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ABSTRACT
As maritime activities increase globally, there is a greater dependency on technology in 
monitoring, control, and surveillance of vessel activity. One of the most prominent 
systems for monitoring vessel activity is the Automatic Identification System (AIS). An 
increase in both vessels fitted with AIS transponders and satellite and terrestrial AIS 
receivers has resulted in a significant increase in AIS messages received globally. This 
resultant rich spatial and temporal data source related to vessel activity provides analysts 
with the ability to perform enhanced vessel movement analytics, of which a pertinent 
example is the improvement of vessel location predictions. In this paper, we propose 
a novel strategy for predicting future locations of vessels making use of historic AIS data. 
The proposed method uses a Linear Regression Model (LRM) and utilizes historic AIS 
movement data in the form of a-priori generated spatial maps of the course over ground 
(LRMAC). The LRMAC is an accurate low complexity first-order method that is easy to 
implement operationally and shows promising results in areas where there is 
a consistency in the directionality of historic vessel movement. In areas where the historic 
directionality of vessel movement is diverse, such as areas close to harbors and ports, the 
LRMAC defaults to the LRM. The proposed LRMAC method is compared to the Single- 
Point Neighbor Search (SPNS), which is also a first-order method and has a similar level of 
computational complexity, and for the use case of predicting tanker and cargo vessel 
trajectories up to 8 hours into the future, the LRMAC showed improved results both in 
terms of prediction accuracy and execution time.
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1. Introduction

The world’s oceans are of critical importance to 
humanity as they are key to fisheries, shipping, and 
the environment. From an economic perspective, it is 
estimated that 90% of all global goods and energy 
transportation are done by sea, with millions of people 
being dependent on maritime-related activities for 
their livelihood. As maritime activities increase glob
ally, there is a greater dependency on technology in 
monitoring, control, and surveillance of vessel activ
ities. One of the most prominent systems for monitor
ing vessel activity is the Automatic Identification 
System (AIS). AIS operates in the VHF band and 
transmits messages from vessels to other vessels, ter
restrial shore stations, and satellites. Due to the global 
increase in vessels fitted with AIS transmitters and the 
proliferation of satellite and terrestrial receiving sta
tions, there has been a significant increase in AIS 
messages received globally. This increased data 
volume makes it possible to track the real-time move
ment of vessels and opens the door for improving 
vessel location predictions via historic vessel move
ment patterns. Many algorithms have been developed 
in recent years to aid in improved vessel coordinate 

prediction. Methods range from simplistic models as 
done by Burger, Kleynhans, and Lups Grobler (2020) 
to machine learning (ML) models as done by Xin 
(2020).

Pallotta et al. (2014) presented a vessel prediction 
method based on Ornstein-Uhlenbeck stochastic pro
cesses, where the parameters of these processes are 
estimated from historical patterns in historic AIS 
data. The data is clustered into three types: vessels, 
waypoints, and routes. Route extraction is done using 
Traffic Route Extraction and Anomaly Detection from 
AIS Data (THREAD). The implementation details of 
THREAD can be found in Pallotta, Vespe, and Bryan 
(2013a, 2013b). The three types of clustered data aid in 
vessel prediction and empirical calculations. The max
imum prediction time window of a vessel depends on 
the mean duration of the historically observed route.

Lee, Han, and Whang (2007) presented a trajectory 
clustering method, where similar trajectories are clus
tered together. The method works by employing 
a partition-and-group framework for clustering trajec
tories. It works by first grouping trajectories into a set 
of line segments, and similar segments are then 
grouped into clusters. The method consists of two 
phases, partitioning and grouping. In the first phase, 
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the minimum description length principle is used 
(Grünwald, Jae Myung, and Pitt 2005). In the second 
phase, a density-based line-segment clustering algo
rithm is used (Ester et al. 1996)based on a Density- 
Based Algorithm for Discovering Clusters in Large 
Spatial Databases with Noise (DBSCAN). The model’s 
sensitivity on its parameters is improved in Jiashun 
(2012).

Rong, Teixeira, and Guedes Soares (2019) pre
sented a probabilistic trajectory prediction model 
that describes the uncertainty in future spatial loca
tions along a vessel’s trajectory by using continuous 
probability distributions. A non-parametric Bayesian 
model based on a Gaussian Process (GP) is presented. 
The GP is used to describe the uncertainty of the 
vessel’s motion, while the longitudinal uncertainty is 
derived from the dubiety of the vessel’s acceleration. 
The parameters of the model are derived from historic 
AIS data. Cholesky decomposition is used to reduce 
the computational complexity of the algorithm. Prior 
probabilities are used to predict vessel coordinates in 
real-time.

Jaskolski (2017) implemented a Discrete Kalman 
Filter (DKF) (Kalman 1960) to predict future loca
tions of vessels. The DKF, in the context of vessel 
coordinate prediction, constantly adjusts itself for 
an improved prediction as new observations are 
observed. It is assumed that a vessel fitted with an 
AIS sensor will not constantly send updates. The 
DKF consists of two sets of equations: prediction 
and measurement update equations used in predic
tion and parameter updates, respectively. Burger, 
Kleynhans, and Lups Grobler (2020), showed that 
there is no significant improvement in the predic
tion capability that can be achieved by using a DKF 
instead of a Linear Regression Model (LRM) to 
predict linear trajectories.

Xiao et al. (2020) conducted an extensive review of 
maritime knowledge mining and traffic forecasting 
technologies. The LRM is compared to several non- 
linear approaches. Three broad categories of non- 
linear algorithms are considered: machine learning 
approaches, knowledge-based approaches, and control 
theory assisted methods. The predictions range from 
long to short-term predictions. It is also shown that 
more complex methods are more accurate than the 
LRM but have a higher computational cost than 
the LRM.

Forti et al. (2020) made use of a deep learning (DL) 
neural network (NN) approach to predict trajectories 
of vessels. A sequence-to-sequence model that utilizes 
a Long Short-Term Memory (LSTM) encoded- 
decoder recurrent neural network (RNN) is proposed. 
Historic AIS data is used to train the LSTM model. 
The method aims to learn the predictive distribution 
of maritime traffic patterns using historic AIS data. 
Learning the predictive patterns enables the model to 

predict more accurately. It was shown that the model 
could predict more accurately than the Ornstein- 
Uhlenbeck process, given a time window of 20 
observations.

Murray and Prasad Perera (2020) presented a novel 
dual linear autoencoder approach to predict a vessel’s 
trajectory. The method predicts a future trajectory 
using historic AIS data. The method implements 
unsupervised learning for trajectory clustering and 
classification.

Xin (2020) presented a context-based trajectory 
prediction algorithm utilizing LSTM networks. Real- 
valued target trajectories are converted into discrete 
path sets. Distinctive patterns are clustered hierarchi
cally using historical AIS data. Two models are com
pared, an RNN consisting of one LSTM and another 
RNN consisting of k LSTMs. In the RNN with k 
LSTMS, one LSTM is created for each distinct path. 
Yaun et al. (2019) used an LSTM model to reconstruct 
vessel trajectories. This complex method requires pre- 
processing and data clustering.

Dimitrios, Xidias, and Lekkas (2016) aim to accu
rately predict future geo-coordinates of a vessel by 
using artificial NNs (ANNs). Their model learns in 
real-time whilst predicting. It has a prediction time 
horizon of up to 15 minutes. Different types of model 
pre-processing and construction are implemented. 
Historic AIS data was used to train the ANN. 
Alizadeh, Asghar Alesheikh, and Sharif (2021) pro
posed three novel prediction methods based on his
toric AIS data. The first method proposed is a Point- 
based Similarity Search Prediction (PSSP), which was 
inspired by Wijaya and Nakamura (2013). The histor
ical points are measured in terms of their spatial loca
tion, SOG, and COG. The second method proposed is 
called Trajectory-based Similarity Search Prediction 
(TSSP), where each recorded AIS trip is regarded as 
a trajectory. The PSSP is a point-based method, 
whereas the TSSP is a trajectory-based method. 
Finally, a trajectory-based similarity search prediction 
is proposed using an RNN LSTM (TSSPL). Alizadeh, 
Asghar Alesheikh, and Sharif (2021) point out that 
vessel movement is affected by external movements 
such as wind, waves, and sea currents. The PSSP and 
the TSSP are not able to account for these external 
factors. Another RNN LSTM model was, therefore, 
built to take this into account (i.e. TSSPL). The 
TSSPL has an additional input, a measure of similarity 
between trajectories (similar to what was done in 
Tang, Yin, and Shen 2019).

The Safety of Life at Sea (SOLAS) regulation V/19 
states that passenger vessels and vessels larger than 300 
Gross Tonnage must have AIS transmitters fitted. All 
cargo and tanker vessels should adhere to the SOLAS 
regulations. The regulations were adopted and are 
now regulated by the International Maritime 
Organization (IMO).1 There are, however, some 
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drawbacks when working with AIS data. Vessels may 
deactivate their AIS transponders, and some vessels 
may not be fitted with transponders (Chen et al. 2019).

Other vessel tracking information systems include 
Long-Range Identification and Tracking (LRIT), 
Coastal radar, Satellite-borne Synthetic Aperture 
Radar (SAR), and optical satellites. Moreover, meth
ods such as video tracking at ports exist where mar
itime video surveillance is present, as done in Chen 
et al. (2019) and Chen et al. (2020).

Finally, the method presented by Hexeberg, Flåten, 
and Brekke (2017) uses historic AIS data to predict 
future locations of vessels. The method is called 
Single-Point Neighbor Search (SPNS). The method 
does a close neighbor (CN) search by extracting his
toric observations within a certain radius of the cur
rent vessel’s spatial location. Vessels in the CN set that 
do not adhere to prespecified SOG and COG range 
values are removed. Using the CN set, the median 
COG and SOG values are calculated. Using the med
ian COG and SOG, the predicted longitude and lati
tude are calculated. The method predicts at constant 
distance intervals, where the SOG is used to calculate 
the time passed between two observations. The 
method can be confidently predicted with a time hor
izon of up to 15 minutes.

The aforementioned methods are complex in nat
ure, being programmatically challenging to implement 
from first principles. The setup, initialization, and 
parameter estimation of these methods require fine- 
tuning to obtain optimal and accurate results. Burger, 
Kleynhans, and Lups Grobler (2020) showed that the 
complexity trade-off of using a DKF over an LRM 
resulted in no significant performance improvement 
in prediction accuracy, where the DKF was much 
more complex than the LRM. The DKF parameters 
are sensitive, and getting the initial set of parameters 
to be a reasonable estimate is crucial for the model’s 
performance. Xiao et al. (2020) showed that the 
increase in performance gains comes with 
a significant increase in computational cost.

Therefore, this paper proposes a novel vessel loca
tion prediction method that extends the Linear 
Regression Model (LRM) proposed by Burger, 
Kleynhans, and Lups Grobler (2020). Moreover, this 
method uses historic AIS vessel information to 
improve prediction accuracy. It is easy to implement, 
and its initial parameters require little to no fine- 
tuning. The proposed algorithm also enables the 
LRM to predict non-linear trajectories. The a-priori 
information used includes a Spatial Map (SM) of his
toric cell counts, COG values, and COG standard 
deviations (SDs). The SMs the method uses are easy 
to generate and update, which is essential as data and 
movement patterns of vessels change over time. We 
refer to this method as the LRM with added COG 
(LRMAC) throughout the paper.

Due to the fact that the SPNS is also a simplistic 
first-order method (proposed by Hexeberg, Flåten, 
and Brekke 2017), the LRMAC will be compared to 
it. When comparing the models, an in-depth compar
ison of the model accuracies and time complexities 
will be made. Our tests will be implemented on cargo 
and tanker vessel data only. This paper is structured as 
follows: first, we discuss the dataset and the required 
processing. Second, we summarize the a-priori infor
mation the LRMAC requires. Third, we present the 
LRMAC and the comparison method, the SPNS. 
Fourth, we discuss the experimental design. Finally, 
we end the paper with our results and a conclusion.

2. Data

In this section, we will introduce the dataset that was 
used to test the performance of the proposed and 
benchmark algorithms. We will also be discussing 
the pre-processing steps that are necessary to ensure 
the proposed algorithm will run as intended.

An open-source dataset by Ray et al. (2019) was 
used. It consists of AIS messages recorded in the Celtic 
Sea, the North Atlantic Ocean, the English Channel, 
and the Bay of Biscay (France). In Figure 1, the spatial 
range of the data is depicted visually (also see the 
details in Table 1). The specific data characteristics 
are given in Table 2, and the observational period 
was over 6 months starting on 1 October 2015.

In Table 2, the dataset attributes and characteristics 
are introduced. The mathematical symbols that we use 
in this paper are presented in Table 3.

2.1. Pre-processing steps

Observations were removed from the dataset that did 
not adhere to the following criteria:

● Ship type within [70,89], where cargo vessel’s 
type is in [70,79] and tankers in [80,89].

● SOG > 0.5kn, removing stationary observations, 
including stationary vessels experiencing drift 
due to currents and other natural phenomena 
due to being anchored.

● SOG < 60kn, observations with high speeds are 
likely outliers as cargo and tanker vessels move at 
relatively low speeds. If more than 60 kn is 
observed for cargo or tanker vessels, it is most likely 
due to technical errors in the recorded AIS data.

The remainder of the data were grouped according 
to vessel MMSI and sorted in ascending order accord
ing to the timestamp recorded by each observation. All 
trajectories with less than 20 observations or those that 
span less than 5 min in total were removed. The data 
spans over a period of 6 months, as denoted in Table 2, 
which implies that there will be more than one 
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trajectory for a given vessel at different time periods 
and spatial locations. Pre-processing was done to 
remove any non-sensical data that may lead to incor
rect SMs.

2.2. Vessel Interpolation for Spatial Maps (SMs)

After pre-processing, an augmented dataset was con
structed by interpolating between observations for 
each unique vessel MMSI, creating less sparse trajec
tory observations per vessel. This augmented dataset is 
then used to construct physically realistic and usable 
spatial maps (SMs) of the dataset in question. The 
original dataset is too sparse (as is) for a meaningful 
and sensical SM to be created from it. The sparsity of 
the original data is due to several reasons. Firstly, 
vessels closer to receivers can share their position 

Figure 1. Data Spatial range – courtesy of Google Earth 2021.

Table 1. Spatial range details for Google Earth extract.
Name Abbreviation Longitude Latitude

Upper Left-Hand Corner ULHC 51 10 
Upper Right-Hand Corner URHC 51 0 
Lower Right-Hand Corner LRHC 45 0 
Lower Left-Hand Corner LLHC 45 10 

Table 2. Dataset attributes.

Description
Measurement 

Unit Attribute Range

MMSI 9-digit values
Latitude DD.dddd [−10.00  , 0.00]
Longitude DD.dddd [45.00  , 51.00]
Course Over 

Ground
Degrees 0–360  

Speed Over 
Ground

Knots 0–110

Timestamp UTC [2015–10-01 00:00:00, 2016–03-31 
23:59:59]

Ship type [10, 99]

Table 3. Variables and Symbol Descriptions.
Symbol Meaning Type Dimensions

t Time (DD-MM-YYYY HH:MM:SS) Scalar
Δkt Prediction time interval size (s) Scalar
ϕ Latitude (DD.dddd) Scalar
λ Longitude (DD.dddd) Scalar
ψ Course Over Ground (°) Scalar
V Speed Over Ground (kt) Scalar
V 0 Speed Over Ground in Degrees Scalar
ω Window Size Scalar
κ SM cell length Scalar
� Single SM cell Scalar
η Neighborhood search size Scalar
H Neighborhood grid index values Matrix 2ηþ 1ð Þ � 2ηþ 1ð Þ

K Vessel counts per cell SDM Matrix Matrix 1250� 1250
Ψ Course Over Ground SM Matrix (°) Matrix 1250� 1250
� Course Over Ground SD SM Matrix (°) Matrix 1250� 1250
iλ Denotes the Longitude index of a SM matrix Scalar
iϕ Denotes the Latitude index of a SM matrix Scalar
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more often than vessels further away. Furthermore, 
vessels close to the shoreline travel at lower speeds 
than vessels further away. Naturally, more AIS mes
sages will be recorded for slower vessels than faster 
vessels over the same distance traveled.

Observational interpolation was only performed in 
the following cases:

● The time difference between the two observations 
is no longer than six hours,

● The distance between the two observations is 
within 15 km, and

● The distance between observations is no smaller 
than the size of one grid cell. The grid cell size 
used was 0:88 km� 0:88 km. This specific con
straint prevents the over-representation of a grid 
cell, only adding one observation to a cell if the 
interpolated trajectory passed through it.

We made use of linear interpolation models by 
using scikit-learn (Pedregosa et al. 2011). Longitude, 
latitude, and SOG were interpolated if the cases above 
were met. Gaussian filtering was also used to have 
smoother versions of the SMs.

The COG of the interpolated and recorded obser
vations was calculated via 

ψt ¼ arctan
ϕt� 1 � ϕt
λt� 1 � λt

� �

(1) 

We did not make use of the COG values present in the 
dataset. These values yielded inaccurate results, more 
accurate results were obtained by calculating the actual 
COG based on the longitude and latitude. Having 
a new augmented dataset with a better representation 
of the historical locations and trajectories, we can 
create representative SMs, essential to the algorithm 
we propose.

3. Spatial Maps (SMs)

Any two-dimensional grid that spans the earth’s surface 
will be referred to as a spatial map. Each cell in the two- 
dimensional grid is associated with a specific range of 
longitudinal and latitudinal coordinates. In this paper, 
our SMs will be set up from the observations recorded 
in the dataset, which spans a latitude and longitude of 
ϕ 2 � 10�; 0�½ � and λ 2 45�; 55�½ �, respectively.

In this paper, we use a square SM, meaning the 
SM’s width and length have the same number of 
cells. The dimensions of the SMs depend on the 
range of the ϕ and λ. The dimensions of the SMs we 
constructed were 1250� 1250 cells as shown in 
Table 3. The size of the SMs is 10� � 10� square 
degrees. Each cell’s resolution, therefore, is equal to 
0:008� 0:008 square degrees. An extract of the upper 
left-hand corner of an artificially created SM is 

depicted in Figure 2. This figure denotes the number 
of recorded observations in a cell, within a longitude 
and latitude range based on the historic AIS data.

Haversine’s formula for distance on a sphere is 
given by Equation (2). This formula is used to calcu
late the distance between two coordinates on a sphere. 

d ¼ 2r � arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 ϕ2 � ϕ1
2

� �

þ cos ϕ1ð Þcos ϕ2ð Þsin2 λ2 � λ1

2

� �s

(2) 

where,

● r represents the mean radius of the earth 
( � 6371 km).

● ϕ1 and ϕ2 represent the latitudinal coordinates of 
two observations, the latitudes of points one and 
two, respectively.

● λ1 and λ2 represent the longitudinal coordinates 
of two observations, the longitudes of points one 
and two, respectively.

It now follows from the Haversines formula that the 
area associated with each cell is roughly 0:89� 0:89 
km2, where 0:89 km � 0:48 nautical miles.

3.1. Vessel counts SDM (K)

The first type of SM that we use represents the number 
of observations recorded within each grid cell �. Each �
in K records the number of observations that were 
historically within the longitude and latitude range of 
that specific cell. Cell counts will be higher in spatial 
areas where vessels are slower moving compared to 
faster-moving areas. Figure 3 shows the logarithmically 
scaled SDM of the vessel counts for each cell. The cell 

Figure 2. Spatial distribution map matrix extract example.
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counts of the current vessel location and its neighbors 
are used in the prediction equations of the LRMAC, 
scaling the contribution of historic COG information.

3.2. The COG Ψð Þ and COGSD Σð Þ SM

The second SM that we will be using will be the course 
over ground SM (represented by Ψ). Each cell of the Ψ 
represent the mean COG value that was recorded in 
that cell. COG is measured in degrees and will always 
be positive.

The third SM we used is the so-called COG stan
dard deviation SM (represented by Σ). The value of 
each of its cells was computed as follows: 

Σiϕ;iλ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Xn

j¼1
ψiϕ;iλj

� Ψiϕ;iλ

� �2
v
u
u
t (3) 

where

● n, represents the number of observations 
observed in a cell as determined by K .

● iϕ; iλ, represents the index values associated with 
ϕ and λ respectively on the SM grid.

● Ψiϕ;iλ , represents the mean COG at a specific 
index value on the SM grid.

● ψðiϕ;iλÞj
, represents the jth COG value in the cell 

with index values iϕ; iλ
● Σiϕ;iλ , refers to the COG standard deviation at 

index value iϕ; iλ.

Loosely speaking, the entries in Σ can be inter
preted as how “confident” we ought to be in the 
corresponding entry in Ψ. Higher cell values in Σ 
mean that historically there were many vessels travel
ing in different directions as the SD is higher.

In Figure 4, we can see a visual representation of Ψ. 
Looking at the figure, we can see that cargo and tanker 
vessels move in a specific direction in certain geo
graphic locations. Two distinct highways are clearly 
visible close to the center of Figure 4 (Grobler and 
Kleynhans 2019). A highway is a route that many 
vessels traverse. The aqua green highway is used by 
cargo and tankers to travel upward (North), while the 
blue highway is used to travel downward (South).

In Figure 5, we see a visual representation of Σ, 
as calculated by Equation (3). The standard devia
tion of the areas that contain more traffic in differ
ent directions is larger than those containing less 
traffic (this is especially true for the areas sur
rounding harbors). Yellowish colors represent 
higher SD values. The highways mentioned, how
ever, are not associated with high SD values. This 
implies that these highways are highly directional 
as shown in Figure 5.

4. The proposed algorithm

In this section, we present the proposed LRMAC 
algorithm. As mentioned before, this algorithm 
uses historic (a-priori) AIS data to predict the tra
jectories of vessels. The algorithm can predict non- 

Figure 3. Log scale vessel counts SDM.
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linear vessel trajectories. To be more specific, the 
LRMAC uses three SMs discussed in the previous 
section K;Ψ; and Σ. We start this section by dis
cussing the different unit conversions that the algo
rithm requires.

4.1. Speed Over Ground (SOG)
We converted SOG from knots to meters per second 
via Equation (4). 

V
0

t ¼ 0:51 _4 � V
00

t (4) 

Figure 4. Course over ground SM.

Figure 5. Course over ground standard deviation SM.
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We then converted the SOG into degrees/s (°/s) 
using 

Vt ¼
V 0

t
l

(5) 

with 

l ¼
2π
360
� 6378000 ¼ 111137 m (6) 

The constant l, can be interpreted as the average 
number of meters that one degree of latitude and 
longitude span on Earth.

4.2. The Linear Regression Model (LRM)

The method presented in this paper (LRMAC) is an 
extension of the LRM presented by Burger, Kleynhans, 
and Lups Grobler (2020). We will summarize it below 
for the benefit of the reader. The LRM can only be 
predicted linearly with regular time intervals. The 
prediction interval that we used was 1 s, i.e. 
Δkt ¼ 1s. The LRM-based approach works by estimat
ing Vt using a rolling window linear model.

One of the parameters that must be set is the pre
diction duration, i.e. the total number of hours one 
would like to predict into the future. The other para
meter will be the step size of the predictions, measured 
in seconds between any two observations. The predic
tion interval can then be computed.

The LRM consists of two sets of equations: the 
predictor and measurement update equations. Let 
the vector xt be defined as: 

xt ¼ λt;ϕt½ �
T (7) 

The symbols ϕ and λ are defined in Table 3. Subscript 
t refers to the observations at timestep t: If there is no 
observation at timestep t; xt is assumed to be equal to 
the all-zero vector.

The prediction equations for the LRM are 

bx�t ¼ bxt� 1 þ V̂ω;t � Λt (8) 

V̂ω;t ¼ ΔV̂ω;t� 1 � kt þ V̂ω;ct� 1 (9) 

Λt ¼ cos ψt
� �

sin ψt
� �� �T (10) 

The variables in the equations above are defined 
below,

● bxt � denotes the vessel’s predicted position vec
tor using all observations up until timestep t � 1:

● bxt� 1 denotes the vessel’s updated estimated posi
tion vector using all observations up until time
step t � 1.

● V̂ω;t denotes the vessels predicted SOG using all 
observations up until timestep t � 1.

● ÑV̂ω;t� 1 denotes the vessel’s updated estimated 
gradient of our LRM using all observations up 
until timestep t � 1.

● V̂ω;ct� 1 denotes the updated estimated y-intercept 
of our LRM using all observations up until time
step t � 1.

● ψt, denotes the COG of a vessel at timestep t, the 
COG remains the same until we observe a new 
COG value, i.e. getting an update from the vessel.

● ω, denotes the window size of our LRM.
● kt , denotes the elapsed time in seconds at time

step t.

The measurement update equations are 

bxt ¼ bx�t þ xt � bx�t
� �

¼ xt (11) 

ÑV̂ω;t ¼

Pnt
i¼1nt >ω nt � ωð Þ Vi � �Vω� �

ki � �kω� �

Pnt
i¼1nt >ω nt � ωð Þ

ki � �kω� � (12) 

V̂ω;ct ¼
�Vω � ÑV̂ω;t � �kω (13) 

Moreover 

1nt >ω ¼
1; if nt >ω
0; otherwise

�

(14) 

�Vω ¼
1

nω

Xnt

i¼1nt >ω nt � ωð Þ

Vi (15) 

�kω ¼
1

nω

Xnt

i¼1nt >ω nt � ωð Þ

ki (16) 

nω ¼
nt; if nt <ω
ω; otherwise

�

(17) 

The variables in the equations above are defined 
below:

● Vi denotes the ith true SOG observation that was 
recorded for a particular vessel. We assumed 
V0 ¼ 4 m=s.

● ki denotes the total time that has elapsed after 
having the ith true observation.

● nt denotes the total number of true observations 
recorded after Δkt � t seconds, where in this paper 
Δkt ¼ 1s. Δkt refers to the prediction time inter
val between two subsequent observations.

● Note that subscript t is used as a time step index, 
while subscript i is used as an observational index.

The measurement update equation values are only 
updated once a new observation is recorded. If there 
are no new observations recorded, the algorithm will 
evaluate the prediction equations. During the period of 
no observations, it is assumed that the COG remains 
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unchanged. Moreover, the predicted position vector at 
t � 1 is used to obtain a new estimate of the position 
vector at t.

4.3. LRM with a-priori COG information (LRMAC)

In this section, we will present our novel prediction 
method that is an extension of the LRM. The proposed 
method uses spatial maps as they can easily be loaded 
into memory, and their sizes are relatively small. The 
proposed method will allow for non-linear trajectory 
predictions of vessels. Note that the symbols used in 
this section should not be confused with those used in 
the previous section for the LRM.

The LRMAC algorithm no longer assumes 
a constant COG. The value of the COG is dynamically 
updated using a-priori information, using the three 
SM matrices K , Ψ and Σ. As the COG value is dyna
mically updated, the LRMAC can predict non-linear 
trajectories (i.e. the SOG in the longitudinal and lati
tudinal directions will change). It is assumed that the 
SOG will remain constant over the prediction period, 
where the constant SOG used during prediction is 
derived from the last ω observed SOG values of the 
vessel under consideration.

The predictor equations are modified for the 
LRMAC compared to the LRM. Whilst in prediction 
mode, the COG value is updated via a-priori informa
tion. The COG value computed in step t is only 
applied during step t þ 1.

Let bx�t be the predicted position vector as in 
Equation (8). Let, 

nϕ̂;̂λ ¼ nϕ̂; nλ̂

h i
(18) 

denote the SM index positions associated with (ϕ,λ). 

In other words, with nϕ̂; nλ̂

h i
we can extract the ele

ments in K , Ψ and Σ associated with (ϕ, λ) by making 
use of matrix subscripting. Let us now construct the 
following index matrix H: 

H ¼

nϕ̂� η�κ;λ̂� η�κ . . . nϕ̂� η�κ;λ̂ . . . nϕ̂� η�κ;λ̂þη�κ

..

. . .
. ..

.
... ..

.

nϕ̂�κ;λ̂� η�κ . . . nϕ̂;λ̂ . . . nϕ̂;λ̂þη�κ

..

.
... ..

. . .
. ..

.

nϕ̂þη�κ;λ̂� η�κ ... nϕ̂� η�κ;λ̂ ... nϕ̂þη�κ;λ̂þη�κ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

(19) 

where

● η in Equation (19) denotes the neighborhood 
parameter, and

● κ represents the width and length of an SM cell 
(see Table 3 and Figure 2).

The index matrix H is used to select a specific sub-grid 
/matrix from K and �.

Let the a-priori cell counts, of the area surrounding 
bx�t , therefore, be denoted by 

KH;where KH � K 

The size of the aforementioned area is determined 
by η. Moreover, let the a-priori average COG value 
associated with bx�t , be denoted by 

Ψnϕ̂;̂λ
;where Ψnϕ̂;λ̂

2 Ψ 

Finally, let the COG SD associated with bx�t , be 
defined as, 

Σnϕ̂;̂λ
;where Σnϕ̂;̂λ

2 Σ 

4.3.1. Updating the COG using a-priori information
We first need to calculate the confidence we have in 
the a-priori COG value Ψnϕ̂;̂λ

. This confidence mea
sure ρ allows ranges between 0; 1½ �, and it is used to 
scale the contribution of the a-priori COG informa
tion. It is determined by the number of observations in 
the neighborhood, as shown by Equation (20). If the 
a-priori grid count for our current cell is high com
pared to the other cell counts in the neighborhood, we 
can more confidently say that the predicted location is 
in an area where historically many vessels have tra
veled before. If the observed cell count for the current 
position is lower than in the surrounding cells, we will 
give less confidence in the a-priori COG update and 
rather assign more confidence in the LRM with the 
scaling factor. We can achieve this by calculating the 
confidence factor ρ: 

ρ ¼ 1Ψ �
Knϕ̂;λ̂

maxðKHÞ
(20) 

where

● ρ denotes the confidence (scaling factor) that we 
have in our prediction as determined by the cur
rent position of the vessel.

● Kn
ϕ̂;bλ 

denotes the cell count value associated with 

ϕ̂; λ̂
� �

. The index nϕ̂;λ̂ is used to extract it from 

K .
● 1Ψ denotes the indicator function that sets ρ to 

zero. The indicator function enforces the restric
tions that we impose on whether the COG should 
be updated or not.

ρ determines the total weight the a-priori COG 
information should have in the LRMAC. If ρ is close 
to one, we can be confident in the a-priori value Ψnϕ̂;λ̂

, 
and if it is close to zero, we are less confident, and it 
should have less of a contribution in our predictions, 
as seen in Equation (22). Two factors influence ρ. First, 
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if a few vessels have traversed the cell associated with 

xt relative to its neighboring cells, 
Knϕ̂;λ̂

maxðKHÞ
would be 

relatively close to zero, indicating that the a-priori 
COG information should have less impact in updating 
Ψtþ1. The same is true for the opposite: values closer 
to one would have a more significant contribution to 
updating Ψtþ1. The second factor is determined by the 
value of the indicator function in Equation (21). 

1Ψ ¼

0; Ψnϕ̂;λ̂
‚<

0;Σnϕ̂;λ̂
‚<

0;Σnϕ̂;λ̂
> 10�

0;max KHÞ ¼ 01; otherwiseð

8
>><

>>:

(21) 

This equation will evaluate to zero if,

● Ψ or Σ contains no information at index nϕ̂;λ̂. 
This implies that there is no a-priori information 
available for us to make use of.

● The square root of the COG SD at nϕ̂;λ̂ is larger 
than 10° i.e. standard deviation. This implies that 
many vessels have traversed through the cell 
associated with bxt, all going in different direc
tions. This implies that the a-priori COG value 
is unreliable.

The COG value can now be updated as follows: 

ψ̂tþ1 ¼ 1 � ρð Þψt þ ρΨnϕ̂;̂λ
(22) 

where

● 1 � ρð Þ indicates the role that the previous 
observed COG should have in the COG update.

● ψt denotes the previously observed or predicted 
COG.

● ρ denotes the scaling factor that the historic 
a-priori COG information should have.

● Ψnϕ̂;λ̂
, denotes the a-priori COG value at index 

nϕ̂;λ̂.

If our confidence in the a-priori COG value is high, 
we weigh it accordingly. If it is low, we rather put more 
trust in the COG value at time step t (weighted by ρ). 
Note the estimated COG will replace the COG value 
that is used in Equation (10).

4.3.2. A flow diagram representation of the LRMAC
In Figure 6, a flowchart of the LRMAC methodology is 
depicted. The flowchart depicts the LRM and how 
a-priori course information is added to extend the 
LRM into the LRMAC. Initializations are in green, 
functions are in blue, the predicted location is in 
gray, and parameter extracts are denoted in orange. 
It is assumed that all pre-processing has already been 
applied to the dataset.

The first step is to construct the SMs from the 
dataset containing all historic AIS data and initialize 
all parameters. The last ω recorded observations are 
used as additional input parameters in the LRM, spe
cifically for the measurement update equations. The 
LRM consists of two sets of equations, measurement 
update and predictor equations. The measurement 
equations are used to update the predictor parameters 
and the predictor equations to predict the next set of 
coordinates.

The algorithm starts at the indicated red dot in the 
flowchart. The LRM is used to estimate the longitude 
and latitude at the next time step. All predictions are 
made at regular spaced time intervals Δkt . The LRM 
assumes a constant SOG and COG, based on the last ω 
observations.

Given the predicted longitude and latitude, we 
extend the LRM into the LRMAC by dropping the 
constant COG assumption. The COG will now be 
updated based on a-priori COG information at the 

Figure 6. LRMAC flowchart.
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location predicted by the LRM. The extension of the 
LRM allows the predictions to follow historic move
ment trends in the SMs, allowing for non-linear tra
jectory prediction.

Given the predicted location bxt , the corresponding 
index nϕ̂;λ̂ in the SMs can be calculated, and the 
neighboring indexes matrix H. Using nϕ̂;λ̂ and H, the 
a-priori values: KH , Ψ nϕ̂;λ̂

, Σ nϕ̂;λ̂
, and Knϕ̂;λ̂ 

is extracted 
and used in Equations (20) and (21) to calculate the 
updated COG value ψ̂tþ1. The updated COG is used in 
the next iteration by updating the measurement equa
tions of the LRM, which in turn updates the predictor 
equations. This allows for a COG that updates dyna
mically based on historic AIS data.

All other parameters, including the COG, will be 
updated once new observations are received from the 
vessel, updating all the measurement equations.

4.4. Single-Point Neighbor Search (SPNS)

We will now be summarizing the method presented by 
Hexeberg, Flåten, and Brekke (2017) called Single- 
Point Neighbor Search (SPNS). We will be comparing 
the LRMAC to the SPNS, as it was one of the most 
similar methods we found. We will compare the pre
diction accuracy and the time complexity of each. 
Note, do not confuse the variables defined in this 
section with the variables used in the rest of the paper.

Let 

X ¼ X1 X2 . . . XM½ �
T (23) 

be defined as a matrix with all the historic AIS data 
observations, where M indicates the number of AIS 
messages recorded.

Let 

Xi ¼ MMSIi ti pT
i χi vi

� �
(24) 

be defined as a vector, where i 2 1; 2; . . . ;Mf g. The 
elements in Xi refer to the MMSI, timestamp, position 
vector, COG, and SOG of timestep i. The position 
vector pT

i denotes the spatial location of a vessel, 
where pi ¼ λi;ϕi½ �

T denotes the longitude and latitude 
at message i.

A predicted trajectory consists out of Ks predicted 
positions, which are instants of time. At every iteration 
k, a prediction is made, where k 2 1; . . . ;Ks. The pre
dicted state is divided into an a-priori state bXk�

i and 
a-posteriori state bXkþ

i . The states are denoted as: 

bXk�
i ¼ MMSIi t̂k

bpkχ̂k� v̂k�
h i

(25) 

and 

bXkþ
i ¼ MMSIi t̂k

bpkχ̂kþv̂kþ
h i

(26) 

The only difference between the two equations above, 
is the COG and SOG. The predicted χ̂k� and v̂k� at 
iteration k in the a-priori state, represent the predicted 
COG and SOG between the previous position bpk� 1 

and the current position bpk. The a-posteriori predicted 
COG and SOG at iteration k is the difference between 
the current position bpk and the next position bpkþ1.

The SPNS makes use of a close neighbor search, 
where a set radius is defined as a parameter and 
observations within the radius is queried, given that 
the observations adhere to a set of predefined 
constraints.

Let the close neighbors (CNs) at prediction step k 
be defined as: 

Ck ¼ fXijd bpk
; pi

� �
� rc; χi 2 S;Xi 2 Xg (27) 

where

● d bpk
; pi

� �
is defined as the Haversine distance 

between the longitude and latitude in bpk and pi. 
The Haversine distance is defined in Equation 
(2).

● rc, is defined as the search radius in meters, to 
search for all the CNs within rc of the current 
position. The value of rc is a predefined 
parameter.

● S is defined as the interval of course angles. Only 
observations within the course angle interval will 
be included in the CN set.

Let the course angles S be defined by: 

S ¼ χ̂k� � Δχ; χ̂k� þ Δχ
� �

(28) 

where Δχ > 0, is the maximum course angle deviation, 
which is a predefined parameter.

The above pre-processing steps of the distance and 
COG deviation will filter out all the observations that 
we do not need for the remaining steps. All the CNs 
are extracted from historic AIS data. Let every state 
that belongs to the set of CNs at the prediction step k 
be denoted as Xi 2 Ck, where Xk

c ¼ MMSIk
c tk

c χk
c vk

c
� �

and c 2 1; . . . ;Cf g. C is the number of CNs at k.
The predicted trajectory at a state Xi is defined as, 

bTi ¼ bp1 t̂1
h i

; . . . ; bpK t̂Ksh in o
(29) 

Let the true trajectory, Ti, given state Xi, be 
defined as 

Ti ¼ p1t1� �
; . . . ; pLtL� �� �

(30) 

L denotes the number of AIS states recorded. Ks and L 
are not necessarily equal as several prediction steps 
can be made between two subsequent AIS messages. 
The first elements in both bTi and Ti are equal, as it is 
the starting point given by state Xi.
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4.4.1 SPNS prediction
A new parameter is introduced, Δl, which denotes the 
step length from the current observation to the next 
predicted observation in meters. Δl decides how far 
the next position should be propagated. Let the pre
dicted position be denoted by 

bpkþ1 ¼ pk þ Δl

� sinðχ̂kþÞ � f ϕ̂
k� �

cosðχ̂kþÞ � g ϕ̂
k� �h iT

(31) 

f ϕ̂
k� �

and g ϕ̂
k� �

are functions of the current latitude 

ϕ̂k, which transforms from meters to degrees longitude 
and latitude, respectively. The step length, Δl, reflects 
the curvature of the sea lanes ahead.

4.4.1.1 Course prediction. The COG value bχkþ is used 
when calculating the predicted position bpkþ1. bχkþ is the 
a-priori course calculated from the extracted CNs at 
position pk. Note that the course is periodic in 
0�; 360�½ �; special care must be taken when calculating 

the CN set’s mean COG. The mean COG is calculated as 
follows: 

�χc ¼

tan� 1 �s
�c

� �
if�s > 0;�c> 0

tan� 1 �s
�c

� �
þ 180�if �c< 0

tan� 1 �s
�c

� �
þ 360�if �s 0;�ch i0

8
<

:
(32) 

where 

�s ¼
1
C

XC

c¼1
sin χc
� �

(33) 

�c ¼
1
C

XC

c¼1
cos χc
� �

(34) 

A constant velocity model is used whenever Ck‚R as 
done by Hexeberg, Flåten, and Brekke (2017). The med
ian course ~χc can be calculated by calculating ~s and ~c:
Hexeberg, Flåten, and Brekke (2017) recommended to 
use the median course for non-linear trajectories.

4.4.1.2 Speed prediction. The median ~vc of the CNs is 
used to calculate the predicted speed. Note that the speed 
prediction is only used in the time update equation 
shown in Algorithm 1. The predicted speed ~vc is used to 
calculate the time passed between the current observation 
and the predicted observation, where the time passed is 
denoted by Δl

v̂kþ . The time update equation is defined as: 

t̂kþ1 ¼ t̂k þ
Δl

v̂kþ (35) 

where

● t̂k denotes the current time,
● Δl denotes the distance between the current and 

predicted observation, and
● v̂kþ ¼ ~vc, given set Ck at k.

The calculation of the predicted time allows the SPNS 
to have regular spaced distance intervals of length Δl. 
The algorithm for the SPNS is presented below. 

Algorithm 1 Single Point Neighbor Search Prediction

1: X i given ● The state we predict 
from

2: Set decision parameters
(a) Δl 
(b) rc 
(c) ΔΧ 
(d) Ks

● Step length [m]
● Search radius [m]
● Maximum course 

angle deviation [deg]
● Number of prediction 

steps
3: Set bXk�

i ¼ Xi
4: for k ¼ 1 to K do
5: Find all CNs Xk

c around bX k�
i

6: Calculate bX kþ
i by :

(a) Calculating χ̂kþ based on Xk
c

(b) Calculating v̂kþ based on Xk
c

7: Calculate the next predicted position at 
its predicted point in time:

(a) Calculate bpkþ1 according to 
Equation (31)

(b) Calculate t̂kþ1 ¼ t̂k þ Δl
v̂kþ

8: Set bX kþ1ð Þ�

i ¼ MMSIi t̂
kþ1

p̂kþ1 χ̂kþ v̂kþ
h i

9: end for

In Table 4, the set of hyperparameters that are used 
for curved trajectories is shown. These decision para
meters are identical to the ones presented by 
Hexeberg, Flåten, and Brekke (2017) and were used 
to compare the SPNS to the LRMAC.

5. Experimental design

This section will discuss how we set up our experiments 
to get the optimal set of parameters for the proposed 
LRMAC model. We will also be discussing how we will 
compare the LRMAC to the SPNS. We will be comparing 
the LRM and LRMAC to show the increase in prediction 
accuracy of the LRMAC over the LRM and then compare 
the LRMAC to the SPNS model comparing prediction 
accuracy and time complexity. We will be discussing the 
vessels used, how we extracted their trajectories, the 
subsampling approach that we made use of, and how 
we determined the performance of the two approaches.

To compare the LRMAC and SPNS, 40 unique vessel 
trajectories were extracted at random from the dataset 
published by Ray et al. (2019) after having been pre- 
processed. The pre-processing removed stationary obser
vations and vessels with too few observations, as men
tioned earlier in the paper. The extracted vessels are 
a mix of cargo and tanker vessels. The extracted 

Table 4. Curved trajectory decision parameters.
Decision 
Parameter Value Explanation

rc 50 m Search radius of for the CNs
Δl 2rc Prediction step length [m]
Δχ 25° Maximum course deviation
χ̂kþ

i
~Χc Course prediction used at every iteration k

v̂kþ
i

~vc Speed prediction used at every iteration k
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trajectories of the vessels were all from the high-density 
areas depicted in Figure 3. We restricted our use case to 
this example to show the performance of the LRM, 
LRMAC, and SPNS on curved trajectories. The 
LRMAC algorithm can be applied to various use cases 
and will perform well on any SM containing clear regions 
exhibiting path directionality.

5.1 SPNS vessel query setup

Since the SPNS algorithm requires querying historic 
observations within a specified radius, all the data was 
loaded into a PostgreSQL database.2 An extension was 
added to PostgreSQL called PostGIS,3 which allows for 
improved spatial queries with a datatype called geo
metry. The PostGIS plugin uses a unique kind of 
indexing. Querying observations in PostgreSQL with 
PostGIS allow that vessels within a given radius from 
the search point can be extracted into Ck.

5.2 Trajectory subsampling method

In order to have a large test set of trajectories to identify 
the ideal parameters for the LRMAC and compare it to 
the SPNS, we created a method that would subsample 
trajectories. We are effectively creating multiple trajec
tories from one observed trajectory. A given trajectory Ti 
will be subsampled into different time subsets given 
a prediction length h. Each time a subset’s starting obser
vation will differ by 1 hour compared to the subset that 
precedes or follows it. We refer to this hour difference as 

a stride length s, where s defines the starting point of the 
stride hour from Ti. Stride values are measured in hours. 
This method allows us to extract multiple sub trajectories 
Ts;h from T i. Let the number of sub trajectories that can 
be created with a prediction length of h from Ti be 
denoted by 

#Th ¼ maxðtTiÞb chour � hþ 1 (36) 

and let the total number of sub trajectories from T i 
with different starting positions s be denoted by, 

#Ts;h ¼
X maxðtTi Þb chour

h¼1
#Th (37) 

where

● maxðtTiÞb chour denotes the closest floored hour to 
the maximum observed time in Ti.

● h refers to the prediction length, where 
h 2 1; 2; . . . ; maxðtTiÞb chour

�
, and

● s denotes the stride starting position measured in 
hours,

s 2 0; 1; . . . ; maxðtTiÞb chour � h
� �

In Figure 7, an example is shown of the trajectory 
subsampling and the number of subsets we can create 
given an observed trajectory between 6 and 7 hours. 
Using Equation (37), the total number of sub trajec
tories that can be created from this trajectory is 21.

Figure 7. Subsample visualization.
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This method of sub-trajectory sampling allows us 
to have multiple trajectories to compare the prediction 
and time performance between the LRMAC and the 
SPNS model. The prediction performance is deter
mined by the Haversine distance between the expected 
spatial location at time t compared to the predicted 
location at time ̂t. The time performance is computed 
by the time the methods take from execution until the 
predicted trajectory of length h has been calculated.

First, we will run the LRMAC method on all sub- 
trajectories with different sets of parameters η and ω to 
determine the optimal set of parameters that results in 
the smallest median Haversine distance on average. 
The LRMAC with its optimal parameters and SM 
densities will be compared to the LRM, and SPNS 
with the parameters defined by Hexeberg, Flåten, 
and Brekke (2017). The SM densities were not opti
mized for these tests, the cell sizes remained constant, 
and the number of cells fixed at 1250� 1250. We will 
also be testing the speed performance between the two 
algorithms, measuring the execution times.

5.3 Parameter estimation of LRMAC

To obtain the optimal set of hyperparameters for the 
LRMAC, the LRMAC was tested extensively on dif
ferent combinations of η and ω. The combination of 
η and ω that gave the lowest overall Haversine dis
tance error will be chosen as the ideal set of hyper
parameters. The considered parameter values were: 
η ¼ 1; 2; 3; 4½ � and ω ¼ 1; 3; 5; 7; 9½ �, resulting in 
20 combinations.

The parameters that yielded the best results were: ω ¼
3 and η ¼ 1. The LRMAC was tested on all sub trajec
tories. The combination of ω and η with the smallest 
average median Haversine distance over all sub- 
trajectories and timeframes was chosen as the ideal 

set of hyperparameters. Figure 8 compares the aver
age median Haversine distances, and we can see that 
there is no significant performance increase after the 
combination ω ¼ 3 and η ¼ 1. The chosen hyper
parameters have a lower complexity as the ω and η 
are small, compared to the other parameters with 
similar performance. Smaller values of ω means that 
our function is more flexible to incorporate new 
information, as there are fewer elements to consider. 
Large values of ω will mean that our algorithm is less 
flexible, using more observed observations from the 
current trajectory to make a prediction. Larger values 
of η means more historic SM cells to include when 
making a prediction, as the neighborhood size is 
larger.

5.4 SPNS prediction adjustment

Since the SPNS predicts in constant distance inter
vals Δl instead of constant time intervals as the 
LRMAC does, we had to adjust the final prediction 
of the SPNS to allow for an exact comparison at h 
(prediction horizon). To get the predicted spatial 
location of the SPNS after h has passed, we let the 
SPNS predict until t̂kþ1 > h. We calculate the time 
that has passed between the last two predicted 
observations bX kð Þ�

i and bX kþ1ð Þ�
i , where time is indi

cated by t̂k and t̂kþ1, and where, t̂k < h< t̂kþ1 :, let 
he total time passed be denoted by Δtjŷj. The 

Haversine distance between bX kð Þ�
i and bX kþ1ð Þ�

i is 
calculated Δl bX kð Þ�

i � bX kþ1ð Þ�

i

�
�

�
�. The SPNS will be rerun 

from bX kð Þ�
i with the same set of parameters and 

only changing the prediction step length 
Δl ¼ Δl bX kð Þ�

i � bX kþ1ð Þ�

i

�
�

�
�. This will give us the predicted 

spatial location at h, as t̂kþ1 ¼ h determined by 
Equation (35).

Figure 8. Average median haversine error for each hyperparameter combination.
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5.5 Prediction performance comparison 
algorithm

The algorithm below shows how the errors were cal
culated for both the LRMAC and SPNS on each sub 
trajectory. We used the median error results for each 
predicted timeframe h to compare the performance 
between the two algorithms. 

Algorithm 2 Prediction Performance Comparison

1: Set different parameters: 
(a) ω ¼ 3 
(b) η ¼ 1 

(c) 2LRMAC ¼

2LRMAC1 ; . . . ;2LRMACmax hð Þ

h i

(d) 2SPNS ¼ 2SPNS1 ; . . . ;2SPNSmax hð Þ

h i

● LRMAC Jagged array 
for each h

● SPNS Jagged array for 
each h

2: for T i in T do
3: Get Ts;h which is a set of sub 

trajectories from T i
4: for h in 1; 2; . . . ; maxðtT i Þb chour do
5: for s in {0; 1; . . . ; maxðtT i Þb chour � h} 

do
6: Ttest ¼ Ts;h 0 : 3½ � ● Initial observations 

for the algorithms
7: bλLRMAC ; ϕ̂LRMAC = LRMAC Ttest; η;ω; hð Þ ● LRMAC, given the 

parameters and h
8: bλSPNS; ϕ̂SPNS = SPNS Ttest; hð Þ ● SPNS, given the para

meters and h
9: Calculate the haversine distance 

error: 
2LRMAC append havdist(Ts;h ,bλLRMAC ;

ϕ̂LRMAC )

● Error to correspond
ing h array in 2LRMAC

10: 2SPNS append havdist(Ts;h ,bλSPNS; ϕ̂SPNS) ● Error to correspond
ing h array in 2SPNS
havdist() denotes the 
haversine distance 
between the observed 
and predicted 
location.

5.6 System specifications

All the tests will be carried out on a system with the 
specifications listed in Table 5.

6. Results

In this section, we will compare the LRMAC with the 
SPNS.

The LRMAC is an improved version of the LRM, 
where the LRMAC allows for the prediction of non- 
linear trajectories. In Figure 9 below, the median 
Haversine error is shown for both the LRM (red) 
and LRMAC (blue), together with the standard devia
tion (SD) from the median. The LRMAC has 
a reduced SD and median error compared to the 
LRM. In terms of short-term prediction accuracy, we 
see that the LRM and LRMAC are not significantly 
different, but for longer prediction windows 
(>120 min), the proposed method shows an improve
ment. To further support this observation, when look
ing at Figure 10, we can see that the LRMAC 
reproduced the trajectory, where the LRM went off 

course. The LRMAC assumes a constant speed calculated 
which was estimated from the first ω observed observa
tions. The LRMAC predicted where the vessel would be 
after 8 hours, should it have traveled at a constant speed. 
The prediction error comparison does not accurately 
represent the performance of the LRMAC. When look
ing at the predicted trajectory, we can see that the pre
dicted LRMAC trajectory is more similar to the actual 
trajectory when compared to the LRM.

The error is measured as the Haversine distance 
between the actual observation at time t compared to 
the predicted observation at time t for each method. The 
LRMAC has a lower SD for longer range predictions 
than the LRM. This is expected as our test set contains 
vessels that are in the highways depicted in Figure 3. 
Shorter prediction periods h will mean the subsets will 
be near-linear as cargo and tanker vessels have a slow rate 
of turn. We do not expect a vessel trajectory to stay linear 
for more extended prediction periods, as there are obsta
cles like landmasses and other vessels. The LRM will keep 
predicting linearly, whereas the LRMAC will adapt to 
predict non-linear trajectories using historical COG 
information. We can see from h ¼ 240 onwards that 
the median difference between the LRM and LRMAC 
increases. We expect that the LRMAC will be able to 
predict with any SM that has path directionality.

In Figure 10, the LRM (lime) and LRMAC (aqua) 
predictions are shown of MMSI 419689000, together 
with the actual trajectory (magenta) that the vessel 
had. Looking at the error lines of the LRMAC (yellow) 
and the LRM (red), we see that their distances to the 
expected location differ by 3:47 km. The error dis
tances are not significantly different; however, the 
LRMAC was still able to predict the correct path, 
given the constant speed assumption. The LRMAC 
only used ω ¼ 3 historic observations to predict the 
8-hour trajectory. The background of Figure 10 
depicts the vessel counts SM K , shown in Figure 3. 
Given a use case where the historic data have paths 
that are longer and highly non-linear (not just 
a piecewise linear historic path), we believe that the 
LRMAC would do significantly better than the LRM as 
it will follow the trend of the historic data.

In Figure 11, the median prediction error of the 
LRMAC (blue) is compared to the SPNS (green). 
Similar to the LRM and LRMAC comparison, the 
error was calculated over all the sub trajectories with 

Table 5. Testing system specifications.
Description Name Specification

CPU Intel i7-10700K 8 core 16 threads @ 5.1 GHz
Memory Corsair Vengeance 

LPX
DDR4 @ 3600 MHz

Storage HP EX920 NVMe M.2 SSD @ 512 GB
Software Python 3.8.5
Database PostgreSQL 12.6
Database plugin PostGIS 3.1.1
Operating 

System
Ubuntu Desktop 20.04 LTS
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a prediction length of h. The median error for both 
methods was extracted at each h together with the 
standard deviation (SD). Note that the SD is plotted 
around the median, instead of the mean absolute 
deviation, and this was done to reflect the algorithmic 
stability.

Figure 11, which compares the LRMAC and the 
SPNS, is a better comparison as both the LRMAC 
and SPNS follow the historic route. Looking at 
Figure 11, we see no significant prediction perfor
mance difference between the LRMAC and the SPNS 
for short prediction periods. However, when consider
ing longer prediction periods (>120 min), the median 
error and SD of the LRMAC are lower than that of the 

SPNS. The SPNS’s SD starts to increase dramatically, 
compared to the LRMAC’s SD, which increases at 
a lower rate. When looking at the prediction interval 
5; 15½ �min, the recommended time prediction horizon 

for the SPNS, the SPNS has a smaller SD than the 
LRMAC.

One assumption that the LRMAC makes is that 
a vessel keeps a constant speed, and the prediction is 
based on this constant speed assumption. The SOG of 
a vessel is derived from the last ω observed observa
tions. The SPNS calculates the SOG based on the 
historic observations, but the speed is not used in the 
coordinate prediction step but instead in the time 
predictions.

Figure 10. LRM vs LRMAC on SDM (MMSI 419689000).

Figure 9. LRM vs LRMAC.
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In Table 6 below, we see the time complexity of 
both methods for each prediction length h. The time 
was measured over all the sub-trajectories, and the 
median time is shown. The SPNS computation time 
is significantly longer to predict than the LRMAC. The 
speed of the SPNS is limited by the time it takes to 
query the CNs from a database. Larger database table 
sizes will lead to more significant query times as there 
are more observations to search through. The LRMAC 
uses SMs whose sizes stay fixed, given more observa
tions for the same longitude and latitude range. The 
SM sizes will only increase if the longitude and latitude 
range of the observed data increase.

Looking at Figure 11 and Table 6, we see that even 
though the two methods are not significantly different 
in their prediction accuracies for short prediction per
iods, the LRMAC had a shorter execution time. In 
Figure 11, we see that the SPNS has a smaller SD 
than the LRMAC for the 5; 15½ � min timeframe.

We believe that in higher density areas closer to 
harbors, the SPNS will have more accurate prediction 
results as the set of CNs will only contain vessels 
moving in the same direction, where the LRMAC 
would default to the LRM as the a-priori COG SD Σ, 
will be high. In areas closer to harbors, vessels tend to 
move slower, and prediction timeframes are usually 
smaller with increased AIS coverage. We think that the 

SPNS can be used together with the LRMAC. If the 
LRMAC encounters a cell with a high SD, the SPNS 
can be deployed until a cell with a lower SD is encoun
tered. A hybrid approach between the SPNS and 
LRMAC may improve prediction times and improve 
prediction accuracy in areas with a significant amount 
of traffic in different directions.

It should be noted that the LRMAC is limited by the 
spatial resolution of the SMs it employs. In the case of 
sparse historic data, the SMs generated from this data 
would be inaccurate, resulting in a decrease in perfor
mance of the LRMAC. Also, when the prediction time 
interval between two consecutive predictions is too 
large, the LRMAC will skip past important a-priori 
information and have inaccurate prediction results. 
Furthermore, the LRMAC was only tested on cargo 
and tanker vessels in this study, as the movement of 
other vessel types, such as fishing vessels are of an 
erratic nature and the SMs that will reflect this beha
vior, with high COG standard deviation.

The LRMAC can be used to predict trajectories of 
vessels or to impute historic trajectories. The LRMAC 
would be more accurate as observations are recorded, 
and the observations in the window size ω is updated. 
Currently, the predictions of the LRMAC and SPNS 
were done on the assumption that only the first ω 
observations’ information will be used, simulating 
AIS transponders that are switched off for extended 
periods of time.

7. Conclusions

In this paper, we presented an extension of the 
LRM method proposed by Burger, Kleynhans, and 
Lups Grobler (2020), which uses historic AIS vessel 
information (particularly the historic COG infor
mation), which is robust and easy to implement. 

Figure 11. SPNS vs LRMAC prediction results.

Table 6. LRMAC vs SPNS median prediction times.
h LRMAC time SPNS time Time difference

min s min s min min

5 0.11 0.0018 30.92 0.5154 −0.5135
15 0.33 0.0055 95.68 1.2614 −1.5892
30 0.66 0.0110 193.07 3.2178 −3.2068
60 1.31 0.0218 371.87 6.1978 −6.1760
120 2.64 0.0440 712.29 11.8715 −11.8275
180 3.98 0.0663 1026.38 17.1063 −17.0399
300 6.56 0.1093 1724.46 28.7410 −28.6317
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The LRMAC implemented in this paper had 
a smaller incurred prediction error and associated 
standard deviation than the LRM implemented by 
Burger, Kleynhans, and Lups Grobler (2020). The 
LRMAC can predict a trajectory similar to the 
actual trajectory where the LRM goes off course. 
The LRMAC makes use of SMs to improve its 
prediction capability. The LRMAC was compared 
to Single-Point Neighbor Search (SPNS), which has 
a similar level of computational complexity and, for 
the use case of predicting tanker and cargo vessel 
trajectories up to 8 hours into the future, showed 
improved results both in terms of the prediction 
accuracy and execution time. The LRMAC can be 
used to predict trajectories of vessels or impute 
vessel trajectories. The LRMAC will have reduced 
prediction accuracy in high-density areas where 
historically vessels traveled in different directions. 
We think a hybrid approach between the LRMAC 
and the SPNS may lead to improved prediction 
accuracy and execution time. Future work includes 
exploring the possibility of a hybrid approach 
between the LRMAC and SPNS.

Notes

1. For more on the International Maritime Organization 
(IMO), see: www.imo.org . For additional informa
tion on AIS transponders see: https://www.imo.org/ 
en/OurWork/Safety/Pages/AIS.aspx.

2. For more on PostgreSQL see: www.postgresql.org
3. For more on PostGIS see: www.postgis.net
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