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Abstract

In this study, we introduce a mixed copula-based vector autoregressive (VAR)

model for investigating the relationship between random variables. The one-

step maximum likelihood estimation is used to obtain point estimates of the

autoregressive parameters and mixed copula parameters. More specifically, we

combine the likelihoods of the marginal and mixed copula to construct the full

likelihood function. The simulation study is used to confirm the accuracy of

the estimation as well as the reliability of the proposed model. Various mixed

copula forms from a combination of Gaussian, Student's t, Clayton, Frank,

Gumbel, and Joe copulas are introduced. The proposed model is compared to

the traditional VAR model and single copula-based VAR models to assess its

performance. Furthermore, the real data study is also conducted to validate

our proposed method. As a result, it is found that the one-step maximum like-

lihood provides accurate and reliable results. Also, we show that if we ignore

the complex and nonlinear correlation between the errors, it causes significant

efficiency loss in the parameter estimation in terms of jBiasj and MSE. In the

application study, the mixed copula-based VAR is the best fitting copula for

our application study.
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1 | INTRODUCTION

Many studies have tried various approaches to under-
stand the economy's working processes to allow policy-
makers to determine and implement the appropriate
economic policy for solving the uncertainty of aggre-
gate economic variability. In the traditional
approaches, the relationship between the variables is
mostly estimated by the linear correlation assumption.
However, the linear correlation cannot adequately

describe the true and complicated relationship among
the macroeconomic variables. So, the vector autoregres-
sion (VAR) model was developed for describing the
dynamic behavior of macroeconomic variables more
entirely than the linear model can do (Hamilton, 1994;
Lutkepohl, 2005; Sims, 1980; Tsay, 2005). The VAR
model has an excellent forecasting capability, easy to
estimate, and is easy to test for relationships and cau-
sality between the variables as it treats the variables to
be endogenous variables.
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By the properties of the VAR model, it is a system of
equations to be estimated simultaneously. As it can com-
bine the information from the different equations by
allowing error terms of each equation to be correlated,
the model becomes more consistent. However, the prob-
lem is that the model's multivariate normal distribution
might curse the parameter estimates as the real data
might exhibit a non-normal distribution. Thus, the multi-
variate normal distribution may fail to join the error term
of each VAR equation. To relax this strong assumption, a
copula approach has been proposed to deal with this
complicated dependence (see Hu, 2006; Liu et al., 2020;
Maneejuk et al., 2016; Mohti et al., 2019; Pastpipatkul
et al., 2016, 2017; Xu & Gao, 2019). These studies confirm
the superiority of the copula-based multivariate model
over the conventional model. Specifically, copula allows
us to construct a joint multivariate distribution of all
error terms in the model (Maneejuk et al., 2016). In addi-
tion, Joe and Xu (1996) and Fan and Patton (2014) men-
tioned copula is a good alternative method for modeling
the dependence of multivariate data when the multivari-
ate normality of the multivariate data is doubtful. This is
because it can capture the nonlinear dependence and tail
dependence, and there are no constraints regarding the
marginal distributions of random variables. Therefore,
the copula approach is introduced to the VAR model to
improve efficiency by allowing the model to have differ-
ent marginal distributions of error terms and not need to
be normally distributed.

In addition, our study aims to go beyond those previ-
ous copulas-based multivariate models by considering a
new class of the copula approach, that is, the mixed cop-
ula. Recent studies have shown that this copula class is
more flexible than a single copula class (see Maneejuk
et al., 2018; Nguyen et al., 2016; Tansuchat &
Maneejuk, 2018). The mixed copula is a combination of
different copula families, and it can capture both sym-
metric and asymmetric and other complicated depen-
dence structures. To our knowledge, the copula-based
VAR model has already been proposed by Brechmann
and Czado (2015) and Yamaka and Thongkairat (2020);
however, the estimation and computation aspects of
mixed copula-based VAR have never been proposed yet.
For this reason, this study attempts to fill the gap of
knowledge by applying various combinations of mixed
copula to allow better flexibility of capturing almost all
possible dependence structures between error terms in
the VAR framework. This study also introduces the way
to a one-step estimation technique to estimate the mixed
Copula-based VAR model. To confirm our model's per-
formance and the accuracy of the estimation, experimen-
tal studies and a real application study are introduced.

The contribution of this paper is three-fold. Firstly, it
proposes a mixed copula-based VAR model and intro-
duces various combinations of mixed copulas to the VAR
model. This is the novelty of our model development,
which relaxes the limitations of the conventional VAR
model. Secondly, we verify the reliability and accuracy of
relaxing the strong assumption of a linear relationship
and multivariate normal distribution of the error terms
in the VAR model by providing simulation studies. Third,
we show the flexibility and validity using the mixed
copula-based VAR to investigate a real data relationship.

The paper's remainder proceeds as follows: The meth-
odologies used in this study are present in Section 2, com-
prising mixed copulas function, VAR model, and
estimation. Then, experimental study is provided in
Section 3. Section 4 provides the application study. Last
but not least, a conclusion is provided in Section 5.

2 | METHODOLOGY

2.1 | VAR model

The VAR model is the multivariate model providing use-
ful information on the relationship between the set of
variables. This model is put forward by Sims (1980). In
practice, it is generally used to describe the dynamic
behavior of time series variables and forecast future
values. The basic VAR model with lag p and n dimen-
sional vector of variables measured at time t,
yt ¼ y1t, y2t,…yntð Þ0 , can be written as

y1t ¼ α1þβ11y1t�1þ…þβ1pynt�pþ ε1t

..

.

ynt ¼ αnþβn1ynt�1þ…þβnpynt�pþ εnt

, ð1Þ

where βij, i¼ 1,…,n; j¼ 1,…, p are the autoregressive
coefficients, α¼ αi,…, αnð Þ is a vector of the intercept
term, and εt ¼ ε1t, ε2t,…, εntð Þ is the vector of the noise
process with the distribution N 0,Σð Þ, whereas Σ is the
variance–covariance matrix. As we suggest to use a cop-
ula to join the error terms of the VAR model, the use of
the copula allows us to model the nonlinear correlation
of the standardized errors of VAR.

2.2 | Concept to copula

The copula is introduced in Sklar's theorem (Sklar, 1959).
It was proposed to explain a multivariate distribution
function of the joint univariate marginal distributions.
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The linkage among these marginal distributions can be
described by the copula function so that

H z1,…, znð Þ¼C F1 z1ð Þ,…,Fn znð Þð Þ¼C u1,…, unð Þ , ð2Þ

where C denotes the copula, H z1,…, znð Þ is a joint distri-
bution, and z¼ z1,…, zn is a n�1 the realization of the
standardized residuals εi=σ2i

� �
, where σ2i is the variance

of equation i. u¼u1,…, un is a n�1 uniformly distributed
marginals. We can write the joint density of the random
variables as

h z1,…, znð Þ¼ ∂nC u1,…, unð Þ
∂u1,…, ∂u1

:
∂F1 z1ð Þ
∂z1

�… � ∂Fn znð Þ
∂zn

¼ c u1,…, unð Þ � f z1ð Þ �… � f znð Þ:
ð3Þ

The three main classes of the copula function are Ellipti-
cal Copulas, Archimedean Copulas, and mixed Copula.
Many studies in the last decade have intensively con-
ducted the first two classes of the copula. After that,
Nelsen (2006) suggested using a convex combination for
mixing different copulas, thus allowing for flexibility in
the copula dependence structure. The recent develop-
ment of copula can be found in Fermanian (2017).

2.2.1 | Elliptical copulas

Elliptical copulas are elliptically contoured in their distri-
butions class. The advantage of this copula is that it can
explain different correlations between the marginals,
where the value of correlation is restricted to be [�1,1].
The disadvantages of this class are that they are restricted
to have radial symmetry and do not have explicit expres-
sions. There are two parametric copula families in this
class, namely, Gaussian and Student's t Copula.

2.2.2 | Archimedean copulas

Archimedean class is another class of the copula function
where it can capture various dependence structures, for
example, concordance and tail dependence, and have
explicit expressions. Comparing with Elliptical copulas,
Archimedean copulas are not derived from multivariate
distributions using Sklar's theorem. There are many fami-
lies of the copula in this class, but in this study, we con-
sider only the Clayton copula, Frank copula, Joe copula,
and Gumbel copula. Clayton copula only has lower tail
dependence, whereas Gumbel copula and Joe copula
have only upper tail dependence. For Frank copula, there
is no tail dependence. The advantage of these copulas is
that they take into account the asymmetric dependence

structure. For further detail, we refer to Nelsen (2006)
and Hofert et al. (2012).

2.2.3 | Mixed copulas

The Elliptical and Archimedean copulas may provide an
unreliable dependency measure, as some copula families'
dependence parameter is restricted in specific ranges.
Nelsen (2006) introduced an idea to mix the copula func-
tion through the convex combination method to improve
the ability to capture a wide range of complicated depen-
dence structures. Several additional advantages are
obtained when the mixed copula is used to measure the
dependence of the random variables. First, as the mixed
copula is constructed from various copula functions, it
becomes more flexible to join any form of the depen-
dence structure. Second, the dependence structures cap-
tured by mixed copulas are not changed, even though the
data are transformed into several types. The mixed cop-
ula can be derived by

cMix u1,…, unjθ1, θ2ð Þ¼ wcθ1 u1,…, un θ1j Þþ 1�wð Þcθ2 u1,…, un θ2j Þ,ðð
ð4Þ

where w is the weight parameter with the value ranges
between zero and one. θ1 and θ2 are an exchangeable
copula parameter. One of the advantages of the convex
combination approach is the flexibility in assigning
weights for calculating appropriate value between two
copula functions. There are various copula functions pro-
posed to join the marginal distributions, and the selection
of copula type is essential. In this study, we consider five
types of copulas to capture different patterns of depen-
dence between the random variables. Copula functions
commonly used in the research are Gaussian (no tail
dependence), Student's t (symmetric tail dependence),
Gumbel (right tail dependence), Clayton (left tail depen-
dence), and Frank (no tail dependence).

2.3 | Estimation of the mixed copula
model

In general, the copula-based model can be estimated by
the two-step estimation called Inference Function for
Margins (IFM) of Joe and Xu (1996). In the first step, the
marginal distribution is estimated, and, in the second
step, the copula parameter is estimated, given the esti-
mated parameters from the first step. Joe and Xu (1996)
suggested several advantages of this method. First, it is
easy to estimate the multivariate models; second, the
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multivariate model is still robust even though a misspeci-
fication copula is used to model the marginal distribu-
tions' dependence. Also, it is more robust against outliers
or perturbations of the data, and third, the IFM method
can deal with the large parameter estimates in the multi-
variate models as it estimates the marginal parameters
and copula parameters separately. Therefore, this method
could reduce the cost of computation in the multivariate
model. Although there are several advantages of this IFM
method, Louzada and Ferreira (2016) revealed that the
IFM method still produces a biased estimate. Thus, we
consider using a one-step maximum likelihood estimator
to obtain our proposed model's parameter estimates. We
note that the maximum likelihood estimation is a flexible
estimation for estimating the point parameter estimates.
As the VAR model is the multivariate equation model;
thus, a multivariate copula with continuous marginal dis-
tribution is required in the estimation. Let Θ¼ β1,…,βnf g,
θ¼ θ1, θ2f g, and similar to Equation (3), the joint density
function of mixed copula-based VAR model is

h z1,…, zn;Θ, θ,wð Þ¼
f 1 z1;β1, σ21
� �

,…, f n zn;βn, σ2n
� �

c u1,…, un;θ1, θ2,wð Þ, ð5Þ

where βi is the vector of parameter in equation i,
i¼ 1,…,n, and f i zi;βi, σ2i

� �
is the density function of

equation i, which is assumed to have a normal distribu-
tion. c u1,…,un;θ1, θ2,wð Þ is the mixed copula density.
Note that we are following copula families, that is,
Gaussian, Student's t, Clayton, Gumbel, Frank, Joe, and
mixed copula families such as Gaussian–Student's t,
Gaussian–Clayton, Gaussian–Gumbel, Student's t–Clay-
ton, Student's t, and Frank. Hence, log-likelihood analysis
implies

lnL Φð Þ¼ ln f 1 z1;β1, σ21
� �þ…þ ln f n zn;βn, σ2n

� �
þ lnc u1,…,un;θ1, θ2,wð Þ ð6Þ

where Φ is all the parameter estimates. Then, the log-
likelihood Equation (6) is maximized to estimate the
marginal distribution parameters and copula parameters.
In other words, the maximum likelihood estimator maxi-
mizes the log-likelihood and is given by

Φ
_ ¼ argmax

Φ

XT
t¼1

lnL Φð Þ , ð7Þ

where Φ
_

is the optimally estimated parameters. We set
the score function to zero (this function is defined as the
first-order partial derivative of the full likelihood func-
tion's logarithm Φ). However, it is not always possible to
find closed-form expressions for these estimators.

Therefore, the use of iterative methods is often needed.
In this estimation, we employ the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm.

3 | SIMULATION STUDY

To evaluate the accuracy and reliability of the mixed
copula-based VAR model, the Monte Carlo simulation
study is employed. This helps us to compare the perfor-
mance of our proposed model and other conventional
competitive models. We consider two experiments for
checking the accuracy and performance of our proposed
model. In the first experiment, the accuracy of the maxi-
mum likelihood estimation for mixed copula-based VAR
models is investigated. Second, our model's performance is
compared with two conventional models, namely, Gaussian
copula-based VAR and the Independent copula-based
VAR model. We note that the Independent copula-based
VAR model ignores the correlation among VAR equations.
Specifically, it is assumed that the error terms of VAR
models are independent. Thus, the copula density is equal
to the product of the marginal distribution of the standard-
ized residuals. That is, independent copula density is equal
to one. We note that the estimation of independent copula-
based VAR is the separate estimation, where each equation
is separately estimated using maximum likelihood. Specifi-
cally, the error terms of this model are jointly independent.

3.1 | Investigating the accuracy of the
one-step maximum likelihood estimation

This experiment's simulated data are generated from the
simple bivariate and trivariate VAR model with lag one.
These two models take the form of the following:

Model 1: The bivariate VAR(1) model

y1t ¼ 2þ0:5y1t�1þ0:2y2t�1þ ε1t

y2t ¼ 4þ0:3y1t�1þ0:4y2t�1þ ε2t
: ð8Þ

Model 2: The trivariate VAR(1) model

y1t ¼ 2þ0:3y1t�1þ0:2y2t�1þ0:2y3t�1þ ε1t

y2t ¼ 4þ0:3y1t�1þ0:5y2t�1þ0:3y3t�1þ ε2t

y3t ¼ 1þ0:4y1t�1þ0:3y2t�1þ0:3y3t�1þ ε3t

: ð9Þ
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In each case under each model, 100 samples, each con-
sisting of t = 200, 500, and 1000 data points, are gener-
ated using Equations (8) and (9). In this simulation
study, three mixed copula functions, namely, Gaussian–
Student's t, Clayton–Gumbel, and Frank–Joe, are used as
an example. The data-generating mechanism consisted of
the following steps:

1. We simulate the marginal ui for equation i form the
mixed copula model. The true parameters of the
mixed copula are fixed as w¼ 0:5, θ1 ¼ θ2 ¼ 0:5 for
Gaussian–Student's t copula (corresponding to a Ken-
dall's tau association measure of 0.3), θ1 ¼ θ2 ¼ 3 for
Clayton–Gumbel copula (corresponding to a Kendall's
tau association measures of 0.600 and 0.666), and
Frank–Joe copula (corresponding to a Kendall's tau
association measures of 0.306 and 0.517).

2. The marginal ui is then transformed to be error term
for equation i,εit, using the inverse normal distribu-
tion with N 0, 1ð Þ.

3. Finally, the yit is generated from the VAR specifica-
tion in Equations (8) and (9).

The mean and standard deviation of the parameter
estimates from 100 datasets are reported in Table 1. The
simulation results from Table 1 show that our proposed
model and maximum likelihood estimation produce reli-
able parameter estimates. The average of the parameter
estimates is close to the true values with reasonable stan-
dard deviations. It is also observed that maximum likeli-
hood estimation's performance becomes better when the
sample size increases from t going from 200 to 1000, indi-
cating this estimator is unbiased and confirming the
validity of asymptotic properties.

3.2 | Investigating the performance of
mixed copula-based VAR model

In the second simulation study, we compare our mixed
copula-based VAR model's performance with the two
competing models, namely, Gaussian copula-based VAR
and Independent copula-based VAR. We consider two
criteria, absolute Bias and mean squared error (MSE).
The jBias and MSE can be calculated by

Biasj j ¼ R�1
XR
r¼1

eΦr �Φr

� ������
�����, ð10Þ

MSE¼R�1
XR
r¼1

eΦr �Φr

� �2
, ð11Þ

where R=100 is the number of Monte Carlo replications
and eΦr and Φr are the estimated values and the true
values, respectively. The sample sizes are fixed at 200 for
each replication.

The data sets are generated in the same way as in the
first experiment. However, we only consider the bivariate
VAR specification in this second experiment
(Equation 8). To make a fair simulation experiment, the
data are generated from the three mixed copula-based
VAR (Gaussian–Student's t, Clayton–Gumbel, and
Frank–Joe) and Gaussain copula-based models. The pur-
pose of this experiment is to investigate the performance
of the mixed copula-based VAR model when the copula
is correctly specified and when the copula is misspecified.

Because the mixed copula is proposed to improve the
estimated parameters' accuracy in the VAR model, we
thus focus here on the VAR parameter estimates. Table 2
presents the jBiasj and MSE of each model measured
assuming the dependence structure of the error terms fol-
low Gaussian–Student's t, Clayton–Gumbel, and Frank–
Joe mixed copulas. As we expected, the overall absolute
Bias and MSE for autoregressive parameters from the
mixed copula-based VAR are lower than the overall abso-
lute Bias and MSE from the two conventional VAR:
Gaussian copula-based VAR and Independent copula-
based VAR models. In particular, the jBiasj and MSE of
autoregressive parameters from mixed Clayton–Gumbel
copula-based VAR and mixed Frank–Joe copula-based
VAR are obviously lower than the conventional VAR
models. However, we observe interesting evidence that
the jBiasj and MSE of autoregressive parameters from
Gaussian copula-based VAR seem to perform well in
some cases. This result is consistent with Christopoulos
et al. (2021) suggestion that Gaussian copula may capture
the structure of nonlinear and complicated dependence
of the marginals.

Next, we investigate the performance of our mixed
copula-based VAR model when the data are generated
from the wrong copula function. Therefore, we simulate
the data from the Gaussian copula-based VAR. The per-
formance of our mixed copula-based VAR is reported in
Table 3. As expected, our Gaussian copula-based VAR
model performs the best as the lowest jBiasj and MSE are
revealed. We also find that the misspecified copula func-
tions bring a larger deviation of the approximated our
mixed copula-based VAR models as the jBiasj and MSE
are large, especially mixed Clayton–Gumbel and mixed
Frank–Joe Copulas. According to this experiment result,
we can conclude that our proposed model is the robust
model, and the incorrectly specified copula function will
lead to the low accuracy of the model. Our finding is con-
sistent with Kaewsompong et al. (2020).
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In sum, the independent copula-based VAR (Separate
Estimation) and Gaussian copula-based VAR model do
not quite perform satisfactorily when the dependence

structure or the error terms is mixed. However, its perfor-
mance is further improved if the mixed copula-based
VAR model is fitted. This indicates that when the

TABLE 2 Comparing the absolute jBiasj and MSE of our proposed models and other two conventional when the data are generated

from the mixed copula based model

Model 1
Mixed Gaussian–Student's t copula-based VAR Gaussian copula-based VAR Independent copula-based VAR

Para jBiasj MSE jBiasj MSE jBiasj MSE

α1 0.015 0.001 0.637 0.404 1.024 1.047

β11 0.040 0.002 0.088 0.007 0.129 0.016

β12 0.042 0.002 0.113 0.013 0.332 0.110

α2 0.067 0.004 0.514 0.263 1.829 3.349

β21 0.071 0.005 0.233 0.054 0.316 0.099

β22 0.021 0.001 0.142 0.020 0.221 0.048

Model 1
Mixed Clayton–Gumbel copula-based VAR Gaussian copula-based VAR Independent copula-based VAR

Para jBiasj MSE jBiasj MSE jBiasj MSE

α1 0.129 0.016 0.934 0.874 1.239 1.538

β11 0.062 0.004 0.129 0.016 0.242 0.057

β12 0.039 0.002 0.102 0.010 0.211 0.044

α2 0.024 0.002 0.911 0.830 2.034 3.137

β21 0.051 0.003 0.102 0.010 0.298 0.088

β22 0.014 0.001 0.234 0.054 0.239 0.056

Model 1
Mixed Frank–Joe copula-based VAR Gaussian copula-based VAR Independent copula-based VAR

Para jBiasj MSE jBiasj MSE jBiasj MSE

α1 0.056 0.003 0.692 0.479 1.015 0.925

β11 0.031 0.002 0.122 0.014 0.157 0.024

β12 0.021 0.001 0.382 0.146 0.309 0.094

α2 0.357 0.127 0.801 0.640 1.394 1.938

β21 0.051 0.003 0.122 0.014 0.209 0.043

β22 0.025 0.001 0.192 0.036 0.224 0.050

Abbreviation: VAR, vector autoregression.

TABLE 3 Comparing the absolute jBiasj and MSE of our proposed models and other two conventional models when the data are

generated from the Gaussian copula-based model

Model 1

Mixed Gaussian–
Student's t copula-
based VAR

Mixed Clayton–
Gumbel copula-based
VAR

Mixed Frank–Joe
copula based VAR

Gaussian copula-
based VAR

Independent
copula-based VAR

Para jBiasj MSE jBiasj MSE jBiasj MSE jBiasj MSE jBiasj MSE

α1 0.013 0.001 0.789 0.619 0.350 0.122 0.010 0.001 0.583 0.341

β11 0.040 0.002 0.214 0.045 0.243 0.058 0.042 0.002 0.087 0.007

β12 0.045 0.002 0.139 0.019 0.203 0.041 0.039 0.002 0.091 0.008

α2 0.087 0.009 0.897 0.803 0.923 0.853 0.071 0.005 0.910 0.813

β21 0.098 0.010 0.237 0.057 0.179 0.003 0.049 0.003 0.109 0.012

β22 0.050 0.003 0.284 0.080 0.209 0.043 0.033 0.001 0.232 0.053

Abbreviation: VAR, vector autoregression.
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dependence structure of the error terms has deviated
from the multivariate elliptical distribution or indepen-
dence, the elliptical copula-based VAR and the indepen-
dent copula-based VAR models face higher Bias and
variance. Thus, the slight gain in accuracy and precision
in the parameter estimate can be obtained by the better
fit afforded by a mixed copula. In addition, our simula-
tion results also provide the accuracy improvement of
one-step maximum likelihood estimation over the IFM
method (two-step estimation) as shown with the lower
jBiasj and MSE of mixed copula-based VAR compared
with the independent copula-based VAR. We would like
to note that the results of the independent copula-based
VAR model are obtained from the first step of IFM.

4 | THE EMPIRICAL
APPLICATIONS

This study applies the proposed method to real-time-
series data sets. Given the large literature on the impact
of uncertainty on output that has emerged following the
“Great Recession” (see Al-Thaqeb & Algharabali, 2019;
Castelnuovo et al., 2017, Gupta et al., 2018, 2019, 2020;
for detailed reviews of this literature), we investigate the
relationship among a world uncertainty index (WUI),
with outputs of the United States (US), other advanced
economies (ADV), and emerging countries (EMs). The
quarterly data on these variables cover 1990:1 through
2019:4. The real GDP data, capturing output, are
obtained from the Global Economic Database maintained
by the Federal Reserve Bank of Dallas, which is available
for download from https://www.dallasfed.org/institute/
dgei/gdp.aspx. The reader is referred to Grossman et al.
(2014) for further details. Data on 18 advanced (excluding
the United States, Japan, Germany, the United Kingdom
[UK], France, Italy, Spain, Canada, South Korea,
Australia, Taiwan, The Netherlands, Belgium, Sweden,
Austria, Switzerland, Greece, Portugal, and the
Czech Republic, in order of Purchasing Power Parity
[PPP]-adjusted GDP shares in 2005) and 21 emerging
(China, India, Russia, Brazil, Mexico, Turkey, Indonesia,
Poland, Thailand, Argentina, South Africa, Colombia,
Malaysia, Venezuela, Philippines, Nigeria, Chile, Peru,
Hungary, Bulgaria, and Costa Rica, in order of PPP-
adjusted GDP shares in 2005) countries are used to com-
pile the aggregates for these blocs, by using trade weights
with the United States in weighting the country-level
data. At the same time, the WUI is based on the work of
Ahir et al. (2018). These authors construct quarterly indi-
ces of economic uncertainty for 143 countries from 1990
onwards using frequency counts of “uncertainty” (and its
variants) in the quarterly Economist Intelligence Unit

(EIU) country reports. The EIU reports discuss major
political and economic developments in each country and
analyze and forecast political, policy, and economic condi-
tions. To make the WUI comparable across countries, the
raw counts are scaled by each report's total number of
words. Globally, the WUI spikes near the 9/11 attacks, the
SARS outbreak, Gulf War II, the Euro debt crisis, El Niño,
Europe border-control crisis, the UK referendum vote in
favor of Brexit, and the 2016 US presidential election. In
general, the index is associated with greater economic pol-
icy uncertainty (EPU), stock market volatility, risk, and
lower GDP growth. The data can be downloaded from
https://worlduncertaintyindex.com/data/.

4.1 | Empirical model

We transform ADV, EM, and US into a growth rate and
WUI to be logarithm for attaining the stationary prop-
erty. In practice, we need to determine or find the VAR
model's optimal lag length; thus, this issue is taken into
account in this application. The basic statistics of the
transformed data are provided in Table 4. Among the
growth rate series, we observe the average of EM per-
forms the highest values and followed by US and ADV,
respectively. The variables EM, US and ADV show non-
normality as there exhibit negative skewness and high
kurtosis values (>3), whereas WUI shows a weak skew-
ness and low kurtosis values (less than 3). Therefore, we
confirm this empirical evidence by using the normality
Jarque–Bera (J-B) test. According to the J-B test result in
Table 3, the result provides decisive evidence of non-
normal distribution for all variables, except WUI. Fur-
thermore, as we consider the time-series data, the station-
ary property is tested for all series. The Augmented
Dickey–Fuller (ADF) test is used here, and the result
shows significant evidence of the stationary for our
series.

4.2 | Model selection

We introduce many copula families for both single and
mixed copula-based VAR models; we need to find the
best copula-based model to investigate these four vari-
ables' relationships. To do this, we consider the Bayesain
information criteria (BIC) value as a tool for selecting the
best model in this study. Note that this criterion provides
unbiased model selection (Shumway & Stoffer, 2011).
The model selection result is provided in Table 5. We find
that a lag order of p = 3 is suggested for most VAR
models. When we compare our proposed model's perfor-
mance, there is evidence that the mixed Clayton–Joe
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TABLE 4 Data descriptionGrowth ADV EM US WUI

Mean 2.040 4.520 2.370 9.640

Median 2.248 4.800 2.570 9.560

Maximum �12.003 �9.680 �9.030 8.630

Minimum 5.050 8.240 5.300 10.900

SD 1.950 2.330 1.960 0.490

Skewness �3.851 �2.320 �2.350 0.240

Kurtosis 23.010 10.900 9.940 �0.280

Jarque–Bera 2757.776*** 657.424*** 567.690*** 1.655*

ADF test �2.893** �3.025*** �2.997*** �6.904***

***Represents significance at the 1% level.

**Represents significance at the 5% level.
*Represents significance at the 10% level.

TABLE 5 Model selection

Lag 1 Lag 2 Lag 3
Model BIC BIC BIC

Independent copula-based VAR 1048.348 1021.184 1055.202

Copula-based VAR

Gaussian 1046.880 1011.624 1055.080

Student's t 1146.777 1150.697 1043.499

Gumbel 1222.085 1230.831 1077.457

Clayton 1103.821 1312.822 1018.175

Frank 1239.165 1237.442 1085.567

Joe 1219.107 1253.264 1089.245

Mixed copula-based VAR

Gaussian–Student's t 1172.291 1241.679 1083.819

Gaussian–Clayton 1249.970 1490.354 1095.032

Gaussian–Frank 1233.371 1263.423 1112.558

Gaussian–Gumbel 1233.371 1476.242 1103.746

Gaussian–Joe 1197.421 1267.255 1096.779

Student's t–Clayton 1157.589 1310.263 1081.100

Student's t–Frank 1182.612 1239.030 1084.034

Student's t–Gumbel 1231.998 1238.152 1104.983

Student's t–Joe 1168.321 1210.010 1084.047

Clayton–Frank 1181.820 1324.939 1095.836

Clayton–Gumbel 1236.827 1247.129 1088.147

Clayton–Joe 1170.118 1257.368 914.972

Frank–Gumbel 1253.000 1246.949 1104.409

Frank–Joe 1212.855 1255.018 1101.157

Gumbel–Joe 1226.350 1253.551 1107.574

Note: Bold number indicated the lowest BIC.
Abbreviation: VAR, vector autoregression.
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copula-based VAR model is the best fit model in this
application as it has the smallest value of BIC (914.972).

4.3 | Estimation results

The mixed copula dependence parameters are provided
in the lower panel of Table 6. We know that Clayton and
Joe copula is the best combination of copula families in
this study. This indicates that the relationship among the
WUI, the advanced stock market, emerging stock market,

and the US gross domestic product is asymmetric. The
weight parameter wð Þ is 0.1697, which indicates a mixing
copula family in this model, and the weight seems to
deviate to the Clayton copula rather than the Joe copula.
We also observe that the copula dependence of Clayton
and Joe copula are 4.7323 and 4.9295, indicating that
residuals of these four variables exhibit a positive depen-
dence. To measure the strength of the dependency of the
error distributions, Kendall's taus and tail dependence
coefficients for Clayton and Joe copulas are computed,
and we found that Kendall's taus for Clayton and Joe

TABLE 6 Parameter estimates

from mixed Clayton–Joe copula-based
VAR model

ADVt EMt USt WUIt

α 3.7481***
(0.1821)

5.6732**
(1.2432)

4.0490**
(1.0241)

1.6386*
(0.0923)

ADVt�1 1.6457***
(0.3234)

0.6038***
(0.1029)

0.6037***
(0.2001)

�0.0171
(0.0209)

EMt�1 0.3273
(0.4222)

1.4987***
(0.2039)

0.5126***
(0.1082)

�0.0832
(0.1032)

USt�1 0.2882**
(0.1233)

0.1954
(0.1232)

0.9752***
(0.2083)

0.0261
(0.3743)

WUIt�1 �0.3152
(0.2863)

�0.3302
(0.2083)

�0.4543
(0.3982)

0.4529***
(0.1023)

ADVt�2 �0.9988***
(0.1093)

�1.0229***
(0.1982)

�0.6599*
(0.3593)

0.0217
(0.0234)

EMt�2 �0.4013***
(0.1002)

�0.6312***
(0.2110)

�0.6375***
(0.1093)

�0.1089*
(0.0511)

USt�2 �0.4485**
(0.2192)

�0.3001
(0.4083)

�0.2887
(0.1902)

�0.0355
(0.0233)

WUIt�2 0.0327
(0.0823)

�0.2421
(0.1780)

�0.0432
(0.0322)

0.1625
(0.0800)

ADVt�3 0.1950
(0.2729)

0.4655
(0.3782)

0.2347
(0.2330)

�0.0197
(0.0281)

EMt�3 0.1361
(0.1023)

0.0717
(0.1002)

0.1784**
(0.0523)

0.0489
(0.0663)

USt�3 0.2169
(0.1672)

0.0351
(0.2823)

�0.0487
(0.0462)

0.0040
(0.0072)

WUIt�3 �0.0778*
(0.0389)

0.0401***
(0.0150)

0.1298***
(0.0491)

0.2206*
(0.1128)

Copula parameter Kendall tau Tail dependence

θC 4.7323***
(1.082)

0.6623 Lower = 0.8637
Upper = 0.0000

θJ 4.9295***
(1.938)

0.6734 Lower = 0.0000
Upper = 0.8490

w 0.1697***
(0.0930)

Note: The parentheses () denote the standard error.
Abbreviation: VAR, vector autoregression.
***Represents significance at the 1% level.
**Represents significance at the 5% level.
*Represents significance at the 10% level.
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copulas are 0.6623 and 0.6734, respectively, whereas the
upper tail dependence of Joe copula is 0.8490, and the
lower tail dependence of Clayton copula is 0.8637. These
dependence measures indicate a high correlation among
the error distributions in both normal and extreme
events. The impulse response function (IRF) is an essen-
tial implication of the VAR model, however, due to the
page and word limitations, we report the IRF in the
online appendix.

4.4 | Assessing forecast performance: In-
and out-of-sample forecasts

We also evaluated the performance of our mixed copula
model by considering the forecasting performance.
Therefore, we partitioned the data sample into in-sample
and out-of-sample periods as 1990Q1-2014Q4 and
2015Q1-2020Q4, respectively. In addition, we also investi-
gate whether WUI enhances the forecasting power in
ADV, EM, and US. We then compare a VAR model that
includes WUI with the VAR model without WUI.

To evaluate our in-sample and out-of-sample forecast-
ing performance, we consider two loss functions, namely,
root mean squares error (RMSE),

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

yt�y
_

t

� �2s
, and mean absolute error

(MAE), MAE¼ 1
n

Pn
t¼1

yt�y
_

t

�� ��, where n is the number of

forecasting data (in and out of sample forecasts) and yt ¼
USt, ADVt, EMtf Þ and y

_

t ¼ U
_

St, AD
_

Vt, E
_

Mt

n �
are the true

observations and predicted values, respectively. However,
there is sometimes no consensus for selection based on
the loss; thus, it is not easy to find the best forecasting
model that minimizes all loss functions. Ma et al. (2019)
suggested that the comparison of the performance fore-
casting models in terms of a loss function cannot distin-
guish the predictive power among competing models in a
statistically significant manner. Thus, we also conduct the
model confidence set (MCS) test of Hansen et al. (2011) to
analyze the robustness in and out-of-forecasting result.

4.4.1 | In-sample statistical performance

In this first experiment, we do in-sample forecasts to
compare the overall performance of the 22 forecasting
VAR(3) models with WUI and another 22 forecasting
VAR(3) models without WUI. The in-sample statistical
performance results of RMSE and MAE and their corre-
sponding MCS p-values are provided in Table 7.

Table 7 shows the RMSE and MAE as well p-value of
MCS test results by using bootstrap simulation at 1000
times. We note that models with lower RMSE and MAE
and greater p-value imply that they are more accurate in
prediction performance in all three forecasting horizons.
We can see that Clayton–Joe copula-based VAR with WUI
data is statistically superior to all the other models. The
MAE and RMSE of the models are the lowest, whereas
their MCS's p-values are equal to one. This analysis demon-
strates that the Clayton–Joe copula-based VAR model has
outstanding performance compared to other models for this
in-sample forecast. We also find that most VAR models
combined with WUI have better performance than the
models without WUI, confirming that the EPU index has a
good forecasting power in ADV, EM, and US. Hence, it can
be concluded that if the WUI data are considered as the
predictor variable in the VAR model, better predictions of
the growths of the advanced stock market, emerging stock
market, and the US GDP are obtained.

4.4.2 | Out-of-sample forecast

In this subsection, we consider only 3 forecasting VAR
(3) models with WUI (Gaussian, Clayton, and Clayton–
Jo) and these three models without WUI, because out-of-
sample forecasting is considered to be the most relevant
test for an econometric framework and predictors, rather
than in-sample analyses (Campbell, 2008). We choose
Gaussian as this model is equivalent to the classical VAR
model; Clayton is the best fit single copula for joining the
errors in VAR(3), and Clayton–Jo performs the best in
the model in the in-sample forecasts.

Then, the parameters of these six models are opti-
mized on a training set; the testing set is used to compare
the quality of the models. The former is used to build the
forecasting models, and the latter is used to evaluate the
accuracy of the various models. Again, the forecasting
quality of the forecasting models is measured using the
MAE, RMSE, and MCS tests based on MAE and RMSE.
The data set is divided into two parts for the use in train-
ing (1990Q1-2014Q4) and forecasting (2015Q1-2020Q4).
The first part is used to build the forecasting models,
whereas the second is intended to evaluate the various
models' accuracy. The models are estimated recursively
to include observations from the out-of-sample period. In
the predictive comparison, we consider forecast horizons
of horizons of 1–6 quarter-ahead forecasts. Particularly,
the forecast up to 6 quarters ahead is computed, one
more observation is added to the sample, and forecasts
up to 6 quarters ahead are again generated, and so on.

According to the results of the out-of-sample forecasts
in Table 8, we find that both RMSE and MAE as well as
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TABLE 7 In sample forecasting performance evaluation based on MAE and RMSE

Model with WUI Model with WUI Model without WUI Model without WUI
Model VAR lag 3 MAE RMSE MAE RMSE

Independent 0.5862
(0.2786)

0.8231
(0.2821)

0.5903
(0.0000)

0.8537
(0.0000)

Gaussian 0.5708
(0.4561)

0.8034
(0.4392)

0.5951
(0.0000)

0.8631
(0.0000)

Student's t 0.5708
(0.4561)

0.8034
(0.4392)

0.5936
(0.0000)

0.8560
(0.0000)

Gumbel 0.6336
(0.0000)

0.8771
(0.0000)

0.6021
(0.0000)

0.8636
(0.0000)

Clayton 0.5619
(0.4734)

0.7947
(0.4880)

0.6013
(0.0000)

0.8621
(0.0000)

Frank 0.6365
(0.0000)

0.8601
(0.0000)

0.6027
(0.0000)

0.8637
(0.0000)

Joe 0.6297
(0.0000)

0.8707
(0.0000)

0.6288
(0.0000)

0.8687
(0.0000)

Gaussian–Student's t 0.5957
(0.0000)

0.8367
(0.0000)

0.5951
(0.0000)

0.8564
(0.0000)

Gaussian–Clayton 0.5957
(0.0000)

0.8367
(0.0000)

0.5982
(0.0000)

0.8606
(0.0000)

Gaussian–Frank 0.6006
(0.0000)

0.8138
(0.0000)

0.6011
(0.0000)

0.8629
(0.0000)

Gaussian–Gumbel 0.5919
(0.0000)

0.8377
(0.0000)

0.6006
(0.0000)

0.8607
(0.0000)

Gaussian–Joe 0.5857
(0.0000)

0.8367
(0.0000)

0.5980
(0.0000)

0.8578
(0.0000)

Student's t–Clayton 0.6322
(0.0000)

0.8583
(0.0000)

0.6027
(0.0000)

0.8621
(0.0000)

Student's t–Frank 0.6003
(0.0000)

0.8395
(0.0000)

0.6074
(0.0000)

0.8676
(0.0000)

Student's t–Gumbel 0.6028
(0.0000)

0.8357
(0.0000)

0.5910
(0.0000)

0.8543
(0.0000)

Student's t–Joe 0.6554
(0.0000)

0.8791
(0.0000)

0.6355
(0.0000)

0.9021
(0.0000)

Clayton–Frank 0.8722
(0.0000)

1.0829
(0.0000)

0.5977
(0.0000)

0.8592
(0.0000)

Clayton–Gumbel 0.5907
(0.0000)

0.8370
(0.0000)

0.5961
(0.0000)

0.8381
(0.0000)

Clayton–Joe 0.5388
(1.0000)

0.7598
(1.0000)

0.5951
(0.0000)

0.8370
(0.0000)

Frank–Gumbel 0.8751
(0.0000)

1.0853
(0.0000)

0.8971
(0.0000)

1.1583
(0.0000)

Frank–Joe 0.6280
(0.0000)

0.8601
(0.0000)

0.6014
(0.0000)

0.8590
(0.0000)

Gumbel–Joe 0.6086
(0.0000)

0.8459
(0.0000)

0.5974
(0.0000)

0.8593
(0.0000)

Note: The bold numbers indicate the lowest error rate (MAE and RMSE). The parentheses () denote p-value of the MCS test, and if the p-value is larger than

0.1, it indicates that these models can survive in the MCS test, and the higher the p-value, the better forecasting accuracy of the model.
Abbreviations: MAE, mean absolute error; RMSE, root mean squares error; VAR, vector autoregression.
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their corresponding MCS tests provide a consensus result.
Based on the RMSE and MSE criterion, Clayton–Joe
copula-based VAR with WUI still performs the best in all
forecasting horizons, 1 up to 6 steps ahead. The model's
score is the smallest in term of RMSE and MAE when com-
pared with other models, including those models without
WUI, indicating the deviation between the predicted values
obtained from Clayton–Joe copula-based VAR with WUI
and their actual observations are smaller with a better fore-
casting accuracy than other competing models. Further-
more, based on the MCS test results, we observe that all p-
values of our Clayton–Joe copula-based VAR with WUI are
equal to 1.000. These results are consistent with that in

Table 7. We also find that the model combining with WUI
has a better performance than the model without WUI,
confirming that the WUI has a good forecasting power in
the growths of the advanced stock market, emerging stock
market, and the US GDP.

5 | CONCLUSION

The study attempts to extend the VAR model using the
mixed copula approach to join the VAR model's multivari-
ate marginal distribution. Thus, the model becomes more
flexible in dealing with various complicated dependence

TABLE 8 Out-of-sample forecasting performance evaluation based on MAE and RMSE

1 step 2 steps 3 steps 4 steps 5 steps 6 steps Average

MAE

Model with WUI

Gaussian 0.6233
(0.0000)

0.7032
(0.0000)

0.7832
(0.0000)

0.8211
(0.0000)

0.8991
(0.0000)

0.9821
(0.0000)

4.8120

Clayton 0.6021
(0.0000)

0.6722
(0.0000)

0.7692
(0.0000)

0.8133
(0.0000)

0.8676
(0.0000)

0.9722
(0.0000)

4.6966

Clayton–Joe 0.5619
(1.0000)

0.6023
(1.0000)

0.6792
(1.0000)

0.7522
(1.0000)

0.8322
(1.0000)

0.9091
(1.0000)

4.3369

Model without WUI

Gaussian 0.6499
(0.0000)

0.7322
(0.0000)

0.8122
(0.0000)

0.8821
(0.0000)

0.9732
(0.0000)

1.3923
(0.0000)

5.4419

Clayton 0.6389
(0.0000)

0.7301
(0.0000)

0.8232
(0.0000)

0.8702
(0.0000)

1.0013
(0.0000)

1.4902
(0.0000)

5.5539

Clayton–Joe 0.6032
(0.0000)

0.7032
(0.0000)

0.8232
(0.0000)

0.8652
(0.0000)

0.9622
(0.0000)

1.2399
(0.0000)

5.1969

1 step 2 steps 3 steps 4 steps 5 steps 6 steps Average

RMSE

Model with WUI

Classical VAR 0.8711
(0.0000)

0.9221
(0.0000)

0.9928
(0.0000)

1.1021
(0.0000)

1.2091
(0.0000)

1.2839
(0.0000)

6.3811

Clayton 0.8537
(0.0000)

0.8932
(0.0000)

0.9632
(0.0000)

1.0800
(0.0000)

1.1228
(0.0000)

1.2773
(0.0000)

6.1902

Clayton–Joe 0.7801
(1.0000)

0.8445
(1.0000)

0.8922
(1.0000)

0.9763
(1.0000)

1.0933
(1.0000)

1.2003
(1.0000)

5.7867

Model without WUI

Classical VAR 0.8941
(0.0000)

0.9334
(0.0000)

1.0012
(0.0000)

1.1720
(0.0000)

1.2681
(0.0000)

1.7211
(0.0000)

6.9899

Clayton 0.8753
(0.0000)

0.9291
(0.0000)

0.9872
(0.0000)

1.1562
(0.0000)

1.3721
(0.0000)

1.9822
(0.0000)

7.3021

Clayton–Joe 0.8561
(0.0000)

0.8921
(0.0000)

0.9872
(0.0000)

1.1449
(0.0000)

1.2432
(0.0000)

1.5928
(0.0000)

6.7163

Note: The bold numbers indicate the lowest error rate (MAE and RMSE). The p-values of the MCS test are larger than the 0.1, indicating that these models can
survive in the MCS test, and the higher the p-value means the better forecasting accuracy by the model.

Abbreviations: MAE, mean absolute error; RMSE, root mean squares error; VAR, vector autoregression; WUI, world uncertainty index.
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structures of the joint distribution. Several copula classes
are considered and compared in this study: Elliptical,
Archimedean, and mixed Copula, which is a combination
of two or more copula families from Elliptical and Archi-
medean classes. The estimation technique used in this
study is the maximum likelihood method. We employ the
full maximum likelihood (FML) (one-step estimation)
rather than the inference for margins (IFM) (two-step esti-
mation) as we aim to improve the likelihood of the VAR
model in order to gain more accurate parameter estimates.
Two experimental studies are suggested to validate the
accuracy of the one-step maximum likelihood estimation
as well as the performance of our model.

We further investigate the performance of the mixed
copula-based VAR model using real data analysis. Our
overall result shows that the Clayton–Joe copula-based
VAR model provides the best fit for our data. This
model's BIC is lower than other copula-based VAR speci-
fications as well as the traditional VAR model. In addi-
tion, we further conduct the in- and out-of-sample
forecasts. The results suggest that Clayton–Joe copula-
based VAR model with WUI performs superiority in this
application study. Our findings have important economic
implications for stock investors and the US policymakers
to pay more attention to the change of worldwide EPU.

We leave to study further the issue of deriving the
mathematical proof of asymptotic properties and consis-
tency. In addition, our proposed model and estimation
can be straightforwardly applied to other copula families.
Future research may consider extending our copula-
based VAR to compute the nonlinear impulse response
functions. Finally, the Bayesian approach is another esti-
mation that could be used to estimate the large parameter
estimates in our proposed model.
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