA [1 mM], (b) Ag@PDA [10 mM], (c) Ag-PDA [1 mM] and (d) Ag-PDA [10 mM].

Figure S7: Cl 2p high resolution XPS spectra of (a) Ag@PDA [1 mM], (b) Ag@PDA [10 mM], (c) Ag-PDA [1 mM] and (d) Ag-PDA [10 mM].

Figure S8: O 1s high resolution XPS spectra of (a) PDA, (b) Ag@PDA [1 mM], (c) Ag@PDA [10 mM], (d) Ag-PDA [1 mM] and (e) Ag-PDA [10 mM].

Figure S9: C 1s high resolution XPS spectra of (a) PDA, (b) Ag@PDA [1 mM], (b) Ag@PDA [10 mM], (d) Ag-PDA [1 mM] and (e) Ag-PDA [10 mM].

Figure S10: DTGA of (A) PDA. (B) Ag-PDA and (C) Ag@PDA nanocomposites at different AgNO₃ concentrations.

Figure S11: Sigmoidal curves used to determine the CC₅₀ values of (A) Ag-PDA and (B) Ag@PDA at different concentration of AgNO₃.

Figure S12: The MBC of (a) Ag-PDA and (b) Ag@PDA nanocomposites at different AgNO₃ concentrations [**(A)** 1 mM, **(B)** 5 mM and **(C)** 10 mM]

Figure S13: The bacterial growth curves of (A-D) Ag-PDA and (E-F) Ag@PDA against E-coli and S-aureus.