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Abstract5

Estimation of the stress-strength parameter,R = Pr(X < Y), is perhaps one of the challenging concepts in the reliability
analysis. The estimation of R often criticized for its lack of stability and robustness against the presence of outliers
and extreme values. The issue of estimating R under the presence of outliers is considered in this contribution for
independently distributed random variables X and Y by the Pareto-based models. It is assumed that X has the Pareto
distribution in the presence of outliers, whereas the random variable Y follows uncontaminated Pareto distribution.
Under various assumptions on the parameters of the model, the maximum likelihood, method of moments, least
squares, and modified maximum likelihood estimators are obtained. The shrinkage estimate of the stress-strength
reliability parameter is also derived for each case using a prior guess, R0. We conduct a Monte Carlo simulation study
to compare the proposed methods of estimation. Finally, the performance of the postulated methodology is illustrated
by analyzing two real-world datasets in the physical and insurance studies.
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1. Introduction9

The stress-strength parameter, originally proposed by Birnbaum (1956), has widely been acknowledged in statis-10

tical research to show the system’s efficiency. In reliability theory, R = Pr(X < Y) is a measure of system failure11

based on stress X exceeding a strength Y . In fact, a system will be disturbed if stress X exceeds the strength Y . The12

application of stress-strength parameter can be found within the broad area of sciences, including the reliability of13

mechanical systems, statistics as well as clinical trials. For instance, by assuming the control group response to a14

therapeutic approach as Y and the treated group response as X, Hauck et al. (2000) considered R as a measure of15

treatment effect in clinical analysis. More details of the stress-strength parameter and its applications can be found in16

Simonoff et al. (1986) and Kotz and Pensky (2003).17

During past decades, the problem of estimating R has been considered by the researcher in parametric and non-18

parametric viewpoints with different sampling schemes and distributions for (X,Y). See for instance the works of19

Ahmad et al. (1997); Awad et al. (1981) and Kundu and Gupta (2005) to name a few. More recently, Hajebi et al.20

(2012) constructed a confidence interval for R under generalized exponential distribution. The estimation of stress-21

strength parameter with the gamma, generalized logistic, and inverted gamma distributions for X and Y were proposed22

by Huang et al. (2012); Asgharzadeh et al. (2013) and Iranmanesh et al. (2018), respectively. Baklizi (2013, 2014)23

addressed the interval and Bayes estimations of R based on the records of the two-parameter exponential distribution.24

The estimation of R based on the upper record values in two-parameter bathtub-shaped lifetime distribution was25

also investigated by Tarvirdizade and Ahmadpour (2016). Moreover, Bai et al. (2021) provided an inference for the26

stress-strength reliability of multi-state systems by exploiting the generalized survival signature.27
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The class of Pareto-based models is one of the well-known classes of distributions in statistical analysis. Specif-28

ically, in the stress-strength estimation, many contributions on postulating accurate models were recently published29

by considering Pareto models. Beg and Singh (1979) computed the minimum variance s-unbiased, Bayesian and ML30

estimates of R where X and Y are distributed by the Pareto distribution. Rezaei et al. (2010) considered R estimation31

when X and Y were two independent random variables (rvs) followed by the generalized Pareto distributions with32

different parameters. They obtained the maximum likelihood (ML) estimator of R and its asymptotic distribution to33

construct the asymptotic confidence interval. By considering independently distributed X and Y by the two-parameter34

Pareto distribution, Gunasekera (2014) proposed several generalized variable methods to estimate R. Gunasekera35

(2014) investigated the generalized size, generalized adjusted and unadjusted powers of the test, and generalized cov-36

erage probabilities by conducting a simulation study and comparing p-value as a basis for hypothesis testing. To see37

more contributions on the stress-strength estimation, the reader is referred to Odat (2010); Ali and Woo (2010) and38

Wong (2012) to name a few.39

Although all aforementioned works on estimating R have some advantages in practice, they might suffer from the40

lack of robustness in the presence of outliers. Practical studies in the reliability and stress-strength areas show that41

the outliers might contaminate variables X and Y since the processor in the life testing may produce some noises. In42

some applications of R, we should also obtain the treatment effect for a set of response variables that the statistical43

units are divided by two groups as experiment and control because of removing any other unsuitable effects. In this44

situation, some observations of the response variable (say k of n) might be followed by another distribution, i.e., data45

might be contaminated by outliers (Nooghabi and Nooghabi, 2016). A simple way of coping with outliers is to ignore46

the observations outside of the data range (Nooghabi and Nooghabi, 2016). However, the investigator will lose some47

information by excluding data points and may obtain misleading results. This paper aims at assuming that the response48

observations for the experiment group have “good” and outlier points, whereas the observations for the control group49

do not suffer from contamination. To use all information in the dataset for estimating R, it is supposed that X has the50

Pareto distribution in the presence of outliers and independently but non-identically Y follows the homogenous case51

of the Pareto distribution. We derive the ML, method of moments (MM), least squares (LS), and modified maximum52

likelihood (mixture of MM and ML) estimators of the model’s parameters and R.53

The paper is therefore organized as follows. Section 2 presents a brief review of the definition of outliers and54

the Dixit model. In Section 3, we derive a closed-form of the reliability parameter of the Pareto distribution with55

outliers. The estimation procedure is comprehensively discussed in Section 4 for the various assumptions on the56

parameters. We conduct a simulation study in Section 5 to compare the obtained estimators. Finally, the superiority57

of the proposed methodology is illustrated in Section 6 by analyzing two real data examples in the solid-state physics58

(electron mobility) and motor insurance studies.59

2. Outliers: definition and analysis60

To present the paper’s objective, this section briefly discussed the definition of the outliers in the statistical litera-61

ture. As an applicable way in dealing with the outliers, the well-known Dixit model is also reviewed.62

2.1. Definition63

In statistical analysis, outliers usually refer to the observations in a distribution of data that deviate from the other64

observations. If a dataset contains some outliers, it is also said that the data are contaminated with outliers. It is hard to65

find a specific and general definition for outliers since the researchers presented various measures to define how far the66

outliers should be from the usual data points. We refer the reader to Grubbs (1950); Anscombe (1960); Grubbs (1969);67

Hawkins (1980); Miller (1981) and Barnett and Lewis (1994) to find some definitions. However, a more informative68

definition can be presented as follows. “The outlier is an observation that being typical and/or erroneous deviates69

decidedly from the general behavior of experimental data with respect to the criteria exploited for the analysis.”70

Due to the presence of outliers in the practical situation, several methods and statistical models have recently been71

introduced for outliers detection and robust statistical inference. These include the works of Kale and Sinha (1971);72

Veale (1975); Chikkagoudar and Kunchur (1980); Dixit and Jabbari Nooghabi (2011a); Safari et al. (2018) and Safari73

et al. (2019). In this paper, we will use the well-known Dixit model (Dixit, 1987), described in the next section, as74

one of the powerful ways of outliers modeling.75
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2.2. Dixit model76

Let
{
Xi

}n

i=1
be a sequence of non-negative rvs such that for the given combinations A1, A2, . . . , An−k of the integers77

{1, 2, . . . , n}, we have:78

I: The set of independent rvs S1 =
{
XAi

}n−k

i=1
with the probability density function (pdf) or probability mass function79

(pmf) f1(x). The set of remaining independent rvs S2 =
{
XAi

}n

i=n−k+1
have also the pdf (pmf) f2(x). Moreover, it80

is assumed that S1 and S2 are independent.81

II: The combinations A1, A2, . . . , An−k are chosen at random with equal probability C−1(n, k) = k!(n−k)!
n! .82

Therefore, the joint pdf of X1, X2, . . . , Xn can be written as83

f (x1, x2, . . . , xn) =
n∏

i=1

f1(xi)
∑

A1,A2,...,Ak

k∏
j=1

f2(xA j )
f1(xA j )

C−1(n, k), (1)

where
∑

A1,A2,...,Ak
=

∑n−k+1
A1=1

∑n−k+2
A2=A1+1 · · ·

∑n
Ak=Ak−1+1 . For k = 1, the Dixit model (1) will reduce to the Kale-Sinha84

model (Kale and Sinha, 1971). The marginal distribution of Xi can also be obtained as85

f (xi) = b f2(xi) + b̄ f1(xi),

where b = kn−1 and b̄ = 1 − b. It is clear that the Dixit model does not need any procedure of outliers detection.86

This advantage of the Dixit model is useful in the practical situation that might help the investigator use it without any87

concentration on outlier detection.88

In the oncoming section, the Pareto distribution with outliers is introduced by exploiting the Dixit model. We also89

compute the closed form of the stress-strength parameter for the proposed new model.90

3. Reliability parameter of the Pareto distribution with outliers91

Suppose X1, . . . , Xn be a sequence of rvs such that k out of them distributed by the Pareto distribution with pdf92

f2(x;α, β, θ) =
α(βθ)α

xα+1 , 0 < βθ ≤ x, α > 0, β > 1, θ > 0,

and the remaining (n − k) rvs are distributed by93

f1(x;α, θ) =
αθα

xα+1 , 0 < θ ≤ x, α > 0.

Accordingly, the joint pdf of (X1, . . . , Xn) with k outliers is given by94

f (x1, . . . , xn;α, β, θ) =
αnθnαβkα

C(n, k)

 n∏
i=1

xi

−(α+1) n−k+1∑
A1=1

n−k+2∑
A2=A1+1

...

n∑
Ak=Ak−1+1

k∏
j=1

I(xA j − βθ), (2)

where the indicator function I(·) is defined as I(x) = 1 if x > 0, and I(x) = 0 otherwise. The marginal pdf of Xi can95

therefore be obtained as:96

f (xi;α, β, θ) = b
α(βθ)α

xα+1
i

I(xi − βθ) + b̄
αθα

xα+1
i

I(xi − θ), α, θ > 0, β > 1,

where (X1, X2, ..., Xn) are not independent (Dixit and Jabbari Nooghabi, 2011a,b; Nooghabi and Nooghabi, 2016) since97

the joint pdf (2) is not a multiplication of the marginal densities.98

In the stress-strength model, suppose X has the Pareto distribution in the presence of outliers defined in (2) and99

independently from X, the rv Y be distributed by the homogenous case of the Pareto distribution, i.e.100

f (y; ν, λ) =
νλν

yν+1 I(y − λ), ν, λ > 0.
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Then, the stress-strength parameter R based on samples of sizes n and m, respectively taken from X and Y is101

R = Pr(X < Y) = 1 −
ν

α + ν
(bβα + b̄)

(
θ

λ

)α
. (3)

Here, α and ν denote the shape parameters, λ and θ are the threshold parameters, and β is the outlier parameter.102

4. Estimation of the stress-strength parameter103

Practical studies with the Pareto distribution claim that it is reasonable to assume a fixed value for the threshold104

parameter and estimate the shape parameter based on it. For instance, in the analysis of motor insurance, a claim of at105

least θ, as compensation, can be made, and claims below it are not entertained. Thus, we can fit the Pareto distribution106

with parameter α and the known value of θ to claims dataset. Details can be found in Dixit and Jabbari Nooghabi107

(2011a). We will discuss in the next sections the stress-strength parameter estimation for different scenarios of the108

model parameters upon the real situations.109

4.1. R estimation when the shape parameters are only unknown110

In the first scenario, suppose that the threshold and outlier parameters, λ, θ and β, are known. For a fixed integer111

value k ∈ {1, 2, . . . , [(n + 1)/2]}, we construct a profile log-likelihood function ℓPL(α, β, θ) = ln( f (x1, . . . , xn;α, β, θ))112

with respect to k. Here, [a] denotes the greatest integer less than or equal to a, and ln(·) represents the natural logarithm113

function. Then, the ML estimate of α is obtained as114

α̂ml1 =
n∑n

i=1 ln(Xi) − n ln(θ) − k ln(β)
for

n∑
i=1

ln(Xi) > ln(θnβk).

Finally, the most plausible value of k corresponds to the maximizer of the likelihood function. Maximizing the115

log-likelihood function for ν associated with the observation y = (y1, . . . , ym), ℓy(ν, λ) =
∑m

i=1 ln( f (yi; ν, λ)), the ML116

estimate of ν can also be computed as117

ν̂ml1 =
m∑m

i=1 ln(Yi) − m ln(λ)
for

m∑
i=1

ln(Yi) > ln(λm).

Consequently, by using the invariant property of the ML estimator and (3), the ML estimate of R is given118

R̂ml1 = 1 −
ν̂ml1

α̂ml1 + ν̂ml1
(bβα̂ml1 + b̄)

(
θ

λ

)α̂ml1

.

Now, the first shrinkage estimator of R can be obtained by minimizing the mean square error (MSE) of the119

estimator. Let R̃11 = τ11R̂ml1 + (1− τ11)R0 be the first shrinkage estimator where R0 is a prior estimate. Therefore, τ11120

can be obtained by minimizing MSE(R̃11) = E[(τ11R̂ml1 + (1 − τ11)R0) − R]2, as121

τ11 =
(R − R0)E

(
R̂ml1 − R0

)
E(R̂2

ml1) − 2R0E(R̂ml1) + R2
0

, 0 ≤ τ11 ≤ 1. (4)

Substituting the ML estimate of R into (4) will lead to122

τ̂11 =
(R̂ml1 − R0)E

(
R̂ml1 − R0

)
E(R̂2

ml1) − 2R0E(R̂ml1) + R2
0

.

Hence, the first shrinkage estimator of R takes the form R̃11 = τ̂11R̂ml1 + (1 − τ̂11)R0. In the following theorem, we123

present a closed expression of the expectations E(R̂ml1) and E(R̂2
ml1), used for the first shrinkage estimator.124
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Theorem 1. The expectations E(R̂ml1) and E(R̂2
ml1) are125

E(R̂ml1) = 1−
2

Γ(n)Γ(m)

b
∞∑
j=0

(−1) j
j∑

i=0

C( j, i)(nα)
n+i
2 [A(β, θ, λ)]

n−i
2

× BesselK
(
−n + i, 2

√
nαA(β, θ, λ)

) j−i∑
l=0

C( j − i, l)(−1) j−i−l(mν)l+1Γ(m − 1 − l)

+ b̄
∞∑
j=0

(−1) j
j∑

i=0

C( j, i)(nα)
n+i
2 [A(θ, λ)]

n−i
2

× BesselK
(
−n + i, 2

√
nαA(θ, λ)

) j−i∑
l=0

C( j − i, l)(−1) j−i−l(mν)l+1Γ(m − 1 − l)

 ,
E(R̂2

ml1) = 1−2E(R̂ml1) +
2

Γ(n)Γ(m)

b2
∞∑
j=0

(−1) j( j + 1)
j∑

i=0

C( j, i)(nα)
n+i
2 [2A(β, θ, λ)]

n−i
2

× BesselK
(
−n + i, 2

√
2nαA(β, θ, λ)

) j−i∑
l=0

C( j − i, l)(−1) j−i−l(mν)l+2Γ(m − 2 − l)

+ 2bb̄
∞∑
j=0

(−1) j( j + 1)
j∑

i=0

C( j, i)(nα)
n+i
2 [A∗(β, θ, λ)]

n−i
2

× BesselK
(
−n + i, 2

√
nαA∗(β, θ, λ)

) j−i∑
l=0

C( j − i, l)(−1) j−i−l(mν)l+2Γ(m − 2 − l)

+ b̄2
∞∑
j=0

(−1) j( j + 1)
j∑

i=0

C( j, i)(nα)
n+i
2 [2A(θ, λ)]

n−i
2

× BesselK
(
−n + i, 2

√
nα2A(θ, λ)

) j−i∑
l=0

C( j − i, l)(−1) j−i−l(mν)l+2Γ(m − 2 − l)

 ,
where A(β, θ, λ) = [ln(λ) − ln(βθ)], A(θ, λ) = A(1, θ, λ), A∗(β, θ, λ) = 2 ln(λ) − 2 ln(θ) − ln(β) and BesselK(·) is the126

Bessel function of the second kind.127

Proof. To obtain the expectation of R̂ml1 and R̂2
ml1, the pdfs of α̂ml1 and ν̂ml1 are needed. Upon the pdfs of

∑n
i=1 ln(Xi)128

and
∑m

i=1 ln(Yi), one can obtain the pdfs of α̂ml1 and ν̂ml1, respectively. Details are available in Appendix A and Dixit129

and Jabbari Nooghabi (2011a).130

In order to get the second and third ML-based shrinkage estimators of R, we shall use the generalized likelihood131

ratio test (GLRT) for the hypothesis H0 : R = R0 vs. H1 : R = R1. The p-value of the test and its square root can132

then be the estimators of the weight. Based on the GLRT for testing H0 vs. H1, we reject H0 when Λ(x, y) < c1 or133

Λ(x, y) > c2, where134

Λ(x, y) =
supH0

L(α, ν)
supH L(α, ν)

, for L(α, ν) ∝
αnθnαβkα

C(n, k)
(

n∏
i=1

xi)−(α+1)νmλmν(
m∏

i=1

yi)−(ν+1).

It is clear that H0 : R = R0 is equivalent to H0 : ν∗ = α(1−R0)
(bβα+b̄)( θλ )

α
−(1−R0)

. Accordingly, the ML estimator of α under135

H0 are obtained by maximizing the likelihood function with respect to α when ν∗ is replaced in it. This maximization136
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does not have the closed solution for α. However, we can estimate α by numerically solving equation h(α) = 0 where137

h(α) =
n
α
+ k ln(β) + n ln(θ) −

n∑
i=1

ln(xi) +
m
α
−

m
[
bβα ln(β)

(
θ
λ

)α
+

(
θ
λ

)α
ln

(
θ
λ

)
(bβα + b̄)

]
+ (1 − R0)

(bβα + b̄)
(
θ
λ

)α
− (1 − R0)

−

[
bβα ln(β)

(
θ
λ

)α
+

(
θ
λ

)α
ln

(
θ
λ

)
(bβα + b̄)

]
α(1 − R0)

[
m ln(λ) −

∑m
i=1 ln(yi)

]
[
(bβα + b̄)

(
θ
λ

)α
− (1 − R0)

]2 .

The ML estimate of ν under H0 is obtained by substituting the solution of h(α) = 0 in ν∗. As a result, the second and138

third shrinkage estimations of R, respectively denoted by R̃21 and R̃31, take the following formula139

R̃21 = τ21R̂ml1 + (1 − τ21)R0, R̃31 = τ31R̂ml1 + (1 − τ31)R0,

where (1 − τ21) is the p-value of the GLRT and (1 − τ31) =
√

p-value.140

For the known parameters λ, θ and β, the MM estimators of α and ν can be obtained by using the first moment of141

X and Y , E(X) = α
α−1θ(bβ + b̄) and E(Y) = ν

ν−1λ, respectively. We therefore have142

α̂mm1 =
X̄

X̄ − θ(bβ + b̄)
and ν̂mm1 =

Ȳ
Ȳ − λ

,

where k was previously obtained using the profile log-likelihood function. Bear in mind that the first moment of the143

Pareto-based models is negative if the shape parameter is less than one. Therefore, if α̂mm1, ν̂mm1 < 1, we will use the144

first moment of X−1 and Y−1, as E(X−1) = α
α+1θ

−1(bβ−1 + b̄) and E(Y−1) = ν
ν+1λ

−1, to find new estimations given by145

α̂mm1 =
X̄inv

θ−1(bβ−1 + b̄) − X̄inv
and ν̂mm1 =

Ȳinv

λ−1 − Ȳinv
,

where X̄inv =
∑n

i=1 X−1/n, and Ȳinv =
∑m

i=1 Y−1/m. So, the moment based estimator of R is146

R̂mm1 = 1 −
ν̂mm1

α̂mm1 + ν̂mm1
(bβα̂mm1 + b̄)

(
θ

λ

)α̂mm1

.

Using the same procedure of calculating the first ML-based shrinkage estimator of R, the MM-based shrinkage esti-147

mator is obtained by148

R̃41 = τ̂41R̂mm1 + (1 − τ̂41)R0, where τ̂41 =
(R̂mm1 − R0)E

(
R̂mm1 − R0

)
E(R̂2

mm1) − 2R0E(R̂mm1) + R2
0

.

There is no closed-form for the expectations in τ̂41 and a Monte Carlo (MC) method should be implemented to149

approximate them.150

Similarly to the MM estimate, we can find the shrinkage estimator of R related to the least squares estimator. The151

LS estimates of α and ν can be derived by using the reliability function of X and Y , respectively. It can be shown that152

the LS estimates of α and ν are153

α̂ls1 =

∑n
i=1 zxi ln(xi) − nz̄xln(x)∑n

i=1

[
ln(xi) − ln(x)

]2 , ν̂ls1 =

∑m
j=1 zy j ln(y j) − mz̄yln(y)∑m

j=1

[
ln(y j) − ln(y)

]2 ,

where zxi = − ln(1 − FX(xi)) = − ln
(
1 − i

n+1

)
, i = 1, 2, . . . , n, z̄x =

1
n
∑n

i=1 zxi , ln(x) = 1
n
∑n

i=1 ln(xi), zy j = − ln(1 −154

FY (y j)) = − ln
(
1 − j

m+1

)
, j = 1, 2, . . . ,m, z̄y =

1
m

∑m
j=1 zy j and ln(y) = 1

m
∑m

j=1 ln(y j). So, the LS-based estimator of R155

is obtained from (3) as156

R̂ls1 = 1 −
ν̂ls1

α̂ls1 + ν̂ls1
(bβα̂ls1 + b̄)

(
θ

λ

)α̂ls1

,
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where k was chosen based on the profile log-likelihood function. Finally, the shrinkage estimator of R for the LS157

approach is derived as158

R̃51 = τ̂51R̂ls1 + (1 − τ̂51)R0, where τ̂51 =
(R̂ls1 − R0)E

(
R̂ls1 − R0

)
E(R̂2

ls1) − 2R0E(R̂ls1) + R2
0

.

The expectations in R̃51 should be approximated by a Monte Carlo approach.159

4.2. R estimation when the outlier parameter is known160

In the second scenario, suppose that all parameters except outlier are unknown. The ML, MM, and LS estimator161

of stress-strength parameter and their corresponding shrinkage estimators can then be obtained as follows.162

For a fix integer value k ∈ {1, 2, . . . , [(n + 1)/2]}, the ML estimates of α and θ obtained by constructing the profile163

log-likelihood function ℓPL(α, β, θ), are θ̂ml2 = X(1)β
−1, and164

α̂ml2 =
n∑n

i=1 ln(Xi) − n ln(X(1)) + (n − k) ln(β)
, for

n∑
i=1

ln(Xi) > ln(Xn
(1)β

k−n), β > 1, (5)

where X(1) denotes the first order statistics of X. We then choose the best value of k corresponds to the maximizer of the165

likelihood function. Maximizing the log-likelihood function for (ν, λ) associated with the observation y = (y1, . . . , ym),166

ℓy(ν, λ) leads to the ML estimates λ̂ml2 = Y(1), and167

ν̂ml2 =
m∑m

i=1 ln(Yi) − m ln(Y(1))
, for

m∑
i=1

ln(Yi) > ln(Ym
(1)), (6)

where Y(1) is the first order statistics of Y . From (5), (6) and (3), the ML estimate of R can be written as168

R̂ml2 = 1 −
ν̂ml2

α̂ml2 + ν̂ml2
(bβα̂ml2 + b̄)

(
θ̂ml2

λ̂ml2

)α̂ml2

.

For this scenario, the first shrinkage estimator of R can be obtained as R̃12 = τ̂12R̂ml2 + (1 − τ̂12)R0, same as Section169

4.1, where170

τ̂12 =
(R̂ml2 − R0)E

(
R̂ml2 − R0

)
E(R̂2

ml2) − 2R0E(R̂ml2) + R2
0

.

To calculate R̃12, we should obtain the expected value E(R̂ml2) and E(R̂2
ml2). One can follow the next two lemmas and171

theorem to compute these two expectations.172

Lemma 1. Let T =
∏n

i=1 Xi and S =
∏m

i=1 Yi. Then, the joint pdfs of (X(1),T ) and (Y(1), S ) are173

fX(1),T (x(1), t) =
nαnβkαθnαt−(α+1)

(n − 2)!x(1)

×
{
b
[
ln(t) − n ln(x(1)) − (k − 1) ln(β)

]n−2 I(x(1) − βθ)I(t − xn
(1)β

k−1)

+ b̄
[
ln(t) − n ln(x(1)) − k ln(β)

]n−2 I(x(1) − θ)I(t − xn
(1)β

k)
}
,

fY(1),S (y(1), s) =
mνmλmνs−(ν+1)

(m − 2)!y(1)

[
ln(s) − m ln(y(1))

]m−2 I(y(1) − λ)I(s − ym
(1)).

Proof. The joint pdf of (X(1),T ) in the presence of outliers is can be obtained by exploiting Equation (2) and per-174

forming the transform {x(1) = x(1), x(2) = x(2), . . . , x(n−1) = x(n−1), x(n) =
t

x(1)...x(n−1)
}. Integrating out with respect to175

x(2), x(3), . . . , x(n−1), the joint pdf of (X(1),T ) is derived. Similarly, one can calculate the joint pdf of (Y(1), S ) which176

completes the proof.177
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Lemma 2. The joint pdf of (θ̂ml2, α̂ml2) = (U,W) and the joint pdf of (λ̂ml2, ν̂ml2) = (P,Q) are as the following178

equations, respectively.179

fU,W (u,w) =
n2αnθnαu−(nα+1)

(n − 2)!w2 exp
(
−

nα
w

)
×

{
b
[ n
w
− (n − 1) ln(β)

]n−2
I(u − θ)I

(
n

(n − 1) ln(β)
− w

)
+ b̄

[ n
w
− n ln(β)

]n−2
I
(
u −
θ

β

)
I
(

1
ln(β)

− w
)}
,

fP,Q(p,q) =
λmν

(m − 2)!pmν+1

(
mν
q

)m

exp
(
−

mν
q

)
I(q)I(p − λ).

Proof. The joint pdfs of (U,W) and (P,Q) are directly obtained from the joint pdfs of (X(1),T ) and (Y(1), S ), respec-180

tively, by using some elementary algebra.181

Theorem 2. E(R̂ml2) and E(R̂2
ml2) are as follows.182

E(R̂ml2) =1 −
αn−1θnαλmν

(n − 2)!(m − 2)!

∞∑
j=0

(−1) j
j∑

i=0

C( j, i)
n−2∑
l=0

C(n − 2, l)(−1)n−2−l
∞∑

r=0

nr+l(−α)r

r!

×

∞∑
o=0

[ln(β)]n+r−i−o−1(nα)−o

o!(i − l − r + o − 1)

j−i∑
a=0

C( j − i, a)(−1) j−i−a(mν)a+1Γ(m − a − 1)

×
{
b2βnαni−l−r+o(n − 1)n+r−i−o−1A(n,m, o, α, β, θ, ν, λ) + bb̄βnαnn−2−lA(n,m, o, α, 1, θ, ν, λ)

+ bb̄ni−l−r+o(n − 1)n+r−i−o−1A(n,m, o, α, 1, θ, ν, λ) + b̄2nn−2−lA(n,m, o, α, β−1, θ, ν, λ)
}
,

E(R̂2
ml2) =1 − 2E(R̂ml2) +

n2αnθnαλmν

(n − 2)!(m − 2)!

∞∑
j=0

(−1) j( j + 1)
j∑

i=0

C( j, i)
n−2∑
l=0

C(n − 2, l)(−1)n−2−l

×

∞∑
r=0

nr+l(−α)r

r!

∞∑
o=0

2o[ln(β)]n+r−i−o−1(nα)−o−1

o!(i − l − r + o − 1)

j−i∑
a=0

C( j − i, a)(−1) j−i−a(mν)a+1Γ(m − a − 1)

×
{
b3βnαni−l−r+o−1(n − 1)n+r−i−o−1A(n,m, o, α, β, θ, ν, λ) + b2b̄βnαnn−2−lA(n,m, o, α, 1, θ, ν, λ)

+ 2b2b̄β0.5nαni−l−r+o−1(n − 1)n+r−i−o−1A(n,m, o, α,
√
β, θ, ν, λ) + 2bb̄2β0.5nαnn−2−lA(n,m, o, α,

√
β−1, θ, ν, λ)

+ bb̄2ni−l−r+o−1(n − 1)n+r−i−o−1A(n,m, o, α, 1, θ, ν, λ) + b̄3nn−2−lA(n,m, o, α, β−1, θ, ν, λ)
}
,

where183

A(n,m, o, α, β, θ, ν, λ) =
λ−(nα+mν)Γ(o + 1)

nα + mν
−

∞∑
d=0

(−1)o(nα)d+o(βθ)−(nα+mν)Γ
(
d + o + 1,−(nα + mν) ln

(
βθ
λ

))
Γ(d + 1)(d + o + 1)(nα + mν)d+o+1 ,

and Γ(a) and Γ(a, b) denote the gamma and incomplete gamma functions, respectively.184

Proof. By using the joint pdfs of (θ̂ml2, α̂ml2) and (λ̂ml2, ν̂ml2) in Lemmas 2, proof is completed same as the proof of185

Theorem 1 (see Appendix A).186

When the outlier parameter is only known, the second and third ML-based shrinkage estimators of the stress-187

strength parameter are obtained though using the GLRT for testing H0 : R = R0 vs. H1 : R = R1. Same as Section188

4.1, the p-value of the test and its square root are the estimates of weight in the second and third shrinkage estimators189

of R. The GLRT test of H0 vs. H1 will reject H0 if Λ′(x, y) < c3 or Λ′(x, y) > c4, where190

Λ′(x, y) =
supH0

L(α, θ, ν, λ)
supH L(α, θ, ν, λ)

, where L(α, θ, ν, λ) ∝
αnθnαβkα

C(n, k)

 n∏
i=1

xi

−(α+1)

νmλmν

 m∏
i=1

yi

−(ν+1)

.
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The hypothesis H0 : R = R0 is equivalent to H0 : ν∗ = α(1−R0)
(bβα+b̄)( θλ )

α
−(1−R0)

. Consequently, the ML estimators of α, θ, and191

λ under H0 should be computed by simultaneously solving equations h(α) = 0,192

h(θ) =
nα
θ
−

mα(bβα + b̄)θα−1[1 + mα(1 − R0) ln(λ)][
(bβα + b̄)

(
θ
λ

)α
− (1 − R0)

]
λα

+
mα2(bβα + b̄)(1 − R0)

∑m
i=1 ln(yi)θα−1[

(bβα + b̄)
(
θ
λ

)α
− (1 − R0)

]2
λα

= 0,

h(λ) =
mα(bβα + b̄)θαλ−α−1 + mα(1 − R0)λ−1

(bβα + b̄)
(
θ
λ

)α
− (1 − R0)

+
α2(bβα + b̄)(1 − R0)θαλ−α−1[m ln(λ) −

∑m
i=1 ln(yi)][

(bβα + b̄)
(
θ
λ

)α
− (1 − R0)

]2 = 0.

We can therefore calculate ν∗ and the second and third estimators of R as193

R̃22 = τ22R̂ml2 + (1 − τ22)R0, R̃32 = τ32R̂ml2 + (1 − τ32)R0,

where (1 − τ22) is the p-value of the GLRT and (1 − τ32) =
√

p-value.194

For the known parameter β, the MM estimators of α, λ, θ, and ν can be obtained by using the first and second195

moments of X and Y via solving systems of nonlinear equations:196  X̄ = E(X) =
α

α − 1
θ(bβ + b̄);

X2 = E(X2) =
α

α − 2
θ2(bβ2 + b̄),

and

 Ȳ = E(Y) =
ν

ν − 1
λ;

Y2 = E(Y2) =
ν

ν − 2
λ2.

The solutions to these nonlinear systems are197 
θ̂mm2 =

−B2 +

√
B2

2 − 4B1B3

2B1
;

α̂mm2 =
X̄

X̄ − θ̂ml2(bβ + b̄)
,

and


λ̂mm2 =

Y2 −

√
(Y2)2 − Ȳ2Y2

Ȳ
;

ν̂mm2 =
Ȳ

Ȳ − λ̂mm2
,

where B1 = −X̄(bβ2 + b̄), B2 = 2X2(bβ + b̄), B3 = −X̄X2, X2 =
∑n

i=1 X2/n, Y2 =
∑m

i=1 Y2/m and k was previously198

obtained based on the profile log-likelihood function. To avoid having negative variance in case α̂mm2, ν̂mm2 ≤ 2,199

one should obtain the MM estimators by using the first and second moments of X−1 and Y−1, via solving systems of200

nonlinear equations:201  X̄inv = E(X−1) =
α

α + 1
θ−1(bβ−1 + b̄);

X2
inv = E(X−2) =

α

α + 2
θ−2(bβ−2 + b̄),

and

 Ȳinv = E(Y) =
ν

ν + 1
λ−1;

Y2
inv = E(Y−2) =

ν

ν + 2
λ−2,

where X2
inv =

∑n
i=1 X−2/n, and Y2

inv =
∑m

i=1 Y−2/m. This leads similarly to the solutions to linear systems as202 
θ̂mm2 =

−B5 −

√
B2

5 − 4B4B6

2B4
;

α̂mm2 =
X̄inv

θ̂−1
ml2(bβ−1 + b̄) − X̄inv

,

and


λ̂mm2 =

Y2
inv −

√
(Y2

inv)2 − Ȳ2
invY2

inv

ȲinvY2
inv

;

ν̂mm2 =
Ȳinv

λ̂−1
mm2 − Ȳinv

,

where B4 = X̄invX2
inv, B5 = −2X2

inv(bβ−1+b̄), B6 = X̄inv(bβ−2+b̄). By computing the MM estimates of the parameters,203

we have204

R̂mm2 = 1 −
ν̂mm2

α̂mm2 + ν̂mm2
(bβα̂mm2 + b̄)

(
θ̂mm2

λ̂mm2

)α̂mm2

.

Consequently, the MM-based shrinkage estimator of R can be derived as R̃42 = τ̂42R̂mm2 + (1 − τ̂42)R0, where205

τ̂42 =
(R̂mm2 − R0)E(R̂mm2 − R0)

E(R̂2
mm2) − 2R0E(R̂mm2) + R2

0

,
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in which the expectations are approximated by an MC method.206

Finally, in order to compute the LS estimate of R and its corresponding shrinkage estimator, the LS estimate of α,207

θ, ν and λ obtained by exploiting the reliability function of X and Y are208

α̂ls2 =

∑n
i=1 zxi ln(xi) − nz̄xln(x)∑n

i=1

[
ln(xi) − ln(x)

]2 , θ̂ls2 = exp

 α̂ls2ln(x) − ln
(
bβθ̂ls2 + b̄

)
− z̄x

α̂ls2

 ,
ν̂ls2 =

∑m
j=1 zy j ln(y j) − mz̄yln(y)∑m

j=1

[
ln(y j) − ln(y)

]2 , λ̂ls2 = exp

 ν̂ls2ln(y) − z̄y

ν̂ls2

 ,
where zxi = − ln(1 − FX(xi)) = − ln

(
1 − i

n+1

)
, i = 1, 2, ..., n, z̄x =

∑n
i=1 zxi/n, ln(x) =

∑n
i=1 ln(xi)/n, zy j = − ln(1 −209

FY (y j)) = − ln
(
1 − j

m+1

)
, j = 1, 2, ...,m, z̄y =

∑m
j=1 zy j/m, ln(y) =

∑m
j=1 ln(y j)/m, and k was chosen based on the profile210

log-likelihood function. The LS estimate of R is then211

R̂ls2 = 1 −
ν̂ls2

α̂ls2 + ν̂ls2
(bβα̂ls2 + b̄)

(
θ̂ls2

λ̂ls2

)α̂ls2

.

The shrinkage estimator of R with respect to the LS estimators is R̃52 = τ̂52R̂ls2 + (1 − τ̂52)R0, with212

τ̂52 =
(R̂ls2 − R0)E(R̂ls2 − R0)

E(R̂2
ls2) − 2R0E(R̂ls2) + R2

0

,

in which there is no closed-form for the expectations and an MC approach should be used to approximate them.213

4.3. R estimation when all of the parameters are unknown214

The last scenario focuses on estimating R when it is assumed that none of the model parameters are known. The215

ML parameter estimates of α, β, and θ can be obtained by maximizing the profile log-likelihood function ℓPL(α, β, θ)216

for a fix value k ∈ {1, 2, . . . , [(n+1)/2]}. In fact, the ML estimate of Θ = (α, β, θ) is traditionally obtained by searching217

the solution of the following function:218

Θ = arg max
Θ

ln( f (x1, . . . , xn;α, β, θ))

However, this optimization is not trivial, especially for β, and numerical method should be exploited. By computing219

ML estimate of Θ, the value of k with maximum likelihood is chosen as the most plausible value of k. Maximizing220

the log-likelihood function for (ν, λ) associated with the observation y = (y1, . . . , ym), ℓy(ν, λ) leads to obtain their ML221

estimates with the same form as (6). As a result, the ML estimate of R can be computed by (3) under the invariant222

property of the ML estimator.223

To estimate α, β and θ by the MM approach, it is necessary to solve the following systems of nonlinear equations224

based on the moments of X and X−1:225 

X̄ = E(X) =
α

α − 1
θ(bβ + b̄);

X2 = E(X2) =
α

α − 2
θ2(bβ2 + b̄);

X̄inv = E(X−1) =
α

α + 1
θ−1(bβ−1 + b̄);

X2
inv = E(X−2) =

α

α + 2
θ−2(bβ−2 + b̄).

(7)

By applying some straightforward algebra, the quartic equation with respect to β is calculated as226

B7β
4 + B8β

3 + B9β
2 + B10β + B11 = 0,
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where B7 = B11 = X̄X̄invbb̄, B8 = B10 = −4X2 X2
invbb̄, B9 = 3X2 X2

invX̄X̄inv + (X̄X̄inv − 4X2 X2
inv)(b2 + b̄2). Following227

Abramowitz et al. (1988) (p. 17) and Pachner (1983) (p. 6.1.), the roots of the quartic equation are228 
β̂1mm3 =

√
z1 +

√
z2 +

√
z3

2
−

B8

4B7
, β̂2mm3 =

√
z1 −

√
z2 −

√
z3

2
−

B8

4B7
,

β̂3mm3 =
−
√

z1 +
√

z2 −
√

z3

2
−

B8

4B7
, β̂4mm3 =

−
√

z1 −
√

z2 +
√

z3

2
−

B8

4B7
,

where z1, z2 and z3 are the roots of cubic equation z3 + 2B12z2 + (B2
12 − 4B14)z − B2

13 = 0, B12 =
B9
B7
− 6

(
B8

4B7

)2
,229

B13 =
B10
B7
+ 2 B8

4B7

[
4
(

B8
4B7

)2
−

B9
B7

]
and B14 =

B11
B7
+

B8
4B7

{
B8

4B7

[
B9
B7
− 3

(
B8

4B7

)2
]
−

B10
B7

}
.230

Remark 1. Note that if all three roots z1, z2 and z3 are real and positive, then all four roots β̂1mm3, β̂2mm3, β̂3mm3, and231

β̂4mm3 are real (Pachner, 1983). One may also get more than one feasible solution for β. In this situation, β̂mm3 can be232

selected by evaluating the likelihood for each feasible solution and choosing the one that maximizes likelihood.233

By computing β̂mm3, the MM estimates of α and θ, replacing β̂mm3 in (7), are obtained as234

α̂mm3 =

√
X̄X̄inv

X̄X̄inv − (bβ̂mm3 + b̄)(bβ̂−1
mm3 + b̄)

, θ̂mm3 =
X̄(α̂mm3 − 1)
α̂mm3(bβ̂mm3 + b̄)

.

Details can be found in Dixit and Jabbari Nooghabi (2011b). The MM estimates of ν and λ can be derived by using235

the same procedure as Section 4.2, as ν̂mm3 = ν̂mm2 and λ̂mm3 = λ̂mm2. Therefore, the moment estimator of R is236

R̂mm3 = 1 −
ν̂mm3

α̂mm3 + ν̂mm3

(
bβ̂α̂mm3

mm3 + b̄
) ( θ̂mm3

λ̂mm3

)α̂mm3

.

The corresponding MM-based shrinkage estimator of R is237

R̃13 = τ̂13R̂mm3 + (1 − τ̂13)R0, where τ̂13 =
(R̂mm3 − R0)E(R̂mm3 − R0)

E(R̂2
mm3) − 2R0E(R̂mm3) + R2

0

.

The last estimates for the stress-strength parameter R presented in this paper is based on mixture of ML and MM238

(MIX) estimations. In this regards, the MIX estimates of the unknown parameters α, β, θ, ν, and λ, denoted by adding239

the subscript “mix” to them, are:240

β̂mix = β̂mm3, θ̂mix =
X(1)

β̂mix
, α̂mix =

n∑n
i=1 ln(Xi) − n ln(X(1)) + (n − k) ln(β̂mix)

,

λ̂mix = λ̂mm3, ν̂mix =
m∑m

i=1 ln(Yi) − m ln(λ̂mix)
.

Therefore, the corresponding MIX estimate of R and its shrinkage estimate are derived as241

R̂mix = 1 −
ν̂mix

α̂mix + ν̂mix

(
bβ̂α̂mix

mix + b̄
) ( θ̂mix

λ̂mix

)α̂mix

,

R̃23 = τ̂23R̂mix + (1 − τ̂23)R0, where τ̂23 =
(R̂mix − R0)E(R̂mix − R0)

E(R̂2
mix) − 2R0E(R̂mix) + R2

0

.

There is no closed-form for the expectations in τ̂23 and an MC method should be implemented to approximate them.242
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5. Simulation analysis243

We conduct a simulation analysis to check the performance of the proposed estimators discussed in Section 4. For244

two sample sizes n = 6 and 10, X is generated from a Pareto distribution with outliers where the number of outliers245

is taken to be k = 1 and 3. We also generate Y from a Pareto distribution with two sizes m = 10 and 30. The true246

stress-strength reliability parameter R is set to be 0.5 and 0.8 and three initial points, R0, are taken for each value of R.247

It is considered R0 = 0.35, 0.5, and 0.65 if R = 0.5 and R0 = 0.65, 0.8, and 0.95 if R=0.8. The presumed parameters248

set for generating X and Y is (α, β, θ, λ) = (3, 1.5, 1, 1) whereas the shape parameter of Y is set to249

ν =
α(1 − R0)

(bβα + b̄)
(
θ
λ

)α
− (1 − R0)

.

In each replication of 1000 trails, the proposed ML, MM, LS and MIX estimates of R and their corresponding250

shrinkage estimations are obtained. To investigate the estimation accuracies, we compute the bias and mean squared251

error (MSE):252

bias =
1

1000

1000∑
i=1

(R
ES

i − Rtrue) and MSE =
1

1000

1000∑
i=1

(R
ES

i − Rtrue)2,

where R
ES

i denotes the specific estimate of R at the ith replication.253

The detailed numerical results are reported in Tables 1, 2, and 3 for different three scenarios on parameter discussed254

in Section 4. Upon inspection of Tables 1 to 3, the following statements can be declared.255

• Results depicted in Table 1 suggest that all estimators of R have small bias and MSE for all sample sizes.256

Moreover, as n and m increase, the MSE of ML, MM, and LS estimators tend to decrease toward zero. However,257

the ML estimate of R has the smallest MSE comparing to the MM and LS estimators. It can also be seen that the258

shrinkage estimators perform better than the classic estimators, especially for the small sample size. Although259

the efficiency of the first ML-based shrinkage estimator (R̃11) is the best, one can order them (from the best to260

worst) as R̃11 ⪰ R̃21 ⪰ R̃31 ⪰ R̃51 ⪰ R̃41.261

• For the known outlier parameter, the results of Table 2 show that the MSE of all estimators tends to decrease as262

the sample sizes n and m increase. It can be observed that the ML provides a more efficient estimator than the263

MM and LS methods. It is also clear that the LS estimator has greater MSE and bias than the MM estimator.264

The numerical outputs in Table 2 also reveal that all types of shrinkage estimators perform much better than the265

classic estimator, and one can order them (from the best to worst) as R̃12 ⪰ R̃32 ⪰ R̃22 ⪰ R̃42 ⪰ R̃52.266

• According to the results of Table 3 which highlights the bias and MSE of the estimators for the third scenarios,267

we can conclude that all estimators of R have small bias and MSE for all sample sizes. It is observed that the268

MSE of all estimators tends to decrease toward zero as n and m are increased. Moreover, the MIX estimator269

of moment and ML methods is more efficient than the MM estimator. However, this outperformance may270

significantly be ignorable when the sample sizes increase. The results in Table 3 also show that the shrinkage271

estimator based on the MIX estimator of moment and ML methods is more efficient than the others, especially272

when the initial value R0 is closer to the true value of R. Furthermore, the bias of MIX is less than the MM, and273

the bias of shrinkage estimators is less than the classic estimators in almost all cases.274

6. Actual examples275

This section illustrates the usefulness of the proposed methodology by analyzing two real-world datasets in the276

physical and insurance studies.277

Example 1. The first considered dataset is related to the minority electron mobility for p-type Ga1−xAlxAs with278

seven different values of mole fraction, initially reported by Bennett and Filliben (2000). Electron mobility is used279

for determining the speed of an electron movement through a metal or semiconductor when an electric field pulls280

it. Depending on the metal or semiconductor density and electric field, some noise could be available, and so the281
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Table 1: Simulation results for assessing the accuracy of parameter estimates (bias and MSE (in the parenthesis)) when only the shape parameters
are unknown.

n k m R R0 R̂ml1 R̃11 R̃21 R̃31 R̂mm1 R̃41 R̂ls1 R̃51

6 1 10 0.5 0.35 -0.238841 -0.170210 -0.237053 -0.237948 -0.274981 -0.190513 -0.141050 -0.145051
(0.128482) (0.042882) (0.064461) (0.068450) (0.171513) (0.088256) (0.143945) (0.071175)

0.5 -0.072812 -0.021634 -0.025048 -0.042703 -0.151317 -0.362226 0.011885 -0.004681
(0.084060) (0.019401) (0.028974) (0.029545) (0.296953) (0.176751) (0.116354) (0.053162)

0.65 0.078133 0.105572 0.121190 0.104512 0.002103 0.102458 0.132217 0.129830
(0.033660) (0.025179) (0.027510) (0.029150) (0.076813) (0.066139) (0.094861) (0.048752)

10 1 30 0.5 0.35 -0.176820 -0.150491 -0.176432 -0.176631 -0.180304 -0.176863 -0.152105 -0.152531
(0.038103) (0.022650) (0.035771) (0.037743) (0.061614) (0.053475) (0.080038) (0.045281)

0.5 -0.004421 -0.000314 -0.001423 -0.002501 -0.011424 -0.015016 -0.005248 -0.013917
(0.004932) (0.000035) (0.000491) (0.001562) (0.005166) (0.003730) (0.010981) (0.002115)

0.65 0.133140 0.149471 0.142904 0.139063 0.100651 0.072760 0.114331 0.118852
(0.031812) (0.022341) (0.024143) (0.029052) (0.073791) (0.060025) (0.042123) (0.032391)

6 3 10 0.5 0.35 -0.420681 -0.337738 -0.219375 -0.286993 -0.599514 -0.237517 -0.055218 -0.109490
(0.069761) (0.034179) (0.052750) (0.066451) (1.194876) (0.185643) (0.122375) (0.087860)

0.5 -0.140562 -0.024380 -0.046860 -0.081131 -0.159015 -0.029861 0.035037 0.022001
(0.051901) (0.008391) (0.012240) (0.035961) (0.147501) (0.054682) (0.115663) (0.041981)

0.65 -0.081512 -0.070170 0.059871 0.005573 0.0162431 -0.054145 0.150060 0.151443
(0.057660) (0.025961) (0.048022) (0.055356) (0.440024) (0.487338) (0.097442) (0.072951)

10 3 30 0.5 0.35 -0.197230 -0.150581 -0.158602 -0.170151 -0.226247 -0.182218 -0.126589 -0.134173
(0.039862) (0.022681) (0.025523) (0.030948) (0.064112) (0.040656) (0.042432) (0.039351)

0.5 -0.041032 -0.000561 -0.011490 -0.021701 -0.098943 -0.055217 -0.006209 0.018501
(0.008602) (0.000024) (0.000670) (0.001401) (0.019062) (0.018583) (0.015586) (0.013763)

0.65 0.117001 0.149343 0.136457 0.128856 0.120389 0.044675 0.141123 0.138071
(0.030297) (0.022310) (0.026761) (0.029352) (0.062961) (0.053264) (0.046101) (0.031072)

6 1 10 0.8 0.65 -0.213196 -0.155521 -0.175723 -0.190304 -0.292068 -0.201406 -0.175802 -0.170832
(0.043268) (0.024413) (0.033830) (0.040461) (0.097456) (0.136649) (0.048156) (0.041873)

0.8 -0.034190 -0.001530 -0.007972 -0.019560 -0.019501 -0.004740 -0.030480 -0.010573
(0.006430) (0.000026) (0.000609) (0.002114) (0.081640) (0.053601) (0.097500) (0.031802)

0.95 0.139610 0.149765 0.149901 0.149024 0.145946 0.149093 0.141927 0.148558
(0.040413) (0.022439) (0.024176) (0.028212) (0.062982) (0.053253) (0.050941) (0.042110)

10 1 30 0.8 0.65 -0.253001 -0.160860 -0.190491 -0.214563 -0.193287 -0.168610 -0.170523 -0.172894
(0.039041) (0.017032) (0.021596) (0.029657) (0.040852) (0.077452) (0.037297) (0.032714)

0.8 -0.007212 -0.000330 -0.002548 -0.005329 -0.068918 -0.020103 0.001326 -0.0617671
(0.003489) (0.000001) (0.000130) (0.000559) (0.065554) (0.040085) (0.071306) (0.020262)

0.95 0.137731 0.149708 0.149920 0.149052 0.148843 0.149251 0.145057 0.148513
(0.030048) (0.012415) (0.022483) (0.023224) (0.044375) (0.032280) (0.041663) (0.030134)

6 3 10 0.8 0.65 -0.269396 -0.168578 -0.197835 -0.225553 -0.279942 -0.162781 -0.132490 -0.149271
(0.063568) (0.036346) (0.049347) (0.056213) (0.099364) (0.078275) (0.074286) (0.062728)

0.8 -0.068961 -0.011720 -0.023674 -0.040396 -0.042523 -0.004734 -0.021826 0.002607
(0.008002) (0.001369) (0.005660) (0.006485) (0.075406) (0.054283) (0.049514) (0.035215)

0.95 0.133961 0.149732 0.14986421 0.148754 0.148043 0.148390 0.142215 0.149527
(0.038823) (0.020421) (0.024597) (0.025138) (0.054001) (0.042183) (0.050964) (0.032756)

10 3 30 0.8 0.65 -0.178761 -0.150352 -0.161768 -0.168390 -0.175161 -0.161243 -0.157283 -0.163028
(0.035623) (0.012614) (0.026780) (0.029852) (0.054253) (0.046805) (0.040367) (0.036825)

0.8 -0.002971 -0.001433 -0.007124 -0.014605 -0.033492 -0.106683 -0.005136 0.002330
(0.002323) (0.000185) (0.001252) (0.001840) (0.047871) (0.014762) (0.032417) (0.006990)

0.95 0.147790 0.146981 0.152953 0.153240 0.146081 0.151250 0.147042 0.149238
(0.031942) (0.012501) (0.022503) (0.023674) (0.048075) (0.033126) (0.041824) (0.028293)

values of minority electron mobility might be contaminated by outliers. Two datasets related to the mole fractions282

0.25 (M0.25) and 0.30 (M0.30) considered in this analysis are; X = M0.25: 3.051, 2.779, 2.604, 2.371, 2.214, 2.045,283

1.715, 1.525, 1.296, 1.154, 1.016, 0.7948, 0.7007, 0.6292, 0.6175, 0.6449, 0.8881, 1.115, 1.397, 1.506, 1.528, and284

Y = M0.3: 2.658, 2.434, 2.288, 2.092, 1.959, 1.814, 1.530, 1.366, 1.165, 1.041, 0.9198, 0.7241, 0.6403, 0.576, 0.5647,285

0.5873, 0.8013, 1.002, 1.250, 1.347, 1.368.286

Applying the one-sample Kolmogorov-Smirnov (KS) test, it is observed that the KS statistic for M0.25 is 0.20269287

with p-value 0.3107 and for M0.30 is 0.20141 with p-value 0.3178. One can clearly conclude that these data strongly288

follow the Pareto distribution since the p-values of the KS test are greater than the 5% significance level. The box-plot289
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Table 2: Simulation results for assessing the accuracy of parameter estimates (bias and MSE (in the parenthesis)) when only the outlier parameter
is known.

n k m R R0 R̂ml2 R̃12 R̃22 R̃32 R̂mm2 R̃42 R̂ls2 R̃52

6 1 10 0.5 0.35 0.072573 -0.150453 0.076422 0.064521 -0.079867 -0.155651 -0.064719 -0.128011
(0.011692) (0.002518) (0.011035) (0.010235) (0.078424) (0.027817) (0.091593) (0.029639)

0.5 0.140408 -0.000284 0.148627 0.149576 -0.142425 -0.006671 -0.151093 -0.059079
(0.029293) (0.000212) (0.014687) (0.008611) (0.066024) (0.043665) (1.084480) (0.226689)

0.65 0.243901 0.150982 0.163622 0.174851 0.031828 0.137253 -0.107672 -0.006179
(0.068228) (0.022501) (0.053211) (0.036875) (0.074158) (0.069151) (1.119129) (1.988091)

10 1 30 0.5 0.35 0.059005 -0.049652 0.063589 0.059125 -0.215158 -0.162838 -0.064891 -0.087829
(0.007368) (0.001876) (0.004682) (0.003737) (0.061486) (0.024707) (0.078258) (0.025336)

0.5 0.135174 -0.008524 0.186516 0.187660 0.084682 -0.010164 0.019253 0.010637
(0.021661) (0.000153) (0.012647) (0.008477) (0.065449) (0.041323) (0.090729) (0.071442)

0.65 0.220152 0.149939 0.219631 0.194772 -0.028627 0.137552 0.012712 0.138210
(0.051466) (0.022482) (0.049824) (0.033612) (0.063235) (0.050429) (0.093918) (0.091534)

6 3 10 0.5 0.35 0.116669 -0.150523 0.100902 0.114621 -0.225620 -0.156343 -0.123981 -0.196229
(0.025615) (0.022674) (0.024800) (0.023402) (0.088842) (0.075119) (0.416763) (0.293021)

0.5 0.188868 0.149635 0.189352 0.151689 -0.090881 -0.168002 -0.071923 -0.060324
(0.045338) (0.001687) (0.035338) (0.015338) (0.069010) (0.046727) (0.274078) (0.174051)

0.65 0.290884 0.150421 0.301251 0.290884 0.087361 0.142813 -0.431320 0.134204
(0.092921) (0.021871) (0.053698) (0.042921) (0.099718) (0.071604) (1.411401) (0.093341)

10 3 30 0.5 0.35 0.089694 -0.049235 0.077541 0.069694 -0.264795 -0.156273 -0.046886 -0.048575
(0.011978) (0.004214) (0.009624) (0.007197) (0.076460) (0.064791) (0.112873) (0.095023)

0.5 0.163450 -0.058313 0.160451 0.158915 -0.185245 -0.190824 0.025406 0.104663
(0.030066) (0.001358) (0.020067) (0.015266) (0.065666) (0.045982) (0.070881) (0.067881)

0.65 0.247316 0.148357 0.221682 0.191750 -0.085072 0.139422 0.015823 0.087827
(0.064360) (0.020381) (0.051832) (0.039641) (0.076260) (0.070502) (0.496667) (0.086291)

6 1 10 0.8 0.65 -0.076165 -0.008541 -0.103821 -0.094438 -0.289678 -0.158238 -0.237829 -0.161074
(0.011319) (0.009361) (0.010926) (0.010319) (0.140229) (0.046088) (0.238349) (0.089769)

0.8 0.048152 0.000437 0.009642 0.007394 -0.147262 -0.015787 -0.128552 -0.0520364
(0.006598) (0.002719) (0.005074) (0.004139) (0.081307) (0.031560) (0.108306) (0.095923)

0.95 0.174661 0.150382 0.169541 0.157224 0.086826 0.149139 -0.057594 -0.164728
(0.031110) (0.012163) (0.030263) (0.021110) (0.050352) (0.048228) (0.583914) (0.050715)

10 1 30 0.8 0.65 -0.079857 -0.007622 -0.057821 -0.014322 -0.308482 -0.152226 -0.175696 -0.173413
(0.008913) (0.001038) (0.005621) (0.003571) (0.124524) (0.023240) (0.159080) (0.059811)

0.8 0.029024 -0.000154 0.018921 0.001017 -0.122500 -0.042187 -0.107907 -0.010576
(0.002533) (0.000851) (0.001035) (0.000982) (0.056736) (0.009221) (0.074966) (0.014489)

0.95 0.158960 0.149996 0.150622 0.147911 0.163035 0.149326 -0.034892 0.144636
(0.025559) (0.010499) (0.020173) (0.015632) (0.035781) (0.022307) (0.125823) (0.022367)

6 3 10 0.8 0.65 -0.022217 -0.149791 -0.078322 -0.069521 -0.259062 -0.167233 -0.244481 -0.168297
(0.007465) (0.004871) (0.006824) (0.005843) (0.141822) (0.031520) (0.246917) (0.045994)

0.8 0.089226 0.000794 0.009184 0.006533 -0.097718 -0.091953 -0.232917 -0.006712
(0.012257) (0.000942) (0.009631) (0.001185) (0.069494) (0.051760) (0.241714) (0.060704)

0.95 0.185463 0.148661 0.179331 0.170541 0.103975 0.094944 -0.183691 -0.168272
(0.034625) (0.011835) (0.031846) (0.020371) (0.138668) (0.051878) (0.316852) (0.061592)

10 3 30 0.8 0.65 -0.043772 -0.011824 -0.038191 -0.021825 -0.334162 -0.161132 -0.148439 -0.153040
(0.003963) (0.001225) (0.003148) (0.002053) (0.096793) (0.028254) (0.240505) (0.053502)

0.8 0.047073 -0.000035 0.009571 0.000715 -0.135552 -0.008444 -0.116259 -0.015086
(0.003787) (0.000531) (0.001162) (0.000859) (0.039484) (0.009509) (0.094027) (0.009721)

0.95 0.0086994 0.009471 0.047812 0.011872 0.075247 0.059411 -0.056637 0.149063
(0.003803) (0.001062) (0.002170) (0.001982) (0.078252) (0.022338) (0.209551) (0.023692)

of M0.25 in Figure 1 highlights that there are two potential outliers in the data. The Pareto quantile-quantile (Q-Q)290

plot of M0.25 along with the empirical cumulative Pareto probability are also shown in Figure 1, depicting significant291

evidence that some outliers are available in these data.292

Since the number of outliers is not known, we should estimate the unknown parameters α, β, and θ based on the293

profile-likelihood function. Accordingly, k can be selected as a maximizer of the profile-likelihood. Table 4 shows the294

likelihood values of the model for different choices of k. It can be observed that the likelihood function is maximized at295

k = 2. By using the MIX estimate of the unknown parameters as α̂mix=0.8386112, β̂mix=1.5959017, θ̂mix=0.3869286,296

ν̂mix=4.1501706, λ̂mix=0.9389963, the stress-strength reliability parameter estimate is R̂mix = 0.4959972. Through an297
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Table 3: Simulation results for assessing the accuracy of parameter estimates (bias and MSE (in the parenthesis)) when all of the parameters are
unknown.
n k m R R0 R̂mm3 R̃13 R̂mix R̃23

6 1 10 0.5 0.35 -0.058729 -0.154536 0.046602 -0.150000
(0.078286) (0.024258) (0.037925) (0.022500)

0.5 -0.045705 -0.010123 0.033570 -0.000163
(0.070752) (0.001756) (0.049214) (0.000003)

0.65 0.048414 0.136559 0.158010 0.149827
(0.059336) (0.040685) (0.055263) (0.022451)

10 1 30 0.5 0.35 -0.179518 -0.1533057 -0.027005 -0.150051
(0.067690) (0.023679) (0.027764) (0.021515)

0.5 0.080027 -0.003214 0.149293 0.000009
(0.064111) (0.000305) (0.041689) (0.000001)

0.65 0.038065 0.139800 0.193459 0.149602
(0.051150) (0.031461) (0.044653) (0.022389)

6 3 10 0.5 0.35 -0.131981 -0.150012 0.044646 -0.150000
(0.110758) (0.032504) (0.094163) (0.022500)

0.5 -0.200143 -0.008174 0.128729 -0.000149
(0.067783) (0.000687) (0.059439) (0.000002)

0.65 0.075279 0.149216 0.225678 0.150000
(0.107065) (0.032277) (0.094012) (0.022500)

10 3 30 0.5 0.35 -0.220490 -0.158953 0.035309 -0.015120
(0.085705) (0.003591) (0.008302) (0.002480)

0.5 -0.207898 -0.012052 0.111947 0.000059
(0.049055) (0.000194) (0.019104) (0.000001)

0.65 -0.200234 0.111898 0.219468 0.1604821
(0.088968) (0.028829) (0.053095) (0.019800)

6 1 10 0.8 0.65 -0.264993 -0.165025 -0.150255 -0.150511
(0.149451) (0.030391) (0.066552) (0.022813)

0.8 -0.117953 -0.015042 0.010542 -0.000032
(0.096015) (0.002775) (0.019543) (0.000568)

0.95 0.058385 0.145539 0.139513 0.141573
(0.052469) (0.022722) (0.037060) (0.015248)

10 1 30 0.8 0.65 -0.292687 -0.161379 -0.119621 -0.150162
(0.112389) (0.027584) (0.019179) (0.022550)

0.8 -0.121166 -0.008142 0.009953 -0.000027
(0.044829) (0.001173) (0.004738) (0.000052)

0.95 0.117078 0.146963 0.154106 0.149966
(0.035904) (0.021405) (0.024607) (0.012489)

6 3 10 0.8 0.65 -0.181028 -0.167975 -0.112637 -0.163547
(0.095993) (0.035783) (0.075774) (0.025719)

0.8 -0.101095 -0.039403 0.027296 0.001937
(0.082270) (0.002711) (0.054998) (0.000074)

0.95 0.086709 0.149835 0.171011 0.131821
(0.058173) (0.022452) (0.031006) (0.016914)

10 3 30 0.8 0.65 -0.164233 -0.171668 -0.074320 -0.150482
(0.045960) (0.019965) (0.023855) (0.013891)

0.8 -0.273095 -0.009463 0.030637 0.000487
(0.016744) (0.001781) (0.004763) (0.000035)

0.95 0.033519 0.145856 0.163014 0.132961
(0.047423) (0.021709) (0.027034) (0.013591)

MC method for n=21, k=2, m=21 and the obtained MIX parameter estimates, we approximate α̂23=0.7666702. Since298

all values of M0.25 are grater than M0.3 values, the R0 is set to 0.999999 and so the MIX-based shrinkage estimator is299

obtained R̃23 = 0.613596.300

Example 2. By way of the second illustration, we consider insurance claim data. One of the most important services301

in the insurance industry is motor insurance. In case of an accident, the claiming amount made by the policyholder302

might be declined by the insurer since it always is far from the claim amount specified by the insurer (indemnity303
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Figure 1: Plots related to the M0.25 data. From left to right panels: box-plot, the Pareto Q-Q plot, and empirical cumulative Pareto probability and
density plots.

Table 4: The likelihood values of the fitted Pareto distribution with outliers to M0.25 for various values of k.
k 1 2 3 4 5

Likelihood 1.131503e-22 2.141748e-16 4.024797e-19 1.465477e-20 1.068233e-21
k 6 7 8 9 10

Likelihood 4.236475e-21 8.028271e-21 1.392202e-20 2.470913e-20 4.715105e-20

Table 5: The likelihood values of the fitted Pareto distribution with outliers to X for various values of k.
k 1 2 3 4 5

Likelihood 4.645267e-147 3.452667e-143 1.342475e-145 8.656568e-146 1.919880e-145
k 6 7 8 9 10

Likelihood 3.301829e-145 5.499681e-145 9.603544e-145 1.831912e-144 3.919700e-144

amount). Hence, it is important for company to estimate R = Pr(X < Y), where X and Y represent the claim and304

indemnity amounts, respectively. As previously explained, in the analysis of motor insurance, a claim of at least θ, as305

compensation, can be made, and claims below it are not entertained. Since the value of vehicles is different, the claim306

amounts could be vary depending on the damage rate. Suppose that the claims of expensive/severe damaged vehicles307

are β times higher than the normal ones. Therefore, the claim data can be contaminated by the outliers, whereas the308

indemnity is always homogenous.309

In this experimental example, we consider a sample of the claim amounts and their indemnity amounts of the Iran310

insurance company. The scaled data by 1000 are; X (claim amounts): 750, 780, 630, 1750, 1450, 3000, 7650, 4210,311

890, 950, 1240, 1800, 1630, 9020, 4750, 3250, 1135, 1326, 1280, 760, and Y (indemnity amounts): 830, 750, 650,312

1500, 1520, 2700, 7500, 3750, 950, 900, 1300, 1550, 1700, 8200, 4500, 3000, 1200, 1235, 1115, 830. By applying313

the one-sample KS test, the observed KS statistic for X is 0.14192 with p-value 0.7642 and for Y is 0.13400 with314

p-value 0.8652. It can be seen that the p-values of the KS test are greater than the 5% significance level, reflecting315

that these data strongly follow the Pareto distribution. The box-plot of X in Figure 2 highlights that there are two316

potential outliers in the data. The Pareto quantile-quantile (Q-Q) plot of X along with the empirical cumulative317

Pareto probability are also shown in Figure 2, depicting significant evidence that some outliers are available in these318

data.319

We estimate the α, β, and θ by constructing the profile-likelihood function for the fix k. Table 5 shows the likelihood320

values of the model for different choices of k. It can be seen that the likelihood function is maximized at k = 2. By using321

the MIX estimate of the unknown parameters as α̂mix=0.4600503, β̂mix=3.646515, θ̂mix=172767.7, ν̂mix=4.761649,322

λ̂mix=1359776, the stress-strength reliability parameter estimate is R̂mix=0.4747673. Through an MC method for323

n=20, k=2, m=20 and the obtained MIX parameter estimates, we approximate α̂23=0.5399776. Since the percent324

of claim amounts less than indemnity amounts is R0=0.4, the obtained MIX-based shrinkage estimator is R̃23 =325

0.4403727.326
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Figure 2: Plots related to the claim amounts data. From left to right panels: box-plot, the Pareto Q-Q plot, and empirical cumulative Pareto
probability and density plots.

7. Conclusion and future extensions327

This paper presented a flexible approach for estimating the stress-strength parameter, R = Pr(X < Y), when some328

outliers contaminated data. It was assumed that X follows the Pareto distribution in the presence of outliers, and329

independently Y has the homogenous case of the Pareto distribution. The estimation process was derived under three330

scenarios on the model parameters: 1) Only shape parameters were unknown, 2) Except the outlier parameter, β, all331

of the parameters were unknown, and 3) The general case, i.e., all the parameters were considered to be unknown. We332

obtained the ML, MM, LS, MIX, and their corresponding shrinkage estimates.333

The accuracy of the proposed method was examined in terms of the bias and MSE by a simulation study. An334

overall inspection of simulation analysis was that the ML and MIX estimates of R had the smallest MSE comparing335

to the MM and LS estimators. Moreover, the shrinkage estimators performed better than the classical estimators,336

specifically for small sample sizes. We observed that as can be expected, the shrinkage estimators had smaller MSE337

for the small sample sizes than for the large ones, since as the sample size increases, the precision of the estimators338

increases, whereas shrinkage estimators are still affected by the prior guess, R0, which might poorly be made. It was339

furthermore seen that when all of the parameters were unknown the MIX estimate and its shrinkage estimate were340

more efficient. Finally, the proposed methodology was illustrated by analyzing two real-world datasets in the physical341

and insurance studies. All computations were carried out using the statistical software R 4.0.1 in a Win 64 environment342

with a 2.50 GHz/Intel Core(TM) i5 3120M CPU Processor and 8.0 GB RAM.343

The current approach can be extended to the more general case where both rvs X and Y follow the Pareto distri-344

bution in the presence of outliers. In addition, it is of interest to develop a new tool for addressing the problem of345

detecting change points in the stress-strength reliability (Xu et al., 2019) by the Pareto distribution in the presence of346

outliers as the underlying distributions of X and Y . Due to encountering censored data in many survival fields, the347

estimation of stress-strength reliability based on the Pareto distribution in the presence of outliers and under various348

censoring schemes would be an interesting direction for future works (Bai et al., 2018, 2019a,b).349
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Appendix A. Proof of Theorems 1354

To calculate the first and second moments of R̂ml1, the pdf of α̂ml1 and ν̂ml1 should be obtained. Based on the pdf355

of
∑n

i=1 ln(Xi) and
∑m

i=1 ln(Yi) (see Dixit and Jabbari Nooghabi (2011a)), the pdf of α̂ml1 and ν̂ml1 can respectively be356
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derived as357

g(α̂ml1) =
(nα)n

Γ(n)α̂n+1
ml1

exp
(
−

nα
α̂ml1

)
, α̂ml1, α > 0,

g(ν̂ml1) =
(mν)m

Γ(m)ν̂m+1
ml1

exp
(
−

mν
ν̂ml1

)
, ν̂ml1, ν > 0.

Therefore,358

E(R̂ml1) = 1 −
∫ ∞

0

∫ ∞

0

ν̂ml1

α̂ml1 + ν̂ml1
(bβα̂ml1 + b̄)

(
θ

λ

)α̂ml1

g(α̂ml1)g(ν̂ml1)dα̂ml1dν̂ml1,

= 1 −
∫ ∞

0

∫ ∞

0

1
α̂ml1 + ν̂ml1

(bβα̂ml1 + b̄)
(
θ

λ

)α̂ml1 (nα)n

Γ(n)α̂n+1
ml1

exp
(
−

nα
α̂ml1

)
dα̂ml1

︸                                                                                  ︷︷                                                                                  ︸
Intin

ν̂ml1g(ν̂ml1) dν̂ml1.

The inner integral (Intin) is359

Intin =
(nα)n

Γ(n)

∫ ∞

0

bβα̂ml1 + b̄
α̂ml1 + ν̂ml1

(
θ

λ

)α̂ml1

α̂−n−1
ml1 exp

(
−

nα
α̂ml1

)
dα̂ml1

=
(nα)n

Γ(n)

b
∫ ∞

0

α̂−n−1
ml1

α̂ml1 + ν̂ml1
exp

(
α̂ml1 ln

(
βθ

λ

)
−

nα
α̂ml1

)
dα̂ml1 + b̄

∫ ∞

0

α̂−n−1
ml1

α̂ml1 + ν̂ml1
exp

(
α̂ml1 ln

(
θ

λ

)
−

nα
α̂ml1

)
dα̂ml1


=

(nα)n

Γ(n)

b
∞∑
j=0

(−1) j
j∑

i=0

C( j, i)(ν̂ml1 − 1) j−i2ni−nα̂i−n
ml1(nα[ln(λ) − ln(βθ)])

n−i
2 BesselK

(
i − n, 2

√
nα[ln(λ) − ln(βθ)]

)

+ b̄
∞∑
j=0

(−1) j
j∑

i=0

C( j, i)(ν̂ml1 − 1) j−i2ni−nα̂i−n
ml1(nα[ln(λ) − ln(θ)])

n−i
2 BesselK

(
i − n, 2

√
nα[ln(λ) − ln(θ)]

) ,
where the last equation is obtained by360

1
α̂ml1 + ν̂ml1

=

∞∑
j=0

(−1) j(−1 + α̂ml1 + ν̂ml1) j =

∞∑
j=0

(−1) j
j∑

i=0

C( j, i)α̂i
ml1(ν̂ml1 − 1) j−i.

The second moment of R̂ml1 can similarly be obtained by361

E(R̂2
ml1) =1 − 2E(R̂ml1) + b2E

 ν̂2ml1

(α̂ml1 + ν̂ml1)2

(
βθ

λ

)2α̂ml1


+ 2bb̄E
 ν̂2ml1

(α̂ml1 + ν̂ml1)2 β
α̂ml1

(
θ

λ

)2α̂ml1
 + b̄2E

 ν̂2ml1

(α̂ml1 + ν̂ml1)2

(
θ

λ

)2α̂ml1
 .

This completes the proof.362
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