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Abstract: This comment discusses the benefits of representing and reusing the information in Electronic Health Record 

databases as knowledge graphs in the RDF format based on the FHIR RDF specification. As a structured representation of 

clinical data, FHIR RDF-based electronic health records allow a simpler and more effective integration of biomedical 

information using semantic alignment, queries, interoperability, and federation to provide better support for health practice 

and research. 
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Comment 

We have recently read with a lot of interest the work of Xiao et al. about using the FHIR RDF 

specification to develop structured electronic health records (structured EHRs) (Xiao, et al., 2022). It 

was interesting to see FHIR RDF as a standard ontology that allows the structured representation of 

clinical information and consequently enables the validation of biomedical data using shape-based 

methods and logical constraints (Prud'Hommeaux, et al., 2021) and the reasoning over clinical 

knowledge using machine learning algorithms as well as SPARQL as a query language (Xiao, et al., 

2022). It was also important to see how external resources, particularly the OMOP Vocabulary 

concepts, are used to describe clinical information about patients (Xiao, et al., 2022). However, there 

are multiple motivations for the development of electronic health records as knowledge graphs in the 

Resource Description Framework (RDF) format that have not been highlighted in this research work 

and that can solve several major challenges related to clinical practice. These motivations imply clinical 

data federation, analysis, and interoperability. 

Structured EHRs can be easily federated with other biomedical knowledge resources, particularly open 

knowledge graphs like Wikidata (Turki, et al., 2022a) and Open Biomedical Ontologies (Konopka, 2015). 

As biomedical knowledge resources include background knowledge for clinical research and practice, 

they can be easily mirrored and then reused to drive evidence-based clinical decisions for patient 

management, including disease diagnosis and prognosis, risk factor identification, medical 

prescription, and drug interaction identification (Callahan, Tripodi, Pielke-Lombardo, & Hunter, 2020). 

External identifiers of diseases, symptoms, and drugs in open knowledge graphs like Wikidata can be 

very useful to identify resources related to the condition of the patients: just like relevant publications  

can be found in bibliographic databases like PubMed (Turki, et al., 2022b), records about other 

concepts resources like datasets, software, cell lines, biomarkers or ontologies can be located in 

biomedical databases like Orphanet (Ito, et al., 2015) and online encyclopedias like Wikipedia (Turki, 
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et al., 2022a). This will permit easier access to medical information by health practitioners and facilitate 

medical education for patients, medical students and the general public. The use of more specialized 

systems like QR codes (Diazgranados & Funk, 2013) or text-to-speech systems (Baumann, Köhn, & 

Hennig, 2019) can facilitate access to biomedical knowledge for specific demographics, e.g. illiterate 

or disabled patients1. Another advantage of reusing concepts from other knowledge resources is that 

these items can be easily aligned to a multilingual ontology or knowledge graph, particularly Wikidata, 

and then translated into multiple languages (Turki, et al., 2022a; Rasberry, et al., 2022), allowing the 

easy reuse of electronic health records across countries, especially when important clinical capacities 

are found abroad. 

Furthermore, the SPARQL endpoint of structured EHRs is not only used for the identification of patients 

having a particular characteristic (Xiao, et al., 2022) and the validation of biomedical data (Turki, et al., 

2022c) but also for increasing the automation of health management and scholarly research. This is 

possible thanks to the development of specific SPARQL queries that provide insights from the EHR 

database and then to the embedding of the results of the queries into a dashboard (Turki, et al., 2022a). 

These dashboards can cover hospital administration, epidemiology, and clinical trial monitoring and 

are automatically updated as the electronic health records are enriched (Turki, et al., 2022a). The 

results of the dashboards can be visualized in a variety of layouts including bar charts, graphs, pie 

charts, and tables, and finally discussed through a federated SPARQL query that compares the 

outcomes of the real-time analysis with the findings of related scholarly publications as retrieved from 

the Open Research Knowledge Graph, a large-scale ontological database providing a structured 

representation of the outputs of research papers (Jaradeh, et al., 2019). 

Moreover, as a standard for the data modeling of patient clinical information, FHIR RDF also enhances 

system interoperability (Girardi, De Gennaro, Colizzi, & Convertini, 2020). Such an interaction between 

FHIR RDF and other systems can be ensured using a distributed architecture, particularly Blockchain, 

for data security purposes (Girardi, De Gennaro, Colizzi, & Convertini, 2020). Interoperability involves 

the alignment between EHR systems so that any electronic health record can be readable by any EHR 

software (Saripalle, Runyan, & Russell, 2019). This will favor the exchange of clinical information 

between stakeholders for better and quicker support for patients when they are located outside their 

home region or when advanced clinical advice is required from medical scientists located elsewhere. 

Interoperability includes the alignment between the properties of electronic health records and the 

outputs of medical Internet of Things devices such as laboratory equipment, health monitoring 

systems, radiology instruments, electrocardiographs, and electroencephalographs (Girardi, De 

Gennaro, Colizzi, & Convertini, 2020). This clears the way for the automatic enrichment of electronic 

health records by the results of examinations, allowing a multimodal analysis of digital information for 

a better characterization of diseases using machine learning techniques (Huang, Pareek, Seyyedi, 

Banerjee, & Lungren, 2020). 

To sum up, shifting to the use of electronic health records in RDF format driven by semantic resources 

can be a huge leap into the beginning of a new category of sustainable and explainable artificial 

intelligence for clinical practice that benefits not only from the latest advances in machine learning but 

also on semantic web technologies for healthcare data integration and reasoning. That is why we invite 

the biomedical informatics community to explore in more breadth and depth the integration of FHIR 

RDFs specification into further development of EHR systems. 

 
1 An example is Sawtpedia (http://sawtpedia.wiki) generating a QR code that redirects to the audio 

transcription or the text-to-speech output of the Wikipedia page about a particular entity in the user language. 
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