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Abstract

We examine the predictive value of risk perceptions as measured in terms of the gold-to-
silver and gold-to-platinum price ratios for stock-market tail risks and their connectedness
in eight major industrialized economies using monthly data for the period 1916:02-2020:10
and 1968:01-2020:10, where we use four variants of the popular Conditional Autoregressive
Value at Risk (CAViaR) framework to estimate the tail risks for both 1% and 5% VaRs.
Our findings for the short sample period show that the gold-to-silver price ratio resembles
the gold-to-platinum price ratios in that it is a useful proxy for global risk. Our findings
for the long sample period show, despite some heterogeneity across economies, that the
gold-to-silver price ratio often helps to out-of-sample forecast for both 1% and 5% stock
market tail risks, particularly when a forecaster suffers a higher loss from underestimation
of tail risks than from a corresponding overestimation of the same absolute size. We also
find that using the gold-to-silver price ratio for forecasting the total connectedness of stock
markets is beneficial for an investor who suffers a higher loss from an underestimation of
total connectedness (i.e., an investor who otherwise would overestimate the benefits from
portfolio diversification) than from a comparable overestimation.
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1 Introduction

Definitionally, tail risk is the additional risk which, commonly observed, fat-tailed asset return

distributions have relative to normal distributions (Li and Rose, 2009). The issue of tail risks

has emerged as an important research question following multiple recent episodes of financial

markets-related distress such as the Lehman default, the “Great Recession", and the Global Fi-

nancial Crisis (GFC), followed by the European sovereign debt crisis and the Chinese stock

market crash, and, of course, the financial market jitters due to the currently ongoing COVID-19

pandemic (Adrian et al., 2019; Baker et al., 2020), over and above the important earlier ones in-

volving Black Monday, the Asian Financial Crisis, and the bursting of the dot-com bubble. Tail

risks have been shown to predict not only stock returns, but also real economic variables, such as

employment, investment and output, as well as oil returns and its volatility and tail risks (Kelly

and Jiang, 2014; Almeida et al., 2017; Chevapatrakul et al., 2019; Hollstein et al., 2019; Salisu

et al., 2021, 2022a, 2022b, 2022c, forthcoming). Naturally, determining which factors drive the

evolution of future tail risks is an important question for both investors and policymakers.

In this regard, in a recent study, Huang and Kilic (2019) inter alia2 provide evidence of (positive)

in-sample predictability of (option-implied) tail-risk measures of the United States (US) based on

the ratio of the gold-to-platinum prices. 3 The reason behind this, as outlined by the authors, is

as follows: Gold serves the dual two roles of a consumption good as jewelry (Bouri et al., 2021),

and is also regarded by investors as a well-established “safe haven", i.e., investors consider it

valuable in times of severe financial turmoil, as shown by Boubaker et al., (2020) based on the

longest possible data available on gold prices from 1257. In contrast, platinum is a precious

metal with similar uses as gold in consumption, and which also has several important industrial

usages (such as, laboratory equipment, electrical contacts and electrodes, platinum resistance

2In addition, Huang and Kilic (2019) show that the gold-to-platinum price ratio (1) is countercyclical and in-
creases in times of economic distress, (2) positively predicts future stock market excess returns, (3) is negatively
priced in the cross-section, and, (4) is high when the default spread is high (that is, when firms with low credit
ratings have a high probability of default).

3Some in-sample evidence of the predictability for both advanced and emerging stock-market tail risks based on
macroeconomic and financial surprises, as well as oil shocks, have been provided by the published works of Gkillas
et al., (2020), and Gupta et al., (2021a).
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thermometers, dentistry equipment (McDonald and Hunt, 1982)). Hence, the ratio of gold-to-

platinum prices should be largely unaffected by consumption (jewelry demand) shocks, and in

the process reveal variation in global risk, implying that the ratio should serve as a proxy for an

important economic state variable.

Against this backdrop, and given the importance of tail risks, the objective of our study is to

extend this line of research by analyzing the role of gold-to-platinum price ratio in forecasting

tail risks of not only the US, but also Canada, France, Germany, Italy, Japan, Switzerland, and

the United Kingdom (UK). Our decision to analyze the stock markets of these eight advanced

economies, besides data availability, is primarily motivated by their importance in the global

economy, with these countries representing nearly two-third of global net wealth, and nearly

half of world output (Das et al., 2019; Salisu et al., 2021, 2022a, 2022b, 2022c, forthcoming).

Besides analyzing multiple countries, our analysis differs from the tail-risks component of the

work of Huang and Kilic (2019) in multiple other dimensions. First, instead of in-sample tests

of predictability, we conduct a full-fledged out-of-sample forecasting exercise of tail risks, since

the later is deemed as a more robust test of predictability compared to an in-sample analysis in

terms of the predictors and econometric model specifications (Campbell, 2008). Second, because

silver too has similar consumption-based properties like platinum, the gold-to-silver price ratio,

given gold’s dual role as a consumption and investment good, would also provide a measure of

worldwide financial risk, just like gold-to-platinum price ratio (Gupta et al., 2021b). Thus, in this

research, we also consider the role of the ratio of gold-to-silver prices as a metric of world risk,

over and above gold-to-platinum prices, in forecasting the tail risks of the stock markets of the

eight advanced economies. This not only serves as a robustness check of the results associated

with the gold-to-platinum price ratio over the monthly period from 1968:01 to 2020:10, but also

renders it possible to study more than a century of data, i.e., from 1916:02 to 2020:10. In the

process, we are able to study the evolution of tail risks over other important historical crises like

the Spanish Flu, the two World Wars, the “Great Depression”, besides the relatively recent crises

mentioned above. The fact that we are dealing with such a long time span is a further motivation

to look at the G7 countries and Switzerland, for which data on stock markets are available over

this long sample period. Importantly, upon studying data for such long sample period, we avoid
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the issue of a possible sample-selection bias.4 Third, we also differ in our econometric approach

of computing the tail risks. Instead of option-implied measures, we use a framework based on

the underlying returns data, which is understandable due to the unavailability of such long-spans

of historical data on options.5 Specifically, we estimate tail risk using the popular Value at Risk

(VaR) metric at 1% and 5% by employing the conditional autoregressive quantile specification

as proposed by Engle and Manganelli (2004), which, in turn, is called the CAViAR model. In

this context, the models considered are: (i) the adaptive model; (ii) the symmetric slope model,

(iii) the asymmetric slope model, and; (iv) the indirect generalized autoregressive conditional

heteroscedasticity (GARCH) model with an autoregressive mean. In our predictive analysis, we

forecast stock-market tail risk using both the gold-to-platinum and the gold-to-silver price ratios.

We start our predictive analysis using a standard symmetric forecaster loss function. We then

extend our out-of-sample forecasting experiment using the type of asymmetric loss functions

that have been widely studied in recent research (see, for example, Elliott et al., 2005, 2008).

Using a standard autoregressive model as our benchmark model, our analysis of asymmetric loss

functions shows that mainly a forecaster who suffers a higher loss from underestimating rather

than overestimating tail risk benefits from using the gold-to-silver price ratio to forecast stock-

market tail risk. Finally, we not only forecast the individual tail risks of the eight advanced stock

markets, but also their time-varying connectedness (derived based on the work of Antonakakis

et al., (2020)), with the underlying idea being that if the comovement of the extreme negative

returns of these markets are also forecastable by the gold-to-silver and gold-to-platinum price

ratios, then following a shock to these proxies of global risk, investors might not be able to diver-

sify across these stock markets, hence making our findings of tremendous relevance to portfolio

managers. We find that those forecasters benefit most from using the gold-to-silver price and

gold-to-platinum price ratios for forecasting the total connectedness of the stock markets in our

sample who otherwise would overestimate the gains from diversifying their portfolio investments

across the eight stock markets in our sample. The reason for this finding is that underestimation

4We include Switzerland in our sample of countries because it is a classic example of a safe-haven economy,
hence it is interesting to study whether its stock market tail risks are sensitive to global risk and, thereby, to the
gold-to-silver and/or gold-to-platinum price ratio (or both).

5The tail-risks data of Huang and Kilic (2019) cover the period of time from 1996:01 to 2013:08.
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of total connectedness of stock markets means that the benefits from portfolio diversification are

overestimated.

Having outlined the objectives of our research, we can now discuss the manifold “applied" con-

tributions of our study. First, this is the first study to compute tail risks of eight developed stock

markets spanning over a century of data. Second, given the importance of tail risks in predict-

ing the future path of movements in financial and commodity markets, and the macroeconomy

as a whole, we are the first to forecast these tail risks based on the information content of two

proxies of global risks, i.e., gold-to-silver and gold-to-platinum price ratios. Third, we compute

the time-varying historical connectedness of the tail risks of these eight markets, which, in turn,

has not been done before. Finally, realizing the importance of the comovement of stock markets

in affecting the portfolio-allocation decisions of investors, we analyze, for the first time in the

literature on financial market connectedness, the role of gold-to-silver and gold-to-platinum price

ratios for forecasting the time-varying connectedness of stock markets. In sum, to the best of our

knowledge, this is the first study to compute and forecast the individual tail risks of the eight ad-

vanced stock markets and their connectedness, based on monthly data that runs over a century, by

accounting for the role of gold-to-silver and gold-to-platinum price ratios.6 Our findings should

be of importance to not only investors, but also policymakers, and academics in understanding

what drives tail risks, which seems to be the governing feature of stock-market movements these

days since the GFC.

At this stage, it is important to highlight that the introduction of a silver Exchange-Traded Fund

(ETF) in April 2006, and somewhat later in 2010 of platinum ETFs, by reducing costs, have

made these two white precious metals more attractive as investment assets (Vigne et al., 2017).

6The only somewhat related papers are that of De Nicolò and Lucchetta (2017) and Salisu et al., (2022c). In
the former paper, the authors present a set of multi-period forecasts of indicators of real (industrial production and
employment growth) and financial (distance to insolvency measures of corporate and banking sectors) tail risks
derived based on a large database of monthly US data for the sample period 1972:01−2014:12. The main finding
of De Nicolò and Lucchetta (2017) is that the forecasts they compute by means of autoregressive (AR) and factor-
augmented vector autoregressive (FAVAR) models significantly underestimate tail risks, while they obtain accurate
forecasts and early-warning signals for real and financial tail risks (up to a 1-year horizon) when they use quantile
projections. The latter study highlights the role of oil tail risks, as well as spillovers of tail risks from stock markets
of other advanced countries, in forecasting the tail risks for the stock markets of Canada and the US over the monthly
period from 1916:02 to 2020:10.
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However, gold still tends to dominate in the category of investment assets, and this seems to be

confirmed by Figure 1 (see Section 2.1), which tends to show a general increase in the gold-to-

silver and gold-to-platinum price ratios during various episodes of historical and current crises

as discussed above. In other words, during periods of financial market turbulence, even though

silver and platinum have gained importance as investment assets, the price of gold tends to in-

crease relatively more, given its continued importance as perhaps the most well-established safe

haven (for a survey of the literature, see O’Connor et al., 2015).

We organize the remainder of our paper as follows. In Section 2, we describe the data and

methodologies we use in our empirical analysis. In Section 3, we discuss and our empirical

results. In Section 4, we conclude.

2 Data and Methodologies

2.1 Data

The data we use in our empirical research are monthly stock price indexes of eight industrial-

ized economies: Canada (S&P TSX 300 Composite Index), France (CAC All-Tradable Index),

Germany (CDAX Composite Index), Italy (Banca Commerciale Italiana Index), Japan (Nikkei

225 Index), Switzerland (All Share Stock Index), the UK (FTSE All Share Index), and the US

(S&P500 Index). The indexes are derived from Global Financial Data7, and covers the period

from 1916:02 to 2020:10. We convert the indexes into log-returns in percentages, i.e., the first-

difference of the natural logarithm of the indexes multiplied by 100. The nominal gold and silver

prices are derived from Macrotrends8, while the nominal platinum price is obtained from Kitco9.

The nominal gold and silver prices data actually starts from 1915:01, but platinum data is avail-

able only from 1968:01. However, based on availability of data at the time of writing this paper,

7https://globalfinancialdata.com/.
8https://www.macrotrends.net/.
9https://www.kitco.com/.
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our data period covers 1916:02 to 2020:10, with the start date governed by the availability of

the stock price-index of Switzerland (i.e., 1916:01, with us losing one observation due to the

computation of log-returns).

− Figure 1 about here. −

Figure 1 plots the gold-to-silver (GS) and the gold-to-platinum (GP) price ratios that we use in

our empirical analysis. It must be realized that the movements in gold and silver prices were

at times restricted due to price-fixation (for historical accounts of the gold and silver markets,

see O’Connor et al., 2015; Corbet and O’Connor, 2020), and hence the jagged nature of the

movement of the GS. Inspite of that, the fact that it continued to capture global risks is indicated

by increases in ths ratio during the periods involving the Spanish Flu, the two World Wars, the

“Great Depression”. The GS ratio is understandably quite static following World War II in the

wake of the postwar economic boom or the “Golden Age of Capitalism" (Marglin and Schor,

1992), until the 1973−1975 recession resulting from stagflation. Post 1968, of course, the GS

ratio, just like the GP ratio, tends to fluctuate relatively more, which is obviously due to the lack

of price controls, and also tend to increase during the Black Monday, the Asian Financial Crisis,

the bursting of the dot-com bubble, the Lehman default, the “Great Recession", and the GFC,

the European sovereign debt crisis, the Chinese stock market crash, and the ongoing COVID-19

pandemic.

2.2 Methodologies

2.2.1 Estimating Tail Risk

We employ the Engle and Manganelli (2004) approach, which involves a conditional autoregres-

sive quantile specification of VaR (CAViaR), to estimate the tail risks of stock markets, ft(β ).

This approach concentrates on the asymptotic form of the tail, rather than the whole distribution.
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We begin by specifying a generic representation for the CAViaR10:

ft(β ) = β0 +
q

∑
i=1

βi ft−i(β )+
r

∑
j=1

β jl(xt− j) (1)

where ft(β ), which can be equivalently expressed as ft(xt−1,βθ ), represents the period t θ -

quantile of the distribution of stock returns at t − 1, wherein the subscript θ is supressed from

βθ for notational convenience. Further, the dimension of β is given as p = q+ r + 1, and l is

a function of a finite number of lagged values of observables (xt− j) that links to ft(β ) to xt− j

belonging to the information set. In order to ensure that the quantile changes “smoothly" over

time, we include the autoregressive terms βi ft−i(β ), i = 1, ...,q. Specifically, we estimate four

variants of the CAViaR described as Adaptive, Symmetric absolute value, Asymmetric slope,

and Indirect GARCH. The four variants are specified as follows:11

Adaptive:

ft(β1) = ft−1(β1)+β1[1+ exp(G[yt−1 − ft−1(β1)])]
−1 −θ . (2)

Symmetric absolute value:

ft(βββ ) = β1 +β2 ft−1(βββ )+β3|yt−1|. (3)

Asymmetric slope:

ft(βββ ) = β1 +β2 ft−1(βββ )+β3(yt−1)
++β4(yt−1)

−. (4)

Indirect GARCH (1,1):

ft(βββ ) = (β1 +β2 f 2
t−1(βββ )+β3y2

t−1)
1/2. (5)

10We refer technically-minded readers to Engle and Manganelli (2004) for technical details on the CAViaR
methodology.

11Recently, a number of studies have used the CAVaiR models to measure tail risk such as the oil tail risk (see
Salisu et al., 2021b, 2021c, 2021d) and have established its predictive value for out-of-sample predictability of oil
returns (Salisu et al., 2021b) and stock returns (Salisu et al., 2021c).
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In Equation (2), a smoothed version of a step function of the model is achieved with some positive

finite number, G, while the last term in the equation converges almost surely to β1[I(yt−1 ≤

ft−1(β1))−θ ] if G → ∞, with I(·) representing the indicator function. It is not difficult to show

that the Symmetric absolute value and Indirect GARCH specifications in Equations (3) and (5)

are symmetric, while the structure in Equation (4) is asymmetric. Thus, the response of positive

and negative returns is identical for the former, but differs for the latter. Also note that while the

coefficient on the lagged VaR of the adaptive model is constrained to be 1, the other three are

not, and, therefore, are considered to be mean reverting.

For each returns series, we produce results for both 1% and 5% VaRs across the four variants of

the CAViaR specifications, and the “best" CAViaR specification under each VaR is determined

by the Dynamic Quantile test (DQ) test and %Hits in line with Engle and Manganelli (2004).12

2.2.2 Estimating Connectedness

Furthermore, we compute the dynamic total connectedness index (TCI) using the time-varying

parameter vector autoregressive (TVP-VAR) based connectedness approach of Antonakakis, et

al. (2020). Thus, we first estimate the following TVP-VAR model with a lag length of one

as suggested by the Bayesian information criterion. The resulting TVP-VAR(1) model can be

outlined as follows13,

zzzt =BBBtzzzt−1 +uuut uuut ∼ N(000,SSSt), (6)

vec(BBBt) =vec(BBBt−1)+ vvvt vvvt ∼ N(000,RRRt), (7)

where zzzt , zzzt−1 and uuut are k× 1 dimensional vectors, denoting the tail risk series in t, t − 1, and

the corresponding error term, respectively. BBBt and SSSt are k× k dimensional matrices illustrating

the time-varying VAR coefficients and the time-varying variance-covariances while vec(BBBt) and

vvvt are k2 ×1 dimensional vectors and RRRt denotes a k2 × k2 dimensional matrix.

12These are standard test statistics for evaluating the relative performance of the alternative specifications of
CAViaR test.

13We refer technically-minded readers to Antonakakis et al. (2020) for technical details on the computation of
the dynamic total connected index.
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As the Generalised Forecast Error Variance Decomposition (GFEVD) of Koop et al. (1996) and

Pesaran and Shin (1998) rests on the vector moving average (VMA) coefficients, we apply the

Wold representation theorem which transforms the TVP-VAR to its TVP-VMA process by the

following equality: zzzt = ∑
p
i=1 BBBitzzzt−i +uuut = ∑

∞
j=0 AAA jtuuut− j. The GFEVD, ψ̃

g
i j,t(H), stands for the

influence series j has on series i in terms of its forecast error variance share and is computed by

ψ
g
i j,t(H) =

S−1
ii,t ∑

H−1
t=1 (ιιι ′iAAAtSSStιιι j)

2

∑
k
j=1 ∑

H−1
t=1 (ιιι iAAAtSSStAAA′

tιιι i)
ψ̃

g
i j,t(H) =

ψ
g
i j,t(H)

∑
k
j=1 φ

g
i j,t(H)

,

with ∑
k
j=1 ψ̃

g
i j,t(H) = 1, ∑

k
i, j=1 ψ̃

g
i j,t(H) = k, where H stands for the forecast horizon, and ιιι i for a

zero vector with unity on the ith position.

Subsequently, the (corrected) TCI of Chatziantoniou and Gabauer (2021) can be constructed.

This connectedness measure indicates the degree of network interconnectedness and, hence, the

inherent market risk:

TCI =
k ·∑k

i, j=1,i̸= j ψ̃
g
i j,t(H)

(k−1) ·∑k
i, j=1 ψ̃

g
i j,t(H)

0 ≤Cg
t (H)≤ 1. (8)

Diebold and Yilmaz (2009, 2012, 2014) point out the link between network interconnected-

ness and market risk by highlighting the association of TCI with several economic and financial

events. Hence, a high TCI value is associated with high market risk, while a low TCI value

indicates low market risk.

2.2.3 Forecasting Model

Equipped with estimates of stock market tail risks and their connectedness, we conduct an out-

of-sample forecasting experiment. To this end, we consider the following simple forecasting

model:

T Rt+h = c+θT Rt + γRatiot +ηt+h, (9)

where c and θ are coefficients to be estimated, T Rt is stock-market tail risk at time t, T Rt+h is the

average value of T Rt over the forecasting horizon, where h = 1,3,6,12,24 months ahead are the

five forecasting horizons we consider in our empirical research, and ηt+h denotes a disturbance
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term. Moreover, Ratiot denotes either the gold-to-silver price ratio (GSt) or gold-to-platinum

price ratio (GPt ) in period of time t, and γ denotes the corresponding coefficient to be esti-

mated.14 As our benchmark model, we use a simple autoregressive model of order one, which

we obtain by letting γ = 0. Given that our long sample periods cover many important historical

events, we estimate Equation (9) by means of a rolling-window estimation approach.15 In order

to rule out that our empirical results hinge on the choice of a specific rolling-estimation window,

we use in Section 3 rolling-estimation windows of lengths 60, 80, 100, and 120 months. Note

that, while dealing with the forecastability of connectedness, we replace T R with TCI.

2.2.4 Evaluation of Forecasting Performance

We evaluate the forecasting performance of the forecasting model given in Equation (9) in vari-

ous ways. First, we use the conventional root-mean-squared-forecast-error (RMSFE) and mean-

absolute-forecast-error (MAFE) statistics to evaluate the accuracy of forecasts. These two statis-

tics rest on the assumption that a forecaster has a loss function that is symmetric in the squared

(RMSFE) and absolute (MAFE) forecast error, with the MAFE statistic putting less weight on

very large forecast errors. Second, we evaluate forecasts assuming that forecasters have an asym-

metric loss function. The asymmetry of the loss function accounts for the possibility that a

forecaster may incur a higher (or lower) loss from an underestimation of tail risk than from an

overestimation of the same absolute size. In order to model the asymmetry of the loss function,

we use the asymmetric loss function studied by Elliott et al. (2005, 2008). They consider the

following loss function: L = [α +(1−2α)1(T R− ˆT R < 0)]|T R− ˆT R|p, where ˆT R denotes the

forecast of stock-market tail risk (we have dropped the time index for simplicity). The parameter,

14In addition, we consider a model that features both ratios as predictors. In this case, the model given in Equation
(9) is modified to T Rt+h = c+θT Rt + γ1Ratiot,1 + γ2Ratiot,2 +ηt+h.

15This approach works as follows: 1) We start by choosing a subset of the data at the beginning of the sample
period to compute initial estimates of our forecasting models. 2) We then update the predictors by one period to
compute out-of-sample forecasts. 3) We then re-estimate the forecasting models, where we add one observation
of the data at the end of the initial estimation period and, to hold the length of the estimation window constant,
delete the first observation. 4) We next roll the estimation window over the sample of data in this way (adding
one observation to the end of the estimation window, and deleting the first observation of the estimation window)
until we reach the end of the sample period. 5) While rolling the estimation window over the data, we compute
out-of-sample forecasts.
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p, governs the functional form of the loss function. Setting p = 1 results in a so-called lin-lin

loss function, while setting p = 2 gives a so-called quad-quad loss function. The parameter,

α ∈ (0,1), determines the asymmetry of the loss function. For α = 0.5, we obtain a symmetric

loss function. As a result, if we set, in addition, p = 2 then we obtain the standard RMSFE loss

function, and for p = 1, we obtain the MAFE loss function. For α ̸= 0.5, in turn, the loss func-

tion becomes asymmetric in the forecast error. Specifically, for α > 0.5 (α < 0.5), the loss from

an underestimation (overestimation) of stock-market tail risk exceeds the loss from an overesti-

mation (underestimation) of the same (absolute) size. Figure 2 plots examples of the lin-lin and

quad-quad loss function.

− Figure 2 about here. −

Equipped with the loss function, we use the out-of-sample relative-loss criterion studied by

Pierdzioch et al. (2014, 2016) to evaluate the forecasts. The out-of-sample relative-loss criterion,

Ro, is defined as follows:

Ro|α,p = 1−
T

∑
t=τ

Lt,rival|α,p/
T

∑
t=τ

Lt,benchmark|α,p, (10)

where τ ( T ) is the first (last) period for which a forecast is being made. Given the functional

form (p) and the asymmetry (α) of the loss function, the rival model (the model that features the

gold-to-silver and/or the gold-to-platinum price ratio as a predictor) performs better (worse) then

the autoregressive benchmark model according to the out-of-sample relative-loss criterion when

we observe Ro|α,p > 0 ( Ro|α,p < 0).

Finally, in order to shed light on the statistical significance of our results, we use the well-known

modified version of the Diebold and Mariano (1995) test proposed by Harvey et al. (1997).

3 Empirical Results

3.1 Results for Tail Risk

Before we move to the formal forecasting analyses, we compute the 1% and 5% stock-market

tail risks using the four CAViaR specifications (Symmetric Absolute Value, Asymmetric Slope,
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Indirect GARCH and Adaptive) described in Section 2.2, where several diagnostics are computed

to enable us determine the “best" CAViaR specification for each returns series. We report the

results as Supplementary Material (Tables S1 to S8). In terms of the DQ test and %Hits,16 for the

1% tail risks of the stock markets, the Asymmetric Slope model is the best fitting specification

for France, Italy, Japan, Switzerland, the UK, and the US, with the Indirect GARCH model

being the best framework for Canada and Germany. As far as the 5% tail risks are concerned,

based again on the DQ test and %Hits, the Asymmetric Slope model produces the best fit for

Canada, Germany, Italy, Japan, Switzerland, and the US, while the Indirect GARCH model is

the “optimal" specification for France and the UK. Interestingly, the Symmetric Absolute Value

and the Adaptive specifications are not optimal for any of the returns series. We use the tail

risks computed by means of the “optimal" specifications in our forecasting analysis based on the

information content of GSt and GPt .

Figure 3 plots the estimated 1% and 5% tail risks. The figure shows that, as expected, the

estimated tail risks display substantial variation over time. For example, the estimates show that

there is one large outburst of tail risk during the Second World War in the case of Germany. A

natural concern is to which extent this outlier and, more generally, the interwar period affects our

results. Similarly, also in the case of the other countries, important historical events and changes

in policy regimes may have had an impact on the link between stock-market tail risk and the

gold-to-silver and the gold-to-platinum price ratios. In order to control for such changes, we

use a rolling-estimation-window approach to estimate Equation (9). In line with the discussion

in the introduction, common peaks of tail risks across the countries are observed during the

periods associated with the “Great Depression", the Black Monday, the Asian Financial Crisis,

the bursting of the dot-com bubble, the Global Financial Crisis, the European sovereign debt

crisis and the Coronavirus outbreak.

− Figure 3 about here. −

16We expect the %Hits to be relatively 1% for 1% VaR and 5% for 5% VaR, while the DQ test statistic is not
expected to be significant. When more than one tail risk is statistically insignificant in terms of the DQ test, we
consider the tail risk with the closest value to the expected value for the %Hits. In the same vein, when all the
tail risks are statistically significant, the %Hits become a major criterion except when some distinctions can still be
made with the significant DQ test statistics.
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3.2 Results for Forecasting Performance

Table 1 depicts for T R1, and for forecast horizons ranging from one month to two years, results

for the ratio of root-mean-squared-forecasting error (RMSFE) for T R1. The RMSFE ratio is

computed as the ratio of the RMSFE of the autoregressive benchmark model and a rival model

that includes the variables displayed in the first column as additional predictors. We consider

three alternative rival models: one model that only includes the gold-to-silver price ratio, one

model that only includes the gold-to-platinum price ratio, and one model that includes both

price ratios as predictors. Because the choice of a rolling-estimation window is always to some

extent arbitrary, we compute the ratios as averages across four rolling-estimation windows of

length 60, 80, 100, and 120 months. A ratio that is larger than unity shows that the rival model

has a better forecasting performance in terms of the RMSFE than the benchmark model. The

results are based on data starting in 1968 because gold-to-platinum data are available only for

that shorter sample period. The results demonstrate that accounting for the gold-to-silver and/or

the gold-to-platinum price ratio improves forecasting performance in terms of the RMSFE (that

is, under a loss function that is symmetric in the squared forecast error) for the intermediate

and the long forecast horizons (starting with h = 6 or h = 9, depending on the country being

studied). Moreover, the results for the gold-to-silver ratio closely resemble the results for the

gold-to-platinum ratio and, for some countries, even are slightly better than the results for the

latter.

− Tables 1 and 2 about here. −

Because Figure 3 witnesses that the measures of tail risk that we study in our empirical research

displayed sharp fluctuations during our sample period, we summarize in Table 2 for T R1 the

ratio of the mean-absolute-forecasting error (MAFE), again averaged across the four rolling-

estimation windows of length 60, 80, 100, and 120 months. The simple autoregressive model

again is our benchmark model. The results corroborate the results for the RMSFE ratios given

in Table 1. The MAFE ratios increase in the forecast horizon, and they are similar across the

gold-to-silver and the gold-to-platinum ratios.
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− Table 3 about here. −

We report in Table 3 results for the RMSFE ratios that we obtain when we use T R5 rather than

T R1 as our metric of tail risk. As in the case of T R1, we observe that the RMSFE ratios increase in

the forecast horizon and that the results for the gold-to-silver price ratio are qualitatively similar

to the results for the gold-to-platinum price ratio. We conclude that, irrespective of whether we

study the RMSFE or MAFE ratio, or a loss function that is symmetric in the squared or the

absolute forecast error, the results for the gold-to-silver price ratio resemble the results for the

gold-to-platinum price ratio. Both ratios have forecasting power for the subsequent stock-market

tail risk in the eight economies included in our sample, mainly at the intermediate and the long

forecast horizons.

As we already pointed out, the data for the gold-to-platinum price ratio start at the beginning

of the year 1968 and are, thus, available for a relatively short sample period only. The data for

the gold-to-silver price ratio, in contrast, date back to 1916 and, thus, are available for a much

longer sample period. The results for the shorter sample period show that the gold-to-silver price

ratio, similar to the gold-to-platinum price ratio studied in recent research by Huang and Kilic

(2009) and others, captures the variation in global risk as a predictor of stock-market tail risk.

The results for the shorter sample period, thereby, motivate our choice to use the gold-to-silver

price ratio as a proxy of global risk also for the longer sample period dating back to 1916.

− Table 4 about here. −

We present in Table 4 results for the RMSFE ratios as computed using the data for the long

sample period. The results for the long sample period corroborate the results for the short sample

period in that the RMSFE ratios increase in the forecast horizon. Starting at forecast horizons of

h= 6 or h= 9, the RMSFE ratios start to exceed unity, demonstrating that the model that includes

the gold-to-silver price ratio as a predictor outperforms the benchmark model in terms of the in

terms of the RMSFE statistic. We observe this result for both measures of stock-market tail

risk, T R1 and T R5. Hence, when we study the long sample period, the gold-to-silver price ratio,

interpreted as a proxy that measures the variation in global risk, helps to predict stock-market
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tail risk, especially at the long forecast horizons, in the same way as the gold-to-platinum price

ratio does in the short sample period. Taken together, the results we report in Tables 1 to 4, thus,

lend support to the hypothesis that, because silver has similar consumption-based properties like

platinum, a simple metric of the the variation in global risk can be constructed for a long sample

period dating back more than a century based on the gold-to-silver price ratio. Our forecasting

results for the gold-to-silver price ratio, thereby, complement the results documented in much

significant recent research for the gold-to-platinum ratio as a measure of global risk.

− Figure 4 about here. −

Figure 4 plots, for the quad-quad and the lin-lin loss function, on the vertical axis the out-of-

sample relative loss criterion as a function of the asymmetry parameter of the loss function on

the horizontal axis for the long sample period.17 As in the case of the RMSFE and MAFE ratios,

we average the out-of-sample relative loss criterion across the four different rolling-estimation

windows. The model that includes the gold-to-silver price ratio as a predictor of stock-market

tail risk performs better than the benchmark model when the out-of-sample relative loss criterion

takes on a positive value. The results show that, assuming a quad-quad loss function, the out-

of-sample relative loss criterion increases in the asymmetry parameter for all countries except

Germany (for which Figure 3 shows the presence of a large outlier during the interwar period),

and crosses the zero line from below at around α = 0.5. The functions representing the out-

of-sample relative loss criterion tend to become steeper and they tend to shift upward when we

increase the forecast horizon. Hence, corroborating the results for the RMSFE and MAFE ratios,

the contribution of the gold-to-silver price ratio to the performance of the forecasting model

tends to increase as the forecast horizons become longer. Importantly, the results demonstrate

that for some countries (e.g., Japan) and forecast horizons (i.e., mainly the intermediate and long

forecast horizons), a forecaster with a symmetric quadratic loss function benefits from using the

17Figure S1 (Supplementary Material) shows the out-of-sample relative-loss statistic for the shorter sample period
beginning in 1968. The figure demonstrates that the general message that the out-of-sample relative-loss statistic
increases the parameter α (displayed on the horizontal axis) is the same in the short as in the long sample period
(starting in 1916).
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gold-to-silver price ratio to forecast stock-market tail risk. The benefits, however, are clearly

larger for a forecaster with an asymmetric loss function that is characterized by an asymmetry

parameter α > 0.5. In other words, a forecaster who suffers more from an underestimation of

stock-market tail risk than from an overestimation of the same size clearly benefits from using

the gold-to-silver price ratio as a predictor of subsequent stock-market tail risk.

The results for the lin-lin loss function resemble the results for the quad-quad loss function. In

most cases and for both T R1 and T R5, the function that represents the out-of-sample relative loss

criterion is upward sloping and takes on positive values for values of the asymmetry parameter

in the approximate range α > 0.5. For T R1, the out-of-sample relative loss criterion decreases

in the asymmetry parameter for Canada and Italy for the long forecast horizons, and for Ger-

many, the shape of the function that represents the out-of-sample relative loss criterion is rather

different than the shape of the function for the other countries. For T R5, the results for Germany

are more in line with the results for the other countries: the for the out-of-sample relative loss

criterion increases in the asymmetry parameter for intermediate and long forecast horizons and

even reaches positive values for a sufficiently large asymmetry parameter. Hence, the overall

picture that emerges is that the gold-to-silver price ratio improves forecast accuracy mainly at

the intermediate and long forecast horizons and when a forecaster is concerned primarily with

an underestimation of future stock-market tail risk.

− Figures 5 and 6 about here. −

Figures 5 and 6 shed light on the statistical significance of our results. The figures plot the p-

values (based on robust standard errors) of the Diebold and Mariano (1995) test that compares

the accuracy of forecasts. We present results for the modified version of the test due to Harvey

et al. (1997). We plot the p-values for the four different rolling-estimation windows as a func-

tion of the asymmetry parameter, α , and, to save journal space, focus on the case of the lin-lin

loss function. In the case of T R1, the p-values decrease in the asymmetry parameter and the

test results become significant (depending on the length of the rolling-estimation window being

studied) for a sufficiently large asymmetry parameter, when we study stock-market tail risks for

France, Japan, Switzerland, the United Kingdom, and the United States. We observe a similar
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pattern for Germany, except when we study the short rolling-estimation window. For T R1, the

results are qualitatively similar to the results for T R1, where we now observe a general tendency

of the p-values to decrease in the asymmetry parameter also for Canada.

− Figures 7 and 8 about here. −

A natural question, especially from the viewpoint of an investor, is whether our results also hold

when we study daily data.18 Daily data, of course, are not available for the extended period

dating back to 1916. Figures S2 to S9 report results (for the gold-to-silver and gold-to-platinum

ratios) for the Diebold-Mariano test based on daily data for the sample period from 1/03/1973 to

04/08/2022, with data on stock indexes derived from Datastream, and the metal prices from the

website of the London Bullion Market Association (LBMA)19 and Macrotrends. The optimal

CAViaR models for the daily data are as follows: Canada − asymmetric slope, France, Germany,

Italy, Japan, UK, AND US −adaptive, Switzerland − symmetric absolute value (T R1) and adap-

tive (T R5).20 The results for the quad-quad loss function, and the lin-lin loss function combined

with our estimates of T R5, are stronger than the results we obtain when we combine the lin-lin

loss function and our estimates of T R1, but the general message to take home from the figures

is that our result that the p-values of the Diebold-Mariano tests are decreasing in the asymmetry

parameter also holds for the shorter sample period of daily data starting in 1973.

18It should be noted that there are at least two problems with the usage of daily data. First, while we can match
the opening and closing times of the metals market with the corresponding time of operation of the stock market
of the UK, due to time-differences with the other economies in the sample, we cannot do the same. Second, the
connectedness analysis cannot be performed because the stock markets have different opening and closing times
being in separate time zones and, hence, we cannot put them in the TVP-VAR model all together to obtain the
time-varying TCI. Ignoring these concerns, however, we report the predictability of the tail risks, and not the TCI
(monthly results of which are discussed in the sub-section that follows), which in any event would be an infeasible
exercise, given the computational time of estimating a TVP-VAR model comprising eight variables involving over
12000 observations.

19See: https://www.lbma.org.uk/prices-and-data/precious-metal-prices#/.
20Detailed estimation results for the CAViaR models are not reported but are available from the authors upon

request.
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3.3 Results for Connectedness

We next study the implications of our results with regard to total connectedness of stock-market

tail risks. To this end, we plot in Figure 7 the estimated total connectedness index (TCI) for both

T R1 and T R5. The results illustrate that total connectedness reached a first peak in the interwar

period, then declined and hovered around a modest level until around the 1970s, and from then

on started increasing again, where we observe that this trend increase did not occur gradually

but rather was characterized four step jumps, with the latest one occurring at the very end of

the sample period during the recent COVID-19 pandemic. While the others are associated with

decline in stock returns in 1948 following the strong performances of the stock markets of the

advanced countries that was witnessed during World War II (Ferguson, 2008), the Black Monday

in 1987, and of course during the Global Financial Crisis of 2007 to 2009.

Equipped with the TCI estimates, we plot in Figure 8 the out-of-sample relative loss as a func-

tion of the asymmetry parameter for our measure of total connectedness of stock-market tail

risk.21 The figure shows that a forecaster who incurs higher costs from underestimating total

connectedness than from overestimating it benefits from using the gold-to-silver price ratio as

a predictor in our forecasting model. In other words, those forecasters benefit most from using

the gold-to-silver price ratio for forecasting who otherwise would overestimate the gains from

diversifying their portfolio investments across the eight stock markets in our sample (because

underestimation of total connectedness of stock markets means that the benefits from portfolio

diversification are overestimated).

4 Concluding Remarks

Stock-market tail risks have been shown to predict not only stock returns, but also real economic

activity and oil market movements. Hence, determining the drivers and the forecastability of

21Figures S10 and S11 (Supplementary Material) depict the corresponding results for the gold-to-silver price and
the gold-to-platinum price ratios for the shorter sample period (starting in 1968).
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the tail risks due to these predictors, should be of immense value to investors and policymakers.

Given this, the objective of our research is to forecast, for the first time, the tail risks of the

advanced stock markets of Canada, France, Germany, Italy, Japan, Switzerland, the UK, and

the US over the monthly period from 1916:02 to 2020:10 and 1968:01 to 2020:10, based on the

ratios of gold-to-silver prices and gold-to-platinum prices, which, in turn, are proxies for global

risk. In order to capture tail risks, we have employed four variants of the CAViaR framework,

with the “best" tail-risk model obtained using relevant diagnostics. Consequently, we forecast

the optimal tail risk estimates based on the predictive prowess of the two global risk predictors.

Following this, we not only forecast the individual tail risks, but also their underlying time-

varying connectedness, given the importance of comovements of stock markets, especially in the

lower tails, for asset-allocation decisions of portfolio managers and stock market traders.

Using data for the shorter sample period starting in 1968, we have found that the gold-to-silver

price ratio is a useful proxy for global risk similar to the conventionally used gold-to-platinum

price ratio. Given this finding, we then have extended our empirical analysis to the long sample

period. For the long sample period, we have found that, despite some heterogeneity across

economies, the gold-to-silver price ratio often is useful for improving the accuracy of forecasts

of both 1% and 5% stock-market tail risks, especially when a forecaster has an asymmetric loss

function that attaches a larger weight to underestimations of tail risk than to overestimations of

the same absolute seize. Similarly, such a forecaster should find the gold-to-silver price ratio

beneficial for forecasting the total connectedness index that we constructed by means of a TVP-

VAR model. Hence, our results offer important insights for international investors who seek to

assess (and forecast) the benefits of international portfolio diversification in the wake of global

risk shocks. From a policy perspective, our results imply that using the predicted path of tail

risks based on the two ratios may help policymakers to design appropriate monetary and fiscal

policies to insulate the effects on economic activity from global risk shocks.

As part of future research, it is interesting to extend our analysis to stock markets of emerging-

market economies as well, and if, possible, from an historical perspective too, which would,

however, be contingent on data availability. Given the financialization of the commodity market,

such an exercise can also be implemented for commodities. The results we have documented
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in this research should be particularly useful for such analyses because our results suggest that,

while the gold-to-silver price ratio has similar forecasting properties than the gold-to-platinum

price ratio, the former is available for a much longer sample period than the latter. Hence, upon

using the the gold-to-platinum price ratio, researchers can study over a much longer sample

period than is possible by using the gold-to-platinum price ratio, how a variation of global risk

affects subsequent stock-market returns in emerging-market economies, and the comovement of

these stock markets with the stock markets of advanced economies and commodity markets.
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Table 1: Results for the Root-Mean-Squared-Forecasting Error (T R1, Sample Starts 1968M01)

Model / window h=1 h=3 h=6 h=9 h=12 h=24
CAN - GS ratio 0.9692 0.9865 1.0080 1.0226 1.0368 1.0613
CAN - GP ratio 0.9689 0.9799 1.0028 1.0088 1.0200 1.0749
CAN - both 0.9504 0.9651 0.9938 1.0111 1.0360 1.1472
FRA - GS ratio 0.9815 0.9905 0.9968 1.0025 1.0084 1.0265
FRA - GP ratio 0.9699 0.9707 0.9777 0.9867 0.9951 1.0507
FRA - both 0.9604 0.9645 0.9728 0.9828 0.9961 1.0737
GER - GS ratio 0.9840 0.9972 1.0004 1.0138 1.0270 1.0753
GER - GP ratio 0.9684 0.9778 0.9923 1.0075 1.0110 1.0679
GER - both 0.9645 0.9823 0.9947 1.0019 1.0130 1.1229
ITA - GS ratio 0.9797 0.9815 0.9834 0.9837 0.9839 0.9958
ITA - GP ratio 0.9789 0.9836 0.9894 0.9943 1.0008 1.0572
ITA - both 0.9662 0.9722 0.9817 0.9876 0.9940 1.0569
JAP - GS ratio 0.9838 0.9911 1.0061 1.0241 1.0466 1.1192
JAP - GP ratio 0.9601 0.9660 0.9763 0.9852 0.9974 1.0617
JAP - both 0.9554 0.9686 0.9881 1.0054 1.0317 1.1669
SWI - GS ratio 0.9738 0.9784 0.9884 1.0024 1.0145 1.0278
SWI - GP ratio 0.9664 0.9664 0.9828 1.0060 1.0253 1.0946
SWI - both 0.9450 0.9444 0.9614 0.9884 1.0207 1.1556
UK - GS ratio 0.9804 0.9902 0.9943 0.9959 0.9997 0.9942
UK - GP ratio 0.9754 0.9894 1.0058 1.0132 1.0156 1.0527
UK - both 0.9625 0.9751 0.9868 0.9926 1.0049 1.0869
US - GS ratio 0.9796 0.9899 1.0006 1.0035 1.0150 1.0422
US - GP ratio 0.9601 0.9730 0.9954 0.9982 1.0060 1.0491
US - both 0.9445 0.9540 0.9711 0.9769 0.9987 1.1078

Note: This table depicts the ratio of the root-mean-squared-forecasting errors (RMSFEs) as computed as the ratio of the RMSFE of the autore-
gressive benchmark model and a rival model that includes the variables displayed in the first column as additional predictors. The ratios are
averages computed across four rolling-estimation windows of length 60, 80, 100, and 120 months. A ratio that larger than unity indicates that
the rival model has a better forecasting performance than the benchmark model.

Figure 1: Gold-to-Silver and Gold-to-Platinum Price Ratios
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Note: This vertical dashed lines are added every five years (at 1920/01, 1925/01, 1930/01,.., 2015/01, 2020/01) to make it easier to read and
interpret this figure.
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Table 2: Results for the Mean-Absolute-Forecasting Error (T R1, Sample Starts 1968M01)

Model / window h=1 h=3 h=6 h=9 h=12 h=24
CAN - GS ratio 0.9544 0.9506 0.9928 1.0182 1.0328 1.0746
CAN - GP ratio 0.8965 0.9236 0.9761 0.9877 0.9983 1.0856
CAN - both 0.8752 0.8884 0.9613 1.0013 1.0371 1.1774
FRA - GS ratio 0.9640 0.9774 0.9838 0.9913 0.9848 1.0354
FRA - GP ratio 0.9495 0.9500 0.9684 0.9840 0.9845 1.0572
FRA - both 0.9371 0.9388 0.9483 0.9646 0.9673 1.1002
GER - GS ratio 0.9482 0.9688 0.9912 1.0245 1.0492 1.1171
GER - GP ratio 0.9206 0.9308 0.9703 1.0228 1.0519 1.1363
GER - both 0.8960 0.9259 0.9746 1.0203 1.0581 1.2182
ITA - GS ratio 0.9575 0.9677 0.9651 0.9490 0.9477 1.0004
ITA - GP ratio 0.9611 0.9799 0.9894 0.9936 1.0022 1.0945
ITA - both 0.9451 0.9655 0.9729 0.9655 0.9738 1.1020
JAP - GS ratio 0.9832 0.9829 1.0001 1.0160 1.0468 1.0787
JAP - GP ratio 0.9488 0.9591 0.9696 0.9942 1.0196 1.0771
JAP - both 0.9388 0.9514 0.9811 1.0180 1.0656 1.1582
SWI - GS ratio 0.9323 0.9373 0.9486 0.9676 0.9873 1.0198
SWI - GP ratio 0.9351 0.9521 0.9659 1.0023 1.0421 1.1767
SWI - both 0.9042 0.9240 0.9467 0.9858 1.0357 1.2123
UK - GS ratio 0.9600 0.9708 0.9821 0.9863 0.9835 0.9818
UK - GP ratio 0.9594 0.9864 1.0118 1.0195 1.0214 1.1337
UK - both 0.9316 0.9550 0.9832 0.9883 0.9994 1.1543
US - GS ratio 0.9479 0.9580 0.9783 0.9906 1.0034 1.0146
US - GP ratio 0.9276 0.9480 0.9886 1.0068 1.0210 1.0984
US - both 0.8903 0.9086 0.9631 0.9951 1.0231 1.1499

Note: This table depicts the ratio of the mean-absolute-forecasting errors (MAFEs) as computed as the ratio of the MAFE of the autoregressive
benchmark model and a rival model that includes the variables displayed in the first column as additional predictors. The ratios are averages
computed across four rolling-estimation windows of length 60, 80, 100, and 120 months. A ratio that larger than unity indicates that the rival
model has a better forecasting performance than the benchmark model.

Figure 2: Examples of the Loss Function
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Table 3: Results for the Root-Mean-Squared-Forecasting Error (T R5, Sample Starts 1968M01)

Model / window h=1 h=3 h=6 h=9 h=12 h=24
CAN - GS ratio 0.9818 0.9859 0.9958 1.0073 1.0254 1.0702
CAN - GP ratio 0.9717 0.9690 0.9797 0.9876 1.0010 1.0637
CAN - both 0.9576 0.9526 0.9628 0.9725 0.9971 1.1236
FRA - GS ratio 0.9841 1.0029 1.0093 1.0124 1.0223 1.0501
FRA - GP ratio 0.9749 0.9845 0.9894 0.9923 0.9949 1.0389
FRA - both 0.9673 0.9809 0.9863 0.9850 0.9967 1.0859
GER - GS ratio 0.9839 0.9890 0.9907 1.0020 1.0140 1.0574
GER - GP ratio 0.9686 0.9741 0.9927 1.0123 1.0194 1.0758
GER - both 0.9646 0.9737 0.9864 0.9977 1.0119 1.1213
ITA - GS ratio 0.9742 0.9779 0.9803 0.9848 0.9861 0.9933
ITA - GP ratio 0.9738 0.9758 0.9804 0.9816 0.9843 1.0376
ITA - both 0.9580 0.9598 0.9634 0.9651 0.9677 1.0238
JAP - GS ratio 0.9890 0.9975 1.0105 1.0287 1.0516 1.1100
JAP - GP ratio 0.9613 0.9664 0.9780 0.9885 1.0027 1.0591
JAP - both 0.9611 0.9739 0.9915 1.0097 1.0418 1.1706
SWI - GS ratio 0.9723 0.9763 0.9865 1.0023 1.0152 1.0302
SWI - GP ratio 0.9657 0.9645 0.9795 1.0024 1.0219 1.0900
SWI - both 0.9443 0.9423 0.9574 0.9837 1.0161 1.1524
UK - GS ratio 0.9725 0.9858 0.9982 0.9942 0.9997 0.9904
UK - GP ratio 0.9657 0.9852 1.0126 1.0185 1.0215 1.0338
UK - both 0.9497 0.9673 0.9950 1.0017 1.0128 1.0431
US - GS ratio 0.9852 0.9974 1.0053 1.0110 1.0265 1.0633
US - GP ratio 0.9612 0.9761 0.9965 1.0015 1.0118 1.0785
US - both 0.9515 0.9633 0.9781 0.9875 1.0148 1.1531

Note: This table depicts the ratio of the root-mean-squared-forecasting errors (RMSFEs) as computed as the ratio of the RMSFE of the autore-
gressive benchmark model and a rival model that includes the variables displayed in the first column as additional predictors. The ratios are
averages computed across four rolling-estimation windows of length 60, 80, 100, and 120 months. A ratio that larger than unity indicates that
the rival model has a better forecasting performance than the benchmark model.
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Table 4: Results for the Root-Mean-Squared-Forecasting Error (Sample Starts 1916M02)

Panel A: T R1

Model / window h=1 h=3 h=6 h=9 h=12 h=24
CAN - GS ratio 0.9740 0.9827 0.9946 1.0006 1.0080 1.0199
FRA - GS ratio 0.9838 0.9898 0.9963 1.0056 1.0162 1.0502
GER - GS ratio 1.1345 1.3654 1.5375 1.6444 1.7121 1.0656
ITA - GS ratio 0.9863 0.9869 0.9856 0.9861 0.9871 1.0182
JAP - GS ratio 0.9895 0.9978 1.0140 1.0376 1.0648 1.1689
SWI - GS ratio 0.9716 0.9810 0.9996 1.0199 1.0418 1.0797
UK - GS ratio 0.9852 0.9918 1.0001 1.0087 1.0195 1.0547
US - GS ratio 0.9820 0.9854 0.9925 0.9964 1.0056 1.0340

Panel A: T R5

Model / window h=1 h=3 h=6 h=9 h=12 h=24
CAN - GS ratio 0.9773 0.9770 0.9826 0.9873 0.9983 1.0278
FRA - GS ratio 0.9860 0.9986 1.0057 1.0131 1.0243 1.0539
GER - GS ratio 0.9615 1.0580 1.1501 1.2234 1.2921 1.1494
ITA - GS ratio 0.9829 0.9848 0.9836 0.9848 0.9855 1.0155
JAP - GS ratio 0.9962 1.0141 1.0364 1.0649 1.0940 1.1868
SWI - GS ratio 0.9718 0.9807 0.9996 1.0206 1.0430 1.0781
UK - GS ratio 0.9835 0.9981 1.0156 1.0227 1.0340 1.0760
US - GS ratio 0.9740 0.9826 0.9908 0.9976 1.0109 1.0410

Note: This table depicts the ratio of the root-mean-squared-forecasting errors (RMSFEs) as computed as the ratio of the RMSFE of the au-
toregressive benchmark model and a rival model that includes the gold-to-silver price ratio as an additional predictor. The ratios are averages
computed across four rolling-estimation windows of length 60, 80, 100, and 120 months. A ratio that larger than unity indicates that the rival
model has a better forecasting performance than the benchmark model.
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Figure 3: Tail Risks (T R1)

Panel A: T R1
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Panel A: T R5
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Note: This vertical dashed lines are added every five years (at 1920/01, 1925/01, 1930/01,.., 2015/01, 2020/01) to make it easier to read and
interpret this figure.
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Figure 4: Out-of-Sample Relative-Loss Statistic (Sample Starts 1916M02)

Panel A: T R1, Quad-Quad Loss
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Panel B: T R5, Quad-Quad Loss
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Panel C: T R1, Lin-Lin Loss
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Panel D: T R5, Lin-Lin Loss
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Note: This figure shows the out-of-sample relative loss criterion as a function of the asymmetry parameter and a quad-quad loss function. The
relative loss criterion is an average computed across four rolling-estimation windows of length 60, 80, 100, and 120 months. The autoregressive
model is the benchmark model and the rival model includes the gold-to-silver price ratio as an additional predictor
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Figure 5: Diebold-Mariano Test Under Asymmetric Loss (T R1, Lin-Lin Loss, Sample Starts
1916M02)
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Panel B: France
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Panel C: Germany
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Panel D: Italy
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To be continued.
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Continued.

Panel E: Japan
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Panel F: Switzerland
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Panel G: United Kingdom
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Panel H: United States
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Note: This table depicts the results (p-values) of the (modified) Diebold-Mariano test computed under an asymmetric absolute-error loss function,
where the asymmetry parameter is plotted on the horizontal axis. The alternative hypothesis is that the forecasts from the rival model are more
accurate than the forecasts from the benchmark model (one-sided test). The autoregressive model is the benchmark model and the rival model
includes the gold-to-silver price ratio as an additional predictor
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Figure 6: Diebold-Mariano Test Under Asymmetric Loss (T R5, Lin-Lin Loss, Sample Starts
1916M02)
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Panel B: France
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Panel C: Germany
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Panel D: Italy
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To be continued.
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Continued.

Panel E: Japan
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Panel F: Switzerland
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Panel G: United Kingdom
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Panel H: United States
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Note: This table depicts the results (p-values) of the (modified) Diebold-Mariano test computed under an asymmetric absolute-error loss function,
where the asymmetry parameter is plotted on the horizontal axis. The alternative hypothesis is that the forecasts from the rival model are more
accurate than the forecasts from the benchmark model (one-sided test). The autoregressive model is the benchmark model and the rival model
includes the gold-to-silver price ratio as an additional predictor
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Figure 7: Total Connectedness
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Note: This vertical dashed lines are added every five years (at 1920/01, 1925/01, 1930/01,.., 2015/01, 2020/01) to make it easier to read and
interpret this figure.

Figure 8: Out-of-Sample Relative-Loss Criterion for Total Connectedness (Sample Starts
1916M02)

Panel A: Quad-Quad Loss
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Panel B: Lin-Lin Loss
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Note: This figure shows the out-of-sample relative loss criterion as a function of the asymmetry parameter and a quad-quad loss function. The
relative loss criterion is an average computed across four rolling-estimation windows of length 60, 80, 100, and 120 months. The autoregressive
model is the benchmark model and the rival model includes the gold-to-silver price ratio as an additional predictor
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Supplementary Material

Table S1: Estimates and relevant statistics for the countryspecific CAViaR specification [Sym-
metric Absolute Value]

1% VaR Canada France Germany Italy Japan Switzerland UK US
β1 0.172 0.425 1.770 0.342 2.490 1.200 4.510 -0.004
Standard errors 0.295 0.363 1.270 0.232 1.050 1.530 1.470 0.167
P values 0.279 0.121 0.082 0.070 0.009 0.216 0.001 0.490
β2 0.924 0.896 0.649 0.928 0.705 0.836 0.386 0.923
Standard errors 0.039 0.045 0.123 0.042 0.093 0.190 0.125 0.036
P values 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
β3 0.284 0.216 1.010 0.148 0.492 0.327 1.020 0.365
Standard errors 0.088 0.064 0.148 0.078 0.143 0.319 0.329 0.183
P values 0.001 0.000 0.000 0.028 0.000 0.152 0.001 0.023
RQ 176.000 167.000 342.000 178.000 185.000 172.000 166.000 162.000
Hits in-sample (%) 0.993 0.993 1.090 0.894 0.993 0.993 1.090 1.090
Hits out-of-sample (%) 1.200 3.200 2.000 3.600 1.600 0.400 1.200 2.000
DQ in-sample (P-values) 0.189 0.083 0.809 0.994 0.080 0.181 0.030 0.985
DQ out-of-sample (P-values) 0.000 0.000 0.540 0.000 0.000 0.967 0.980 0.653

Note: Bolded figures indicate a country’s tail risk that best “fits" the return series. The criteria used are the DQ test
and %Hits (out-of-sample). For the “best" tail risk specification, we expect the %Hits to be 1% for 1% VaR (and 5%
for 5% VaR). while the DQ test statistic is not expected to be significant. In cases where more than one tail risk is
statistically insignificant in terms of the DQ test, then, we consider the tail risk with the closest value to the expected
value for the % Hits. In the same vein, when all the tail risks are statistically significant, then, the % Hits becomes
a major criterion except when some distinctions can still be made with the significant DQ test statistics.

Table S2: Estimates and Relevant statistics for the country-specific CAViaR specification [Asym-
metric Slope]

1% VaR Canada France Germany Italy Japan Switzerland UK US
β1 0.048 0.355 1.520 0.389 1.890 1.230 0.577 0.220
Standard errors 0.283 0.374 0.663 0.356 1.400 1.630 0.746 0.470
P values 0.433 0.171 0.011 0.137 0.089 0.224 0.220 0.320
β2 0.921 0.893 0.742 0.927 0.765 0.815 0.802 0.862
Standard errors 0.042 0.050 0.079 0.054 0.125 0.176 0.106 0.093
P values 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β3 0.273 0.200 0.280 0.159 0.280 0.129 0.451 0.349
Standard errors 0.074 0.064 0.124 0.106 0.131 0.152 0.333 0.381
P values 0.000 0.001 0.012 0.066 0.017 0.199 0.088 0.180
β4 0.307 0.250 0.824 0.102 0.443 0.619 0.832 0.619
Standard errors 0.261 0.100 0.146 0.103 0.100 0.466 0.371 0.536
P values 0.119 0.006 0.000 0.161 0.000 0.092 0.012 0.124
RQ 176.000 166.000 330.000 177.000 184.000 164.000 166.000 158.000
Hits in-sample (%) 1.090 0.894 0.993 0.993 1.090 0.993 0.894 0.993
Hits out-of-sample (%) 1.200 2.800 1.600 4.000 1.600 0.400 0.400 1.200
DQ in-sample (P-values) 0.243 0.993 0.068 0.991 0.118 0.984 0.932 0.992
DQ out-of-sample (P-values) 0.000 0.003 0.964 0.000 0.000 0.968 0.986 0.997

Note: See notes to Table A1.
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Table S3: Estimates and Relevant statistics for the country-specific CAViaR specification [Indi-
rect GARCH]

1% VaR Canada France Germany Italy Japan Switzerland UK US
β1 0.766 3.310 13.800 4.870 44.700 3.740 7.200 0.920
Standard errors 3.600 3.600 14.000 3.410 22.900 4.820 8.740 2.450
P values 0.416 0.179 0.161 0.077 0.026 0.219 0.205 0.354
β2 0.925 0.923 0.602 0.922 0.663 0.862 0.758 0.817
Standard errors 0.036 0.031 0.126 0.017 0.112 0.053 0.107 0.030
P values 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β3 0.644 0.283 2.740 0.241 0.810 0.984 1.820 1.680
Standard errors 0.649 0.449 1.560 0.627 0.694 3.070 0.888 2.560
P values 0.160 0.264 0.039 0.350 0.121 0.374 0.021 0.256
RQ 180.000 170.000 343.000 178.000 184.000 168.000 170.000 161.000
Hits in-sample (%) 1.090 0.993 0.993 0.993 0.993 1.090 0.894 0.993
Hits out-of-sample (%) 1.200 2.800 2.000 3.600 1.600 0.800 0.800 1.600
DQ in-sample (P-values) 0.978 0.080 0.995 0.988 0.057 0.118 0.799 0.988
DQ out-of-sample (P-values) 0.000 0.002 0.673 0.000 0.000 0.935 1.000 0.959

Note: See notes to Table A1.

Table S4: Estimates and Relevant statistics for the country-specific CAViaR specification [Adap-
tive]

1% VaR Canada France Germany Italy Japan Switzerland UK US
β1 1.040 -0.108 14.000 0.732 -1.950 0.618 1.080 3.400
Standard errors 0.602 0.330 0.000 0.730 0.015 0.796 0.433 0.551
P values 0.042 0.371 0.000 0.158 0.000 0.219 0.006 0.000
RQ 214.000 180.000 393.000 226.000 215.000 184.000 183.000 193.000
Hits in-sample (%) 0.596 0.794 0.794 1.490 0.993 0.695 1.390 0.695
Hits out-of-sample (%) 1.200 1.600 1.200 1.200 0.800 0.400 0.800 1.600
DQ in-sample (P-values) 1.000 0.020 0.996 0.041 0.003 1.000 0.008 0.000
DQ out-of-sample (P-values) 0.000 0.044 0.757 0.243 0.638 0.905 0.639 0.040

Note: See notes to Table A1.

Table S5: Estimates and Relevant statistics for the country-specific CAViaR specification [Sym-
metric Absolute Value]

5% VaR Canada France Germany Italy Japan Switzerland UK US Oil
β1 0.062 1.040 0.867 0.458 0.961 0.439 0.730 0.458 0.000
Standard errors 0.154 0.761 0.267 0.244 0.406 0.508 0.309 0.244 0.000
P values 0.344 0.085 0.001 0.030 0.009 0.194 0.009 0.030 0.351
β2 0.923 0.752 0.601 0.874 0.765 0.826 0.777 0.874 0.890
Standard errors 0.048 0.125 0.102 0.051 0.076 0.127 0.080 0.051 0.000
P values 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β3 0.182 0.259 0.680 0.169 0.283 0.286 0.279 0.169 0.263
Standard errors 0.109 0.090 0.191 0.060 0.113 0.122 0.105 0.060 0.000
P values 0.048 0.002 0.000 0.003 0.006 0.010 0.004 0.003 0.000
RQ 573.000 580.000 828.000 655.000 651.000 540.000 530.000 655.000 517.000
Hits in-sample (%) 4.970 5.060 4.970 4.970 4.970 5.060 5.060 4.970 5.060
Hits out-of-sample (%) 3.600 6.000 8.000 6.400 7.600 6.400 6.000 6.400 8.800
DQ in-sample (P-values) 0.063 0.762 0.147 0.054 0.337 0.087 0.309 0.054 0.000
DQ out-of-sample (P-values) 0.604 0.004 0.016 0.646 0.095 0.050 0.379 0.646 0.000

Note: See notes to Table A1.
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Table S6: Estimates and Relevant statistics for the country-specific CAViaR specification [Asym-
metric Slope]

5% VaR Canada France Germany Italy Japan Switzerland UK US
β1 0.231 1.040 0.653 0.373 1.790 0.609 0.649 0.373
Standard errors 0.381 0.772 0.821 0.190 0.845 0.547 0.323 0.190
P values 0.272 0.089 0.213 0.025 0.017 0.133 0.022 0.025
β2 0.874 0.719 0.629 0.853 0.503 0.782 0.805 0.853
Standard errors 0.076 0.118 0.235 0.041 0.133 0.098 0.099 0.041
P values 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000
β3 0.108 0.249 0.344 0.188 0.386 0.108 0.080 0.188
Standard errors 0.147 0.117 0.248 0.059 0.087 0.101 0.087 0.059
P values 0.230 0.017 0.083 0.001 0.000 0.142 0.177 0.001
β4 0.308 0.319 0.853 0.238 0.823 0.439 0.344 0.238
Standard errors 0.156 0.109 0.594 0.080 0.171 0.082 0.185 0.080
P values 0.024 0.002 0.076 0.001 0.000 0.000 0.031 0.001
RQ 568.000 578.000 797.000 652.000 648.000 526.000 520.000 652.000
Hits in-sample (%) 4.870 4.870 4.970 4.970 4.770 4.970 5.060 4.970
Hits out-of-sample (%) 4.800 7.200 8.800 6.400 7.600 5.200 7.600 6.400
DQ in-sample (P-values) 0.386 0.831 0.986 0.126 0.963 0.601 0.424 0.126
DQ out-of-sample (P-values) 0.886 0.018 0.050 0.701 0.121 0.877 0.536 0.701

Note: See notes to Table A1.

Table S7: Estimates and Relevant statistics for the country-specific CAViaR specification [Indi-
rect GARCH]

5% VaR Canada France Germany Italy Japan Switzerland UK US
β1 -0.384 7.000 4.590 3.320 7.340 1.510 5.070 3.320
Standard errors 0.378 6.720 3.460 1.820 4.000 2.380 2.950 1.820
P values 0.155 0.149 0.092 0.034 0.033 0.263 0.043 0.034
β2 0.930 0.704 0.456 0.878 0.771 0.804 0.709 0.878
Standard errors 0.016 0.132 0.134 0.028 0.057 0.076 0.074 0.028
P values 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β3 0.225 0.435 1.200 0.181 0.308 0.502 0.458 0.181
Standard errors 0.132 0.232 0.727 0.290 0.154 0.280 0.472 0.290
P values 0.044 0.030 0.050 0.267 0.023 0.036 0.166 0.267
RQ 575.000 580.000 834.000 662.000 654.000 538.000 533.000 662.000
Hits in-sample (%) 5.060 5.060 5.060 5.060 5.060 5.060 5.060 5.060
Hits out-of-sample (%) 6.000 6.800 9.200 6.800 8.000 6.000 7.600 6.800
DQ in-sample (P-values) 0.084 0.883 0.897 0.013 0.462 0.377 0.443 0.013
DQ out-of-sample (P-values) 0.137 0.012 0.001 0.566 0.024 0.036 0.517 0.566

Note: See notes to Table A1.
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Figure S1: Out-of-Sample Relative-Loss Statistic (Sample Starts 1968M01)

Panel A: T R1, Quad-Quad Loss
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Panel B: T R5, Quad-Quad Loss
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Panel C: T R1, Lin-Lin Loss
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Panel D: T R5, Lin-Lin Loss
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Note: This figure shows the out-of-sample relative loss criterion as a function of the asymmetry parameter and a quad-quad loss function. The
relative loss criterion is an average computed across four rolling-estimation windows of length 60, 80, 100, and 120 months. The autoregressive
model is the benchmark model and the rival model includes the gold-to-silver price ratio as an additional predictor
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Figure S2: Diebold-Mariano Test Under Asymmetric Loss (Daily Data, Gold-to-Silver Price
Ratio, T R1, Lin-Lin Loss, Sample Period 1/03/1973−04/08/2022)

Panel A: Canada
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Panel B: France
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Panel C: Germany
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Panel D: Italy
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To be continued.
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Continued.

Panel E: Japan
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Panel F: Switzerland
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Panel G: United Kingdom
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Panel H: United States
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Note: This table depicts the results (p-values) of the (modified) Diebold-Mariano test computed under an asymmetric absolute-error loss function,
where the asymmetry parameter is plotted on the horizontal axis. The alternative hypothesis is that the forecasts from the rival model are more
accurate than the forecasts from the benchmark model (one-sided test). The autoregressive model is the benchmark model and the rival model
includes the gold-to-silver price ratio as an additional predictor
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Figure S3: Diebold-Mariano Test Under Asymmetric Loss (Daily Data, Gold-to-Silver Price
Ratio, T R5, Lin-Lin Loss, Sample Period 1/03/1973−04/08/2022)

Panel A: Canada
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Panel B: France
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Panel C: Germany
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Panel D: Italy
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To be continued.
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Continued.

Panel E: Japan
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Panel F: Switzerland
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Panel G: United Kingdom
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Panel H: United States
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Note: This table depicts the results (p-values) of the (modified) Diebold-Mariano test computed under an asymmetric absolute-error loss function,
where the asymmetry parameter is plotted on the horizontal axis. The alternative hypothesis is that the forecasts from the rival model are more
accurate than the forecasts from the benchmark model (one-sided test). The autoregressive model is the benchmark model and the rival model
includes the gold-to-silver price ratio as an additional predictor

43



Figure S4: Diebold-Mariano Test Under Asymmetric Loss (Daily Data, Gold-to-Silver Price
Ratio, T R1, Quad-Quad Loss, Sample Period 1/03/1973−04/08/2022)
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Panel B: France
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Panel C: Germany
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Panel D: Italy
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To be continued.
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Continued.

Panel E: Japan
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Panel F: Switzerland
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Panel G: United Kingdom
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Panel H: United States
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Note: This table depicts the results (p-values) of the (modified) Diebold-Mariano test computed under an asymmetric absolute-error loss function,
where the asymmetry parameter is plotted on the horizontal axis. The alternative hypothesis is that the forecasts from the rival model are more
accurate than the forecasts from the benchmark model (one-sided test). The autoregressive model is the benchmark model and the rival model
includes the gold-to-silver price ratio as an additional predictor
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Figure S5: Diebold-Mariano Test Under Asymmetric Loss (Daily Data, Gold-to-Silver Price
Ratio, T R5, Quad-Quad Loss, Sample Period 1/03/1973−04/08/2022)
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Panel B: France
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Panel C: Germany
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Panel D: Italy
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To be continued.
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Continued.

Panel E: Japan
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Panel F: Switzerland
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Panel G: United Kingdom
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Panel H: United States
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Note: This table depicts the results (p-values) of the (modified) Diebold-Mariano test computed under an asymmetric absolute-error loss function,
where the asymmetry parameter is plotted on the horizontal axis. The alternative hypothesis is that the forecasts from the rival model are more
accurate than the forecasts from the benchmark model (one-sided test). The autoregressive model is the benchmark model and the rival model
includes the gold-to-silver price ratio as an additional predictor
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Figure S6: Diebold-Mariano Test Under Asymmetric Loss (Daily Data, Gold-to-Platinum Price
Ratio, T R1, Lin-Lin Loss, Sample Period 1/03/1973−04/08/2022)

Panel A: Canada

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CANADA / horizon = 1

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CANADA / horizon = 3

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CANADA / horizon = 6

α

pv
al

0.2 0.4 0.6 0.8
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CANADA / horizon = 9

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CANADA / horizon = 12

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CANADA / horizon = 24

α

pv
al

Window =  250
Window =  500
Window =  1000

Panel B: France
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Panel C: Germany
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Panel D: Italy
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To be continued.
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Continued.

Panel E: Japan
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Panel F: Switzerland
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Panel G: United Kingdom

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 UK / horizon = 1

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 UK / horizon = 3

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 UK / horizon = 6

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 UK / horizon = 9

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 UK / horizon = 12

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 UK / horizon = 24

α

pv
al

Window =  250
Window =  500
Window =  1000

Panel H: United States
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Note: This table depicts the results (p-values) of the (modified) Diebold-Mariano test computed under an asymmetric absolute-error loss function,
where the asymmetry parameter is plotted on the horizontal axis. The alternative hypothesis is that the forecasts from the rival model are more
accurate than the forecasts from the benchmark model (one-sided test). The autoregressive model is the benchmark model and the rival model
includes the gold-to-platinum price ratio as an additional predictor
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Figure S7: Diebold-Mariano Test Under Asymmetric Loss (Daily Data, Gold-to-Platinum Price
Ratio, T R5, Lin-Lin Loss, Sample Period 1/03/1973−04/08/2022)

Panel A: Canada

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CANADA / horizon = 1

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CANADA / horizon = 3

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CANADA / horizon = 6

α

pv
al

0.2 0.4 0.6 0.8
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CANADA / horizon = 9

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CANADA / horizon = 12

α

pv
al

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CANADA / horizon = 24

α

pv
al

Window =  250
Window =  500
Window =  1000

Panel B: France
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Panel C: Germany
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Panel D: Italy
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To be continued.
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Continued.

Panel E: Japan
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Panel F: Switzerland
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Panel G: United Kingdom
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Panel H: United States
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Note: This table depicts the results (p-values) of the (modified) Diebold-Mariano test computed under an asymmetric absolute-error loss function,
where the asymmetry parameter is plotted on the horizontal axis. The alternative hypothesis is that the forecasts from the rival model are more
accurate than the forecasts from the benchmark model (one-sided test). The autoregressive model is the benchmark model and the rival model
includes the gold-to-platinum price ratio as an additional predictor
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Figure S8: Diebold-Mariano Test Under Asymmetric Loss (Daily Data, Gold-to-Platinum Price
Ratio, T R1, Quad-Quad Loss, Sample Period 1/03/1973−04/08/2022)

Panel A: Canada
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Panel B: France
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Panel C: Germany
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Panel D: Italy
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To be continued.
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Continued.

Panel E: Japan
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Panel F: Switzerland
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Panel G: United Kingdom
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Panel H: United States
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Note: This table depicts the results (p-values) of the (modified) Diebold-Mariano test computed under an asymmetric absolute-error loss function,
where the asymmetry parameter is plotted on the horizontal axis. The alternative hypothesis is that the forecasts from the rival model are more
accurate than the forecasts from the benchmark model (one-sided test). The autoregressive model is the benchmark model and the rival model
includes the gold-to-platinum price ratio as an additional predictor
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Figure S9: Diebold-Mariano Test Under Asymmetric Loss (Daily Data, Gold-to-Platinum Price
Ratio, T R5, Quad-Quad Loss, Sample Period 1/03/1973−04/08/2022)
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Panel B: France
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Panel C: Germany
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Panel D: Italy
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To be continued.
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Continued.

Panel E: Japan
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Panel F: Switzerland
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Panel G: United Kingdom
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Panel H: United States
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Note: This table depicts the results (p-values) of the (modified) Diebold-Mariano test computed under an asymmetric absolute-error loss function,
where the asymmetry parameter is plotted on the horizontal axis. The alternative hypothesis is that the forecasts from the rival model are more
accurate than the forecasts from the benchmark model (one-sided test). The autoregressive model is the benchmark model and the rival model
includes the gold-to-platinum price ratio as an additional predictor
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Figure S10: Out-of-Sample Relative-Loss Criterion for Total Connectedness (Quad-Quad Loss,
T R1, Sample Starts 1968M01)
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Note: This figure shows the out-of-sample relative loss criterion as a function of the asymmetry parameter and a quad-quad loss function. The
autoregressive model is the benchmark model and the rival model includes the predictors given in the legend of this figure.
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Figure S11: Out-of-Sample Relative-Loss Criterion for Total Connectedness (Quad-Quad Loss,
T R5, Sample Starts 1968M01)
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Note: This figure shows the out-of-sample relative loss criterion as a function of the asymmetry parameter and a quad-quad loss function. The
autoregressive model is the benchmark model and the rival model includes the predictors given in the legend of this figure.
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Table S8: Estimates and Relevant statistics for the country-specific CAViaR specification [Adap-
tive]

5% VaR Canada France Germany Italy Japan Switzerland UK US
β1 0.687 -0.174 3.550 1.040 1.360 -0.002 1.060 1.040
Standard errors 0.258 0.098 0.000 0.158 0.043 0.120 0.157 0.158
P values 0.004 0.038 0.000 0.000 0.000 0.493 0.000 0.000
RQ 622.000 604.000 905.000 736.000 711.000 582.000 560.000 736.000
Hits in-sample (%) 4.370 4.470 4.670 5.060 5.160 4.270 5.060 5.060
Hits out-of-sample (%) 4.000 6.000 4.800 4.800 4.400 4.400 4.400 4.800
DQ in-sample (P-values) 0.000 0.011 0.003 0.029 0.032 0.000 0.001 0.029
DQ out-of-sample (P-values) 0.010 0.002 0.703 0.226 0.313 0.004 0.225 0.226

Note: See notes to Table A1.
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