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ABSTRACT
The accuracy of approximate methods for calculating linear optical spectra depends on many variables. In this study, we fix most of these
parameters to typical values found in photosynthetic light-harvesting complexes of plants and determine the accuracy of approximate spectra
with respect to exact calculation as a function of the energy gap and interpigment coupling in a pigment dimer. We use a spectral density
with the first eight intramolecular modes of chlorophyll a and include inhomogeneous disorder for the calculation of spectra. We compare
the accuracy of absorption, linear dichroism, and circular dichroism spectra calculated using the Full Cumulant Expansion (FCE), coherent
time-dependent Redfield (ctR), and time-independent Redfield and modified Redfield methods. As a reference, we use spectra calculated
with the exact stochastic path integral evaluation method. We find the FCE method to be the most accurate for the calculation of all spectra.
The ctR method performs well for the qualitative calculation of absorption and linear dichroism spectra when the pigments are moderately
coupled (∼15 cm−1

), but ctR spectra may differ significantly from exact spectra when strong interpigment coupling (>100 cm−1
) is present.

The dependence of the quality of Redfield and modified Redfield spectra on molecular parameters is similar, and these methods almost always
perform worse than ctR, especially when the interpigment coupling is strong or the excitonic energy gap is small (for a given coupling). The
accuracy of approximate spectra is not affected by resonance with intramolecular modes for typical system–bath coupling and disorder values
found in plant light-harvesting complexes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0100977

I. INTRODUCTION

Linear optical spectroscopy is a crucial analytical tool in
biology, chemistry, materials science, molecular physics, and var-
ious other disciplines. It provides information about, e.g., the
dipole strengths and orientations,1–3 energy landscape,4–7 exciton
structure,8,9 and stoichiometry10 in pigment aggregates. In principle,
all the information contained in an experimental spectrum could be
extracted by comparison with exact simulations. The exact calcula-
tion of linear spectra is possible for Gaussian environmental fluctu-
ations,11 but is computationally expensive, and is generally only per-
formed in order to benchmark approximate calculations on simple
systems. One reliable approach for the calculation of exact spectra is
the Hierarchical Equations of Motion (HEOM) method,11,12 which

requires solving many tiers of equations for the system’s reduced
density matrix and is therefore memory intensive.13 The addition of
a single high-frequency mode to the environment’s spectral density
greatly increases the number of equations that have to be solved.14

An alternative approach is the method of Exact Stochastic Path Inte-
gral Evaluation (PI), which is easier to implement than HEOM,
converges faster, and is not memory intensive.15 Nevertheless, as we
discuss in this article, this method also scales poorly with the number
of high-frequency modes.

The intractability of exact methods prevents their use for
the calculation of ensemble spectra of large, disordered aggre-
gates with complex system–environment coupling. Many different
approaches to the approximate calculation of linear optical spectra
exist.16–19 Most of these methods rely on the second-order cumulant
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expansion of the system–environment coupling, and they differ
mainly in their treatment of the off-diagonal elements of this
coupling in the exciton basis. In two common and economical
approaches, the time-independent Redfield and modified Redfield
rates are included phenomenologically in the calculation of lin-
ear spectra to account for the lifetime broadening of electronic
transitions.6,19,20 A more explicit treatment of the second-order
cumulant expansion brings about the Full Cumulant Expansion
(FCE) method,18,21 for which the time-dependent expressions are
slower to evaluate than the rates of the Redfield-type methods, but
are more accurate. The application of the secular approximation to
FCE yields the faster, but less accurate, coherent time-dependent
Redfield (ctR) method.19

When calculating approximate spectra, it is essential to know
what level of accuracy to expect from the method that is used, under
which conditions it may be substituted with a more cost-efficient
one, and what effect different approximations have on the quality of
spectra. Since the approximate methods discussed above are used
frequently, rely on different, common, approximations, and vary
significantly in speed, their comparison provides valuable insight
into the capabilities and limitations of approximate methods, in
general, and how they may be improved. Although some of these
approximate methods have been compared with one another, the
previous comparisons were either done for a specific system without
much variation in parameters21 or for model systems with unreal-
istic system–environment coupling.19,22 Therefore, there is clearly a
need for a systematic comparison of approximate methods for calcu-
lating linear spectra in a system with realistic system–environment
coupling.

Gelzinis et al.19 compared the accuracy of absorption spectra
obtained for a dimer using the ctR, Redfield, and modified Redfield
methods. They calculated the spectral qualities as functions of var-
ious system and environment parameters that they varied one at a
time. Inhomogeneous disorder, for instance, was considered as one
of their parameters, but was set to zero when other parameters were
varied. They found ctR spectra to agree significantly better with exact
spectra over a wide range of parameter values than spectra calculated
with the Redfield and modified Redfield methods. They also found
the modified Redfield method to perform worst for all the parameter
values that they considered. For most of their calculations, Gelzi-
nis et al. used an overdamped Brownian oscillator spectral density
without any underdamped (high-frequency) modes. They included a
single high-frequency mode for one of their comparison calculations
and treated its energy as the only variable in that comparison.

Cupellini et al.21 used the FCE and modified Redfield meth-
ods to calculate absorption and circular dichroism (CD) spectra of
the purple bacterial light-harvesting complex LH2 and compared
these spectra to experimental data. The FCE spectra agreed bet-
ter with experimental spectra than the modified Redfield spectra
did. However, because of the uncertainty about the true molecular
parameters, none of the spectra agreed well with the experimental
spectra, and their comparison is consequently not as conclusive as it
would be for a model study.

In real pigment aggregates, many of the parameters considered
by Gelzinis et al., such as the amplitude and shape of the envi-
ronmental spectral density and the variance of the inhomogeneous
disorder, can be estimated accurately and have similar values for
a wide range of aggregates. The parameters that typically have the

largest variation in the simulation of spectra are the temperature,
energies of pigments, and interpigment couplings.

To our knowledge, neither FCE nor ctR has been used for the
calculation of linear dichroism (LD) spectra, and the non-secular
dipole dependence of LD has not been previously derived. In this
article, we compare absorption, LD, and CD spectra calculated with
the FCE, ctR, standard Redfield, and modified Redfield methods. We
determine the dependence of the spectral accuracy on the simulta-
neous variation of pigment energy and interpigment coupling at two
different temperatures for inhomogeneously broadened absorption-
type spectra. Unlike Gelzinis et al.,19 who used HEOM for their exact
calculations, we calculate exact spectra using the more economical
PI method.15 This allows us to better model environmental inter-
actions by including eight high-frequency modes in our spectral
density. In order for our conclusions to be accurate for photosyn-
thetic light-harvesting complexes, we use the parameters of the first
eight intramolecular modes of chlorophyll a. The inclusion of several
high-frequency modes allows us to determine the effect of excitonic
energy gap resonance with intramolecular modes on the quality of
calculated linear spectra.

II. THEORY
A. Hamiltonian

The spectroscopic response from a light-harvesting complex
originates from quantum dynamics that are governed by the
Hamiltonian

Ĥ = Ĥmol + Ĥrad−mat(t), (1)

in which Ĥrad−mat(t) describes the light–matter interaction in
the semi-classical approximation (hence the time-dependence of
the Hamiltonian) and Ĥmol describes the influence of molecular
attributes on the dynamics.

We treat the pigment aggregate as an open quantum system and
partition Ĥmol into a system, bath, and system–bath interaction part,

Ĥmol = ĤS + ĤB + ĤSB. (2)

For a molecular system composed of multiple interacting molecules
with optical bandgaps, the electronic ground state is the collective
electronic state in which all molecules are found in their respec-
tive electronic ground states. Optical properties of the system are
characterized by transitions to the so-called single exciton band,
which is composed of collective electronic states with an excitation
residing on a single molecule of the system. For a light-harvesting
complex with N pigment molecules, the ground state ∣g⟩ can thus
be represented by the direct product of molecular ground states

∣g⟩ =
N
∏
n=1
∣gn⟩, where ∣gn⟩ is the ground state of pigment n. There are

N collective singly excited states represented by ∣n⟩ =
N
∏

m=1
m≠n

∣gm⟩∣ϵn⟩,

where ∣ϵn⟩ denotes the electronically excited state of pigment n.
The system Hamiltonian, the so-called Frenkel exciton Hamiltonian,
involves the energies εn of these collective states and their mutual
interaction energies Jmn. It has the general form
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ĤS =
N

∑
n=1

εn∣n⟩⟨n∣ +
N

∑
n=1

N

∑
m=1
m≠n

Jmn∣m⟩⟨n∣, (3)

where the ground-state energy is set to zero and εn is the energy of
the vertical (Franck–Condon) transition on pigment n.

Electronic transitions observed by spectroscopic means occur
between the ground state and excited eigenstates of the Hamiltonian
in Eq. (3). These eigenstates can be found by performing an affine
exciton transformation on ĤS, which renders it in the simple form

ĤS =
N

∑
α=1

εα∣α⟩⟨α∣, (4)

where the exciton states are linear combinations of the site excita-

tions, i.e., ∣α⟩ =
N
∑

n=1
cnα
∣n⟩, and εα represent the eigenenergies of the

Hamiltonian.
The exciton energies are modulated by nuclear fluctuations in

the pigment molecules and their environment and are therefore
coupled to phonon modes of the environment and intramolecular
vibrational modes. These modes together constitute the bath and are
modeled as an infinite set of independent harmonic oscillators,

ĤB =
∞
∑
k=1

ωk

2
(p̂2

k + q̂2
k)⊗ ÎS, (5)

where ÎS is the identity operator in the system’s Hilbert space, and
ωk, p̂k, and q̂k are the frequency and position and momentum oper-
ators of the kth mode, respectively. In this article, we use units such
that h = 1. Typically, the system–bath coupling is assumed to be
linear,

ĤSB = −
∞
∑
k=1

N

∑
n=1

ωkdk,nnq̂k∣n⟩⟨n∣, (6)

and its strength is characterized by the reorganization energy

λn =
∞
∑
k=1

ωk

2
d2

k,nn (7)

associated with each electronic transition. The reorganization energy
can often be estimated from experimental measurements (e.g., from
the Stokes shift) and depends on the dimensionless shift dk,nn of the
excited state harmonic potential energy surface with respect to the
ground state potential energy surface. In Eq. (6), spatial dimensions
were separated so that q̂k is a scalar operator.

The light–matter interaction is treated through linear coupling
to a classical electric field E(t),

Ĥrad−mat(t) = −μ̂ ⋅ E(t), (8)

with the transition dipole moment operator given by

μ̂ =
N

∑
n=1

μn(∣n⟩⟨g∣ + ∣g⟩⟨n∣), (9)

where the vector μn is the transition dipole moment of the transition
from the ground to the excited state on the nth molecule. The dipole
moments are assumed to be independent of the nuclear coordinates
(i.e., the Condon approximation is made).

B. Linear spectra
During linear spectroscopic measurements, the incident elec-

tromagnetic field induces a transverse molecular polarization, which
generates an additional electric field interfering with the incident
fields. The combination of these fields is then measured as a field
leaving the macroscopic molecular sample. The linear response
(first-order perturbation of the system) is characterized by the
dipole–dipole correlation function

⟨μ(t)μ(0)⟩ = Tr[eiĤ moltμ̂e−iĤ moltμ̂ρ̂eq], (10)

where Tr[⋅] denotes the trace operation and ρ̂eq is the equilibrium
density matrix.

We assume that the pigment aggregate is in thermal equilib-
rium before it is excited with light and that the equilibrium state is
separable, with the system in its collective electronic ground state,
i.e., ρ̂eq = ∣g⟩⟨g∣ρ̂eq

B . With this equilibrium state, it is straightforward
to show that the dipole–dipole correlation function in Eq. (10) can
be written as

⟨μ(t)μ(0)⟩ =
N

∑
m=1

N

∑
n=1

μm ⋅ μnTrB[⟨g∣eiĤ molt ∣g⟩ ⟨m∣e−iĤ molt ∣n⟩ρ̂eq
B ].

(11)

Based on Eq. (11), we define the absorption tensor as

IA
(t) = TrB[eiĤ g te−iĤ et ρ̂eq

B ], (12)

where Ĥg and Ĥe are the ground-state and excited-state block
of Ĥmol, respectively. Absorption spectra SA

(ω) are obtained by
the Fourier transform of the dipole–dipole correlation function
[Eq. (10)]. In terms of the absorption tensor [Eq. (12)], we obtain

SA
(ω)∝ ω

N

∑
m=1

N

∑
n=1

f μ,A
mn

⎡
⎢
⎢
⎢
⎢
⎣

2Re
∞

∫

0

dt eiωtIA
mn(t)

⎤
⎥
⎥
⎥
⎥
⎦

, (13)

with the dipole factor f μ,A
mn = (μm ⋅ μn).

In a similar way as for the absorption spectrum, the CD spec-
trum can also be formulated based on a correlation function, this
time being the electric dipole–magnetic dipole correlation function.
The spectrum SCD

(ω) is given by the right-hand side of Eq. (13) with
the dipole factor21

f μ,CD
mn =

√
εmεn(Rm − Rn) ⋅ (μm × μn). (14)

The LD spectrum, SLD
(ω), is also obtained from the right-hand

side of Eq. (13). As shown in Appendix A, the dipole factor for LD
measurements on disk-shaped pigment aggregates is given by

f μ,LD
mn = μm ⋅ μn − 3∣μm∥μn∣ cos αm cos αn, (15)

where αm is the angle between μm and the (uniquely chosen) vector
normal to the disk.

C. Absorption tensor
By using an operator identity, Eq. (12) can be written in the

time-ordered exponential form as23
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IA
(t) = TrB[exp+[−i∫

t

0
dτ Ĥeg(τ)]ρ̂eq

B ], (16)

with Ĥeg(τ) = eiĤ g τ
(Ĥe − Ĥg)e−iĤ g τ . Using Eqs. (2), (5), and (6), we

can rewrite Eq. (16) as

IA
(t) = TrB[exp+[−i(ĤSt + ∫

t

0
dτ ĤSB(τ))]ρ̂eq

B ], (17)

where ĤSB(τ) = eiĤ g τĤSBe−iĤ g τ . When the system–bath coupling
is linear and the bath is harmonic, all the information about the
bath that is necessary for the calculation of spectra (both linear and
nonlinear) is contained in the correlation function of ĤSB(t),

Cn(t) =
∞
∑
k=1

ω2
kd2

k,nn⟨q̂k(t)q̂k(0)⟩. (18)

The correlation function can be determined from its corresponding
spectral density Cn(ω) (see, e.g., Ref. 23) as

Cn(t) =
1
π∫

∞

0
dω Cn(ω)

cosh(βTω/2 − iωt)
sinh(βTω/2)

, (19)

where βT =
1

kBT with kB being the Boltzmann constant and T
being the temperature. The spectral density may be modelled
straightforwardly with experimentally motivated parameters (see
Sec. III).

1. Full cumulant expansion (FCE)
Since the trace, TrB[⋅ ρ̂ eq

], amounts to the calculation of a sta-
tistical average, it is sensible to expand Eq. (17) in the cumulants of
ĤSB(t). Up to second order, such a cumulant expansion yields18

IA
(t) = e−iHSte−K(t) (20)

with

Kαβ(t) =
N

∑
δ=1
∫

t

0
dτ∫

τ

0
dτ′ eiωαδτ−iωβδτ′Cαδδβ(τ − τ′), (21)

where ωαδ = εα − εδ is the energy gap between excitons. If the energy
gap fluctuations on different molecules are independent and the
correlation functions of all the pigments have the same form [i.e.,
Cn(t) = C(t)∀ n], we may write

Cαδδβ(t) = γαδδβC(t), (22)

with γαδδβ =
N
∑

n=1
cnαcnδcnδcnβ.

It is important to note that the cumulant expansion is a nested
expansion; even though only the first two cumulants (mean and
variance) are included in the expressions above, the Taylor expan-
sion of exp(⋅) involves all orders of HSB. When a distribution is
fully described by its first two cumulants (as it is the case for a
Gaussian distribution), the cumulant expansion may be (but need
not be) exact.

2. Coherent time-dependent Redfield theory (ctR)
The calculation of Eq. (20) can be greatly simplified by mak-

ing the secular approximation and requiring the matrix elements
⟨α∣e−iĤ et

∣β⟩ to be zero for α ≠ β. The cumulant expansion then yields
for the absorption tensor16,19

IA
αβ(t) = δαβe−iεαt−gαααα(t)−ξα(t) (23)

with

gαααα(t) = ∫
t

0
dτ∫

τ

0
dτ′ Cαααα(τ′) (24)

and

ξα(t) =
N

∑
β≠α
∫

t

0
dτ∫

τ

0
dτ′ eiωαβτ′Cαββα(τ

′
). (25)

In Eq. (23), gαααα(t) describes pure dephasing, and the real part of
ξα(t) describes lifetime broadening (see Fig. S2 and the discussion
in Secs. IV A and IV B). The imaginary part of ξα(t) describes mod-
ulation of the exciton energies due to the coupling between exciton
states by the off-diagonal system–bath coupling elements.

3. Standard and modified Redfield theories
As stated in Sec. II C 2, the term ξα(t) in Eq. (23) accounts for

dephasing due to energy relaxation. The same effect can be achieved,
phenomenologically, by substituting ξα(t) with Rαt for Rα a time-
independent rate constant calculated as

Rα =
1
2∑β≠α

Rβα, (26)

where Rβα is calculated using standard time-independent Redfield
theory,17

RsR
βα = 2Re∫

∞

0
dt eiωαβtCαββα(t), (27)

or time-independent modified Redfield theory,24

RmR
βα = 2Re∫

∞

0
dt eiωαβt exp(−gββββ(t) − gαααα(t) + gααββ(t)

+ gββαα(t) − 2i(λαααα − λββαα)t)

× (Cβααβ(t) − [ġαβββ(t) − ġαβαα(t) − 2iλαβαα]

× [ġβββα(t) − ġααβα(t) − 2iλβααα]), (28)

with λαβγδ = ∑
N
n=1 cnαcnβcnγcnδλ analogous to Eq. (22). The reor-

ganization energy can be calculated from the spectral density as
λ = ∫

∞
−∞

dω
2πω C(ω).

Note that the upper limit of integration in Eqs. (27) and (28)
is t →∞, and these expressions, therefore, describe the Markovian
long-time Redfield and modified Redfield rates.

As in Sec. II C 2, the secular approximation was invoked in
the derivation of the Redfield and modified Redfield rates above. It
is well known that the non-secular Redfield relaxation tensor may
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lead to positivity breakdown in the excited state population dynam-
ics, while the secular form in Eq. (27) (as the so-called Lindbladian)
yields strictly positive populations. When calculating linear spec-
tra, the non-positivity may not be problematic, since the coherence
block of the density matrix, which takes part in the evaluation of
the linear spectra, evolves independently of the block of excited state
dynamics. Although often quantitatively incorrect, the non-secular
Redfield rates shows the right qualitative behavior in describing non-
secular effects in the linear spectra.25 The secular approximation
may significantly decrease the size of the computational problem,
especially for large pigment aggregates, however, and is therefore
used in this study.

The Redfield rate in Eq. (27) is a purely real quantity, while the
corresponding ctR term in Eq. (25) is complex. The latter was first
derived from the Partial Ordering Prescription (POP) in Ref. 16. By
application of the Markov approximation to the ctR expression, a
complex time-independent quantity

RPOP
βα = RsR

βα + iRimag
βα (29)

is found,16 from which ξα(t) can be calculated via Eq. (26).
The imaginary contribution to RPOP

βα can be obtained from a
Kramers–Kronig relation with the real Redfield rate as

Rimag
βα = γαββα ⋅

1
π
P
∞

∫
−∞

dω
RsR
(ω)

ωαβ − ω
, (30)

with RsR
(ω) = 2Re∫

∞
0 dt eiωtC(t), analogous to Eq. (27), and P(⋅)

denoting the Cauchy principal value. In this article, we will call this
complex extension to the Redfield method the time-independent
POP method.

4. Exact stochastic path integral evaluation (PI)
It may well be impossible to find an exact closed expression

for the absorption tensor. Exact calculations can, however, be per-
formed by Monte Carlo path integration.15 In this method, Eq. (17)
is considered as the average (indicated by TrB[⋅]) of many solutions
of the equation

d
dt

ρA
(t) = −i(ĤS +

∞
∑
n=1

ξn(t)∣n⟩⟨n∣)ρA
(t), (31)

subject to the initial condition ρA
(0) = Î, where Î is the identity oper-

ator in the system’s Hilbert space. In Eq. (31), ξn(t) is a stochastic
process conforming to the statistics of ĤSB(t), namely,

⟨ξm(t)ξn(t′)⟩ = δmnCn(t − t′),
⟨ξn(t)⟩ = 0.

(32)

The absorption tensor is calculated as the average of many stochastic
solutions of Eq. (31),

IA
(t) = ⟨ρA

(t)⟩ξ. (33)

As shown in Ref. 15, this average converges to the exact absorption
tensor as the number of stochastic trajectories increases to infinity.

III. METHODS
A. Molecular system

For the calculations in this study, we consider a molecular
dimer with a single electronic transition on each molecule. For
the sake of computational convenience, we subtract the energy of
the lower frequency electronic transition from the energies of the
excited states, which amounts to applying the so-called Rotating
Wave Approximation (RWA). This allows us to reduce the problem
to just the treatment of the excited state block of the Hamiltonian,
which then takes the form

HS =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ϵ J

J 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (34)

where ϵ is the site basis energy gap between the electronic transitions
on the two molecules of the dimer, and J is their resonance coupling.

The exact method of stochastic path integration (PI; see
Sec. II C 4) is significantly more tractable for the calculation of linear
spectra than using the Hierarchical Equations of Motion (HEOM),
as was done in earlier works.14,19 Nevertheless, the convergence of PI
calculations slows precipitously as more high-frequency modes are
added to the bath. In order for PI convergence to be sufficient, as
well as for our conclusions to be valid for real systems, we describe
the bath by a spectral density with contributions from a continuum
of phonon modes and eight intramolecular vibrations. We assume
that all the pigment molecules have the same correlation function.
The low-frequency phonon contribution is modeled as a quantum
Brownian oscillator with parameters used in earlier studies,6,26

Cph(ω) = 2λph
ωγph

ω2 + γ2
ph

, (35)

with the reorganization energy λph = 40 cm−1 and spectral width
γph = 40 cm−1. The high-frequency part of the spectral density is
implemented as the sum of underdamped modes20 with parameters
of the first eight high-frequency modes of the plant light-harvesting
complex LHCII27 (see Table I), which are predominantly due to
chlorophyll a vibrations of the lowest-energy exciton

Chf(ω) =
8

∑
i=1

ωi∣ωi∣Siγi

2((∣ω∣ − ωi)2 + (
γi
2 )

2
)

, (36)

with γi = 6 cm−1
∀ i, and the central frequencies (ωi) and

Huang–Rhys factors (Si) given in Table I.

B. Evaluation of spectra
We evaluated approximate spectra by comparing them to the

exact spectra determined from PI using the quality factor defined by
Gelzinis et al.19 as a measure of the correctness of an approximate
spectrum,

Q = ∫
∞
−∞dω(SPI

(ω) ∩ Sapproximate
(ω))

∫
∞
−∞dω(SPI(ω) ∪ Sapproximate(ω))

, (37)

where SPI and Sapproximate are the normalized spectra obtained from
PI and an approximate method, respectively. In Eq. (37), ∩ and ∪
denote the intersection and union of spectra, respectively.
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TABLE I. Central frequency ω and Huang–Rhys factor S for each of the underdamped modes used in this study. These modes
correspond to the first eight high-frequency modes of LHCII as determined from fluorescence line-narrowing spectra.27 The
Huang–Rhys factors were scaled by a factor of 0.8 to better fit experimental spectra.6

ωi (cm−1) 97 138 213 260 298 342 388 425
Si 0.0192 0.0230 0.0240 0.0214 0.0214 0.0483 0.0199 0.0119

C. Dipole factors
All the absorption-type spectra (OD, LD, and CD) can be

obtained from the absorption tensor IA
(t) by element-wise mul-

tiplication with the relevant symmetrical dipole factor matrix fmn
[see Eqs. (13)–(15)]. Since the spectra were normalized when cal-
culating quality, only the ratio of the dipole matrix elements is
important. For simplicity, we omitted the frequency and energy
prefactors in Eqs. (13) and (14) when calculating spectra. For the
most part, we consider the following four dipole factor matrices in
our calculations:

f 1,0
0,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, f 1,1
1,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1

1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

f 1,−1
−1,0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1

−1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, and f 0,1
1,0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1

1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(38)

where f 1,0
0,1 and f 1,1

1,1 correspond to absorption spectra when the two
dipole moments of the dimer have equal strength and are orthogo-
nal and parallel to each other, respectively, f 1,−1

−1,0 corresponds to an
LD spectrum with μ1 a unit vector orthogonal to the LD axis (see
Appendix A), μ2 at the magic angle (54.7○) relative to the LD axis,
and μ1 ⋅ μ2 = −1, and f 0,1

1,0 is the dipole factor for CD.
Note that the secular approximation is almost fully valid for

the dipole factor f 1,0
0,1, for which Eq. (13) amounts to a trace over

the (Fourier-transformed) absorption tensor. The trace is basis-
independent and therefore depends only on the diagonal elements of
the secular absorption tensor in the exciton basis. Transfer between
these diagonal tensor elements is calculated secularly for the ctR,
Redfield, and modified Redfield methods but corresponds very well
with interdiagonal transfer for the nonsecular FCE method, as
shown in Sec. IV B.

D. Numerical implementation for the calculation
of absorption tensors

To incorporate inhomogeneous disorder, site energies were
drawn independently from a normal distribution with a FWHM of
140 cm−1 (a value that is often used in literature for light-harvesting
complexes28–30) and centered on the applicable energies. An ensem-
ble size of 5000 was used for disordered calculations of approximate
spectra.

For the PI method, disorder sampling commutes with Monte
Carlo integration.15 The noise trajectories [ξn(t) in Eq. (31)] were
calculated using the procedure described by Moix et al.,15 and
the stochastic integration was performed in the site basis with the
second-order weak technique described in Appendix B. We found
the second-order weak technique significantly more accurate than

the first-order strong Milstein method. Weak and strong approx-
imations guarantee convergence of the statistical moments and of
individual trajectories, respectively, to a certain order—see Kloeden
and Platen31 for an extensive discussion of stochastic differential
equations and their solution.

For a harmonic bath and linear system–bath coupling (see
Sec. II C 4), spectra calculated with the PI method converge to the
exact spectra. To ensure that convergence was sufficient, two inde-
pendent PI calculations were performed for each parameter set in
Sec. IV, and the relative quality of the two obtained spectra was
determined by substituting one of the spectra for Sapproximate and the
other for SPI in Eq. (37). The results of this convergence test are
shown in Figs. S11 and S12. The independent calculations agreed
within ∼1%, ∼1.5%, and ∼2% for absorption, LD, and CD spectra,
respectively, with convergence being least optimal for small cou-
plings. Since both of the independent calculations deviated from
the exact spectrum, the true convergence is expected to be bet-
ter than that shown in Figs. S11 and S12. The trends identified in
Sec. IV occur on quality scales much larger than the expected devi-
ation of the PI spectra from the true spectra, and these trends are
therefore statistically significant. The calculated tensors were visu-
ally inspected and truncated when decay was almost complete (at
about 180 and 270 fs for calculations at 300 and 100 K, respectively).
The approximate tensors were truncated at the same time points and
all signals were subsequently zero-padded before calculating spectra
by Fourier transformation [see Eq. (13)].

Although Eqs. (20) and (21) can be used to calculate the FCE
absorption tensor directly, we used the computationally less expen-
sive approach introduced and discussed in Ref. 21. We summarize
this approach briefly below. For our dimer system, Eq. (21) can be
written as

Kαβ(t) =
2

∑
δ=1

2

∑
n=1

Xαδ
n Xδβ

n Fαδβ(t) (39)

with Xαδ
n = (cnα

)
∗cnδ and

Fαδβ(t) = ∫
t

0
dτ∫

τ

0
dτ′ eiωαδτ−iωβδτ′C(τ − τ′). (40)

By using integration by parts, Eq. (40) is reformulated as

Fαδβ(t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

tGαδ(t) −Hαδ(t) (ωαβ = 0),

eiωαβt

iωαβ
Gβδ(t) −

1
iωαβ

Gαδ(t) (ωαβ ≠ 0),
(41)

with Gβδ(t) = ∫
t

0 eiωβδτC(τ)dτ and Hαδ(t) = ∫
t

0 τeiωαδτC(τ)dτ. To use
the method above, we precalculated the integrals ∫

t
0 eiωτC(τ)dτ and
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∫
t

0 τeiωτC(τ)dτ for a grid of frequencies ω and time points t, mak-
ing sure that both time and frequency were sampled sufficiently (i.e.,
that a denser or more extended sampling did not yield significantly
different results). We then interpolated these integrals in ω to calcu-
late the absorption tensor for each realization of the disorder. The
time points were chosen such that the frequency axis of the Fourier
transformation allowed the representation of the full spectrum. The
ctR, Redfield, modified Redfield, and independent POP calculations
were performed by evaluating Eq. (23) with ξα(t) calculated from
Eqs. (25) and (27)–(29), respectively, with α, β ∈ {1, 2}. The integrals
in Eqs. (24), (25), and (27) were precalculated in a similar fashion as
described above for FCE. The approximate absorption tensors were
calculated in the exciton basis and then transformed to the site basis
using the transformation

Isite
(t) = ΛIex

(t)Λ†, (42)

with Λnα = cnα and (⋅)† denoting Hermitian conjugation.

IV. RESULTS AND DISCUSSION
A. Dependence of spectral quality on site energy
gap and excitonic coupling

In order to determine the accuracy of the approximate methods
for different Hamiltonians, we varied ϵ and J in Eq. (34) indepen-
dently in the ranges [0, 500] and [−55, 55] cm−1, respectively. The
obtained qualities for inhomogeneously broadened absorption-type
spectra are shown in Fig. 1 for different dipole factors at 300 K.
Spectra of selected coupling–energy gap pairs (indicated for the FCE
qualities in Fig. 1) are shown in Fig. 2.

It is clear from Fig. 1 that absorption-type spectra calculated
with FCE are more accurate than spectra calculated with any of
the other methods for the dipole factors in this figure. The quality
of these FCE spectra is practically independent of the site energy
gap and coupling, and spectra for systems with many pigments
(i.e., many different site energies and couplings) may therefore be
calculated with predictable quality.

In Sec. II C 1, we noted that the second-order cumulant expan-
sion may be exact when q̂(t) in Eq. (18) is a Gaussian process.
This expansion indeed leads to exact expressions in the case of a
monomeric system (or polymeric system with no interpigment cou-
pling), when the bath is harmonic and ĤSB is linear in system and
bath operators. Since all of the approximate methods were derived
using the second-order cumulant expansion, this perfect correspon-
dence can be seen in Figs. 1(a), 1(b), and 1(d) for all the methods
at zero coupling. The perfect agreement of spectra is also seen in
Fig. 2(b), where spectra for the different methods are shown for
the coupling–energy gap pair (0, 500) cm−1 and the dipole fac-
tor f 1,1

1,1. The case for the coupling being exactly zero is not shown
for CD qualities [Fig. 1(c)] since CD spectra are then identically
zero.

For an excitonically coupled system, the cumulant expansion is
exact for the treatment of fluctuations induced by the diagonal ele-
ments of the system–bath coupling Hamiltonian in the exciton basis.
It is not exact for fluctuations induced by the off-diagonal elements;
however, since the terms that depend on these elements also include
excitonic propagators eiωαβt [see Eqs. (24) and (25)].19 Despite the
second-order truncation, the FCE method is remarkably accurate for

the calculation of most spectra in the considered site energy gap and
coupling ranges, as seen in Figs. 1(a), 1(b), and 1(d). Only for the
CD spectrum [Fig. 1(c)], when the anti-diagonal dipole factor pre-
scribes significant inclusion of off-diagonal system–bath coupling
effects (see Sec. IV C), and the second-order truncation is therefore
least accurate, is the quality of FCE absorption-type spectra notably
worse than for the exact approach.

The secular approximation is made in the derivation of the ctR,
Redfield, and modified Redfield methods but not in the derivation
of the FCE method. In fact, this approximation is the only differ-
ence between the FCE and ctR methods. For secular methods, the
off-diagonal elements of the absorption tensor [Eq. (12)] are zero in
the exciton basis. The discrepancy in quality between FCE and ctR
spectra, therefore, depends on the contribution of these off-diagonal
(i.e., nonsecular) elements to the FCE spectra. The spectral contribu-
tion from the nonsecular elements depends on both the dipole factor
and the system–bath coupling Hamiltonian.

As discussed in Sec. III, the dipole factor f 1,0
0,1 corresponds to

the calculation of a nonsecular spectrum, also for secular methods.
The isolated effect of the dipole factor on the quality of absorption
spectra is seen in Figs. 1(a) and 1(b), where the secular approxi-
mation is fully valid for Fig. 1(a) (see Sec. III), while, for the same
dipole strengths, it is least accurate for Fig. 1(b). The dependence
of the spectra on the dipole factor also causes the poor quality of
the secular CD spectra seen in Fig. 1(c), since the CD dipole fac-
tor, f 0,1

1,0, corresponds poorly with f 1,0
0,1. A detailed discussion of the

dependence of spectral accuracy on the dipole factor is given in
Sec. IV C.

When the system–bath coupling is treated within the secular
approximation, it induces population relaxation but not transfer
between exciton populations and coherences, and the off-diagonal
elements of the secular absorption tensors therefore remain zero.
Such nonsecular transfer dynamics, when considered, would influ-
ence the exciton structure by changing the contribution of sites to
exciton states in a process called the dynamic localization of exci-
tons.32 For the FCE method, nonsecular contributions are due to
bath correlation functions of the form Cαβββ or Cαααβ. The factor
γαβββ defining these correlation functions [see Eq. (22)] is small for
small site energy gaps and weak couplings (Fig. S1), and for these
parameters the qualities of ctR spectra are therefore almost as high
as the qualities of FCE spectra [see Figs. 1(b) and 1(d)]. The qual-
ity of CD spectra calculated with the ctR method also corresponds
best with FCE qualities at small site energy gaps but (as discussed
in Sec. IV B) CD spectra depend strongly on nonsecular elements
when the coupling is weak, so that the ctR qualities differ signifi-
cantly from the FCE qualities for weak coupling. The high accuracy
of the secular approximation for small site energy gaps and weak
couplings is contrary to the expectation20,29 that the negative effects
of neglected dynamic localization on spectral quality are strongest
under these conditions. CD spectra calculated with the ctR, Redfield,
or modified Redfield methods are impacted considerably by both the
second-order truncation in the cumulant expansion and by the sec-
ular approximation, and their quality is poor for all site energy gaps
and couplings considered in Fig. 1.

The quality of absorption-type spectra calculated using the
Redfield method depends similarly on the site energy gap and cou-
pling as the quality of modified Redfield spectra. As shown in Fig. 1,
these methods yield spectra that are less accurate than FCE and
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FIG. 1. Dependence of the quality of absorption-type spectra on the site energy gap ϵ and coupling J at 300 K. Qualities are shown for the absorption dipole factors (a) f 1,0
0,1

and (b) f 1,1
1,1, (c) the CD dipole factor f 0,1

1,0, and (d) the LD dipole factor f 1,−1
−1,0. A disorder of σFWHM = 140 cm−1 was used for the calculation of spectra. The coupling–energy

gap pairs for which spectra are shown in Fig. 2 are indicated with red frames and the inscribed labels correspond with the respective labels in Fig. 2.

ctR spectra. The difference between the former pair of spectra and
ctR spectra (which serve as proxy for the more accurate spectra)
is most pronounced at small site energy gaps and strong coupling.
The reason for this difference is the energy shift and narrowing of
Redfield and modified Redfield spectra relative to ctR spectra, as
seen in Fig. 2(a) for the coupling–energy gap pair (55, 0) cm−1 and
dipole factor f 1,0

0,1. These spectral differences are due to the fact that
the Redfield and modified Redfield rates in Eqs. (27) and (28) are
real quantities, whereas the corresponding term, ξ(t), in Eq. (25) is
complex.19 Figure S2 shows the Redfield and long-time ctR rates that

were not corrected for pigment participation in excitons [i.e., γαββα
was set equal to 1 in Eq. (22)]. As seen in this figure, the imaginary
rate-induced energy splitting in ctR spectra increases with the differ-
ence between exciton energies (exciton gap) for small exciton gaps,
while the rate-induced spectral shift stays fairly constant at a value of
about 30 cm−1 [see Fig. S2 and Fig. 2(a)]. Although the rate-induced
splitting in ctR spectra decreases momentarily for exciton gaps larger
than about 35 cm−1, the disorder-averaged participation factor γαββα
increases with coupling strength for fixed energy (see Fig. S1),
and the resultant effect is the worsening of Redfield and modified
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FIG. 2. Absorption-type spectra for selected coupling–energy gap pairs and dipole
factors, as indicated in Fig. 1. Spectra are shown for the dipole factors and
coupling-energy pairs (a) f 1,0

0,1; (55, 0) cm−1, (b) f 1,1
1,1; (0, 500) cm−1, (c) f 0,1

1,0;

(−11, 500) cm−1, and (d) f 1,−1
−1,0; (±55, 220) cm−1. The same parameters were

used for the generation of spectra as were used in Fig. 1. The spectra for
the coupling–energy gap pairs (55, 220) and (−55, 220) cm−1 refer to points
d and d′, respectively, in Fig. 1.

Redfield qualities with increasing coupling strength, especially for
small site energy gaps. Note that the participation factor, γαββα, is a
noncontinuous function of coupling strength at zero site energy gap
when inhomogeneous disorder is not included (it has a value of 0
for zero coupling and 0.5 otherwise). When inhomogeneous disor-
der is accounted for realistically at small site energy gaps, however,
γαββα is a smooth function of the coupling strength, and the phe-
nomenological inclusion of dynamic localization in the theory20,29

is therefore not necessary to counteract excessive delocalization.
Based on the (already) good agreement between the secular ctR and
nonsecular FCE spectra at small site energy gaps, such attempts to
account for nonsecular effects will likely not improve the quality of
Redfield and modified Redfield spectra. Although the exciton gap
is largest for the largest values of the site energy gap and coupling
in Fig. 1, the excitons for these parameters are strongly localized
(as seen from the small values for γαββα in Fig. S1) and the popula-
tion transfer rates between excitons are therefore small. Figure 1(a)
shows that the qualities of Redfield and modified Redfield spectra
improve markedly with the magnitude of the site energy gap, due to
the diminishing contribution from population transfer rates. In con-
trast to the results of Gelzinis et al., the modified Redfield method
performs slightly better than the Redfield method for the parameters
considered in Fig. 1.

The qualities in Fig. 1 are generally symmetric in the cou-
pling between sites, but some asymmetries are apparent, the most
noticeable of which is the asymmetry between the coupling–energy
gap pairs (55, 220) and (−55, 220) cm−1 for the LD qualities in
Fig. 1(d). In Fig. 2(d), spectra from all the methods are shown for
the parameters (55, 220) cm−1, and the PI, FCE, and ctR spectra
are shown for the parameters (−55, 220) cm−1. Although the exci-
ton energies, pigment participations, (cnα

)
2 (but not cnα), and dipole

factor are the same for these two coupling–energy gap pairs, the
spectra differ significantly. As discussed in Sec. III, the dipole fac-
tor, f 1,−1

−1,0, used in Fig. 1(d) corresponds to an LD measurement
of a dimer in which the high-energy pigment is orthogonal to the
LD axis and the other pigment is at the magic angle with the
LD axis. For (−55, 220) cm−1, the high-energy exciton contributes
most intensely to the spectrum. For (55, 220) cm−1, however, the
spectral contribution is most intense for the exciton to which the
LD-forbidden low-energy pigment contributes predominantly. This
borrowing of excitation directly illustrates excitonic quantum super-
position between states of local excitation and shows the principle by
which forbidden transitions can be probed through their coupling
with allowed transitions. Notice that the secular spectra differ signif-
icantly from PI and FCE spectra for (55, 220) cm−1, which indicates
that nonsecular transfer effects are important when excitons cannot
be excited directly through interaction with light.

The dependence of the spectral quality on the site energy gap
and coupling at 100 K is qualitatively very similar to the dependence
shown in Fig. 1. An image plot of spectral qualities at 100 K, similar
to Fig. 1, is shown in Fig. S3.

B. Dependence of spectral quality on the excitonic
energy gap

For calculations in this section, the site energy gap was varied
for fixed values of the excitonic coupling. For each site energy gap,
the excitonic energy gap was calculated as the difference between
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exciton energies. Figure 3 shows the quality of inhomogeneously
broadened approximate absorption-type spectra as a function of the
excitonic energy gap at 300 K for J = 15 cm−1 (an average value
in antenna complexes of plants) and J = 100 cm−1 (a strong cou-
pling for these complexes). The high-frequency spectral density is
also included in these figures and was multiplied by a factor 1/ω2 so
that the peak heights of the underdamped modes are proportional
to their Huang–Rhys factors. As discussed in Sec. III, these under-
damped modes correspond to the first eight (from a total of 48)
high-frequency vibrations of LHCII, which are mostly due to
intramolecular vibrations in the chlorophyll a molecule. The sixth
vibrational mode has the largest Huang–Rhys factor of all the modes
of LHCII, and the spectral density considered in this article is there-
fore a good model of the system–bath coupling in a complex system
like LHCII.

It is clear from Fig. 3 that, at 300 K, the FCE method pro-
duces accurate spectra for moderate (J = 15 cm−1

) and strong
(J = 100 cm−1

) coupling for all of the considered dipole factors.
For moderate coupling, the ctR absorption and LD spectra of

which the qualities are shown in Figs. 3(a), 3(b), and 3(d) deviate
less than 4% from the exact spectra, and the quality of these spectra
is nearly constant over the range of exciton energy gaps considered
in Fig. 3.

The quality of Redfield and modified Redfield spectra corre-
sponds almost exactly with the quality of ctR spectra at excitonic
energy gaps larger than about 250 cm−1 for moderate coupling. As
discussed in Sec. IV A, the excitons are localized at large energy gaps
and differences between the rate calculations for these methods have
a negligible effect. For strong coupling, the difference in accuracy
between ctR spectra and Redfield-type spectra also decreases with
exciton gap, but is still present for large gaps in Fig. 3, since excitons
are not yet fully localized when the coupling is strong. The inaccu-
racy in the calculation of Redfield and modified Redfield spectra may
lead to their quality being incidentally better than for ctR spectra
[Figs. 3(c) and 3(d)].

The quality of absorption-type spectra at 100 K (Fig. S4)
depends similarly on the excitonic energy gap as the quality at 300 K,
although at 100 K, the Redfield and modified Redfield methods pro-
duce even poorer qualities for small exciton energy gaps than they
do at 300 K.

The quality of spectra calculated with zero disorder is shown in
Fig. S5 (for T = 100 K and J = 100 cm−1) and Fig. S6 (for T = 300 K
and J = 15 cm−1). For each coupling strength, the overall accuracy
of these spectra depends similarly on the excitonic energy gap as the
accuracy for inhomogeneously broadened spectra. For zero disorder,
however, spectra calculated with the Redfield method are signifi-
cantly less accurate than inhomogeneously broadened spectra when
the energy gap is resonant with intramolecular modes. No decrease
in accuracy around resonance frequencies is seen for any of the
other methods in Figs. S5 and S6. For the calculation of modified
Redfield rates, the Fourier-transformed correlation function is con-
voluted with the Fourier transform of several other time-dependent
functions [see Eq. (28)], and the accuracy, therefore, depends more
smoothly on the frequency. The sensitivity of Redfield spectra to
resonance agrees well with the results obtained by Gelzinis et al.,19

where the authors used a single intramolecular mode with reorgani-
zation energy λ = 15 cm−1, comparable to the reorganization energy
of ≈17 cm−1 of the sixth mode in our study. The insensitivity of

FIG. 3. Quality of absorption-type spectra at 300 K for excitonic coupling
J = 15 cm−1 (open markers) and J = 100 cm−1 (filled markers) as a function of
the excitonic energy gap. Qualities are shown for the absorption dipole factors (a)
f 1,0

0,1 and (b) f 1,1
1,1, (c) CD dipole factor f 0,1

1,0, and (d) LD dipole factor f 1,−1
−1,0. A dis-

order of σFWHM = 140 cm−1 was used for the calculation of spectra. Note that the
smallest possible excitonic energy gap equals 2J. The peak heights of the high-
frequency spectral density (black line) are proportional to the Huang–Rhys factors
of the intramolecular modes.
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modified Redfield qualities to resonance is in contrast to the small
but significant decrease in quality seen by Gelzinis et al. around
the resonance frequency in their study. When using a single-mode
spectral density with the parameters of Gelzinis et al., we found the
quality of modified Redfield spectra to indeed be lowest at reso-
nance (not shown), but the quality was less sensitive to the excitonic
energy gap than what was reported by Gelzinis et al., likely due to
the different forms used for the underdamped modes in our study
and theirs [compare Eq. (36) with Eq. (31) in their article19]. For the
full spectral density used in our study, the insensitivity of the mod-
ified Redfield quality to resonance with a particular underdamped
mode may be attributed to the convoluting influence of the other
modes.

As discussed in Sec. II C 3, the Redfield and modified Redfield
methods depend on the long-time rates—the integrands in Eqs. (27)
and (28) may persist for several picoseconds, especially at low tem-
perature. For the temperatures considered in this study, however,
the absorption tensor decays in a few hundred femtoseconds and the
short-time dynamics of population transfer are therefore important.
The necessity of accurately accounting for the short-time dynam-
ics is illustrated by the fact that the quality of spectra calculated
using the complex time-independent POP method (see Fig. S2
and the discussion below) is also strongly sensitive to resonance
with intramolecular modes (not shown). The non-Markovianity of
methods, and not merely the presence of imaginary contributions,
therefore helps to prevent sensitivity of spectra to resonance with
intramolecular modes.

Figure 3 shows the quality of spectra calculated using the
complex time-independent POP method (see Sec. II C 3). A sur-
prising observation is that this complex method generally performs
worse than its real counterpart—the Redfield method. As shown in
Fig. S9 for parallel dipole moments, the time-independent POP
method shifts the single-exciton Redfield spectrum uniformly,
whereas the complex rate contribution from non-Markovian meth-
ods (PI, FCE, and ctR) may broaden the spectrum without causing
a significant shift. From the time-independent POP qualities in
Fig. 3, it is clear that non-Markovianity of a method is crucial for its
accuracy.

The sensitivity of quality to resonance is significantly reduced
at 300 K and J = 15 cm−1 (Fig. S6), when the weaker coupling causes
localization already for small exciton gaps. When inhomogeneous
disorder is treated realistically, the accuracy of spectra is indepen-
dent of resonance with intramolecular modes and is therefore of
no concern for the calculation of disordered bulk absorption-type
spectra in plant light-harvesting complexes.

As discussed in Sec. IV A, correlation functions of the form
Cαβββ in Eq. (21) are zero for the site energy gap being zero (cor-
responding to the smallest exciton gap) and nonsecular effects are
therefore absent. For this reason, the ctR and FCE methods cor-
respond exactly for the smallest exciton gap when the disorder is
zero.

In the PC645 complex of cryptophyte algae33,34 and in the LH2
complex of purple bacteria,33,35 the interpigment coupling may be as
high as 320 and 560 cm−1, respectively, and extending our discussion
to very strong couplings is therefore useful. To that end, the qualities
for J = 100, 300, 500, and 750 cm−1 are shown in Fig. 4 as functions
of the excitonic energy gap for T = 300 K (notice that we used offsets
in qualities for J > 100 cm−1).

FIG. 4. Quality of absorption-type spectra at 300 K for excitonic coupling J = 100,
300, 500, and 750 cm−1 as a function of the excitonic energy gap. Qualities are
shown for the absorption dipole factors (a) f 1,0

0,1 and (b) f 1,1
1,1, (c) CD dipole factor

f 0,1
1,0, and (d) LD dipole factor f 1,−1

−1,0. A disorder of σFWHM = 140 cm−1 was used for
the calculation of spectra. Note that the smallest possible exciton gap equals 2J.
For clarity, an offset in quality of 0.1, 0.2, and 0.3 was used for J = 300, 500, and
750 cm−1, respectively. The quality of FCE spectra for the case J = 0 is shown as
black dotted lines and act as a reference. Since CD spectra are zero when J = 0,
FCE qualities are not shown for this case in panel (c).
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The dotted black lines in Fig. 4 indicate the quality of FCE spec-
tra for the case of zero coupling—which should correspond perfectly
with the (exact) PI spectrum. The slight deviation from Q = 1 at large
exciton gaps is due to an erroneous blue-shift and dampening of the
high-energy absorption peak of the PI spectra (not shown). The PI
calculations for Fig. 4 were performed by setting the average of the
two site energies to zero in a given calculation and correcting for
the energy shift afterward. When using the Hamiltonian in Eq. (34)
without this correction, the PI spectra differed by as much as 10%
from the exact (FCE, J = 0) spectra for large exciton gaps. We con-
firmed that this deviation is not due to incomplete convergence of
the Monte Carlo integration (not shown), but is likely due to the
inability of the second-order weak scheme (Appendix B) to handle
the fast oscillations in the absorption tensor for large exciton gaps.
The PI method, as presented in Sec. III, may therefore be inexact,
and its accuracy must be tested for other systems and parameter
ranges.

The FCE method performs well for all the strong couplings con-
sidered in Fig. 4. Only for the lowest exciton gap of J = 300 cm−1

is the quality somewhat worse than 95% [Fig. 4(b)]. For all the
approximate methods, the linear spectra tend to the exact spectra
with increasing excitonic gap, because the excitons become more
localized and therefore increasingly resemble the localized states of
the case J = 0. Another reason for the improvement in quality with
excitonic energy gap (applicable to all dipole factors, including that
of CD) is the diminishing contribution from the spectral density
discussed below.

As discussed in Sec. IV A, the FCE method is inexact due to
the contribution of excitonic propagators to the absorption tensor.
For a given exciton gap, the excitation delocalization scales with
the coupling strength, and the pigment participation factors γαββα
and γαβββ (with α ≠ β) therefore increase with coupling (see Fig. S1).
Since these factors are the coefficients of terms in Eq. (21) that con-
tain excitonic propagators, the FCE method becomes less accurate as
the excitonic coupling increases (when considering the same exciton
gaps). In this work, vibrational modes of energy larger than 425 cm−1

were omitted, and the spectral density, therefore, decays after this
frequency. Due to this decay, the exciton transfer rates (see Fig. S2)
also decrease, and with them the contribution from terms containing
propagators. For this reason, the FCE qualities in Fig. 4 may improve
with coupling for a given amount of delocalization [quantified by
γαββα in Eq. (22)] when the coupling is very large (J ≥ 300 cm−1

).
The other approximate methods show the same trend.

Compared to the variance in qualities for other methods, the
independence of FCE qualities allows this method to be used for
the calculation of absorption-type spectra with an almost constant,
predictable error (especially for the molecular parameters in plant
light-harvesting complexes).

For absorption-type spectra, the FCE method is equivalent to
the time-convolutionless (TCL2) quantum master equation.18 In
agreement with our results, Fetherholf and Berkelbach36 found the
latter method to be accurate for the calculation of absorption spectra
in a system with ϵ = 100 cm−1 and J = 100 cm−1. Strong coupling
to bath modes is outside the scope of this article, but the above-
mentioned authors found the TCL2 method (and therefore FCE) to
be accurate for Ohmic–Lorentz spectral densities with reorganiza-
tion energies as high as 150 cm−1, a range that includes the value of
40 cm−1 used for the low-frequency mode in this study.

Due to the near absence of nonsecular effects (vide supra), the
ctR spectra correspond very well with FCE spectra for the small-
est exciton gap and for the dipole factor f 1,0

0,1, but ctR and FCE
qualities may differ significantly for other dipole factors in Figs. 3
and 4—especially for the CD dipole factor and the LD dipole fac-
tor f 1,−1

−1,0 in panels (c) and (d). Due to the diminishing contribution
from nonsecular contributions, which contain excitonic propaga-
tors, with excitonic energy gap, the difference in quality between
FCE and ctR spectra decreases with coupling (for a given amount
of delocalization).

The CD spectra are produced by dynamics of the electronic
coherence between the ground state and delocalized excited states.
The more delocalized the excitons, the smaller the relative contri-
bution of nonsecular dynamics to the CD spectrum, and the more
accurately the spectrum can be calculated with a secular method. For
this reason, the ctR CD spectra in Figs. 3(c) and 4(c) have a higher
quality for small energy gaps or for strong coupling, in which case
the excitons are more delocalized, than for large gaps or moderate
coupling.

As discussed in Sec. IV A, the electronic transition on the
second pigment is LD-forbidden for the dipole factor f 1,−1

−1,0, and exci-
tons that are predominantly localized on this pigment contribute
to the LD spectrum mainly via transfer from other excitons. When
excitons are fully delocalized, such transfer occurs due to popula-
tion relaxation, as can be seen by comparing the coefficients for
population transfer γαββα and nonsecular transfer γαβββ in Fig. S1
for small site energy gaps. The ratio of γαβββ and γαββα increases
with energy gap, however, such that nonsecular transfer becomes
important for correctly describing the LD spectrum at large exci-
tonic energy gaps (until the spectra improve due to localization and
decay of the spectral density). Although nonsecular transfer causes
differences in quality between the ctR and FCE CD spectra, the exci-
tation delocalization is more important for determining the quality
of CD spectra.

Dinh and Renger37 used perturbation theory to derive first-
order non-secular and non-Markovian corrections α(1) to the Par-
tial Ordering Prescription (POP, see Sec. II C 3) for absorption
and CD spectra. From an application of these corrections to the
POP-spectra of the water-soluble chlorophyll-binding protein
(WSCP), they found the non-secular and non-Markovian correc-
tions to be small (on the order of a few percent of the overall signal).
They also found these corrections to act by transferring oscilla-
tor strength from the strong to the weak excitonic transitions for
absorption spectra, and by dampening the rotational strength of all
transitions for CD spectra. In Fig. S10, we show the absorption spec-
trum for the dipole factor f 1,1

1,1 with J = 100 cm−1 and ϵ = 300 cm−1

(the same site energy gap and coupling used in Fig. 5 of Ref. 37).
In contrast to their results, the non-Markovian and non-secular
methods (PI and FCE) produced absorption spectra in which the
weaker transition has a smaller oscillator strength than in the sec-
ular or Markovian spectra. We also found the FCE CD spectra
(not shown) to have slightly stronger rotational strength for all tran-
sitions compared to the secular or Markovian spectra. The source of
the discrepancy between our results and their predictions would be
found through a careful theoretical investigation, which is beyond
the scope of this work. Notice, however, that the time-independent
POP spectra in Fig. 3 may differ by almost 25% from the FCE spec-
tra. The assumption made in Ref. 37 that the corrections are to be
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small and perturbation theory valid, may therefore not hold for the
spectral density considered in our work—especially given the large
erroneous spectral shifts seen in the time-independent POP-spectra
as discussed above.

The quality of FCE spectra is shown in Fig. S13 as a function of
the excitonic energy gap for the case of equal site energies (i.e., J was
varied with ϵ = 0). The quality worsens (by about 5% for f 1,0

0,1) with
excitonic energy gap up to about 470 cm−1 and thereafter improves
at approximately the same rate as it worsened. Since excitons are
maximally delocalized for such a system, the improvement of qual-
ity due to localization at large excitonic energy gaps is precluded,
and the observed improvement is due to the diminishing contri-
butions from the spectral density. From the initial worsening of
quality—while the spectral density was large—we conclude that the
quality of FCE (and by extension the other techniques) may worsen
as more modes are considered in the spectral density.

C. Dependence of spectral quality
on the dipole factor

In Secs. IV A and IV B, qualities and spectra were shown for
four dipole factor matrices. In this section, we determine the depen-
dence of the quality of absorption-type spectra on a generalized
dipole factor.

To calculate the quality of approximate spectra, we normal-
ized the spectra to their absolute maxima. Only the ratios of the
dipole factor matrix elements in Eq. (13) are therefore important.
Figures 5(a) and 5(b) show the quality of absorption-type spectra
for J = 15 and 100 cm−1, respectively, at 300 K as a function of the
off-diagonal and diagonal element of the (bottom-right normalized)
dipole factor matrix

f f11 , f12
f12 , 1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

f11 f12

f12 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (43)

This normalization can only be performed when the bottom
right element of the dipole factor matrix is nonzero. For this reason,
the dipole factor for CD, f 0,1

1,0, and the dipole factor for LD—with the
dipole moment of the second pigment at the magic angle relative to
the LD axis— f 1,−1

−1,0, are both mapped to f12 → ±∞.
The assessments of the accuracy for the different methods made

in Secs. IV A and IV B are evident in Fig. 5. The quality of FCE spec-
tra is high for all dipole factors but is best when the magnitude of the
diagonal element of the dipole factor is large compared to that of the
off-diagonal elements. For moderate coupling [Fig. 5(a)], the qual-
ity of ctR spectra is also high for dipole factors in the same ranges,
but it is significantly worse than the quality of FCE spectra when
the magnitudes of the off-diagonal elements of the dipole factor
are large. For strong coupling, dipole factors with large off-diagonal
magnitudes produce more accurate ctR spectra than they do for
moderate coupling. The reasons for the last two observations were
discussed in Sec. IV B for CD spectra, for which the off-diagonal
elements are infinitely large compared to the diagonal elements. The
ctR method performs as good as FCE for the dipole factor f 1,0

0,1, but its
accuracy (and hence the accuracy of the secular approximation) for
other dipole factors depends on the coupling strength. For moder-
ate coupling, nonsecular transfer is weaker than for strong coupling,

and the secular approximation is valid for a broader range of off-
diagonal dipole factor elements. When the coupling is strong, the
spectral quality for some LD dipole factors is worse than for CD
dipole factors, and the quality depends nontrivially on the dipole fac-
tor. The accuracy of the secular approximation, as a function of the
dipole factor, can be modeled straightforwardly by considering the
transformation of a time-independent matrix that summarizes the
absorption tensor. Such a model is shown in Fig. S7 for the exci-
ton gaps 101 cm−1

(J = 15 cm−1
) and 297 cm−1

(J = 100 cm−1
)

and corresponds well with the ctR qualities in Fig. 5. Notice that
the FCE qualities show a similar dependence on the dipole factor
as ctR (albeit with less sensitivity) and as the expected accuracy of
the secular approximation (Fig. S7). This dependence is explained
by noting that the diagonal elements of the exciton-basis absorp-
tion tensor contains terms for which the second-order cumulant
expansion is exact [Eq. (24)] together with inexact terms that contain
excitonic propagators [Eq. (25)], whereas the off-diagonal elements
only contain terms with propagators. For spectra with strong rela-
tive contribution from the diagonal tensor elements (i.e., spectra for
which the secular approximation performs well), the relative contri-
bution of the terms with excitonic propagators is smallest, and the
FCE method, therefore, performs the best.

The quality of Redfield and modified Redfield spectra depends
similarly on the dipole factor as the ctR spectra for the exciton energy
gaps shown in Fig. 5, but these techniques perform worse than ctR
for all dipole factors.

At the smallest possible excitonic energy gap (30 cm−1 for
J = 15 cm−1 and 200 cm−1 for J = 100 cm−1), the quality of
absorption-type spectra is nearly zero for the dipole factor
( f11, f12) = (−1, 0). For this dipole factor, the LD spectrum is close
to zero and the error in the stochastic integration is large—and
the quality factor is therefore meaningless. Note that many of the
LD dipole factors of CP29 correspond with ( f11, f12) = (−1, 0) and
therefore may contribute little to the total LD spectrum.

At the energy gap of 101 cm−1 for J = 15 cm−1 and the dipole
factor characterized by ( f11, f12) = (−1, 3), the FCE and PI spectra
contain clear vibronic contributions (as shown in Fig. S8), which
are absent in the results of the secular methods. Due to the strong
vibronic contribution, the FCE and PI spectra agree qualitatively
well with each other but differ significantly from the other spectra,
which is the cause for the poor quality produced by the ctR, Redfield,
and modified Redfield methods.

For moderate coupling, almost all of the absorption and LD
dipole factors of the light-harvesting complex CP29 lie in the domain
for which the FCE and ctR methods are accurate (as determined
for the dimer considered in this study). As discussed above, the
CD spectra deviate significantly from the exact spectra. Note, how-
ever, that contribution from the intrinsic CD strength of pigment
molecules38 may cause significant differences between experimental
spectra and exact spectra calculated from the excitonic contribution
alone. For this reason, the use of accurate methods for the calcula-
tion of CD spectra may not be worth their cost. For strong coupling,
LD contributions from many of the pigment pairs in CP29 may be
considerably impacted by the poor performance of the secular meth-
ods. Given the similar dipole strengths of the chlorophyll pigments
in other light-harvesting complexes, and the fact that the dipole
vectors in CP29 do not have a particular ordered arrangement,
the secular LD spectra of light-harvesting complexes that contain
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FIG. 5. Quality of absorption-type spec-
tra at 300 K as a function of the dipole
factor f f11 , f12

f12 , 1 at the excitation energy

gaps indicated for (a) J = 15 cm−1 and
(b) J = 100 cm−1. The other parameters
are the same as for the calculations for
Fig. 3. The dipole factors for LD and OD
spectra of CP29 are indicated by red and
green dots, respectively, and were cal-
culated from the PDB structure 5xnl.pdb
using a dipole strength of 13.96 D2 for
Chl a as in Ref. 26.

strongly coupled pigments may, in general, correspond poorly to
exact spectra.

In photosynthetic light-harvesting complexes, the average delo-
calization length varies from slightly more than one pigment for the
PCE545 complex of cryptophytes39 to seven or eight pigments in
the circularly symmetrical bacterial complexes LH1 and LH240 and
the chlorosome antenna of green sulfur bacteria.41 The delocaliza-
tion length in CP29 is estimated to be two to four pigments.29

The qualities at the smallest and largest energy gaps in either
Figs. 5(a) or 5(b) represent the cases for delocalized and predom-
inantly localized excitons in a dimer, respectively. Based on the

similarity between the dependence of these qualities on the dipole
factor for FCE, we conclude that the results of this study will likely
extend to aggregates with multiple pigments and that the FCE
method may therefore be applied to calculate accurate absorption-
type spectra of aggregates with multiple pigments, irrespective of the
coupling between pigments. The same reasoning may be applied to
the ctR method, and absorption and LD spectra may therefore likely
be calculated qualitatively accurately with the ctR method when all
the pigments in a pigment aggregate are moderately coupled (i.e.,
with couplings on the order of 15 cm−1). For strong coupling, the
spectral quality of ctR differs significantly in its dependence on the
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dipole factor for localized and delocalized excitons, and extension of
results in this study to the case for multiple pigments is not straight-
forward. Based on the dependence of accuracy on the dipole factor
for intermediate delocalized states (297 cm−1

), however, LD spectra
for partially localized states in multipigment aggregates may have
poor quality.

V. CONCLUSION
In this study, we assessed the accuracy of approximate lin-

ear absorption-type spectra calculated with the FCE, ctR, Redfield,
and modified Redfield methods. We used a pigment dimer as a
model system and considered a realistic model spectral density for
photosynthetic light-harvesting complexes in plants. We included
inhomogeneous disorder and calculated the accuracy of spectra at
300 and 100 K. Among the approximate methods considered in this
study, FCE performs best for the calculation of all types of linear
spectra for all molecular parameters and at all temperatures. This
method is most accurate for absorption spectra and least accurate
for CD spectra. However, for the latter, it is still about 95% accu-
rate. The ctR method performs well for the calculation of absorption
and LD spectra when the interpigment coupling is moderately large
(∼15 cm−1

) but performs poorly for the calculation of CD spec-
tra for moderate coupling. Spectra calculated with the ctR method
are generally of much lower quality when strong interpigment cou-
pling is present, but absorption spectra are still at least 93% accurate
(for the parameters in this study). When strong coupling is present,
ctR LD spectra may be of lower quality than CD spectra, and the
spectra calculated with both of these techniques may differ more
than 15% from the exact spectra. The Redfield and modified Red-
field methods perform worse than the ctR method under nearly all
circumstances and most notably when the coupling between pig-
ment molecules is strong or the difference between site energies
is small, and should not be used if a more accurate method is
available. Non-Markovianity is very important for the accuracy of
methods, and augmenting the Redfield rates with imaginary, but
time-independent and Markovian, contributions generally degrades
its performance. For the weak system–bath coupling in the light-
harvesting complexes of plants, the quality of approximate spectra
is not sensitive to resonance of the exciton gap with intramolecular
modes when inhomogeneous disorder is included realistically, and
the spectral accuracy is nearly independent of the temperature.

Future work may focus on quantitatively extending the results
in this study to pigment aggregates with more than two pig-
ment molecules, especially when strong interpigment coupling is
present and on determining the dependence of spectral quality for
fluorescence spectra calculated with these methods.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional figures.
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APPENDIX A: DIPOLE FACTOR FOR LINEAR
DICHROISM OF DISK-SHAPED COMPLEXES

An LD spectrum is the difference between absorption spectra
measured for two light beams with mutually perpendicular polariza-
tion vectors. For a beam propagating in the (Cartesian) ŷ direction,
the LD spectrum is

ILD
(ω) = IA

z (ω) − IA
x (ω), (A1)

where x and z indicates the polarization of the light used to
illuminate the sample. LD spectra of small molecules are often
measured by means of gel compression. For this technique, com-
plexes are dissolved in a polyacrylamide solvent, which forms a
gel.42 The gel is then compressed along the x̂ and ŷ dimensions
by a factor k ∈ (0, 1) and allowed to expand along the ẑ dimen-
sion. The LD spectrum [Eq. (A1)] is measured in the compressed
state.

To derive the dipole factor f μ,LD
mn in Eq. (15), we perform the

following mental experiment. We consider a small macroscopic
volume V of the uncompressed gel containing many disk-shaped
complexes, each with N pigments. The complexes are randomly ori-
ented and therefore produce no LD signal. Without changing their
orientations, we take all the complexes in V and arrange them on
the surface of a sphere that fits within V , such that the normal vec-
tors to the disks (which we assume can be assigned unambiguously)
point radially outward. Since we measure the far-field LD spectrum,
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no signal is produced from this arrangement. We then compress
the gel. The complexes now lie on the surface of an ellipsoid of
which we can determine the geometry from the compression fac-
tor k. For this arrangement, the LD signal is nonzero. We now place
the complexes at their original positions on the surface of the sphere,
again without changing their orientations. While the complexes are
spaced uniformly on the surface of the sphere, their normal vectors
do not point radially outward. Instead, in spherical coordinates, the
zenith angle β for the normal vectors can be expressed in terms of
the zenith angle ϕ of their position vectors (which do point radially
outward) as

β =
π
2
− tan−1

(k tan(
π
2
− ϕ)). (A2)

Now consider the dipole moment of pigment m, μm that makes
an angle α with the normal vector of its disk. Since the molecules
were randomly oriented originally, the many dipoles μm at any
coarse-grained position on the spherical surface, populate a cone.
For the complexes on the pole (ϕ = β = 0), the dipole cone is
parameterized as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

μm,x

μm,y

μm,z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ∣μm∣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sin α cos t

sin α sin t

cos α

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t ∈ (0, 2π). (A3)

In general, for a disk normal vector pointing in the spherical
angular direction (β, γ), the parameterized dipole cone is deter-
mined from Eq. (A3) by consecutive Euler rotations as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

μm,x

μm,y

μm,z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ∣μm∣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos γ(cos β sin α cos t + sin β cos α) − sin γ sin α sin t

sin γ(cos β sin α cos t + sin β cos α) + cos γ sin α sin t

− sin β sin α cos t + cos β cos α

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A4)

We can now calculate the LD dipole factor by performing
a surface integral over the surface of the sphere (over which the
complexes are uniformly distributed). We also integrate over the
coordinate t that parameterizes the dipole cone around the disk
normal,

f μ,LD
mn = ∫

2π

0
dt∫

2π

0
dγ∫

π

0
dϕ [μm,zμn,z − μm,xμn,x] sin ϕ. (A5)

By using the parameterization of Eq. (A4) and a result from Eq. (A2),

cos β =
k cot ϕ

√
k2 cot2 ϕ + 1

, (A6)

we obtain (after some algebra and online integral calculation)

f μ,LD
mn = π2Lk(μm ⋅ μn − 3∣μm∥μn∣ cos αm cos αn) (A7)

with

Lk = ∫

π

0
dϕ (1 − 3 cos2 β) sin ϕ

= −4 −
3(1 − u2

) ln( 1+u
1−u) − 6u

u3 , (A8)

where u =
√

1 − k2. In general, one is interested only in the relative
intensity of the LD spectrum, and we simply define

f μ,LD
mn = μm ⋅ μn − 3∣μm∥μn∣ cos αm cos αn. (A9)

APPENDIX B: SECOND-ORDER WEAK SCHEME

The explicit order 2 weak scheme that we use to propagate the
stochastic matrices can be derived by a straightforward but some-
what tedious calculation from the vector expressions in Chap. 15 of
Kloeden and Platen,31

ρi = [I +
1
2

Δ − (ΔH + ΔΞi−1) ⋅ (iI +
1
2

ΔH +
1
2

ΔΞi−1)]ρi−1, (B1)

where, for a given discretization, I is the identity matrix, Δ = δtI, and
Ξi−1 is a diagonal matrix with ξn,i−1 on the nth diagonal position. In
Eq. (B1), (⋅) denotes matrix multiplication.
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