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Increasing risk of pathogen spillover coupled with overall declines in wildlife population abundance in the Anthropocene
make infectious disease a relevant concern for species conservation worldwide. While emerging molecular tools could
improve our diagnostic capabilities and give insight into mechanisms underlying wildlife disease risk, they have rarely been
applied in practice. Here, employing a previously reported gene transcription panel of common immune markers to track
physiological changes, we present a detailed analysis over the course of both acute and chronic infection in one wildlife species
where disease plays a critical role in conservation, bighorn sheep (Ovis canadensis). Differential gene transcription patterns
distinguished between infection statuses over the course of acute infection and differential correlation (DC) analyses identified
clear changes in gene co-transcription patterns over the early stages of infection, with transcription of four genes—TGFb,
AHR, IL1b and MX1—continuing to increase even as transcription of other immune-associated genes waned. In a separate
analysis, we considered the capacity of the same gene transcription panel to aid in differentiating between chronically infected
animals and animals in other disease states outside of acute disease events (an immediate priority for wildlife management
in this system). We found that this transcription panel was capable of accurately identifying chronically infected animals
in the test dataset, though additional data will be required to determine how far this ability extends. Taken together, our
results showcase the successful proof of concept and breadth of potential utilities that gene transcription might provide to
wildlife disease management, from direct insight into mechanisms associated with differential disease response to improved
diagnostic capacity in the field.
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Introduction
The rate of newly emerging or re-emerging wildlife diseases
has increased, impacting human, livestock and wildlife health
and biodiversity (Daszak et al., 2000; Dobson and Foufopou-
los, 2001; Harvell et al., 2002; Olden et al., 2004; Cohen

et al., 2020). Understanding how host immune responses
influence disease resistance and immunopathology is critical
to elucidating disease dynamics and developing mitigation
strategies (Bodhankar et al., 2010; Plowright et al., 2013;
Dugovich et al., 2017). Differences in host susceptibility may
be due to differences in the host immune response (Faulkner
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et al., 1995), which, in turn, can be influenced by factors
such as nutrition, contaminants and other concomitant infec-
tions (Acevedo-Whitehouse and Duffus, 2009). Additionally,
continued and prolonged activation of the immune system
can be physiologically costly, potentially causing a reallo-
cation of nutrients and energy away from other metabolic
functions and resulting in reduction of fitness (Martin et al.,
2010; Graham et al., 2011). A management regime effective
at mitigating effects of an individual or herd response to
infection may benefit from considering both immunological
and ecological context.

Novel molecular approaches have yielded insights into
human and wildlife disease at a variety of scales, revealing
proximate and ultimate drivers of disease state and trans-
forming understanding of pathogenesis, transmission and
treatment (Pacis et al., 2014; Eskew et al., 2021). In particular,
transcriptomics is one of the major avenues for comparing
tissue/cell RNA expression profiles at various states of disease
progression, helping to explain the complexities of the host
immune response to infection (Zhang et al., 2014; Blanchong
et al., 2016). Although similar analyses have only recently
appeared in the context of wildlife disease and conserva-
tion science, and rarely as field-based studies, adoption of
transcriptomics in wildlife disease will elucidate mechanisms
that underlie host disease state and ultimately translate into
more effective population monitoring, management and con-
servation (Blanchong et al., 2016; Campbell et al., 2018;
DeCandia et al., 2018; Bowen et al., 2020). Although some-
times used interchangeably, gene transcription and expression
technically refer to different ‘events’; DNA is transcribed
into mRNA and then translated into a functional protein
(Alberts et al., 2002). Transcriptomic approaches assess the
quantity of mRNA produced, while proteomics assesses the
quantity of protein synthesized (González-Fernández et al.,
2008). To avoid confusion, in this paper we use the terms
transcriptomics/transcription/transcript to refer to the study
of mRNA quantities.

Two broad pathways allow for investigation into gene
transcription surrounding disease events: differential gene
transcription and DC analyses (Ellison et al., 2015). The more
common of the two, differential gene transcription (or expres-
sion), describes changes in transcription levels of specific genes
between particular host states (in our case, defined by disease
status). This approach lets researchers identify genes that are
up- or down-regulated in the focal contexts, but regards each
gene as an independent entity. As a consequence, confounding
among genes could lead to spurious signals about whether
groups of genes are mechanistically linked during the change
in host state. Additionally, genes that are not identified as
differentially transcribed may actually be integral to disease
state transitions. DC analyses, on the other hand, directly
query gene–gene linkages by examining whether the corre-
lation between gene pairs itself changes with changes in host
state. Thus, DC analysis is better equipped to identify blocks
of genes that move in tandem with one another as host

state changes, adding resolution to inferences surrounding the
underlying in-host processes.

The field of ecological or wild immunology has begun
to address the complexity of immune responses in wildlife
populations with the primary goal of understanding varia-
tion in immune function across individuals (Pedersen and
Babayan, 2011). To identify causal relationships between
immune function and disease status, experimental manipu-
lations in wild populations will be essential (Pedersen and
Babayan, 2011). A recent dataset assembled by Manlove et al.
(in revision) lends itself to such an exploration, in the context
of pneumonia infection associated with Mycoplasma ovip-
neumoniae in Rocky Mountain bighorn sheep (Ovis canaden-
sis). Mycoplasma ovipneumoniae infections are thought to
progress through a series of states. Infection is often followed
by acute pneumonia primarily impacting the lower respira-
tory tract. As disease progresses, most animals completely
clear infection, though a subset go on to become chronic car-
riers. Characterizing any immune functions that differentiate
among acute, chronic and recovered animals is an important
step towards understanding the aetiology of chronic carriers
and developing efficient means to identify, and possibly treat,
those animals.

Our primary goal was to use transcriptomic techniques to
compare immune markers among animals in the context of
both acute and chronic infection events, as part of a broader
effort to gain information about the identification of and
mechanisms behind disease state transitions in the bighorn
sheep–M. ovipneumoniae system. First, we analyse patterns
of differential gene transcription and differential gene cor-
relation over the course of an acute disease event. We then
extend our analyses to assess the ability of the same transcrip-
tion panel to differentiate among chronically infected and
recovered individuals following pathogen establishment. Our
results shed new light on host physiological changes over the
course of infection and suggest that gene transcription could
add insight into the bighorn sheep pneumonia system, in both
a diagnostic and a mechanistic understanding capacity.

Materials and methods
System overview: bighorn sheep
pneumonia
Bighorn sheep pneumonia is a polymicrobial disease often
initiated by introduction of the bacteria M. ovipneumoniae
into otherwise naive bighorn herds (Besser et al., 2008; Besser
et al., 2012). Mycoplasma ovipneumoniae introductions can
precipitate population-wide disease outbreaks, producing
acute all-age die-offs ranging from 0% to 90% of the
population in size (Cassirer et al., 2018). Although these die-
offs are stark and impactful, the disease’s longer-term effects
are often more detrimental to population growth. While M.
ovipneumoniae continues to circulate within the herd, each
year’s juvenile cohort is vulnerable to its own acute disease
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event, leading to recruitment regularly below 20 lambs per
100 ewes (Cassirer and Sinclair, 2007; Cassirer et al., 2013;
Manlove et al., 2016). Sustained transmission to lambs can
completely halt population growth and limit the potential for
post-die-off herd recovery. There are currently no vaccines
for M. ovipneumoniae, and effective antibiotic treatment
regimens are infeasible for most wild populations because
those treatments often rely on daily injections of antibiotics
over a week-long window.

Within a particular host, M. ovipneumoniae first invades
the upper respiratory tract, where it can impede movement
of the ciliary escalator and allow normally commensal
microflora to invade the lower respiratory tract, producing
an acute, polymicrobial pneumonia (Besser et al., 2008).
Following acute pneumonia, some bighorn hosts completely
clear their M. ovipneumoniae infections, in the process
acquiring a strain-specific immunity that protects them from
future acute disease (Cassirer et al., 2013; Plowright et
al., 2013) but not from periodic transient infection. Other
bighorn hosts can become chronic M. ovipneumoniae carriers
and act as local pathogen reservoirs that facilitate annual
pneumonia events among lambs (Plowright et al., 2017). The
proportion of recovering adults that become chronic carriers
appears to vary from herd to herd, but is often quite low
(e.g. 10–15% of adult females). Transient infections among
otherwise healthy adults are relatively common, however,
especially in contexts where individuals aggregate into close-
knit groups (Plowright et al., 2017).

Both empirical and theoretical research indicate that
removing chronically infected females can allow bighorn
herds to rebound, even if individuals with transient infections
are not removed (Garwood et al., 2020; Almberg et al.,
2021). A number of state, provincial and federal wildlife
management agencies are operationalizing these findings
through ‘test-and-remove’ management efforts that aim to
identify and remove chronic carriers. Carrier identification
remains a logistical challenge, however. Currently, the most
reliable method is to test each individual multiple times
and classify animals as ‘chronic’ if they produce PCR-
based evidence of M. ovipneumoniae infection at least twice
over the course of 1 to 2 years (Cassirer et al., 2018;
Garwood et al., 2020). The multiple-testing approach is
logistically challenging in many field contexts. Each of
the three common methods of bighorn capture, helicopter
net-gunning (Krausman et al., 1985), ground-darting with
chemical immobilization darts and drop-netting at baited
sites or natural aggregation points, has drawbacks including
cost, time and human and animal safety.

Simply removing all animals that are PCR-positive after
a single testing event, on the other hand, could result in
removal of many more animals than is necessary to drive
pathogen fade-out. This is problematic for herds already
facing the usual challenges confronting any small population
(Festa-Bianchet et al., 2006) and may be completely untenable
for subspecies and populations in federally targeted recovery

programs (e.g. for Sierra Nevada or Peninsular bighorn sheep
populations). Being able to differentiate between animals with
transient and chronic infections after a single testing event
would improve the feasibility and efficiency of nascent test-
and-remove management efforts.

A variety of factors could help differentiate chronically
and acutely infected adults. For example, some evidence
suggests that chronic carriage is linked to age (Plowright
et al., 2017), genetics (Martin et al., 2021) or expression
of symptoms. None of these signatures has proven to be
a reliable classifier in the field, however, nor have chronic
carriers shown fundamentally different pathogen burdens (CT
scores) or serological signatures on conventional diagnos-
tics than individuals with transient infections. Current M.
ovipneumoniae management practices would benefit from
additional metrics to help identify chronic carriers in a single
animal handling event, and new management opportunities
might emerge from a better understanding of the immune
and physiological processes associated with chronic carriage
(Cassirer et al., 2018).

Here, we explored the ability of a targeted immune-centric
gene transcription panel consisting of 16 genes to identify
and shed light on the aetiology of both acute and chronic
M. ovipneumoniae infections in bighorn sheep. Genes were
chosen based upon two factors: (i) known genes relevant to
the disease dynamics of M. ovipneumoniae in bighorn sheep
and (ii) known genes relevant to similar disease dynamics in
other species (Bowen et al., 2020). Ultimately, the genes in
our panel could be separated into groups based on primary
function: reference (YWHAZ, S9), general immune function
(CD69, IFNg, IL-10, IL1B, MyD88, TGFB, TNFa), immune
system transcription factors (Gata3, T-bet), detoxification
(AHR), muscle metabolism (AMPK), apoptosis (FADD), gen-
eral stress (HSP70) and antiviral (MX1) (Table 1) (Bowen
et al., 2020). In similar studies identifying carrier states in
wildlife, panels with as few as nine genes were capable of
separating viral and bacterial diseases from latent infections
(Miller et al., 2017).

We analyse data arising from two disease contexts, one
acute and one chronic. Our acute data come from a natural
infection event surrounding a bighorn sheep translocation in
late winter of 2020. A full detailing of the event can be found
in Manlove et al. (in revision). Briefly, on 22 February 2020,
24 Rocky Mountain bighorn ewes were captured from the
Rio Grande Gorge (RGG) herd in northern New Mexico
and transported to Utah. Blood, nasal and oropharyngeal
swabs were gathered from all 24 animals during capture,
and samples were shipped to the Washington Animal Disease
Diagnostic Laboratory (WADDL) to undergo diagnostic test-
ing for M. ovipneumoniae. Laboratory results indicated that
six of the transported animals showed evidence of M. ovip-
neumoniae exposure based on a PCR test (i.e. direct evidence
of current infection), a cELISA test (i.e. antibody response
indicating past exposure) or both (laboratory methods in
Ziegler et al., 2014). A cELISA percent inhibition of 40 served
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Table 1: Genes selected for the transcription panel and their primary functions

Functional group Gene Gene function
Reference YWHAZ Reference gene—Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation

protein, zeta polypeptide (Mahakapuge et al., 2016).

S9 Reference gene—Ribosomal subunit S9 (Bowen et al., 2007)
General immune
function

CD69 Earliest inducible cell surface glycoprotein acquired during lymphoid activation. Involved in
lymphocyte proliferation (Parham and Parham, 2014).

IL-10 Interleukin-10 is an anti-inflammatory cytokine (Goldsby et al., 2003). IL-10 has been linked
with the ability of Mycobacterium to evade immune responses and mediate long-term
infections in the lung (Redford et al., 2011).

Interleukin 1 beta
(IL1B)

Inflammatory mediator (Parham and Parham, 2014).

IFNg Interferon gamma is a cytokine that is implicated in defence against viral pathogens (Schroder
et al., 2004) and has been found to be critical to protective immunity to Mycoplasma
infections (Bodhankar et al., 2010).

MyD88 Research suggests that the MyD88-dependent TLR pathway may play a crucial role in sheep
airway epithelial cells in response to M. ovipneumoniae infection (Xue et al., 2015).

TGF-beta (TGFB) Transforming growth factor beta. Immunosuppressive cytokine (Parham and Parham, 2014).

TNFa Tumour necrosis factor alpha—a cytokine that plays a key role in the inflammatory response
(Kalliolias and Ivashkiv, 2016).

Immune
transcription factors

Gata3 A TH2-specific transcription factor controls transcription of cytokines Interleukin (IL) IL-4, -5
and -13 (Parham and Parham, 2014).

T-bet A TH1-specific T box transcription factor that controls the transcription of the hallmark TH1
cytokine, interferon gamma (Parham and Parham, 2014).

Detoxification AHR The AHR, once thought to primarily play a role in detoxification of anthropogenic
contaminants, has more recently been shown to play a protective role against oxidative stress
(Dietrich, 2016). One of the pathophysiological manifestations of the stress and physical
exertion associated with wildlife capture is the breakdown of myoglobin in muscle, resulting
in oxidative stress (Breed et al., 2019). The molecular act of mitigation of oxidative stress is part
of an organism’s inherent biological stress defence (Breed et al., 2019).

Muscle metabolism AMPK 5’-AMP-activated protein kinase—a potent regulator of skeletal muscle metabolism
(Jørgensen et al., 2006). AMPK is activated during fasting and starvation and has a role in
restoring energy homeostasis via promotion of glucose uptake and glycolysis, fatty acid
uptake and fatty acid oxidation (Cohen et al., 2017).

Apoptosis FADD Fas-Associated protein with Death Domain – a pivotal trigger in apoptosis (cell death) (Scott et
al., 2009).

General stress HSP70 Heat shock protein 70 is produced in response to exposure to different kinds of environmental
stress conditions, such as infection, inflammation, exercise, exposure of the cell to toxins
(ethanol, arsenic, trace metals and ultraviolet light, among many others), starvation, hypoxia
(oxygen deprivation) and thermal or other stress (Iwama et al., 1999; Tsan and Gao, 2004). Heat
shock proteins can activate the immune system by providing danger signals. In addition to
being expressed in response to a wide array of stressors, heat shock proteins act as molecular
chaperones (De Maio, 1999).

Antiviral MX1 Although the Mx1 gene is generally thought to respond to viral infection (Tumpey et al., 2007),
studies have shown MX1 induction in the presence of Mycoplasma (Bierne et al., 2012; Li et al.,
2015).

as the cut-off for classification as ‘seropositive’, consistent
with the standards set by WADDL. Animals showing evidence
of infection were euthanized. The remaining 18 animals that
showed no serological or PCR evidence of infection were
moved to a wildlife facility at Hardware Ranch, where they
all were housed together in a solid pen, ∼10 feet high and

50 feet in diameter. Three animals expired shortly after arrival
at the pens, presumably due to stress from multiple sequential
anaesthesia events; the analyses here reflect data from the
remaining animals. Over the next 2 weeks, animals gradually
began to display symptoms of pneumonia. Fourteen animals
(all that remained except for one that evaded capture) were
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Table 2: Categorization of Rocky Mountain bighorn sheep into disease groupings

Pre-exposure Early acute Late acute Early acute wild Late acute wild Recovered

PCR-negative
and cELISA %
inhibition <40

PCR-positive and
cELISA %
inhibition <40

PCR positive and
cELISA %
inhibition >40

PCR-positive and
cELISA %
inhibition <40

PCR positive and
cELISA %
inhibition >40

PCR-negative
and cELISA
inhibition >40

RGG N = 6 (1 M, 5 F) N = 4 N = 8 (3 M, 5 F)

Hardware Ranch
03/12/20

N = 9 (9 F) N = 3 (3 F)

Hardware Ranch
03/27/20

N = 3 (3 F) N = 8 (8 F) N = 2 (2 F)

While disease timing is well known for the Hardware Ranch animals, exposure time is not known at the RGG. Therefore, we categorized RGG animals as pre-exposure
if they were PCR-negative and had cELISA % inhibition below 40. We categorized animals at RGG as early exposure wild if they were PCR-positive and had cELISA %
inhibition values below 40. We categorized RGG animals as late acute wild if they were PCR positive and had % inhibition values above 40%. Animals with cELISA values
above 40% that were PCR-negative were taken to be recovered.

subsequently chemically immobilized via a jab stick on 13
March. Nasal and oropharyngeal swabs and blood samples
were gathered from each animal. The disease event continued,
2 animals died naturally and the remaining 12 animals were
euthanized following a final sampling event on 26 March.

Following detection of M. ovipneumoniae among the
translocated animals, parallel sampling of free-ranging
bighorn sheep at the RGG source population was initiated via
ground darting. Manlove et al. (in revision) found similarities
in serological expansion patterns and timing of peak clinical
signs between the source herd and the translocated bighorn
sheep. While disease timing is well known for the captive
animals, individual exposure times are not known at RGG.
Therefore, we categorized RGG animals as pre-exposure
(N = 6) if they were PCR-negative and had cELISA %
inhibition below 40. We categorized animals at RGG as early
acute exposure (N = 4) if they were PCR-positive and had
cELISA % inhibition values below 40. We categorized RGG
animals as late acute (N = 8) if they were PCR positive and
had % inhibition values above 40. Animals with cELISA
values above 40% that were PCR-negative were taken to be
recovered. Exposure classifications for all Hardware Ranch
and RGG animals are summarized in Table 2.

A completely separate set of animals was used for a pilot
examination of the extensibility of our transcription panel
to differentiate between chronic, recovered and unexposed
bighorn sheep more generally. Twenty-seven California
bighorn sheep (categorized in past taxonomies as a unique
subspecies, Ovis canadensis californiana) were sampled
throughout northern Nevada by the Nevada Department
of Wildlife between 2017 and 2019. Five of these animals
produced two or more positive PCR tests for M. ovipneu-
moniae over multiple years (in preparation for a test-and-
remove effort similar to the one reported in Garwood et al.,
2020), and were thus categorized as known ‘chronic carriers’
(Plowright et al., 2017; Cassirer et al., 2018; Matt Jeffries,
unpublished data). The remainder of the animals could be
split into groups of ‘unexposed’ (i.e. both PCR-negative and

serologically negative for M. ovipneumoniae; N = 18) or
‘recovered’ (PCR-negative and serologically positive; N = 4).
Our objective was to understand how well gene transcription
profiles might be able to differentiate among pre-exposed,
acutely infected and recovered animals in the acute disease
event, and chronically infected, recovered or unexposed
animals in the Nevada-wide dataset.

Blood collection and RNA extraction
It is well documented that gene expression patterns differ by
tissue (Li et al., 2020). Although other tissue types may be
more directly impacted by M. ovipneumoniae infection, the
functional diversity in blood transcriptomes is comparable
with transcriptomes from more traditionally sampled tissues
(Banerjee et al., 2021). Additionally, acquisition of blood sam-
ples is generally non-lethal and minimally invasive (Banerjee
et al., 2021). As such, we identified blood as the tissue sample
of choice for our study. A 2.5-ml blood sample from each
bighorn was drawn directly into a PAXgene™ blood RNA
collection tube (PreAnalytiX, Switzerland) from the cephalic
vein and then frozen at −20◦C until extraction of RNA
(Bowen et al., 2012). The RNA from blood in PAXgene™
tubes was isolated according to manufacturer’s standard pro-
tocols, which included an on-column DNase treatment to
remove contaminating gDNA (silica-based microspin tech-
nology included in the PAXgene™ kit), and the extracted
RNA was stored at −80◦C until analysis. The RNA con-
centration was measured on a Qubit 3.0 Fluorometer using
the RNA, DNA and RNA IQ Assay Kits (Life Technologies,
Carlsbad, CA, USA). Samples were processed randomly (i.e.
samples were not processed in batches according to location,
age, sex or pathogen exposure status).

cDNA synthesis
A standard cDNA synthesis was performed on 2 μg of RNA
template from each animal. Reaction conditions included
4 units reverse transcriptase (Omniscript®, Qiagen, Valencia,
CA, USA), 1 μM random hexamers, 0.5 mM each dNTP and
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Table 3: Mean and standard error of �� CT values for bighorn sheep categorized into disease groups: pre-exposure (RGG, N = 6), early acute
(Hardware Ranch, 3/12/20 N = 9, 3/27/20 N = 3), late acute (Hardware Ranch, 3/12/20 N = 3, 3/27/20 N = 8), early acute wild (RGG, N = 4), late
acute wild (RGG, N = 8), recovered (Hardware Ranch, 3/27/20 N = 2)

Pre-exposure Early acute Late acute Early acute
wild

Late acute wild Recovered

Gene Mean Std error Mean Std error Mean Std error Mean Std error Mean Std error Mean Std error

AHR −2.33 0.49 −2.74 0.12 −2.76 0.10 −2.37 0.43 −3.12 0.19 −2.33 0.07

HSP70 −2.55 0.65 −3.59 0.18 −3.27 0.25 −2.57 0.69 −2.95 0.24 −3.90 0.54

MyD88 −3.20 0.77 −3.65 0.26 −3.28 0.19 −3.72 0.76 −3.55 0.18 −3.37 0.02

MX1 −2.69 0.64 −2.20 0.24 −2.25 0.16 −3.16 0.32 −2.53 0.19 −1.84 0.16

IFNg −3.95 1.16 −6.21 0.15 −6.79 0.36 −4.17 1.41 −6.25 0.48 −7.32 1.20

IL1B −2.53 0.54 −3.56 0.19 −3.19 0.13 −1.89 0.30 −2.68 0.19 −3.45 0.00

IL10 −4.86 1.53 −7.92 0.19 −7.78 0.40 −6.52 2.10 −8.53 0.58 −7.51 0.60

CD69 −5.11 1.68 −9.67 0.19 −9.32 0.57 −6.33 1.94 −9.24 0.90 −9.41 0.57

FADD −3.50 0.96 −5.47 0.13 −5.03 0.13 −4.23 1.09 −5.03 0.16 −5.30 0.26

AMPK −4.93 1.57 −6.20 0.33 −6.14 0.38 −6.63 1.91 −7.57 0.22 −6.83 0.11

TNFa −2.37 0.56 −3.41 0.14 −3.15 0.15 −1.87 0.75 −3.02 0.19 −3.35 0.27

Gata3 −2.61 0.59 −4.58 0.14 −4.54 0.14 −2.58 1.08 −4.05 0.23 −4.52 0.62

Tbet −2.96 0.70 −3.34 0.19 −3.37 0.19 −3.07 0.88 −3.33 0.29 −3.77 0.35

TGFB −3.69 0.27 −4.24 0.13 −4.07 0.15 −3.30 1.19 −3.63 0.18 −3.90 0.04

10 units RNase inhibitor, in RT buffer (Qiagen, Valencia, CA,
USA). Reactions were incubated for 60 min at 37◦C, followed
by an enzyme inactivation step of 5 min at 93◦C and then
stored at −20◦C until further analysis.

Real-time PCR
Real-time PCR systems for the two individual, bighorn-
specific reference genes and 14 genes of interest were run
in separate wells; a summary description of every gene can be
found in Table 1. Briefly, 1 μl of cDNA was added to a mix
containing 12.5 μl of QuantiTect Fast SYBR Green® Master
Mix [5 mM Mg2+] (Qiagen, Valencia, CA, USA), 0.5 μl each
of forward and reverse sequence specific primers and 10.5 μl
of RNase-free water; total reaction mixture was 25 μl. The
reaction mixture cDNA samples for each gene of interest
and the reference genes were loaded into MicroAmp Fast
Optical® 96-well reaction plates in duplicate and sealed with
optical sealing tape (Applied Biosystems, Foster City, CA,
USA). Reaction mixtures containing water, but no cDNA,
were used as negative controls; thus, approximately two
individual bighorn samples were run per plate.

Amplifications were conducted on a QuantStudio 3 Real-
time Thermal Cycler™ (Applied Biosystems, Foster City, CA,
USA) using QuantStudio 3 Software. Reaction conditions
were as follows: an initial hold stage of 95◦C for 20 s,
40 cycles of 95◦C for 1 s and 60◦C for 20 s. The melt curve
consists of 95◦C for 1 s, 60◦C for 20 s, 0.3◦C per second
temperature increase and then 95◦C for 1 s.

The reference genes selected, YWHAZ and S9, were iden-
tified by Mahakapuge et al. (2016) and Bowen et al. (2007)
as suitably stable reference genes. Briefly, stability of reference
genes was evaluated and ranked using the web-based analy-
sis tool RefFinder (https://www.heartcure.com.au/for-researchers/)
(Chen et al., 2015). Cycle threshold crossing values (CT) for
the genes of interest were normalized to the means of the
reference genes.

Statistical methods
We transformed the qPCR data according to the 2∧(-CT’)
method (Livak and Schmittgen, 2001) as follows. First, we
normalized values (housekeeping gene threshold crossing sub-
tracted from the gene of interest threshold crossing). We then
compared the normalized value of the target gene to the CT
of the calibrator sample (the lowest level of transcription for
each gene). This gave us normalized transcription values for
each gene relative to the maximum observed CT across all
samples. We then log-transformed the transcription values,
and those log-transformed values served as the basis for all
analyses going forward. We calculated means and standard
errors of transformed values for all genes within each disease
status group (Tables 3 and 4).

We used mixed effects statistical models to simultaneously
estimate and account for the influences of age and sex on
differences in gene transcription levels among bighorn disease
groups (pre-exposure, early acute, late acute, early acute
wild, late acute wild, recovered) in Rocky Mountain bighorn
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Table 4: Mean and standard error of ��CT values for bighorn sheep sampled from the RGG, Hardware 3/12/20 and Hardware 3/27/20

RGG (N = 18) Hardware 3/12/20 (N = 12) Hardware 3/27/20 (N = 13)

Gene Mean Std Error Mean Std Error Mean Std Error

AHR −2.67 0.21 −2.86 0.10 −2.58 0.11

HSP70 −2.72 0.26 −3.59 0.14 −3.41 0.26

MyD88 −3.43 0.30 −3.60 0.25 −3.37 0.19

MX1 −2.73 0.23 −2.25 0.23 −2.11 0.17

IFNg −5.10 0.57 −6.48 0.14 −6.56 0.38

IL1B −2.48 0.21 −3.59 0.19 −3.21 0.11

IL10 −6.93 0.79 −8.11 0.22 −7.41 0.30

CD69 −7.29 0.87 −9.73 0.20 −9.19 0.51

FADD −4.34 0.41 −5.31 0.11 −5.22 0.15

AMPK −6.48 0.69 −6.39 0.35 −5.95 0.32

TNFa −2.53 0.26 −3.36 0.14 −3.27 0.14

Gata3 −3.24 0.34 −4.51 0.15 −4.65 0.13

Tbet −3.21 0.31 −3.22 0.19 −3.45 0.15

TGFB −3.54 0.26 −4.29 0.10 −4.07 0.13

Table 5: Scaling from coefficients of linear discrimination from the
LDA fit to California bighorn sheep across Nevada

Gene LD1 LD2

AHR 0.005 −0.031

HSP70 0.244 −0.053

MyD88 −0.985 −0.770

MX1 0.149 0.510

IFNg 0.177 −0.617

IL10 0.327 0.076

IL1b 0.190 0.238

CD69 −0.202 −0.026

FADD −0.295 0.624

AMPK 0.291 0.519

TNFa −0.122 0.418

Gata 0.102 0.465

Tbet 0.993 0.330

TGFb −0.663 −1.311

sheep. Age was included as a categorical variable where the
different categories represent a range of sheep ages. Each
gene’s transcription was treated as an independent outcome,
and parameter estimates for all model effects were calculated
using the lme4 package in R 2.8.1 (R Development Core
Team, 2012).

We applied a covariance-adjusted linear discriminant
analysis (Cochran and Bliss, 1948; Tu et al., 1997) to assess
whether the transcription profile could differentiate among
four different disease groups (pre-exposure, early acute, late
acute, recovered) after adjusting for two structural covariates
that were not of interest in this analysis—source location
(wild or captive) and sex. Because our objective was simply
proof-of-concept, and because we were working with very
limited sample sizes, we used data from all 43 samples over
the course of the disease event to fit the model. We used
the log-transformed relative expression measurements and
made the covariance adjustment using the adjvec function in
the TULIP package in R (Pan et al., 2020). We then fit and
visualized the linear discriminant analysis on the resulting
covariance-adjusted variables using the LDA function in
the flipMultivariate package (Displayr, 2022) (Table 5).
Disease states were given prior weights proportional to
their occurrence in the raw dataset, and a false discovery
rate correction was applied across the entire ensemble for
measured gene transcriptions and disease states in tandem.

We used differential gene correlation analysis to identify
shifts in dynamic relationships among genes between different
groups of bighorn sheep representing different disease states.
We compared samples from the pre-exposure and early acute
phase of infection, and between the early acute phase and
late acute phase using the DGCA package in the R statistical
computing environment (McKenzie et al., 2016). We then
calculated pairwise DCs using the pairwise DC function
and extracted the pairs with the highest DC between the
two sampling events using the cdTopPairs function. Pairwise
P-values were adjusted using the Benjamini–Hochberg adjust-
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ment to account for multiple testing. Next, we identified
clusters of genes exhibiting similar transcriptional shifts by
building networks in which each gene was a node, and each
edge represented the inverse of the adjusted P-value in the
change in pairwise correlation between the two genes the
edge connected. We used an eight-step walktrap algorithm
implemented through the cluster_walktrap function in igraph
R package (Csárdi and Nepusz, 2006) to identify community
structure, and then extracted the size and membership of all
identified communities.

Finally, we took a first step towards considering expanded
applicability of gene transcription for identifying chronically
infected animals in the field. We quantified relations between
M. ovipneumoniae chronic carriage and the genes in our
panel using data from the California bighorn sheep described
above. We followed methods identical to those described
for the covariance-adjusted linear discriminant analysis
applied to the acute disease event data, except that the set
of states we considered here were ‘unexposed’, ‘recovered’
and ‘chronically infected’.

Results
GLM ANOVA analyses identified sex as an influence on
transcript levels of AHR and AMPK; females had higher
levels of both AHR and AMPK transcription. Age influenced
transcript levels of MyD88, MX1, FADD, TNFa (highest
transcript levels were found in bighorn sheep ages 6–8) and
HSP70 and Gata3 (highest transcript levels were found in
bighorn sheep ages 2–4).

Discriminant function analysis of transcript patterns
identified separation among the four disease groups defined
for the acute disease event at RGG and Hardware Ranch
(pre-exposure, early acute, late acute, recovered) (Fig. 1).
The first function separated the acute disease states from
the pre-exposure and recovered groups; the second function
separated the early and late acute states from one another. In
Fig. 1, each orange data point shows the correlation of the
specified gene’s relative transcription with the first and second
covariance-adjusted linear discriminant functions. The blue
points show the average score of individuals in each disease
state on the first two discriminant functions. The first axis cap-
tured down-regulation of AHR, IFNg, IL10, CD69, FADD,
AMPK and Gata3 in the acute disease states. The second axis
captured a contrast between TNFa, TGFb and AHR vs. IL10,
CD69 and HSP70: in recovered animals, TNFa, TGFb and
AHR were high relative to IL10, CD69 and HSP70; in the
pre-exposure animals, that pattern was reversed.

General temporal patterns in gene
transcription
To better understand how transcription of the discriminating
genes differed between the disease groups across the acute

disease event, we visually examined patterns of differential
gene transcription across all genes over the disease’s
progression (Fig. 2; note that here we separated free-ranging
animals from animals in captivity to allow any non-disease
associated differences in gene expression to emerge). Most of
the genes that played key roles in the discriminant function
also showed clear changes in transcription over disease
states. Transcription of four genes (IL10, CD69, FADD and
AMPK) dropped dramatically at the onset of disease and then
stayed low throughout the disease event. IFNg, Gata3, TNFa
and HSP70 all declined and continued to decline gradually
throughout the disease event. One gene, MX1, increased over
the course of infection. Transcription of IL1b peaked midway
through the acute disease event. Transcription patterns in
other genes were less clear.

Changes in gene–gene interactions from the
pre-exposure to early acute phase
All genes exhibited moderate-to-strong positive correlations
(>0.60; median = 0.91) within the six pre-exposure animals.
Between the pre-exposure and early acute phases, six gene
pairs exhibited significant changes at the 0.05 level in correla-
tion and another 14 gene pairs exhibited changes significant at
the 0.10 level in an analysis that adjusted for multiple testing.
Of the pairs with significant changes in correlation, 18 of 20
transitioned from positive correlation to no correlation and 2
transitioned from a stronger to a weaker positive correlation.
Genes involved in significant changes were Gata3 (involved
in 6 of the significant pairwise changes), Tbet (6 changes),
MyD88 (5 changes), IL1b (4), MX1 (3), TGFb (3), IL10 (2),
HSP70 (2), TNFa (2), FADD (1), AMPK (1) and AHR (1).
The walktrap algorithm identified two distinct communities
in terms of DC from the pre-exposure to early acute phase.
One community contained TGFb, AHR, IL1b and MX1, all
of which showed either stable or increasing transcription from
pre-exposure to early acute. All other genes clustered in a
separate group, within which transcription declined. Most
negative correlations during the early acute phase involved
TGFb, Tbet or MX1 (and TGFb and MX1 were negatively
correlated with one another).

Changes in gene–gene interactions from the
early acute to the late acute phase
Only two gene pairs showed significant changes in DC
between the early and late acute phases of infection (Fig. 3).
IFNg-FADD and TNFa-Gata3 both switched from positive
to no correlations. One community consisted of Gata3 and
TNFa (which generally declined in transcription between the
early and late acute phases); a second community contained
IFNg and FADD, and all other genes grouped together in
a third community. In the late acute phase, most negative
correlations in gene transcription involved IL1b, IFNg
or MX1.
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Figure 1: Covariance-adjusted discrimination between acute disease states in the longitudinally studied acute disease event at RGG and
Hardware Ranch. The discriminant function was able to correctly classify 78.8% of individuals within the original dataset. Values in (A) represent
the average transformed gene transcription across all animals within the disease state indicated by the column headers (disease states progress
from pre-exposure to recovered from left to right). Colour coding in each row reflects whether the gene was up-regulated (increasingly blue) or
down-regulated (increasingly red) in each group relative to the gene’s average transcription across all disease states. Colour intensity indicates
the magnitude of shifts in regulation, as determined by standard deviations above or below the mean transcription level. (B) Blue points show
the average score of individuals within each disease state on the first two discriminant functions. Orange points show the correlations of each
measured variable with the first and second discriminant functions (for example, IFNg is negatively correlated with the first discriminant
function and positively correlated with the second function; IL10 is negatively correlated with both the first and the second discriminant
function). Genes contributing most importantly to separation include AHR, IFNg, IL10, CD69, FADD, AMPK and Gata3.

Field testing the feasibility of chronic carrier
detection in free-ranging bighorn sheep
Although we used identical data analysis methods in both
the California bighorn-wide analysis and the Hardware
Ranch/RGG acute disease event analysis, the linear dis-
criminant functions were fit separately in each case (we did
not simply apply the discriminant functions derived from
the Hardware/RGG animals to the California bighorn gene
transcription profiles). This is because the models considered
disease states that emerge at different timescales: the timescale
of acute disease progression in the Hardware Ranch/RGG
case and the timescale of chronic infection establishment in
the California bighorn analysis. In the California bighorn-
wide analysis, the first discriminant function grouped all five
carriers (100% of ‘true positives’) into a distinct group. The
second discriminant function correctly separated three of the
recovered animals into a distinct group, but one recovered
individual was misclassified as unexposed. Loadings of each
gene on the first linear discriminant functions are shown in
Fig. 4A, and the location of each individual in that 2D space,
along with their M. ovipneumoniae infection status, is shown
in Fig. 4B.

Discussion
Worldwide, the rate of newly emerging or re-emerging
wildlife diseases has increased, impacting human, livestock
and wildlife health and biodiversity. While novel molecular
approaches have yielded insights into human and wildlife
disease at a variety of scales, revealing proximate and ultimate
drivers of disease state and transforming understanding of
pathogenesis, transmission and treatment, similar analyses
have only recently appeared within the context of wildlife
disease and conservation science, and rarely as field-based
studies. Our primary goal was to assess the ability of a
gene transcription panel to gain information about the
identification of and mechanisms behind disease state
transitions in a free-ranging wildlife disease system, M.
ovipneumoniae-associated pneumonia in bighorn sheep.

We demonstrate the ability of an immune-targeted quan-
titative PCR to begin to elucidate molecular immunological
mechanisms. Using two slightly different approaches (differ-
ential gene transcription and differential gene correlation), we
were able to identify genes that were differentially transcribed
between disease states as well as characterize the changing
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Figure 2: Differential transcription of the 14 genes over the course of the disease event. The first three boxes in each plot reflect transcription in
the wild RGG herd. The last three boxes reflect transcription in the captive animals at Hardware Ranch. While disease timing is well known for
the captive animals, exposure time is not known at RGG. Early exploration suggested that the ‘late acute’ phase at RGG may actually correspond
best to the ‘early acute’ phase at Hardware Ranch (note the similarities in transcription for late acute wild animals and early acute Hardware
animals at most genes).

relationships among genes as animals progress from one
disease state to another. Although both approaches are used in
human medicine, there are only a few studies employing this
dual approach in wildlife (Ellison et al., 2015). In particular,
our analyses revealed patterns linked to a fundamental driver
of this system’s epidemiology: the existence of chronic carrier
hosts. From a management perspective, refined versions of
these molecular assays could serve as novel diagnostic tools
for identifying chronic carriers, a critical need for effective
management in this system. Moreover, our study demon-
strates the potential for gene transcription profiles to shed new
light on the aetiological mechanisms that generate chronic
carrier individuals.

Differential gene transcription
One of the primary transcriptomic analyses in disease dynam-
ics has been the identification of differentially expressed
genes (DEGs) between different disease states (Zhang et
al., 2014). For example, molecular analyses described in
human medicine show compelling associations between
differential gene transcription and disease in many studies
ranging from inflammatory disease to cancer (McLoughlin et
al., 2006). Increasingly, gene transcription-based diagnostics
of wildlife are being used to explore immunosuppression and
other immune-system impairments that can lead directly to
disease or the increased risk of acquiring disease (Acevedo-
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Figure 3: Differential gene–gene correlations between the pre-exposure and early acute phase samples (A) and between the early acute phase
and late acute phase samples (B). Line width corresponds to the inverse of the Benjamini–Hochberg-adjusted P-value of the correlation’s
significance (relationships with stronger statistical support have wider lines). Colours represent how gene–gene correlations changed between
disease states. Blue lines indicate pairs of genes whose transcription levels were positively correlated (‘pos’) in the earlier disease state, but
independent or no relationship (‘ind’) in the later state. Green lines indicate pairs of genes whose transcription levels were positively correlated
in both the first and the second state. Red lines indicate pairs of genes whose transcription was independent in the first state, but negatively
correlated (‘neg’) in the second state. Grey lines indicate pairs of genes whose transcription levels were independent in both states shown.

Whitehouse and Duffus, 2009; Eskew et al., 2021). As key
indicators of pathophysiologic status, the earliest observable
signs of health impairment are altered levels of gene
transcripts (DEGs), evident prior to clinical manifestation
(McLoughlin et al., 2006), thus providing an early warning
of potentially compromised health (Bowen et al., 2020).

Although the induction of transcription in pro-
inflammatory genes has been clearly associated with Mycoplasma
infection (Borchsenius et al., 2020), patterns of gene
transcription in free-ranging RGG bighorn sheep in our
study are consistent with a general decline in transcription in
both pro- and anti-inflammatory genes. Notable exceptions
are IL1b, a strong pro-inflammatory mediator, MX1,
traditionally known to have a strong anti-viral association
and TGFb, a strong anti-inflammatory gene—all of which
increased in all bighorn sheep in this study as disease
progressed (Table 1; Fig. 2). We identified lower transcription
in captive/translocated bighorn sheep than in free-ranging
RGG bighorn sheep in almost all genes except AMPK and
MX1. It is possible that the relatively lower transcription
levels of the genes in the Hardware Ranch bighorn sheep are a
result of the stress associated with the attempted translocation
and subsequent captivity. Stress can impede transcription of
immune-related genes and has been shown to cause shifts in
energy metabolism associated with capture stress in dolphins
(Elenkov, 2004; Mancia et al., 2008; Acevedo-Whitehouse
and Duffus, 2009). Although potentially perplexing, as MX1
has traditionally been thought to play a strong role in anti-
viral defence, increased transcription of MX1 in both groups
of bighorn sheep is consistent with findings in controlled
Mycoplasma studies in mice and pigs (Bierne et al., 2012; Li
et al., 2015). Incidentally, MX1 has also been tightly linked
to IL1b in a large IL1 network (Li et al., 2015).

Differential gene correlation
Although traditional gene transcription methods mainly focus
on DEGs, it has been widely recognized that genes do not
work in isolation, but rather interact with each other within
dynamic networks (interactomes) (Sahni et al., 2013; Yu
et al., 2014). Differentially correlated gene pairs may well
indicate the alteration of biological states even though the
involved genes are not necessarily differentially transcribed
(Lai et al., 2004; Zeng and Zhang, 2013; Yu et al., 2014;
Zhang et al., 2014). For example, an interacting gene pair
can exhibit positive or negative correlation observed in the
gene transcription profile. Changing of these gene correlations
may correspond to the different states of a biological system
(e.g. normal or disease state). Often the progression of disease
is not smooth, but is more abrupt; changes in system state
often occur at critical thresholds (i.e. ‘tipping points’) where
the system abruptly shifts from one state to another (Chen et
al., 2012). The disease progression is sometimes broken into
three stages or states: normal, pre-disease and disease (Chen
et al., 2012). One major advantage of DC analysis is its ability
to help distinguish among disease states (Yu et al., 2014).

A network-based analysis provides a systems-level under-
standing of the relationships within a network by focusing
on gene modules rather than individual genes (Liu and Cai,
2017). The goal of DC analysis is different from the goal of
differential transcription analysis. The DC approach identifies
genes with varying co-transcription partners under different
conditions, such as disease states; these identified genes are
more likely to be regulators and can thus elucidate mecha-
nistic links (Van Dam et al., 2018). For example, different
Th cell populations are responsible in determining the bal-
ance between protective and detrimental immune responses
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Figure 4: Covariance-adjusted discrimination among unexposed, chronic and recovered disease states in the cross-sectional California bighorn
sheep data from Nevada Department of Wildlife. The discriminant function correctly classified 92.6% of individuals within the original dataset
(including 100% of the chronically infected individuals). Values in (A) represent the average transformed gene transcription across all animals
within the disease state indicated by the column headers (disease states progress from pre-exposure to recovered from left to right). Colour
coding in each row reflects whether the gene was up-regulated (increasingly blue) or down-regulated (increasingly red) in each group relative
to the gene’s average transcription across all disease states. Colour intensity indicates the magnitude of shifts in regulation, as determined by
standard deviations above or below the mean transcription level. (B) Blue points show the average score of individuals within each disease state
on the first two discriminant functions. Orange points show the correlations of each measured variable with the first and second discriminant
functions (for example, IFNg is positively correlated with the first discriminant function and relatively uncorrelated with the second function;
MyD88 is negatively correlated with the first discriminant function and relatively independent of the second). Chronic carriers showed distinctly
higher expression of MyD88 and FADD and distinctly lower expression of IFNg and Tbet than recovered and unexposed animals.

against Mycoplasma; Th1 and Th2 have opposing roles and
exhibit strong effects on responses to Mycoplasma infection
(Bodhankar et al., 2010).

Although the time series in our study is limited and some-
what artificially manufactured, it allows for the study of tran-
scriptional regulation of gene co-transcription networks dur-
ing infection. In our artificial baseline (pre-exposure bighorn
sheep), all genes exhibited strong positive correlations (>0.60;
median = 0.91) within the six pre-exposure animals. Our net-
works analysing changes in gene relationships between pre-
exposure and early acute as well as early acute to late acute
represented a substantial decoupling of gene patterns. As we
discussed earlier, and consistent with our differential gene
transcription analyses, gene transcription patterns separated
into two communities. One community contained TGFb,
AHR, IL1b and MX1, all of which showed either stable or
increasing transcription from pre-exposure to early acute,
while all other genes clustered in a separate group, within
which transcription declined. These relationships illustrate a
phase shift with a concurrent reduction in initiation of a Type
1 immune response, anti-inflammatory activity, initiation of
cell death and muscle metabolism.

A comparison of gene correlations between early acute and
late acute phases revealed only two significant shifts in cor-

relation (IFNg-FADD and TNFa-Gata3 both switched from
positive to no correlations). These relationships illustrate a
phase shift in which we identified decreases in initiation of a
Type 2 immune response and general inflammatory responses.

The gene pairs identified in this analysis serve as examples
of the utility of this method, indicating DCs between gene–
gene pairs for genes that did not exhibit statistically signifi-
cant differences in differential gene transcription analysis (i.e.
identifying biologically meaningful associations). Although
we can say with some certainty that the differentially corre-
lated genes we identified contribute to transitions from one
disease state to another, it is still not known how changes in
correlation patterns can point to genes with critical capacity
to guide a biological system into certain states/phenotypes.
This reflects a broader underlying knowledge gap around
whether we can infer causality or directionality between gene
relationships and disease states (Thomas et al., 2016; Van
Dam et al., 2018).

Study limitations
As with any study of a disease system operating in free-
ranging wildlife, our analyses are confronted by limited repli-
cation. In particular, the small number of chronic carriers in
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our longer-term dataset leaves open the potential for biassed
inferences about differences in gene transcription between
chronic carriers and individuals that cleared infection. This
is why we emphasize the proof-of-concept nature of our
work: while our results are intriguing and merit additional
inquiry, they require replication (ideally, in chronic carriers
arising across a variety of different environmental contexts)
before being fully operational as a diagnostic tool. Given
the critical role that chronic carrier identification currently
plays in bighorn sheep management, however, the potential
of the transcription profile to make that distinction goes
beyond simple academic interest. Consequently, we believe
that opportunities to expand the suite of data on chronic
carriers are not outside the realm of possibility.

A second limitation is that our dataset does not represent
all subspecies of bighorn sheep. While we assume that Rocky
Mountain and California bighorns likely exhibit similar in-
host responses to M. ovipneumoniae on the basis of consistent
epidemiological descriptions of disease progression in both
species, that assumption could be flawed. Importantly, our
results would certainly require separate validation in the
desert bighorn sheep subspecies, which exhibits more hetero-
geneity in response to disease due to mechanisms that are as-
of-yet unknown (Cassirer et al., 2018).

Field application
We took a first step towards considering field applicabil-
ity of gene transcription for identifying chronically infected
animals. Although more data are required to fully calibrate
these patterns, the early results show promise. The California
bighorn dataset consisted of 27 individuals, of whom 4 were
identified as chronic carriers, 5 were classified as recovered
and 18 were classified as unexposed. A major caveat to
this analysis is that all chronic carriers arose from a single
population, and no other animals from that population were
available for inclusion. This means that the pattern reported
here could be attributable to environmental as opposed to
pathogen-associated factors. However, since our intent was
simply to explore whether classification of disease status on
the basis of the panel is feasible, we elected to proceed in hopes
that our results might motivate additional exploration in this
direction.

Implications for conservation and
biodiversity
Wildlife managers and veterinarians have tried many
techniques for controlling and mitigating respiratory disease
in wild bighorn sheep populations; however, more effective
strategies are needed to prevent pathogen introduction,
induce disease fadeout in persistently infected populations
and promote population resilience in bighorn sheep (Cassirer
et al., 2018; Almberg et al., in revision). To this end, better
understanding in-host disease dynamics across populations
with a focus on identifying factors associated with naturally

occurring recovery would be useful for management (Cassirer
et al., 2018). With our transcriptomic panel of 16 genes,
we achieved our goal of testing the use of transcriptomic
techniques to compare immune markers within animals over
the course of their infections, as well as beginning to identify
mechanisms associated with disease state transitions in the
bighorn sheep M. ovipneumoniae system. However, relatively
recent advances in gene sequencing technology allow for the
elucidation of an unprecedented breadth of genes. In the
future, whole-transcriptome identification of genes and gene
pathways associated with altered physiologic manifestations
would enable us to design a more effective gene panel,
providing greater insight into the causes of specific disease
states (Eskew et al., 2021).

From a management perspective, gene transcription may
be a promising avenue for developing diagnostics that can dif-
ferentiate between chronically and acutely infected animals.
This is a major priority for current bighorn sheep disease
management, which is increasingly built around identification
and removal of chronically infected animals (Garwood et al.,
2020; Almberg et al., in revision). While our data are insuf-
ficient to definitively categorize animals as chronic vs. acute,
our preliminary analyses suggest that the gene transcription
panel employed here may have promise in this direction in
the future.
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