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Abstract

Latent variable models are important for condition monitoring as they learn, without any supervision, the healthy state

of a physical asset as part of its latent manifold. This negates the need for labelled fault data and the application of

supervised learning techniques. Latent variable models offer information from which health indicators can be derived for

condition monitoring. Namely, information from the latent space and the data space can be used for condition inference.

These health indicators are used to explain changes in a physical asset's condition. Conventional black-box approaches

only offer information from the data space in the form of reconstruction errors. In contrast, latent variable models offer

a latent space and reconstruction space for inference. However, the current application of latent variable models either

disregards latent space information or fails to realise its full potential. The full potential can be realised by preserving the

time information in the data. Therefore, we propose a model evaluation procedure that specifically preserves time in the

latent health indicators. The procedure is generic and can be applied to any latent variable model as demonstrated for

Principal Component Analyis (PCA), Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs)

in this study. In general, as time information can be discarded or preserved for derived latent health indicators, this study

advocates that health indicators that preserve time are more useful for condition monitoring than health indicators that

discard time. In addition, it enables the interpretation of the learnt latent manifold dynamics and allows for alternative

latent indicators to be developed and deployed for fault detection. The proposed temporal preservation model evaluation

procedure is applied to three classes of latent variable models using two datasets. Three model-independent latent health

indicators that preserve time are proposed and shown to be informative on all three classes of latent variable models

for both datasets. The temporal preserving latent analysis procedure is demonstrated to be essential to derive more

informative latent metrics from latent variable models.

Keywords: Unsupervised learning, Latent variable models, Temporal preservation, Latent analysis, Fault diagnostics,

Time-varying operating conditions

1. Introduction

Vibration-based condition monitoring is an important field that addresses the need to optimise and improve the

utilisation of expensive machine assets [1, 2]. The goal of condition monitoring is to uncover the presence, if any, of vibration

signatures that are indicative of faults. This goal requires that the performance of condition monitoring techniques be
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robust to variations in operating conditions as this may complicate the condition inference procedure [3]. These applications5

of condition monitoring techniques are commonly referred to as asset degradation assessment or the diagnostics problem

and the prognostics problem. In the literature, advanced signal processing and learning-based techniques have been widely

investigated. Both are working towards the unified goal of improving the performance capabilities of condition monitoring

techniques [4, 5].

For the diagnostics problem, the objective is to use a health indicator (HI) to infer the asset's condition. The develop-10

ment of HIs is an active research endeavour centred around asset degradation assessment techniques [6]. These techniques

aim to quantify the asset condition by detecting and enabling fault trending [7]. Examples of traditional HIs include

the root-mean-square value, peak value, crest factor and kurtosis [8]. The spectral kurtosis is a statistical quantity used

to detect signal impulsiveness, or a deviation from Gaussianity, and is commonly used to determine frequency bands

where impulsive signal components dominate [9]. In Antoni and Borghesani [7], statistical HIs were designed to detect15

stationarity and/or Gaussianity deviations. In Wang and Tsui [6], a generalised dimensionless HI is proposed using the

probability density function of a noncentral chi-square distribution defined over the variance-normalised square envelope.

In Booyse et al. [10], a Generative Adversarial Network (GAN) was used to develop a HI from the GAN discriminator

function, which was used to measure the deviance from a healthy asset state.

Signal processing-based methods and learning-based methods can both provide indicators, but the two fields differ20

in fault covariate extraction practices. Signal processing techniques are designed using extensive domain knowledge. In

contrast, learning-based techniques such as statistical learning and machine learning initially utilised advanced feature

engineering to improve model performance in classification or regression tasks [11]. Deep learning introduced powerful

nonlinear parametric functions commonly referred to as deep neural networks, which extract features from raw time-series

signals for condition inference [5].25

However, many learning-based approaches are black-box models for semi-supervised learning optimisation using clas-

sification losses, reconstruction losses, or combining the two [12–14]. The term black-box is used in this work to refer

to a model in which there is little understanding of the facets of the model other than the output it provides. This

induces a natural blind spot for learning-based approaches as certain model facets are never fully addressed as the focus

is to maximise method performance. Another issue inherent to supervised learning techniques is the data label problem.30

The costly and dangerous nature of failure in critical assets introduces limited access to extensive fault data. Usually, a

vast amount of healthy asset data is available, as the percentage of time an asset spends in a failure state is low [5]. A

large portion of the recent learning-based literature addresses this problem using semi-supervised learning techniques and

domain-transfer learning. These techniques require access to some labelled fault classes from the asset of interest or an

identical or different machine [5].35

An alternative solution to the data label problem is to use healthy time-series asset data to learn a probabilistic

representation of the asset in a healthy state [10]. By learning this representation, the data label problem is bypassed as

the primary interest is to measure if unseen data is from this representation. This probabilistic representation learning

process manifests through density estimation learning techniques, often classified in the literature under the banner of

unsupervised learning [11]. For density estimation, latent variable models (LVMs) are considered a cornerstone [11, 15, 16].40

LVMs are techniques that assume that unobserved latent variables are used as conditioning variables for the observed

data, and this manifold describes the intrinsic structure of this data. LVMs are used to learn the representation of a
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healthy asset state. This approach is powerful, but its potential is not fully realised in current methods due to inadequate

data analysis and latent analysis procedures. Specifically, the latent manifold is often left as a black-box facet that is a

simple by-product of the model formulation. However, under the manifold hypothesis [17], it would be expected that if45

the manifold represents healthy data, unhealthy data should not lie in the same area of the manifold.

A common process in the learning-based literature is the use of a set overlap percentage when performing time-series

signal segmentation for models trained on raw time-series data [10, 18]. This time-series data evaluation approach is

commonly used for both training and evaluation. This may be key to reduce the input feature dimensionality but breaks

the temporal structure in the data. The temporal structure referred to here is not the time between recorded time-series50

data but the time structure within this data. Our work emphasises that this local data timeframe must be preserved. This

preservation is atypical but offers much potential in vibration-based CM. Using large overlapping segments is sufficient

for model training. However, this can hinder the condition inference procedure during the model evaluation step due

to anomalies in time-series data that are localised as the damaged portions move through the loading zone. This is the

Achilles' heel of current LVM techniques and disrupts the temporal information in time-series data. Furthermore, present55

methods cannot readily detect anomalous instances in the latent manifold unless fault labels are supplied. These labels

are used to cluster the data, or an adversarial training scheme is required to regularise the encoding transition function

to provide an additional health indicator [12, 19].

A rational guide to overcoming this flaw exists in discrepancy analysis techniques. Localised discrepancy measures are

obtained using a healthy probabilistic representation, and these measures quantify the deviation from the healthy data60

distribution over time [20, 21]. These discrepancy measures are also obtained with crafted signal segmentation approaches

that exploit external information such as tachometer signals to carefully design a statistical analysis methodology for

specific fault cases [22]. LVMs cover one-half of discrepancy analysis techniques, whereby a model is used to capture the

healthy data density. Once this density has been learnt, HIs are used as representative metrics to evaluate whether new data

is from this distribution. However, exploiting additional information during the pre-processing stage is counter-productive65

to deep learning, aiming to only use raw time-series data to train models.

This work proposes that by preserving the temporal structure, LVMs' full potential can be harnessed, and this preserva-

tion introduces informative latent health indicators (LHIs). The benefit of the proposed LHIs is that they are generic and

can be used with any LVM that makes a continuous and temporally preserved latent space available. The contribution of

this work is the augmentation of the LVM analysis approach by preserving the time dimension. This augmentation allows70

for increased analysis flexibility as time structure is introduced into the HI measures. Figure 1 details this augmentation

clearly for a signal with a localised fault. In the conventional latent analysis setting shown in Figure 1(a), the HI measures

from the signal contain healthy and anomalous characteristics, while the cause of the anomalies is unclear. In Figure

1(b), the distinct healthy and anomalous (or unhealthy) regions are seen in the proposed analysis setting. Since time is

preserved, it is also possible to extract more information from this HI signal using conventional signal analysis approaches75

(e.g. time synchronous averaging, spectral analysis), making it possible to identify the source of the unhealthy behaviour.

By ensuring that the temporal structure in the time-series data is preserved, incipient fault detection, fault isolation, and

fault trending become viable avenues of investigation, which are crucial facets of vibration-based fault diagnostics. Tem-

poral preservation is also model agnostic, which introduces a generic analysis setting that exploits the temporal structure

in the time-series data for improved diagnostic performance.80
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Figure 1: The differences between the conventional analysis approach and the proposed analysis approach for a damaged time-series signal.

In the conventional setting, notice how there appears to be HI measures in both the expected healthy density region and some outliers, but

this cannot be easily explained. In the proposed setting, it is clear that the unexplained healthy measures are simply those from a healthy

local region in the time-series signal. Figure (b) shows that the expanded unhealthy region in the time preserved HI measures over the fault is

attributed to the model window length used.

A reformulation of the model evaluation approach used in deep learning practices is essential, and therefore a temporal

preservation approach is proposed. This reformulation adds improved model interpretability, HI interpretation and the

condition inference process. The latent manifold of LVMs is explored, and its responsiveness to anomalous instances is

investigated. The main contributions of this research are summarised as follows:

1. A reformulation that exploits the natural temporal structure in the data used in the model evaluation procedure85

results in HI signals that are more informative. The preservation of temporal structure allows multiple facets of the

discrepancy signals to be exploited for condition inference.

2. The latent manifold is shown to be interpretable and responsive to anomalous data samples. A set of LHIs is

proposed to be applied to any continuous latent manifold with temporal structure.

3. Temporal preservation enables LHIs to be derived that consider the latent manifold's path information and trajectory90

dynamics instead of only state information of the latent manifold.

As this work aims to utilise the full potential of LVMs, three different models are considered. These models are

Principal Component Analysis (PCA) [11], Variational Auto-Encoders (VAEs) [15] and a Disentangled Latent Space

Generative Adversarial Network (DLS-GAN) [23]. Many models are available, but the selected methods are sufficient

to investigate the LVM class, model complexity to highlight the temporal preservation approach's potential combined95

with the proposed LHIs. The performance of common HIs and the proposed LHIs is critically compared on datasets

with constant and time-varying operating conditions. The first dataset investigates a gear tooth fault in a gearbox

with time-varying operating conditions to highlight the improved condition inference procedure obtained when using the

temporal preservation approach. This is achieved by using this approach to improve the quality of the HI signals. We

show that the proposed LHIs obtained from the proposed framework can detect asset damage in the latent manifold100

under time-varying operating conditions. The second dataset is a bearing run-to-failure dataset under constant operating

conditions. This dataset is used to compare the performance of the various HIs and LHIs developed under the temporal

preservation approach against state-of-the-art signal processing and deep learning literature. The important techniques

relating to LVMs and the temporal preservation approach are introduced, and the application to vibration-based condition
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monitoring is addressed in Section 2. The HI and LHIs obtained from different models are then evaluated on experimental105

data and compared in Section 3. Finally, the research is concluded, and recommendations for future work are provided in

Section 4.

2. Latent Variable Analysis

2.1. Introduction

This work aims to use LVMs as a method to transform time-series data to a set of HIs from which the condition110

of an asset may be inferred. LVMs have been used for anomaly detection tasks. However, this work will investigate

how anomalous instances are represented in the latent space and propose a set of model agnostic scalar indicators that

can be used to detect anomalous instances in the latent manifold. To do this, the basic components of an LVM must

be understood, and the components of the model that apply to condition monitoring must be detailed. LVMs are well

documented in the literature and are often used for unsupervised learning tasks [11]. Unsupervised learning differs from115

supervised learning and some semi-supervised learning techniques in the distribution of interest. Unsupervised learning

is concerned with density estimation tasks, such as capturing the distribution p(x) over the data space x. In supervised

learning, and in most semi-supervised learning cases, the objective is to infer a variable y given a sample x. These learning

methodologies are used in learning-based literature and can be classified into statistical learning, machine learning or deep

learning based on model flexibility and pre-processing applicability.120

In the density estimation process, LVMs assume that an unobserved latent variable z describes the data. The as-

sumption is often made that this latent variable space is of a lower dimension to the data space Rlatent ≤ Rdata. A

generative view of these models is developed by assuming a prior p(z) over z and a conditional generative distribution

p(x|z) from which data samples are drawn. The data distribution p(x) is then given through the marginalisation of the

joint distribution p(x, z) with respect to the latent variables

p(x) =

∫
p(x|z)p(z)dz. (1)

It is then often important to evaluate the posterior distribution using Bayes' theorem for model inference to obtain latent

samples from the data samples, which can be obtained through

p(z|x) =
p(x|z)p(z)

p(x)
. (2)

These two processes are key to LVMs and are succinctly demonstrated in Figure 2, where two parametric functions fφ

and gθ are used to map samples from the data space to the latent space and vice versa. The parametric functions fφ

and gθ are commonly referred to as the encoder and decoder, and these functions are used to parametrise the inference

and generative distributions p(z|x) and p(x|z). The placement of the latent prior with respect to the latent manifold is

demonstrated to enforce the requirement that fφ transforms input feature samples in a region similar to p(z) to ensure125

that data samples can be generated through sampling p(x|z) from a sample z ∼ p(z).

Three common operations can be described when using LVMs. The first is the data generation process which occurs

through sampling a point in the latent space z ∼ p(z) and then drawing a data sample from the conditional distribution

p(x|z), which is obtained through x = gθ(z). The second is the input reconstruction process which is obtained from
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Figure 2: An illustration of the process of a typical application of LVMs for condition monitoring. Notice the location of the latent prior p(z)

and the learnt latent manifold through the inference network fφ.

sampling x ∼ p(x) and using both transition functions to produce a reconstructed sample x̃ = gθ(fφ(x)). The final130

process is the model inference step that obtains a latent code for a sample x ∼ p(x) using z = fφ(x). It is important to

note that not all LVM methods focus on both parametric functions, and the choice of which parametric function is learnt

affects the framework's versatility, as this restricts which model operations are available.

2.2. Proposed latent variable analysis method

In this work, LVMs are used to capture the representation of a healthy asset. This process allows for health indicators135

to be obtained that track the deviation from this healthy representation. To pre-process the data, typically, a sliding

window with an overlap percentage is used to reduce the dimensionality of the data features and increase the training

dataset's size [24]. The overlap percentage removes the temporal structure of the time-series data in the signal segments

seen by the model, which inhibits the condition inference procedure by limiting the operations that can be performed on

the HI or LHI signals. A temporal preservation approach is used during model evaluation to preserve time in the obtained140

condition indicators for a given signal. Figure 3 shows the difference between the conventional approach and the approach

proposed in this work. It is emphasised that the model training procedure for LVMs from conventional applications is

sufficient. Hence this element of the LVM application remains unchanged. The temporal preservation approach proposed

in this work requires that time-series data be fed through the model incrementally to obtain condition indicator signals that

have temporal structure during model evaluation. This decision is beneficial as it produces informative health indicators,145

and these signals are now considered a transformation that may enhance the presence of fault covariates in the data.

Furthermore, to explore the latent manifold, it is beneficial to preserve time as this allows for the path traversed in the

latent space to be investigated.

To develop a set of scalar metrics that can be used to interpret the latent manifold, the deviation paths from the latent

space must be conceptually quantified. In Figure 4, the potential paths of latent traversal are highlighted to the reader,150

and these paths illustrate plausible directions of traversal for data from an asset with a localised fault and data from an

asset with a distributed fault, such as distributed gear wear. As highlighted in Figure 4(a), it is difficult to distinguish

between the latent space's localised and distributed gear faults. However, as demonstrated in Figure 4(b), we can clearly

distinguish between the two fault cases if we use the temporal information.

There are two primary means of anomaly detection in the manifold, one through off-manifold deviance and another155
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Figure 3: The difference in analysis methodology between current literature approaches and the proposed temporal preservation approach.

It is key to note that the difference only manifests during the model evaluation stage, where the temporal structure of the vibration data is

preserved. This difference allows for the development of more informative HIs and LHIs. The kσ rule, where k ∈ N, is formulated under a

Gaussian distribution assumption that is validated under a Gaussian null hypothesis.

through the manifold's path traversal properties. As the latent manifold is representative of healthy data, anomalous

data may manifest in the non-healthy manifold regions. As LVMs control the structure of the latent manifold to bear

resemblance to a prior distribution p(z), this deviation may be quantified through the log-likelihood of the latent samples

under the prior p(z). Furthermore, as the manifold has temporal structure in the temporal preservation framework,

dynamic properties such as the traversal rate may change without deviating to regions of low likelihood under the prior160

p(z), which is static with respect to time. The traversal rate may serve as a suitable indicator to detect unhealthy data.

Temporal preservation is key to interpret changes in the latent manifold as the temporal structure of the data can be

used to track the path traversed through this manifold. The temporal preservation approach introduces structure to our

data analysis. As a result, the data structure is preserved in a low-dimensional representation in the latent manifold. This

configuration is used to interpret the latent manifold, thereby allowing time to be untangled. Deviations in the static and165

dynamic properties of the latent manifold may now be quantified.

2.3. Data pre-processing

In this work, the raw time-series data must be reduced in dimensionality to satisfy computational limitations and to

produce a dataset that can be used to optimise the model parameters. Firstly, the available healthy vibration data is

processed according to a sliding window scheme [10, 18]. The data is developed into a Hankel matrix H [24] by storing

segments of a size designated by the model window length Lw and overlap controlled by the shifting parameter Lsft. Lw

and Lsft control the amount of signal information seen by the model and the amount of overlap between signal segments,

respectively. Lw is the model window length or segment length, and Lsft is the segment overlap length. Signal segments

7



(a) Manifold representation for faulty time-series data in R2.

(b) Manifold representation for faulty time-series data with time in an arbitrary time interval t ∈ [t0, t1].

Figure 4: The potential manifold traversal paths that can be obtained from LVMs for different data cases, shown in Figure (a) the latent

space and Figure (b) the latent space with time. Note that in Figure (a), the contours refer to the prior p(z). It is clear from Figure (a) that

the different damage cases manifest similarly, and it is non-trivial to discern between the two. In Figure (b), where the temporal structure is

preserved, the manifold responds differently to different fault types. The preservation of time allows for manifold interpretation.

are developed by sliding the window and storing segments for measurement xi through

H(xi) =


xi(0) xi(1) xi(2) · · · xi(Lw)

xi(Lsft) xi(Lsft + 1) xi(Lsft + 2) · · · xi(Lw + Lsft)

xi(2Lsft) · · · xi(Lw + 2Lsft)
...

. . .
...

 , (3)

where H ∈ RNobs×Lw and Nobs is the number of windows extracted from a single signal. This process is then repeated for

the n available healthy vibration data signals and each matrix is concatenated to develop the data matrix Xdata through

Xdata =


H(x1)

H(x2)
...

H(xn)

 (4)

where Xdata ∈ Rn∗Nobs×Lw . Common to any learning-based application, the Xdata is then partitioned into a training and

validation set that is used to train the model. It is a requirement for this work that the training data consist only of
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signal segments from the asset in a healthy condition. For model training in this study, the shift parameter is selected as

Lsft = 0.5Lw, and the data is standardised using

Xdata =
Xdata − µtrain

σtrain
, (5)

where µtrain ∈ RLw and σtrain ∈ RLw are the healthy Xdata matrix feature mean and standard deviation. The set of

model parameters are then optimised using Xdata. Finally, it is conventional to use Equation (3) with Lsft = 0.5Lw,

µtrain and σtrain to process and standardise all available vibration data to evaluate HI metrics for each segment. The170

statistical properties of the HI measures are analysed to infer the condition of the asset.

In this work, the proposed temporal preservation approach preserves the temporal structure in the segments of Xdata

during the model evaluation process by re-evaluating Equation (3) with Lsft = 1. This step ensures that when HI and LHI

measures are obtained, the temporal structure in the resulting HI or LHI signal is preserved. This preservation ensures

the structure in the time-series data is now retained in the evaluation step. Furthermore, the HI and LHI signal is a175

transformed representation of the time-series signal. This allows for each segment to be consistently quantified as there

is now a preserved relationship to time. To highlight additional considerations into the choice of model window length,

consider Figure 5.

Figure 5: The interaction between model window length Lw, signal sampling frequency Fs and the shaft speed fs visualised. Note here that

the shaft speed is used as a proxy for the presence of faults, as fault frequencies are often proportional to the shaft speed.

Figure 5 describes the relationship between Lw, the signal sampling frequency Fs and the shaft speed fs. The shaft

speed and sampling frequency give an important lower bound to Lw, which develops due to the periodicity of localised180

faults in relation to the shaft speed. This bound assumes that the faults occur at least once per shaft revolution. If the

window length Lw is less than the ratio Fs
fs

, one may obtain signal segments from a damaged signal that contains no fault

covariates. Naturally, a combination of Fs, fs and fault frequency proportion that ensures the presence of fault covariates

within signal segments. However, we are not aware of a universal rule that overcomes this issue.

The temporal preservation approach offers an improved methodology that can be used to better analyse time-series185

signals and can improve the model diagnostic performance. By being aware of this phenomenon, a variety of signal

analysis techniques can be performed, allowing for further exploitation and investigative flexibility for condition inference.

Techniques that may be applied to the HI or LHI signals for condition inference interpretation are, for example i) signal

statistics, ii) the time-synchronous average, and iii) a spectral analysis. This combination of deep learning and signal

processing techniques enhances the condition inference procedure. It introduces a natural unification where deep learning190

highlights the fault covariates, and signal processing can be used to extract the fault information.
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2.4. Latent variable models

In this study, we classify LVMs into three classes: i) explicit density linear models, ii) explicit density nonlinear

models, and iii) implicit density nonlinear models that can be described within the framework depicted in Figure 6.

The difference between linear and nonlinear models is a function of the encoding and decoding parametric functions.195

Explicit models commonly assume that distributions are Gaussian which introduces reconstruction losses. In contrast,

implicit models use an adversarial scheme with a discriminative function to quantify the difference between the real

and generated data. The simplest LVM1 that is available is Principal Component Analysis (PCA) that assumes that

p(z|x) and p(x|z) are explicitly parametrised by Gaussian distributions with linear transition functions [11]. In the

PCA framework, Tipping and Bishop [27] show that the transition functions reduce to fφ = U and gθ = UT where U200

is the hierarchically organised data covariance eigenvector matrix, often referred to as the Principal Component (PC)

matrix. The Variational Auto-Encoder (VAE) framework generalises the linear PC transition function to learn a nonlinear

parametric encoder and decoder network that represent the explicitly assumed Gaussian distributions p(z|x) and p(x|z).

This data reconstruction loss guides this process L(θ, φ) = 1
2‖x− x̃‖22, often referred to as the L2 or mean-squared error

(MSE) loss, and the latent Kullback-Liebler (KL) divergence loss DKL(q(z|x)‖p(z)), which regularises the encoder to205

enforce that data is encoded into a space similar to the assumed latent prior. GANs aim to improve the generative capacity

of gθ by replacing the explicit generative log-likelihood with the likelihood ratio r = pdata(x|z)
qθ(x|z) [16]. This decision allows for

the generative distribution to implicitly capture the data distribution, providing natural flexibility to gθ extending past

Gaussian distributions. However, the original GAN framework cannot perform model inference. Thus, various techniques

have been proposed in the literature to produce a framework that benefits from the GAN adversarial framework while still210

recovering latent codes. In some frameworks, a combination of the adversarial auto-encoder (AAE) [28] and the InfoGAN

framework [29] is used to improve the generative capacity of gθ, and Mutual Information maximisation is used to introduce

explicit latent disentanglement losses into the model [4, 23]. In Figure 6, a generic LVM training framework highlights

different latent regularisation strategies and highlights how the GAN framework is typically incorporated for nonlinear

implicit formulations. It is important to note that some implicit techniques still incorporate the auto-encoder losses, which215

induces a trade-off between the explicit and implicit frameworks. A suitable latent prior p(z) for latent regularisation is

an isotropic Gaussian distribution. Its isotropic nature can provide some implicit independence on the learnt posterior

distribution to ensure that each latent dimension is independent [30].

To use LVMs for fault detection, the various facets of the model are exploited. For example, models that make explicit

Gaussian distribution assumptions, such as PCA or VAEs, can access the reconstruction log-likelihood to measure the220

likelihood that a sample is from the generative distribution p(x|z). For models that use or incorporate implicit distribution

assumptions such as GANs, a data discriminator Dχ(x) is made available to measure how likely an observed sample is in

relation to the learnt healthy data distribution, as shown in Booyse et al. [10]. In Baggeröhr [19], an auto-encoder with

an adversarial optimisation scheme was used as a latent regularisation methodology for the latent manifold alongside an

InfoGAN framework to improve the generative capacity of the generative distribution. This technique uses a Wasserstein225

metric latent critic function Dω(z) to measure how likely a latent sample was from the learnt latent space [31–33]. The

1It is emphasised at this stage that the reader is assumed to be familiar with LVM methods. Should this not be the case, we refer the reader

to [25] and [26].
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Figure 6: The LVM model training phase detailing the different model operations and potential latent regularisation strategies. For the GAN

framework, model inference is typically unavailable as an encoder is never learnt, and there is no data encoding stage. The method is used as

a pure data generative model.

current application of LVMs can consider both the data space and the latent manifold. However, the latent manifold has

never been analysed to consider the path traversed through the manifold. Furthermore, latent critic regularisation is not

LVM agnostic as the KL divergence regularisation term was explicitly replaced.

Once a latent variable model has been trained, it offers indicators from its latent and data space by feeding data230

through the model, as highlighted in Figure 3. Consider the case where a signal with a fault is fed through an LVM,

with HI measures obtained using the current approach and the proposed temporal preservation approach. In Figure 1, an

illustrative example of the differences between the conventional and proposed evaluation procedures is detailed. To assess

whether this data is healthy, a healthy reference distribution, is created and the likelihood of the collected HI measures

is evaluated, as detailed in Figure 1(a). However, suppose there are healthy signal segments in the processed vibration235

signal. In that case, one may obtain likelihoods that are not indicative of a fault, and the signal may be incorrectly

deemed healthy. In the proposed procedure, the introduction of time can be used to visualise the HI measures through

time. This process will correctly clarify the presence of the healthy segments due to the type of fault present in the data

and the chosen model window length. Furthermore, as the HI signal is a transformation of the original time-series signal,

alternative techniques such as the HI signal Fourier transform can confirm the source of the measure deviations, or the240

statistics of the HI signal can be trended through time.

It is emphasised here that the methods used in this paper are merely incidental. Numerous alternative techniques exist

in the literature, but investigation of these techniques is beyond the scope of this work. This work primarily focuses on

the temporal preservation analysis of latent spaces to derive temporally structured HIs from LVMs applied to time-series

data. The aim is not to identify the best LVM or to propose an improved LVM. Unsupervised latent variable models245

are used to capture an asset's healthy manifold under the condition monitoring objective to monitor changes in the

asset condition over time. In this study, the effect of model complexity is explored by considering linear and nonlinear

parametric functions, and the impact of latent disentanglement [30] is investigated through implicit and explicit latent

disentanglement regularisation. More powerful parametric functions may offer improved mapping flexibility to the latent

manifold and may allow the manifold to capture data space nonlinearities. Latent disentanglement is crucial to latent250

manifold anomaly detection as an entangled manifold may hinder the condition inference procedure. Suppose damage
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is present in the time-series data. In that case, the detection of these instances in an entangled latent manifold may be

corrupted by changes in other generative factors such as the asset operating condition. Besides, time-preserved latent

analysis enables time-preserved health indicators that preserve the temporal structure that allows for more distinct and

informative HI to be developed and derived.255

2.5. Proposed health indicators

It is possible to collectively identify potential HIs commonly available to LVMs, as detailed in Figure 7. These HIs

can be informative, but important information in the data is lost when the temporal information is not preserved. This

restriction on the data impedes the condition inference task and stops the full potential of LVMs from being realised.

To assess the potential of LVMs, the temporal information in the data must be preserved to improve the quality of the260

common HIs and to provide access to a set of LHIs to track the representation of time-series data through the latent

manifold.

Figure 7: A detailed schematic of the HIs and LHIs obtained during LVM evaluation phase for the models considered in this work. To preserve

the temporal information in the data to utilise the LHIs, Xdata must be obtained using Equation (3) with Lsft = 1.

Commonly used HIs are functions of the model framework. For models that assume Gaussian generative distributions,

a reconstruction metric is developed as

HI(1)(x, x̃,σ2) = − 1

D

D∑
k=1

(x̃k − xk)2

σ2
k

, (6)

which is the reconstruction log-likelihood for an input x, its reconstructed mean x̃ and variance σ2. This term can also

be considered to be the negative squared Mahalanobis distance for a factored Gaussian distribution. The second HI that

is available for implicit density estimation techniques is the GAN data discriminator

HI(2)(x) = Dχ(x), (7)

which is based on the input feature space x. For condition monitoring applications, the data discriminator Dχ(x) estimates

the likelihood that any observed data is from the healthy asset data distribution. The third health indicator is that of the

Wasserstein metric estimate

HI(3)(z) = Dω(z), (8)
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which may be based in the input feature space or, as indicated, based on the latent feature space z if it is used as an

adversarial latent regularisation strategy. This learnt metric measures whether any latent representation z is from the

prior p(z).265

The temporal preservation approach allows for the development of LHIs that can be used to interpret where data lies

in the latent manifold and detects off-manifold traversal. These LHIs form the foundation for latent analysis, where latent

analysis refers to the analysis of the latent manifold. To detect changes in the latent manifold, three latent metrics are

proposed in this work and are given as

LHI
(1)
t = ‖zt+1 − zt‖2, (9)

LHI
(2)
t = ‖zt‖2, (10)

LHI
(3)
t = cos−1

(
zTt+1zt

‖zt+1‖2‖zt‖2

)
, (11)

where zt indicates the latent space representation at any point t ∈ [0, Ld − 1] from the temporal preservation analysis

procedure where Ld = Lsignal − Lw and ‖ · ‖2 is the L2 norm. LHI(1) is the latent distance norm between two time-

continuous latent representations and allows one to interpret the inter-time distance characteristics of the latent space.

LHI(1) is also a proxy to the latent traversal velocity if the data sampling rate Fs is constant. LHI(2) is the trivial

calculation of the latent Euclidean norm and measures the distance of a latent sample from the Cartesian origin. LHI(1)
270

was derived using the Mahalanobis distance, a commonly used distribution distance metric, for the isotropic Gaussian prior

distribution p(z). LHI(3) can be interpreted as the angle between two points in the latent space and allows one to interpret

the directional characteristics of the latent manifold. Many alternative LHIs can be developed as this interpretation of

the latent manifold has not been rigorously optimised and improved. The optimisation of the LHI set is beyond the scope

of this work.275

We use the proposed LHIs to gain insight into how unhealthy time-series data may be represented in a latent space

representative of healthy data. The static properties of the manifold are quantified through the negative log-likelihood of a

latent sample z using the prior p(z), as the prior is time-invariant. The dynamic properties of the manifold can be quantified

by considering the positional behaviour of the path followed through the latent space. LHI(1) quantifies the positional

behaviour in a Cartesian coordinate system, while LHI(3) quantifies the positional behaviour in a non-Cartesian coordinate280

system. Static and dynamic behaviour can be distinctly isolated as the temporal preservation approach untangles time in

the manifold, which allows for time axis exploitation to produce scalar metrics.

The combination of the temporal preservation analysis and the proposed LHIs can lead to an interpretable latent space

and introduce a level of intuition into how different latent manifolds respond to anomalous data. It is also key to note

that LHI(1) and LHI(3) cannot be intuitively developed without preserving the temporal structure of the data. The term285

interpretation is used in the context of a latent manifold to describe how these metrics quantify the manifold response to

anomalous data instances.
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3. Experimental investigation

The experimental investigation demonstrates informative generic HIs used with various LVMs when preserving time

structure during the models' evaluation. The temporal preservation approach ensures that the model's full potential is290

used during the condition inference stage for LVM-based CM. This comes through augmenting conventional LVM analysis

with signal processing techniques, an endeavour that is only possible through temporal preservation, which naturally allows

for more fruitful insights. Not only can fault detection and trending occur, but the type of fault can also be inferred.

In this way, the emphasis is not to identify the best HI, LHI and LVM combination or to propose the best combination,

as this is problem-dependent. Rather, this study highlights the benefit offered from the temporal preservation approach295

over conventional approaches. The proposed temporal preservation approach and LHIs are evaluated using the considered

LVMs on two experimental datasets. The first dataset has time-varying operating conditions, and the second dataset has

stationary operating conditions. Health indicator denoising, albeit interesting, is beyond the scope of this work. For those

interested, results provided by [34–36] are relevant.

3.1. Latent variable model application300

For the experimental investigations in this work, the models considered are PCA, VAEs and the DLS-GAN method

[11, 15, 23]. For PCA, a cumulative contribution rate (CCR) is defined as

CCR =

∑M
i=1 λi∑N
i=1 λi

, (12)

where λi is the ith largest eigenvalue of the training data covariance matrix. This ratio allows for the data variance

capture rate to be enforced to rationalise the number of M eigenvectors used, M ≤ N . This work will investigate the

effect of learning on output variance from the VAE decoder µ,σ2I = gθ(z). This variance may improve the discrepancy

metric responses from HI(1) by quantifying the expected feature changes. Models with and without this learnt variance

are denoted with subscripts V AE2 and V AE1, respectively. For the DLS-GAN method, the methodology proposed in305

Ding and Luo [23] is augmented to introduce a continuous latent code s with an isotropic latent prior p(s) = N (0, I).

This decision splits the latent space Zlatent into three components, Zlatent = [c, s,n] where c is a discrete categorical code

and n is a continuous random noise code. This decision adds two L2 losses to the DLS-GAN formulation, one included

in the generative InfoGAN element of the model and one added when enforcing latent n separation, thereby adding two

additional β weighting parameters to the final DLS-GAN objective function. Furthermore, the latent component n is310

regularised with an adversarial training scheme to match an isotropic Gaussian prior p(n) = N (0, I) using a Wasserstein

GAN critic with gradient penalty, which provides access to HI(3) for this model [31, 33]. This decision replaces LMMD(φ)

with LWGAN (φ, ω), which introduces an additional parametric critic function Dω(zn) that is used to regularise the

encoder. Furthermore, the GAN generator loss is changed to use the KL divergence loss proposed in Sønderby et al.

[37] to produce favourable generator gradients during training. Finally, all network architectures, hyper-parameters and315

activation functions required for work reproducibility are detailed in Appendix A.

3.2. Gearbox dataset

The experimental gearbox dataset used in this research was obtained from the Centre for Asset Integrity Management

laboratory at the University of Pretoria. This dataset has been extensively analysed in the works of Schmidt et al. [34, 38].
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This dataset was used as it exhibits time-varying operating conditions. As depicted in Figure 8, the experimental setup320

consists of an electrical motor, one step-down helical gearbox, two-step up helical gearboxes, and an alternator. The centre

gearbox from Figure 8 was used in the experiments, and a tri-axial accelerometer was mounted to the bearing casing such

that the axial acceleration could be measured. The input and output operating condition states of the gearbox are shown

in Figure 9. Note that the Bayesian Geometry Compensation (BGC) method proposed by Diamond et al. [39] was

used for the input shaft speed. The gearbox dataset consists of measurements from two distinct experiments. The first325

experimental dataset contains one hundred vibration data samples from the test gearbox in a healthy condition. The

second experimental dataset contains two hundred measurements from the gearbox in a damaged state. To introduce

damage, a single tooth had a slot seeded into its width. The vibration data in the second dataset was obtained until the

gear tooth failed. The vibration signals from each dataset were 20s in length and were sampled at a rate of Fs = 25.6kHz.

A proximity probe and an optical probe were mounted to the test gearbox's output and input shafts, respectively. The330

sampling rate of the optical probe was set to Fs = 51.2kHz.

Figure 8: The C-AIM test gearbox experimental setup.
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Figure 9: The shafts speeds and record kurtosis for the low-pass filtered and unfiltered versions of the gearbox dataset. The low-pass filtering

was conducted at a cut-off frequency of 3200Hz with a third-order Butterworth filter.

The objective of this dataset is to highlight that by using the temporal preservation approach, more informative HIs

can be obtained from LVMs, the presence of damage can be uncovered in the HI signals and in the latent manifold and this

damage can be visualised using a unification of signal processing and deep learning techniques. To investigate this dataset,

a simple statistical investigation was performed into the signals from the two datasets. To quantify the dataset complexity,335

two versions of the gearbox dataset were considered. The first version is when the time-series data were low-pass filtered
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using a third-order Butterworth filter around 3200Hz, and the second version is the original unfiltered dataset. This was

done as the unfiltered dataset's data contained significant impulses in both the healthy and unhealthy states. In Figure

9(b), the record kurtosis is given. A detectable change in the record kurtosis for the filtered dataset occurs around the

transition from the healthy dataset to the unhealthy dataset. The effect of low-pass filtering is clear in Figure 9(b), where340

the unfiltered record kurtosis is significantly larger and clearly shows the presence of the signal impulsiveness that was

filtered out of the filtered dataset. Due to this clear impulsivity, the authors chose to investigate the performance on the

low-pass filtered dataset to compare the different metrics' performance without complicating the signal information with

non-damage impulsive components, as was done in the work of Chen et al. [40]. The investigation of LVM performance

under complex non-Gaussian signal information will be considered in future work.345

3.2.1. Model Development

To develop the training and validation datasets for model optimisation, the first fifty records from the healthy dataset

were low-pass filtered and then processed using Equation (3) with Lsft = 0.5Lw. The dataset Xdata was then partitioned

into Xtrain and Xvalid using an 80− 20% ratio with signal segments chosen randomly. Once the model parameters were

optimised, Xdata was re-evaluated using all the available data for the proposed temporal preservation approach from350

Section 2 and standardised using µtrain and σtrain from the original training dataset. This re-evaluation step is not

performed in the conventional setting, and the only LHI measure available is LHI(2). Condition indicator signals were

obtained from each model by passing Xdata through the models and developing discrepancy signals using the HIs and

LHIs as detailed in Figure 7. To quantify the benefit of the proposed approach, the results from the conventional analysis

setting will be shown.355

3.2.2. Conventional analysis

In the conventional setting, LVM-based CM analysis is a histogram analysis procedure, as shown in Figure 3(a). This

procedure uses the histograms of the healthy training data HI and LHI measures to compare and quantify whether any

new measures are from the healthy asset state. To this effect, the receiver operating characteristic (ROC) curve, area

under the ROC curve (AUC) and the classification accuracy become features of interest. The ROC curve tracks the false360

positive rate (FPR) against the true positive rate (TPR) as the healthy histogram threshold is varied against a set of test

HI measures. In this work, the AUC metric is favoured over the ROC curve as it summarises the ROC curve information

in a single scalar. A fault classification analysis is also performed. Following [10], a healthy/unhealthy threshold is chosen

to induce a 10% FPR. For CM applications, a 10% FPR on the healthy data implies that 10% of the healthy HI or LHI

measures used for model training are classified as damaged. The classification accuracy under the 10% threshold reflects365

the likelihood of health state deviation in the signals of interest, which serves as a proxy to fault detection.

To showcase the ROC curve and histogram results for this dataset, the results from the V AE1 model are shown in

Figure 10. It is clear from Figures 10(a) and (b) that although there is a fault present from record 100, the ROC curves

for the HI(1) and LHI(2) measures are insensitive to the fault. The ROC curves for the records with damage never obtain

a good TPR at low FPRs, highlighting the shortcoming of the conventional approach as damage is not identifiable. In370

Figures 10(c) and (d), it is clear that there is some increase in the HI and LHI measures from record 100, but this is not

significant enough to show a clear deviation from the learnt healthy state. The ROC curve responses in Figures 10(a) and

(b) are explained by Figures 10(c) and (d), as there is clear histogram overlaps and no distinguishable histogram deviation
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(a) ROC curve - HI(1)
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(b) ROC curve - LHI(2)
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Figure 10: The ROC curves and record histograms for the V AE1 model. Note the clear inability to detect the damage present in the conventional

analysis setting. In Figures (a) and (b), the ROC curves are only developed for the records with damage. The ROC curves shown are purely

demonstrative, and the AUC is used in this work to summarise the ROC curve information. In Figures (c) and (d), the record histograms are

shown from record 50, as the healthy density contains the HI measures for the time-series data used for model training.

from the healthy state in the damaged records. In Figure 10(d) the shift in the histogram for the unhealthy test data is

attributed to the experimental breakpoint.375

In Figure 11, the AUC and classification accuracies for the models considered in this work are shown. The AUC and

classification accuracy indicate poor performance from HI(1) and LHI(2) as there is no growth from record 100, except

for the V AE2 model. The V AE2 response growth is attributed to reconstruction loss overfitting to the training data.

However, it is clear that the latent manifold AUC and classification accuracy has no overfitting phenomenon present. This
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indicates the duality of the learnt variance reconstruction loss and the learnt manifold, as the model has exploited the380

additional variance flexibility to reconstruct the training data better. In contrast, the manifold indicates that the data

between records 50 and 100 are from the same healthy distribution. Figure 11 demonstrates that limited insight can be

drawn from the models for CM condition inference under the conventional analysis setting. The conventional analysis

approach is limited by the reformulation of the inference objective to a classification setting, which relies on strong and

consistent HI or LHI measure deviations. Furthermore, the latent manifold cannot be further investigated or explored as385

there is no temporal structure.

(a) AUC: HIs (b) AUC: LHI(2)

(c) Classification accuracy: HIs (d) Classification accuracy: LHI(2)

Figure 11: The AUC and classification accuracies for the models considered. It is expected in Figures (a) and (b) that records 0 to 100 have

an AUC measure of around 0.5, and in Figures (c) and (d), these records are expected to have a classification accuracy of around 10% as these

records are healthy. Note in Figures (a) and (c) that the HI(1) response for the V AE2 exhibits a jump at record 50 in the HI(1) measures,

which is attributed to model reconstruction sensitivity to data, not from the training set. This sensitivity is not present in the LHI(2) response

in Figures (b) and (d).
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3.2.3. Temporal preservation analysis

In contrast to the conventional approach, it is possible to use conventional signal analysis methods to process the

health indicators under temporal preservation. In this section, the time-synchronous average (TSA) of the HI and LHI

signals is used for condition inference and obtained from

xTSA(n) =
1

Nr

Nr−1∑
i=0

x(n+ iNs), where 1 ≤ n ≤ Ns, (13)

where the signal x(n) is processed to contain Nr rotations consisting of Ns points per rotation [41, 42]. The geometrical

imperfection of the tachometer butt joint is used to align the different measurements. It is important to highlight that

signal processing techniques are used to enrich the condition inference procedure, but the models were trained on the390

raw vibration data. This demonstrates the power of the temporal preservation approach, as it allows for the natural

exploitation of signal processing techniques that can uncover the presence of fault covariates. Condition inference may be

performed using the processed discrepancy signal's statistics. However, it was found that these statistics were insufficient

to detect damage on this dataset. For the models used for this dataset, the window length was chosen as Lw = 512.

Figure 12 shows the difference in average feature reconstruction error between the training and validation set to motivate395

this decision. The latent size and model window size affect the model's reconstruction ability, with a clear decreasing

trend as the window length is lowered. This is attributed to the information in each signal segment, as shorter segments

have less information that the model has to capture and decreases the emphasis of larger frequency components. The

chosen window length was selected as it is near the region of error stability, and it offers a model with a larger number of

parameters to improve model flexibility.400

In Figure 13, the HI(1) and LHI(1−3) TSA responses are shown from the PCA model. In Figure 13(a), the gear

tooth fault is around 140◦ but to prove that the fault has occurred is non-trivial due to apparent activity at other angular

increments. It is clear from Figures 13(b-d) that there is damage present in the latent manifold and specifically emphasised

by LHI(2). Figures 13(c) and (d) show a clear spike attributed to the tooth fault's presence. There is some noticeable

deviation around record one hundred, which manifests from the experimental interruption to seed the fault.405

Figures 14 and 16 show the HI(1) and LHI(1−3) TSA responses for the V AE1 and V AE2 models. The benefit of

transition function nonlinearity is evident, whereby the response from HI(1) clearly shows the presence and development

of the fault. The effect of the V AE2 model's learnt variance is evident through a greater response magnitude in Figure

14(b). To demonstrate the implicit nature of the model window length on discrepancy signals, consider the HI(1) TSA

signal as shown in Figure 15 for window lengths of Lw = 1024 and Lw = 2048 using the V AE2 model. Notice the decreased410

influence of the gear tooth fault. This phenomenon occurs as each segment captures more of the impulsive components

that were not filtered out, explaining the deviations in Figure 12 as the window length increases. This degrades the fault

covariate information captured by the HI discrepancy signal, and the fault inference procedure is therefore degraded.

Under the examination of the latent manifold, shown in Figure 16, through latent metrics LHI(1−3), it is clear that the

latent distance, LHI(1), is a poor metric for condition inference on this dataset. Both LHI(2) and LHI(3) show the415

presence of the tooth fault. Interestingly, the latent manifold is responding similarly to that seen from PCA in Figure

13. This is attributed to the shared L2 loss that is used to develop these models. The L2 loss is obtained from the

explicit assumption that the generative distribution is Gaussian. This explicit choice of distribution may also explain

why we cannot analyse simple discrepancy signal statistics or larger model windows, as the remaining impulsive signal
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(a) Zlatent = 25, CCR = 0.5.
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(b) Zlatent = 50, CCR = 0.75.
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(c) Zlatent = 100, CCR = 0.95.

Figure 12: The effect of latent dimensionality and window length Lw on model reconstruction error. Note that the x−axis was log2 scaled,

and the y−axis was log10 scaled. The reconstruction error is a proxy metric as it is a consistent metric indicative of training performance. For

PCA, the CCR rate was investigated rather than the size of Zlatent, and for DLS-GAN, Zlatent refers to the dimensionality of the n space.

components that were not filtered out are known to be strongly non-Gaussian.420

In Figure 17, the HI(1−3) and LHI(1−3) TSA responses are shown from the DLS-GAN model. This model offers

two additional discrepancy metrics, and these metrics analyse both data samples and latent samples. It is clear that the

parametric function nonlinearity improves the results obtained, with improved reconstruction metric response under the

TSA. The data discriminator response in HI(2) is notably uninformative, with no detectable fault development. This

is attributed to the conflicting training objective from the AAE and InfoGAN frameworks. This difference manifests in425

the learnt data distribution from the explicit and implicit training schemes for the AAE and GAN frameworks. This

difference negatively favours training the data discriminator, as the MSE loss will naturally dominate the training as it is

more stable. The latent critic response, HI(3), shown in Figure 17(c), indicates some damage, but there is some activity

at other angular positions. This is attributed to the critic's design to use only latent samples and not exploit their time

dependency. Thus, the manifestation of natural data perturbations in the latent manifold may corrupt the condition430

inference process. This is explained in Figures 17(d), (e) and (f), which shows the latent metric response. LHI(2) and

LHI(3) are informative metrics for condition inference. This satisfactory metric response is shared with the other models

considered, which indicates the impact of the L2 loss on the learnt latent manifold. The consistently poor performance of
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(a) HI(1) (b) LHI(1)

(c) LHI(2) (d) LHI(3)

Figure 13: The HI and three LHI metric responses under the synchronous average using PCA with the temporal preservation analysis approach.

(a) HI(1): V AE1 (b) HI(1): V AE2

Figure 14: The HI(1) discrepancy signal synchronous average for V AE1 and V AE2 models for the gearbox dataset.

21



(a) HI(1) : Lw = 1024 (b) HI(1) : Lw = 2048

Figure 15: The HI(1) signal content degradation as the window length is increased for the V AE2 model.

LHI(1) may indicate that the encoding transition function attempts to preserve the traversal rate. In doing so, anomalous

instances are mapped into unknown regions of the manifold. This is another benefit of the temporal preservation approach,435

as it allows one to interpret the dynamics of the latent manifold.

3.2.4. Discussion

From the presented results in Sections 3.2.2 and 3.2.3, the benefits of the proposed method are clear: by preserving

time and using the latent information, it is possible to find powerful health indicators that can be analysed using estab-

lished signal analysis methods. By utilising signal analysis methods, it is possible to enhance the anomalous components440

and to identify their source. This section compares the performance of the health indicators obtained using the temporal

preservation approach and the conventional approach. To quantify the temporally preserved HI and LHI response per-

formance, it is required that a condition deviance point be prescribed to the various TSA responses. This is non-trivial

for the current TSA representations. This requires that a technique be used that transforms the individual HI and LHI

signals into an interpretable result that can be trended through time. Schmidt et al. [43] introduced a method that uses445

k−means clustering to assign two centroids µmax and µmin, to a single discrepancy signal. These means are trended

through time, and the larger of the two is used for condition inference. This approach may be used should one wish to

identify a condition deviance point, but this is beyond the scope of this work.

The objective of this discussion is to further highlight the benefit of the temporal preservation approach over the

conventional approach through direct comparison. To ensure comparison consistency, the V AE1 model records histograms450

for the TSA of the HIs and LHIs are shown in Figure 18. The histograms are centred by removing the median from the

TSA for each record. This step is not integral to the proposed approach. Rather, it emphasises the damage sensitivity in

the TSA and where damage manifests in the record histograms. Removing the median is not universally applicable to all

fault cases. However, as the localised fault has been identified this has no impact and this step simply removes any data

nonstationarity that is not due to the tooth fault.455

In Figures 18(a) (c) and (d), the damage sensitivity regions manifest in the histogram outliers. These outliers are

attributed to the gear tooth fault damage. The damage response manifests in the variance of the histograms, and there
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(a) LHI(1): V AE1 (b) LHI(1): V AE2

(c) LHI(2): V AE1 (d) LHI(2): V AE2

(e) LHI(3): V AE1 (f) LHI(3): V AE2

Figure 16: The LHI synchronous average responses from the V AE1 and V AE2 models for the gearbox dataset.

are clear healthy and unhealthy regions. The LHI1 response seen in Figure 18(b) is expected as there is no apparent

damage seen in Figure 16(a). This variance manifestation is caused by the interaction between Lw and the fault frequency,
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(a) HI(1): DLS-GAN (b) HI(2): DLS-GAN

(c) HI(3): DLS-GAN (d) LHI(1): DLS-GAN

(e) LHI(2): DLS-GAN (f) LHI(3): DLS-GAN

Figure 17: The three HI and LHI metrics obtained from the DLS-GAN model analysed using the synchronous average.

which indicates that there are many signal segments that are healthy, with only a few segments that contain the localised460

damage. Hence, metrics that monitor deviations in the variance of the TSA are suited to identify condition deviance
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points, such as the method proposed by [43]. This result is crucial to highlight the shortcoming of the conventional

approach, as the interaction between Lw and the fault may cause the ROC, AUC and classification accuracy metrics

from the conventional approach to be biased towards poor performance. Naturally, Lw may be increased to reduce this

bias, but, as shown in Figure 15, this decreases the ability to perform fault localisation. For this reason, the AUC465

and the classification accuracy are not shown for the temporal preservation approach, as this information is not a true

representation of the model responses for the chosen Lw. However, this level of insight is only available through the

temporal preservation approach, which enriches the condition inference procedure and deepens analysis inference.

When comparing Figures 10 and 18, it is clear that the temporal preservation approach offers numerous benefits during

the condition inference stage. Damage was detected using the HIs and the proposed LHIs, highlighting that preserving470

temporal structure is key to manifold interpretation in LVM-based CM. The results of the HIs and LHIs under the temporal

preservation approach indicates that the decision to obtain more informative health indicators is beneficial to condition

monitoring and will enable future research to improve the methods used by using an improved analysis methodology. The

use of simple signal processing techniques, such as the TSA, can enhance the condition inference stage by exploiting the

temporal structure that is preserved during model evaluation.475

3.3. IMS dataset

The Intelligent Maintenance Systems (IMS) dataset is a well-used bearing failure dataset used for benchmarking con-

dition monitoring methodologies [44]. This dataset consists of three run-to-failure sub-datasets containing accelerometer

data from an experimental setup, shown in Figure 19, consisting of four double row Rexnord ZA-2115 bearings. The

experimental setup ran under a constant load of 6000lbs and a constant shaft speed of 2000rpm. In each dataset, a 1s480

vibration sample was obtained under a sampling rate of Fs = 20.48kHz. For this work, the second IMS dataset will

be investigated, and this dataset contained 984 measurements throughout the experimental lifespan. The second IMS

dataset had an outer race bearing fault that occurred in the first bearing. The IMS dataset is investigated to ensure that

the investigated models and proposed LHIs apply to a dataset with constant operating conditions. This investigation

ensures that the results obtained are compared to state-of-the-art methods in the literature. By ensuring that our analysis485

methodology is appropriate, competitive performance results are obtained using vastly different LVM methods.

To develop the training and validation datasets for model optimisation, the first 10% (98 records) of the available

data were assumed to be healthy data. The processing and model optimisation strategy used for the Gearbox dataset in

Section 3.2 was followed, and the temporal preservation approach was employed during the development of the HI and

LHI signals during model evaluation. The authors chose to investigate two model window lengths as Lw = 512 ≤ Fs
fs

=490

20480
33.3 = 615.02 ≤ Lw = 4096 bound the implicit window ratio Fs

fs
. This dataset will demonstrate how simple HI and LHI

signal statistics can be used for novelty detection. The HI and LHI signal statistic used for condition inference is the

signal mean. To detect a condition deviance point, a condition threshold was determined using the median µ̃ and standard

deviation σ of the HI and LHI signal means that correspond to the time-series data used for model training, and this

threshold is given as thres = µ̃±6σ. This approach was chosen to ensure result comparison consistency and comparison495

flexibility as the threshold is conservative by design. This selection is not integral to the proposed framework, however,

to ensure that the healthy data satisfies the Gaussian distribution assumption for the threshold, the authors performed a

hypothesis test analysis using the D'Agostino k-squared test [45], Anderson-Darling test [46] and Shapiro-Wilk test [47].
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(a) Record histogram - HI(1). (b) Record histogram - LHI(1).

(c) Record histogram - LHI(2). (d) Record histogram - LHI(3)

Figure 18: The record histogram for the TSA of the HI(1) and LHI(1−3) responses for the V AE1 model. Notice the growth of the histogram

variance in Figures (a), (c) and (d). This variance/outlier growth is due to the gear tooth fault. Note that the record histograms are shown

from record 50 as the healthy histograms summarise records 0 to 50.

These tests validated the Gaussian assumption. An example of the test results is given in Appendix B. To detect a change

in condition, the mean of the five succeeding points is used. If this mean is greater than the threshold, the record is500

identified as a deviance point. As the model performance has been adequately demonstrated in Section 3.2, a single set

of results is shown to the reader in Figure 20. The results from the literature are shown in Table 1, and the results for

the considered LVMs are tabulated in Table 2.
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Radial Load, 

Bearing Housing
Accelerometers

Figure 19: The IMS experimental setup [44]. Notice the presence of four bearings with two accelerometers per bearing.

In Figure 20, it is clear that the linear PCA LVM is able to sufficiently capture and describe the data. While the

reconstruction HI appears to detect damage late, the proposed LHIs all detect damage earlier than the reconstruction HI.505

The PCA model's performance indicates that this dataset is simple to capture, as a linear LVM can sufficiently capture the

healthy data distribution and the HIs and LHIs are sensitive to anomalous instances. To quantify whether the deviations

are due to the development of a fault, Figure 21 was developed by taking the discrete Fourier transform of each HI and LHI

signal. In Figure 21(a), the HI(1) record-frequency plot is shown, and in Figure 21(b) the frequency content at the known

BPFO component through time is tracked from each available HI and LHI from the PCA model. This result indicates that510

the fault development can now be connected to an outer race fault, highlighting how the temporal preservation approach

bridges techniques between signal processing and deep learning to enhance the condition inference procedure.

In the analysis of Table 1, it is clear that the results from signal processing literature appear more consistent in

identifying a condition deviance point around record 533. This is also attributed to the current focus of deep learning

literature, which is often concerned with semi-supervised learning or transfer learning techniques [5]. Signal processing515

methodologies often require more effort to design a suitable framework. Most supervised learning or semi-supervised

learning methods used in the literature require historical fault data that is non-trivial to obtain in practice. The use

of LVMs as a novelty detection methodology can overcome both these issues, and the performance of the LVMs shown

in Table 2 indicates that the temporal preservation approach is a suitable model evaluation process that deep learning

models should consider when being applied as a novelty detection mechanism. The performance of the PCA model also520

indicates the benefit of considering different classes of LVMs for learning-based condition monitoring techniques, as this

model requires minimal computational resources and has noticeable benefits in its ease of implementation.

When the results detailed in Table 2 are compared to Table 1, the performance obtained from the considered LVMs

is on par with the current state-of-the-art techniques from both learning-based literature and signal processing literature.

Interestingly, in Table 2, the effect of a larger model window length appears to hinder the nonlinear models, with worsened525

performance in the HI(1) indicators when compared to their shorter window length alternative. This is attributed to the

signal information present in segments from larger window length models and the relationship to model parametric

flexibility, where more flexible models may over-fit slightly to the training data. The LHI(2) performance appears to

weaken for models of larger window length to the point where, for some models, a response is obtained that is not

indicative of any damage, as indicated by table elements containing IC. This highlights the requirement to consider530

multiple LHI metrics, as the latent manifold is a function of the dataset. The DLS-GAN model provides satisfactory
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performance from all elements except the data discriminator Dχ. This is attributed to the conflicting training objective

and L2 dominance, which causes poor discriminator training as the generator is less flexible.
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Figure 20: The three LHIs obtained using a PCA model with Lw = 512 for the first bearing from the second IMS dataset. Notice the strong

response to damage that is identifiable through the latent manifold under the temporal preservation approach.

4. Conclusion and recommendations

In this work, a temporal preservation approach and a set of model agnostic LHIs are proposed and evaluated on535

experimental data consisting of stationary and time-varying operating conditions. This work highlights the requirement

to improve the procedures to analyse LVMs before an optimal model is proposed. This contribution contrasts current

techniques, whereby the focus is placed on how time-series data is analysed rather than on improving the training or the

LVM. The use of various LVMs, trained only on raw time-series asset data in a healthy condition, as a condition monitoring

technique is explored, and the responses from the data space and latent space are investigated. It is shown that both540

components of the model are indicative of damage. However, the temporal structure of the data must be retained to detect

anomalous instances in the latent manifold. The detection of anomalous instances in the latent manifold improves model

interpretability and allows for physical intuition to be built into the model by investigating the dynamics of time-series
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(a) HI(1) record-frequency plot
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(b) BPFO frequency content in the HI and LHI signals

Figure 21: The HI(1) discrepancy signal Fourier transform plot and the BPFO frequency component for each available HI and LHIs using

the PCA model with Lw = 512. Notice how the threshold deviations in Figure 20 can now be confirmed by analysing the discrepancy signals'

frequency content and using bearing characteristic fault frequency information.

Table 1: A summary of the certain results from the literature for the IMS dataset two for bearing one.

Literature type Method used Article author Deviance record

Signal processing

Cyclostationary indicators Antoni and Borghesani [7] 534

MED − SK −NES, IES Abboud et al. [48] 533, 542

Frequency spectral coherence indicator Kass et al. [49] 540 (3.4 days)

QAM Hou et al. [50] 533

SAM impulsivity Moshrefzadeh [51] 533

WPT-based discrepancy analysis Schmidt et al. [20] 535

Weighted normalised square envelope Wang et al. [52] 533

Learning-based

EMD-ANN Ben Ali et al. [53] 553

PCA LS-SVM Dong and Luo [54] 700

RUL using T-S FIS Huang et al. [55] 630 (approximated)

RUL using MLGTCN Li et al. [56] 653

NSVDD Liu and Gryllias [57] 532 (best)

SDIAE Mao et al. [12] Classification

MoGAN Zareapoor et al. [14] Classification

data as it traverses through the latent space. The benefit of using LVMs to capture the asset's healthy state allows one

to bypass the requirement for extensive expert knowledge and any labelled failure data. This naturally overcomes the545

limitations of supervised learning methodologies that have been developed for condition monitoring. The benefit of the

temporal preservation approach is the ability to treat the HI or LHI signal as a processed representation of the original

time-series signal, which can then be further analysed using simple signal statistics or using signal processing techniques.

This result introduces a natural unification between the two fields. It allows for improved condition inference as the type
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Table 2: The obtained threshold condition deviance point from the second IMS dataset for bearing one when investigating the available HIs

and LHIs. Note that IC is the abbreviation used for results deemed inconclusive by the authors.

Model type and characteristics Health Indicator condition deviance point

Model used Window length HI(1) HI(2) HI(3) LHI(1) LHI(2) LHI(3)

PCA
Lw = 512 702 N/A N/A 533 538 533

Lw = 4096 543 N/A N/A 533 579 533

V AE1

Lw = 512 533 N/A N/A 578 648 554

Lw = 4096 579 N/A N/A 702 IC 622

V AE2

Lw = 512 545 N/A N/A 550 702 556

Lw = 4096 647 N/A N/A 586 IC 621

DLS-GAN
Lw = 512 537 621 544 533 542 533

Lw = 4096 567 578 571 549 647 542

of fault can be uncovered if external information such as tachometer information or fault frequency information is used in550

the analysis framework.

It is proposed that future research must consider implicit density estimation techniques that can perform model

inference. This will allow the generative distribution to capture more complex data distributions and allow the latent

manifold to be explored and interpreted for condition inference purposes. Furthermore, alternative techniques such as

normalising and auto-regressive flows can be investigated to determine whether the ability to evaluate p(x) exactly is555

beneficial over generative likelihood HIs. Additionally, as the flows are designed to be invertible, it is expected that the

LHIs proposed in this work can be readily applied.
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Appendix A. Network architectures and parameters

In this work, Pytorch was used to optimise and train the models [58]. The system used to train and evaluate the models

had an Intel i7-8750H processor and a Geforce RTX 2070 graphics card. The decision was made to generalise the network

architecture design based on the window length Lw to simplify the model development process for consistent network

design referencing. A fixed stride and kernel size was defined for any network that used a convolutional layer, with the565

padding used to ensure that equal feature map division could be found from one layer to the next. The convolutional layer

design used in this work consists of: Lstride = 4, Lkernel = 32, Lpadding = Lkernel−Lstride
2 = 14. Under these properties,

the network convolutional or de-convolutional layer input size is enforced to undergo a reduction or expansion of a factor

of four. A fully connected layer of size of LFC1
= 800 is connected at the intermediary level to move from a convolutional

layer. A second fully connected layer transitions to the latent space dimensionality or to a single node in a discriminator570
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Table 3: A table showing the basic network architecture for an encoder network for Lstride = 4, Lkernel = 32 and Lpad = 14. Note that N is

the batch size and if one wishes to design a decoder network, steps 1− 5 need to be reversed.

Network depth level Layer Operator Output layer dimensionality

0 Input layer RN×1×Lw

1 Convolution RN×32×Lw4

2 Convolution RN×64×Lw16

3 Convolution RN×128×Lw64

4 Fully-connected RN×800

5 Fully-connected (output layer) RN×Zlatent

or critic network. For a tabular visualisation of what these architectures may look like for Eφ, Gθ or Dχ, please refer to

Table 3.

For the latent critic Dω(zn) used in this work, a simple three-layer fully connected network is used where the dimen-

sionality follows the process: Rzn → R3000 → R3000 → R1. In Table 4, the relevant activation functions for the different

model components are given. In Tables 5 and 6, the latent dimensionality and hyper-parameters used for each dataset are575

given. To train the models in this work, the Adam and AdamW methods were used for the VAE and DLS-GAN methods,

respectively, with parameters β1 = 0.6, β2 = 0.999 [59, 60]. Instance noise was also used for the first three thousand

epochs of the DLS-GAN training [37].

Table 4: A table showing the basic network activation functions that were used alongside the general architectures in Table 3.

Method Hidden Layer Activations Output Layer Activations

VAE: z ∈ RZlatent ReLU for all hidden layers µ : linear, σ2: softplus (for both encoder and decoder)

DLS-GAN: z ∈ RZlatent=[c,s,n]

Encoder: leaky ReLU (a = 0.2) for all hidden layers

Decoder: leaky ReLU (a = 0.2) for all hidden layers

Dχ(x): Spectral Normalisation [61] on all hidden layers,

ReLU for all hidden layers

Dn(n)/Dc(c): ReLU for all hidden layers

Encoder [c, s,n]: softmax, linear, linear

Decoder: linear

Dχ(x): sigmoid

Dn(n)/Dc(c): Linear/Sigmoid

Table 5: The relevant latent dimensionality of the different models trained on different datasets.

LVM Gearbox Dataset IMS dataset

PCA 95% CCR 95% CCR

V AE1 and V AE2 Zlatent = 50 Zlatent = 100

DLS-GAN Zlatent = R[10,10,150] Zlatent = R[10,10,128]

Appendix B. Gaussian hypothesis test results

In Table 7, the results from three different Gaussian tests are shown with the corresponding p-values or test statistics,580

respectively.
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Table 6: The learning rate η, reconstruction loss coefficient λAE and β parameters for the different models trained on different datasets.

LVM Gearbox Dataset IMS dataset

V AE1 and V AE2 η = 1e− 4 η = 1e− 4

DLS-GAN η = 1e−5, λAE = 40, β1−6 = 1 η = 1e−5, λAE = 80, β1−6 = 1

Table 7: The Gaussian hypothesis test results for the V AE1 model with α = 5%.

Model type Health indicator metric D'Agostino K-squared test Anderson-Darling test Shapiro-Wilk test Acceptance total

HI(1) Accept (p = 0.727) Accept (0.154 < 0.758) Accept (p = 0.900) 3

LHI(1) Accept (p = 0.459) Accept (0.283 < 0.758) Accept (p = 0.289) 3

LHI(2) Accept (p = 0.257) Accept (0.300 < 0.758) Accept (p = 0.378) 3
V AE1 (Lw = 512)

LHI(3) Accept (p = 0.536) Accept (0.210 < 0.758) Accept (p = 0.605) 3
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