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Cette note fait suite à une communication présentée lors des 1846es journées de la Société d’Anthropologie de Paris 

dans le cadre de la session “Humanité(s) : définition(s), diversités et limites”

Abstract – This contribution is a short review of the func-

tional significance of the patella in extant catarrhines and 
extinct hominins and of current functional, adaptive and evo-

lutionary-related questions concerning the fossil hominin 

record. The patella plays a key functional role in the knee 

joint and thus reflects habitual postural and locomotion 
modes. However, patellar remains are rare in the hominin 
fossil record and it is still unclear whether and how their 
differences in shape and proportions compared to extant 
humans affect knee kinesiology. Here, we illustrate with 
a first example from a sample of human, Pan, Papio and 

Neanderthal patellae that the development of a “whole-bone” 
endostructural analysis has the potential to provide relevant 
functional information for reconstructing the knee loading 

environment in fossil taxa, combined, whenever necessary, 
with a subsampling approach. This method relies on the 
plastic nature of the cortical and trabecular bony tissues 

and the modelling and remodelling dynamics during life to 

adjust structurally to the site-specific loading environment. 
This kind of information would bring new contributions 
not only to ongoing discussions on the evolutionary forces 
that shaped the knee joint in association with postural and 
locomotor adaptations, but also to the tentative taxonomic 
identification of isolated fossil specimens.

Keywords – patella, cortical bone, trabecular bone, fossil 
hominins, “whole-bone” analysis

Résumé – Cette contribution est une courte revue littéraire 
sur le rôle fonctionnel de la patella chez les catarrhiniens 

actuels et les hominines fossiles et les questions fonction-

nelles, adaptatives et évolutives concernant le registre des 
hominines fossiles. En effet, la patella joue un rôle clé dans 

l’articulation du genou, reflétant postures et modes loco-

moteurs. Cependant, les vestiges patellaires sont rares dans 
le registre des hominines fossiles et l’impact possible sur 

la kinésiologie du genou des différences de formes et de 

proportions par rapport à la condition humaine actuelle 

reste toujours incertain. Illustré par le premier exemple sur 
un échantillon d’une patella d’un humain, d’un chimpanzé, 
d’un babouin et d’un représentant Néanderthal, étant donné 
le caractère plastique des tissus cortical et trabéculaire et 

les dynamiques de modelage et remodelage osseux au cours 
de la vie pour s’adapter à l’environnement local des charges, 
le développement d’une étude holistique de l’endostructure 
de la patella, ponctuellement accompagnée d’une approche 
de sous échantillonnage lorsque nécessaire, pourrait per-
mettre de révéler des informations fonctionnelles pour la 
reconstruction de l’environnement des charges du genou 
chez les taxons fossiles. De telles informations peuvent 
enrichir la discussion sur les forces évolutives ayant confi-

guré l’articulation du genou en relation avec les modes 
posturaux et locomoteurs. Elle pourrait également contribuer 
à l’identification taxinomique de spécimens fossiles isolés.

Mots clés – patella, os cortical, os trabéculaire, hominines 
fossiles, analyse intégrale de l’os

Introduction

This brief review compiles and summarises the infor-
mation currently available on the functional significance 
of the patella in extant catarrhines and extinct hominins, 
and presents current functional, adaptive and evolutionary- 
related questions concerning the fossil hominin record. 

Based on these sources, we propose a new methodological 
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approach for the analysis of this so far neglected bone, 
which have the potential to provide relevant information to 
bring answers to these recurrent questions.

The patella in extant catarrhines 
and extinct hominins

The patella (kneecap) is functionally analogous to the 

fused olecranon of the proximal ulna (Herzmark, 1938; 
Samuels et al., 2017) and plays a key functional role in the 
knee joint, thus reflecting habitual postural and locomotor 
modes (e.g., Ward et al., 1993; 1995; Pina et al., 2020). In 
catarrhine primates, a number of differences in the outer 
morphology of this bone have been related to knee function. 
More specifically, the kneecap morphology reflects adap-

tation to full extension (as seen in humans/hominins), to 
predominant excursion of the joint from a fully flexed knee to 
an extended position (as seen in taxa relying on leaping and 
galloping), or to a more versatile knee (as seen in great apes; 
Harrison, 1986; Ward et al., 1995; Pina et al., 2014). The 
proximodistally short and anteroposteriorly thin patellae of 
the great apes have been associated with a more versatile 
knee that allows a wider range of positions but no habitual 
full flexion of the knee. In contrast, a proportionally long, 
narrow and thick patella, as in the cercopithecoids espe-

cially, would increase the quadriceps moment arm in knee 
extension during walking, galloping, climbing and leaping 
(Ward et al., 1995; Isler, 2005; Crompton et al., 2010; Pina 
et al., 2014). In addition, variation between human and 
ape patellae in the shape of the articular surface has been 

specifically related to knee function in full extension and 
bipedalism (Aiello and Dean, 1990; Lovejoy, 2007; 
Cazenave et al., 2019a).

In humans, in full flexion, the small medial facet comes 
into contact with the anterolateral portion of the medial 
femoral condyle, and the highest portion of the wider lateral 
facet with the anterior part of the lateral condyle. In extension, 
patellofemoral contact is limited to the lowest portions of 
both facets (Goodfellow et al., 1976; Aglietti and Menchetti, 
1995; Lovejoy, 2007). Compared to the multifaceted human 
kneecap bearing several distinctly angulated planes, a simpler 
articular morphology is found in Pan, where the posterior 
surface is smooth and fits the similarly flatter trochlear sur-
face (patellar groove) of the distal femur (Aiello and Dean, 
1990; Lovejoy, 2007; Cazenave et al., 2019a). The extension 
of the quadriceps complex (smaller in Pan, where flexion 
prevails) and the topography of the insertion of the vastus 
medialis (which in apes does not insert onto its extreme 
medial edge) also distinguish humans from Pan (Mariani 

et al., 1978; Aiello and Dean, 1990; Taylor et al., 2004; 
Lovejoy, 2007; Standring, 2008; Masouros et al., 2010).

Patellar remains are rare in the hominin fossil record and 

it is still unclear whether their differences in shape and pro-

portion compared to extant humans affect knee kinesiology. 
For instance, Ramirez and Pontzer (2015) have suggested 
that patellar dimensions can be used in extant primates 
and fossil hominin taxa as proxies for the physiological 

cross-sectional area of the quadriceps muscle, the primary 
extensor of the knee (see also Trinkaus, 1983a; Pina et al., 
2014, and the review in Pina, 2016). They showed that an 
increase in quadriceps size, relative to body size, occurred 
with the emergence of the genus Homo (Ramirez and Pontzer, 
2015). However, it remains uncertain whether the relatively 
small size of the patellae attributed to Paranthropus robus-

tus, Australopithecus sediba, H. floresiensis and H. naledi 

(Jungers et al., 2009; DeSilva et al., 2013; Berger et al., 2015; 
Marchi et al., 2017) corresponds to a small quadriceps and 
whether these fossil taxa experienced a limited home range 
size compared to that commonly expected for Homo (Antón, 
2013; Antón et al., 2014; Ramirez and Pontzer, 2015; Caze- 
nave et al., 2019a). Interestingly, the posterior articular 
surface of the A. sediba kneecap is human-like in being 

strongly convex mediolaterally and displaying a high central 
keel separating the condylar facets medially and laterally. 

Accordingly, DeSilva and colleagues (2013) hypothesized 
that these human-like features reflect an adaptation to resist 
injurious lateral translation of the knee region during foot 

hyperpronation and the resulting internal rotation of the 

tibia and femur during the late stance phase. The authors 

also suggested that A. sediba might have had a reduced or 
absent vastus medialis obliquus in counteracting lateral 
translation of the patella (DeSilva et al., 2013). However, 
this interpretation still requires confirmation.

The Neanderthal patellar morphology also differs from 

that of recent humans in being anteroposteriorly thicker, 
having more symmetrical articular facets associated with 
wider angles, and showing displacement of the lateral and 
medial masses (e.g., Trinkaus, 1983a; 2000; Trinkaus and 
Rhoads, 1999; Trinkaus et al., 2017; Rosas et al., 2020). The 
hypothesis of an exceptionally powerful knee extension 
in Neanderthals compared to the extant human condition, 
previously suggested because of differences in the anter-
oposterior patellar thickness (Trinkaus, 1983b; Miller and 
Gross, 1998; see also Chapman et al., 2010), has been ques-

tioned given the lack of any close relationship between the 
degree of patellar facet asymmetry and the distal femoral 

configuration (Trinkaus and Rhoads, 1999). In this respect, 
it is also unclear to what extent this variation in patellar 
articular proportions affects knee kinesiology (Trinkaus, 
2000). Given also the displacement of the masses compared 
with their position in extant humans, the hypothesis of 
a distinct rotation of the tibia relative to the position of 
the proximal femur has been put forward. This would imply 
a medial or lateral displacement of the patellar ligament, 
respectively increasing the contact force of the medial or 
lateral surface of the patella with the respective femoral 
condyle (thus affecting the functional space for the expansion 
of its facets, and therefore influencing the size of the contact 
area of the patella with the femur condyles). However, this 
hypothesis still remains to be tested (Rosas et al., 2020; see 
also Lee et al., 2003).

The mechanosensitive cortical and trabecular bony tis-

sues model and remodel during the course of a life (Allen 

and Burr, 2014; Barak, 2019) as they adjust structurally to 
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the site-specific loading environment (e.g., Raux et al., 1975; 
Townsend et al., 1975; Takechi, 1977; Van Kampen and 
Huiskes, 1990; Katoh et al., 1996; Mazurier, 2006; Toumi 
et al., 2006; 2012; Mazurier et al., 2010; Kivell, 2016; 
Georgiou et al., 2018; Sukhdeo et al., 2020). Therefore, a 
detailed assessment of how the patellar cortical thickness 
and the structural arrangement of its underlying cancellous 

network vary topographically has the potential to provide 
valuable functionally-related information, including on ex-

tinct taxa (Cazenave et al., 2019a; 2019b; Houssaye et al., 
2021). However, except for some studies focusing on extant 
humans (Raux et al., 1975; Townsend et al., 1975; Toumi 
et al., 2006; 2012; Hoechel et al., 2015), only very few 
investigations have been conducted on the endostructural 
organisation of the patella in fossil hominins (Cazenave 
et al., 2019a; 2019b).

Comprehensive insights into endostructure 

Besides the classic radiographic and invasive studies 
(Raux et al., 1975; Townsend et al., 1975, Toumi et al., 2006; 
2012), the three-dimensional endostructural analyses of the 
patellar bone performed so far rely upon the virtual extrac-

tion of Volumes of Interest (VOIs; Hoechel et al., 2015; 
Cazenave et al., 2019a; 2019b). However, despite the 
advantages in terms of the amount and complexity of the 
information retrieved compared to classic two-dimensional 
observations, this methodological approach also has several 
inherent limitations (see details and review in Kivell, 2016). 
First, a VOI must be large enough to provide an exploitable 
signal, but small enough to include only trabecular bone. 
Also, while Lazenby et al. (2011) supported the use of scaled 
VOIs, Kivell et al. (2011) warned that the scaling factor 
chosen would also influence some trabecular values. In 
addition, and importantly, the definition of the position of 
the VOIs is challenged by determining anatomically and/or 
biomechanically homologous VOIs across a sample, espe-

cially in the case of anatomical regions displaying a wide 
range of morphological and dimensional variation (Maga 
et al., 2006; Kivell et al., 2011; Lazenby et al., 2011).

Following a generation of virtually-based endostruc-

tural studies focussing on specific VOIs, some so-called 
“whole-epiphyses/bone” analytical methods have been de-

veloped (e.g., Pahr and Zysset, 2009; DeMars et al., 2021; 
Veneziano et al., 2021) and applied to characterize the 
entire endostructural organisation of several regions/ele-

ments of the extant primate skeleton and also to tentatively 
assess some hominin fossil specimens. Such an approach 

has been applied, for instance, to investigate the upper 
limb elements (Kivell et al., 2018; Arias-Martorell et al., 
2021), the hand bones (Tsegai et al., 2013; Skinner et al., 
2015; Stephens et al., 2016; 2018; Dunmore et al., 2019; 
2020a; 2020b; Bird et al., 2021a; 2021b), the femur 
(Georgiou et al., 2018; 2019; 2020; Sukhdeo et al., 2020), 
the distal tibia and the foot bones (Tsegai et al., 2013; 
2017), as well as to directly compare different skeletal 
parts (Tsegai et al., 2018).

A comparative endostructural analysis of the distal 
femur allowed Georgiou et al. (2018) to point out that, 
while it is true that the trabecular architecture of humans, 
Pan, Gorilla and Pongo holds a functional signal reflecting 
habitual postural and locomotor behaviours, there was more 
similarity and greater intraspecific variability across the taxa 
than expected on the basis of differences in knee postures. 
Notably, the study also revealed that the trabecular organi-
sation of the human distal femur is not as distinct from the 

structural arrangement of the great apes as suggested by 

previous studies. From a different sample, Sukhdeo et al. 
(2020) showed that, typically of their locomotor behaviours, 
Pan, Pongo, and Papio show evidence of flexed knee 
postures in the distribution of trabecular bone density 

(BV/TV) at the distal femur, and that while the pattern in 
humans is unique, it is associated with a high BV/TV in the 
patellar groove area, the latter being a feature also observed 
in Papio. Again in the distal femur, but also in the region 
of the proximal tibia, functional relationships have been 
identified in some primates between the local arrangement 
and the topographic distribution of the underlying cortico- 

trabecular complex (CTC) – i.e., the component which 
includes the cortical shell (the lamina) and the closely related 

adjoining portions of the supporting trabecular network, 
which mostly consists of plate-like structures (in Cazenave 
et al., 2019a) – the cancellous bone architecture and the 
pattern(s) of locomotor-related articular load dissipation 

(Mazurier, 2006; Volpato, 2007; Mazurier et al., 2010).
The only study conducted so far with specific reference 

to the mammal kneecap investigated its trabecular bone 
organization using a “whole-bone” approach (Houssaye 
et al., 2021). The qualitative and quantitative analyses con-

cerned the microanatomy of the whole bone in extant Per-
issodactyla displaying a wide range of body morphologies 
and masses and locomotor modes, and were conducted 
in order to investigate how their knee adapts to a variety 
of functional constraints. Applying this new approach, 
the authors (Houssaye et al., 2021) concluded that various 
morphologies of the patellofemoral joints in the three perisso-

dactyl families (Equidae, Tapiridae and Rhinocerotidae) 
are associated with distinct stresses at the knee, pointing to 
the interest of further biomechanical investigations.

In the study of fossil patellar specimens, including 
from hominin taxa, an analytical VOI approach adapted 
case by case is commonly necessary given the frequent 
discovery of incomplete remains and the limited amount 
of preserved cortical and cancellous bone suitable for 
reliable quantitative assessment as a result of taphonomic 
dynamics and diagenetic changes (Cazenave et al., 2019a; 
2019b). Whenever the preservation of a fossil specimen 
allows holistic analysis, an analytical approach allowing 
a complementary assessment of the distribution of topo-

graphical thickness across the whole CTC and of the 
three-dimensional arrangement of the entire cancellous 

network would enable highly sensitive functional informa-

tion to be extracted to reconstruct the knee loading envi-
ronment in extinct taxa.
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First example of application of the whole bone 
microstructural analysis to the patella of extant 
and fossil catarrhines

A “whole-bone” comparative analysis was applied here 
for the first time to a sample of three perfectly preserved adult 
patellae (all right) from three non-pathological skeletons 

representing a 49 year-old extant human male individual from 
the Pretoria Bone Collection (PBC) stored at the Department 
of Anatomy of the University of Pretoria, South Africa; a wild 
adult Pan troglodytes from the osteological collections at the 

Muséum national d’Histoire naturelle (MNHN) in Paris, 
France; and a wild adult Papio ursinus also from the PBC. 

Based on this initial evidence, we also tentatively investi-
gated the left patella from the partial Neanderthal skeleton 

Regourdou 1, stored at the Musée d’Art et d’Archéologie du 
Périgord, Périgueux, France (Bayle et al., 2011; Maureille 
et al., 2015; Cazenave et al., 2019a; 2019b).

All the specimens were detailed by high-resolution micro- 
tomography (resolutions ranging from 22 to 50 microns). 
In all cases, the bone was segmented using MIA-Clustering 
segmentation (Dunmore et al., 2018) and the CTC was auto-

matically isolated from the trabecular bone using Medtool 4.5 
(www.dr-pahr.at). The topographic distribution of cortico- 
trabecular thickness, measured for each pixel of the peri-
osteal surface as the shortest distance to the CTC inner limit, 
was rendered virtually with Avizo v. 9.0.0 (Visualization 
Sciences Group Inc., https://www.fei.com/software/amira-
avizo/) using a chromatic scale from dark blue (thin) to red 
(thick) (figure 1a). The trabecular bone volume fraction 
(BV/TV) was quantified throughout the entire bone using 
Medtool 4.5 and rendered in 3D following Gross et al. (2014) 
(see also Tsegai et al., 2017) (figure 1b).

In the knee region, loads on the anterior patellar surface 
are directly transferred from the quadriceps (Heegaard et al., 
1995; Toumi et al., 2012). In humans, the posterior aspect 
of this bone is covered by a thick hyaline cartilage, among 
the thickest in the human body as it is able to withstand 
intermittent compressive stresses occurring locally at a high 
frequency (Milz et al., 1995; Standring, 2008; Hartigan 
et al., 2011). It has therefore been suggested, from parasag-

ittal and transversal cross sections of the patellar bone, that 
in humans the anterior plate is thicker than measured at the 

articular surface (Cazenave et al., 2019b).
By using the “whole-bone” analysis method described 

above, this preliminary observation is confirmed in both the 
extant and the fossil (Neanderthal) human representatives. 
However, here this structural characteristic is also revealed 
for the first time in the Pan and Papio patellae, bringing 
evidence that no longer allows this pattern to be considered 
as a human autapomorphy (figure 1a). Conversely, our 
analysis of the whole bone confirms that the reinforcement 
across the superior and lateral regions underlying the CTC 

(figure 1) does represent a feature so far evidenced only in 
the human kneecap (Toumi et al., 2012; Cazenave et al., 
2019a; 2019b).

The modern human-like endostructural pattern revealed 
here by Regourdou 1 (figure 1) is consistent with the site- 
specific signal provided by a number of cross sections and 
VOIs extracted virtually from the same fossil in a previous 
comparative analysis with a Neanderthal patella from Krapina, 
Croatia, and a Late Pleistocene (Magdalenian) modern human 
specimen from Chancelade, France (Cazenave et al., 2019b). 
However, the “whole-bone” approach highlights some pre-

viously unreported differences between the Regourdou 1 
Neanderthal patella and the extant human endostructural 
condition, at least as represented by the single specimen 
used in this study. Specifically, these differences include a 
higher BV/TV in the anterior part of the base of the fossil 
patella vs. a more centrally-set anterior configuration proba-

bly related to differences in the insertion and/or action of 
the rectus femoris. This previously unreported finding is of 
biomechanical significance and deserves additional inves-

tigations in a broader comparative context.
The present test on the patellar bone highlights the poten-

tial of the “whole-epiphyses/bone” analytical approach to 
contribute to our understanding of the evolutionary forces 
that have shaped the hominin/hominid knee joint in conjunc-

tion with postural and locomotor adaptations. In this context, 
the functional reasons for the less structurally heterogeneous 

CTC thickness and BV/TV distributions characterising the 
articular regions of the patella in Pan compared with the 
human reference (figure 1; cf. Cazenave et al., 2019a) have 
yet to be investigated by also considering the endostructural 
signal from the hip joint (notably, the proximal femur) indi-
cating a higher degree of articular mobility in great apes 

(e.g., Isler, 2005; Hammond, 2013; Finestone et al., 2018) 
compared to the derived human condition. Similarly, the 
functional implications of a CTC reinforcement localised in 

the anteromedial region of the patella, identified here in Papio, 
remain to be clarified. It is nevertheless important to point 
out that future quantitative investigations should conduct 
statistical analyses on standardised values of CTC and BV/
TV to avoid including differences related to body size.

Conclusions

In the current research context, characterised as it is by 
a notable paucity of qualitative and quantitative data on the 
functionally-related endostructural organisation of the patel-

lar bone in extant and fossil primates, including in hominins/ 
hominids, the combined VOI and “whole-bone” analytical 
approaches can contribute unique information about the 

biomechanical forces and constraints that have shaped the 
knee joint in conjunction with postural and locomotor ad-

aptations. This is notably true with respect to the discussion 
on pronograde and antipronograde postural behaviours and 
to the identification of a bipedal component in Miocene 
great apes (e.g., Rook et al., 1999; Böhme et al., 2019; Pina 
et al., 2020). Importantly, these approaches could be used 
to tentatively assess the taxonomic identity of isolated 
specimens, which are common in the fossil record (e.g., 
Susman, 1989; Harrison, 2011; Fourvel et al., 2018).
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Figure 1. (A) Microtomography-based maps of cortico-trabecular complex (CTC) thickness (in mm) topographic distribution in 
anterior (upper row) and posterior (lower row) views, measured for each pixel of the periosteal surface as the shortest distance 
to the CTC inner limit and rendered by a chromatic scale increasing from dark blue to red; (B) morphometric maps of trabecular 
bone volume fraction (BV/TV) distribution in anterior (upper row) and posterior (lower row) surfaces at the limit with the CTC 
rendered by a chromatic scale ranging from light blue to light red in an extant human, a Pan troglodytes and a Papio ursinus 
patella and in the left patella from the partial Neanderthal skeleton Regourdou 1 (here imaged as right). Scale bar: 10 mm /  
(A) Reconstruction sur base microtomographique de la distribution topographique des variations d’épaisseur du complexe cortico- 

trabéculaire (CTC; en mm) en vues antérieure (ligne supérieure) et postérieure (ligne inférieure), mesurée pour chaque pixel de la 

surface périostée comme la distance la plus courte jusqu’à la limite interne du CTC, représentées selon une échelle chromatique 

variant du bleu foncé au rouge et ; (B) cartographies morphométriques sur base microtomographique de la distribution du volume 

de l’os trabéculaire (BV/TV) des surfaces antérieure (ligne supérieure) et postérieure (ligne inférieure) du tissu trabéculaire à 

la limite avec le CTC, représentées selon une échelle chromatique variant du bleu clair au rouge clair quantifié pour une patella 
humaine actuelle, Pan troglodytes, et d’un Papio ursinus et la patella gauche néanderthalienne de Regourdou 1 (présentée ici 

comme droite). Barre d’échelle : 10 mm
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