Systematic-review and meta-analysis on effect of decontamination interventions on prevalence and concentration of *Campylobacter* spp. during primary processing of broiler chickens

Section A: PRISMA-P (Preferred Reporting Items for Systematic review and Meta-
Analysis Protocols) 2015 checklist

Section and topic Item No		Checklist item	Remark	
Administrative Information				
Title: Identification	1a	Identify the report as a protocol of a systematic review	Systematic-review and meta-analysis on effect of decontamination interventions on prevalence and concentration of <i>Campylobacter</i> spp. during primary processing of broiler chickens	
Update	1b	If the protocol is for an update of a previous systematic review, identify as such	Protocol for a new systematic review	
Registration	2	If registered, provide the name of the registry (such as PROSPERO) and registration number	Protocol not registered as the systematic review does not directly refer to publications on human health	
Authors Contact	3a	Provide name, institutional affiliation, e-mail address of all protocol authors; provide physical mailing address of corresponding author	 ^{1,2}Josphat N. Gichure*, ³Patrick Murigu Kamau Njage, ⁴Joseph M. Wambui, ¹Gary A. Dykes, ⁵Elna M. Buys, ¹Ranil Coorey ¹School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia ²Department of Food Science, Nutrition and Technology, South Eastern Kenya University, P.O. Box 170-90200, Kitui, Kenya ³Division for Epidemiology and Microbial 	

			Genomics, National Food Institute, Technical University of Denmark, Søltofts Plads, Building 221, ⁴ Institute for Food Safety and Hygiene, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland ⁵ Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
Contributions	3b	Describe contributions of protocol authors and identify the guarantor of the review	Conceptualization: JG, EB, PKN, GD, RC; Methodology: JG, EB, PKN, GD, RC; Investigation: JG, PKN, JW; Resources: JG, EB, PKN, GD, RC; Data curation: JG, PKN, JW; Writing—original draft preparation: JG; Writing—review and editing: JG, EB, PKN, GD, JW, RC.
Amendments	4	If the protocol represents an amendment of a previously completed or published protocol, identify as such and list changes; otherwise, state plan for documenting important protocol amendments	In case the protocol needs to be amended, the description of the amendment shall be dated and submitted with the rationale.
Support: Sources	5a	Indicate sources of financial or other support for the review	Australia Awards Africa postdoctoral scholarship
Sponsor	5b	Provide name for the review funder and/or sponsor	Australia Awards Africa postdoctoral scholarship
Role of sponsor or funder	5c	Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol	The funder had no other role in developing the protocol

INTRODUCT ION			
Rationale	6	Describe the rationale for the review in the context of what is already known	Review title: Systematic-review and meta- analysis on effect of decontamination interventions on prevalence and concentration of <i>Campylobacter</i> spp. during primary processing of broiler chickens
			Recent scientific advances offer numerous interventions to reduce and eliminate <i>Campylobacter</i> spp. However, there lacks an overall picture of what happens across different points from scalding to post-chill. Systematic review followed by meta-analysis and meta-regression were therefore conducted on concentration and prevalence of <i>Campylobacter</i> spp. along the slaughter process to provide more evidence on efficacy of interventions, which has not been performed prevously.
Objectives	7	Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)	The aim of this study is to collate data from different studies using systematic-review meta-analysis followed by meta-regression
METHODS			
Eligibility criteria	8	Specify the study characteristics (such as PICO, study design, setting, time frame) and report characteristics (such as years considered, language, publication status) to be used as criteria for eligibility for the review	Screening and inclusion based on PICO guidelines as per the following criteria. Study designs: for inclusion, randomized controlled (non-randomized) experimental trials, challenge trials, and before-after-trials. Participants: studies on broiler chicken (to identify broilers, the screening checklist will be used). Spent layers and other fowls were excluded.
			Interventions: microbial decontamination interventions examining the effect on

			Campylobacter spp. concentration and prevalenceComparators: Since there were several interventions investigated, several comparisons were included. Interventions were grouped based on prevalence or concentration studies. For each sub-group, physical and chemical decontamination techniques were investigatedOutcomes: the decrease/increase in concentration or prevalence before and after an interventionTiming: only samples collected from the same lot were evaluated. In case the samples are to be taken post-chill, after several days of storage, care was taken to ensure no other factors would have affected the outcomes during storage.Setting: no restrictions.Language- English
Information sources	9	Describe all intended information sources (such as electronic databases, contact with study authors, trial registers or other grey literature sources) with planned dates of coverage	The search was in two electronic databases namely; (i) Web of Science, and (ii) Pubmed Only literature published after 01/01/1998 were included. Handsearching through scanning the reference lists of the included studies and existing reviews was conducted to complement the electronic database search.
Search strategy	10	Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it could be repeated	Publications on qualitative and quantitative trials were identified. No restrictions were made on the design, date or language at this point. Google translate was used in case the title is in a non-English language. Due to institutional subscriptions, Web of Science and Pubmed were used. The algorithm used: ((<i>Campylobacter*</i> AND

			(((Chicken* OR Poultr*) OR broiler*) OR gallus)) AND (slaughter* OR process*))
Study records: Data management	11 a	Describe the mechanism(s) that will be used to manage records and data throughout the review	Literature search results was exported to EndNote for deduplication, and then shared with the other two reviewers for abstracts screening. Pre-tested checklists were used along the screening process. Data extraction was done using MS Access, then exported to MS Excel. Data analysis was done using Metafor package (Version 2.0-0) in R- programme (version 3.6.0).
Selection process	11 b	State the process that will be used for selecting studies (such as two independent reviewers) through each phase of the review (that is, screening, eligibility and inclusion in meta-analysis)	Two independent reviewers screened the titles and articles after deduplication using the checklist provided. The reviewers then screened the reports to confirm that the inclusion criteria had been adhered to. Disagreement was solved through discussions and/ or arbitration by a third reviewer. Since EndNote was used, it was impractical to blind to journal titles, authors, or study institutions.
Data	11	Describe planned method of	Data extraction was done in duplicate, that is,
collection process	С	extracting data from reports (such as piloting forms, done independently, in duplicate), any processes for obtaining and confirming data from investigators	the two reviewers extracted data independently from each eligible study using standardized MS Access forms. As with the selection process, disagreement will be solved through discussions and/ or arbitration by a third reviewer.
Data items	12	List and define all variables for which data will be sought (such as PICO items, funding sources), any pre-planned data assumptions and simplifications	The extracted data comprised of; Article identification, Sampling point, Intervention details, Type of control used, Exposure details to intervention, Sampling, Microbial culture, Microbial confirmation, Trial size, and Publication status.
Outcomes and prioritization	13	List and define all outcomes for which data will be sought, including prioritization of main and additional outcomes, with	The main intended outcome was the reduction or increase in concentration and prevalence of <i>Campylobacter</i> spp. when a given decontamination interventions had been tested during broiler primary processing. Concentration reduction was the difference

		rationale	between control and treatment groups, while relative risks was used in prevalence trials. In terms of data set for the outcomes, categorical data was obtained for prevalence trials while continuous data was collected for concentration trials.
Risk of bias in individual studies	14	Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis	The Cochrane Collaboration tool was adopted (with modifications) to assess risk of bias within studies. The specific areas assessed include study design adequacy and set-up, sampling, sequence generation, allocation concealment, blinding, selective outcome reporting and statistical appropriateness. For each, a brief description of the activity was recorded and evaluated based on possible risk of bias as 'high risk', 'unclear risk' or 'low risk'. Disagreements were cleared through discussions or the third reviewer acting as the arbitrator.
Data synthesis	15 a	Describe criteria under which study data will be quantitatively synthesised	The meta-analysis was run using a random- effects model for heterogenous data set while fixed effect model will be used for homogenous data set.
	15 b	If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data and methods of combining data from studies, including any planned exploration of consistency (such as I2, Kendall's τ)	 Measures of treatment effect For categorical outcomes (prevalence), effect was evaluated using risk ratio (RR) with 95% confidence interval (CI). For continuous outcomes (concentration), raw mean differences was used to evaluate the odds ratio (OR) with 95% CI Dealing with missing data: it was envisaged that the corresponding authors would be contacted. Metagear (Version 0.4) in R-package was used to extract data from images (graphs and charts). The following scale was used to rate heterogeneity: <i>I</i>² statistic (0% to 40%

			assumed to be unimportant; 50% to 60% to represent moderate heterogeneity; and above 60%, heterogeneity will be considered substantial. Q-test will used to indicate heterogeneity, and τ^2 will indicate variability.
			Data synthesis Once extracted, data was run using R- packages. The Mantel-Haenszel method adopted for the fixed effect model, while DerSimonian and Laird) method used for the random effect model. The random effect model was used only where heterogeneity was significant ($I^2 < 50\%$ or P <0.1)
	15 c	Describe any proposed additional analyses (such as sensitivity or subgroup analyses, meta-regression)	Subgroup analysis to explore likely causes of heterogeneity, based on the following: sampling point, intervention (physical vs chemical), technique (spray vs immersion vs cloaca treatment), publication year, and sample size
			Meta-regression used to evaluate which study characteristics account for heterogeneity and adjust for probable confounders across the studies
	15 d	If quantitative synthesis is not appropriate, describe the type of summary planned	Descriptive characteristics was provided using systematic narrative synthesis with data presented using text and tables. The narrative synthesis was used to bring out the relationship and findings within-studies and between-studies. This was based on modification of Centre for Reviews and Dissemination guidelines
Meta-bias(es)	16	Specify any planned assessment of meta-bias(es) (such as publication bias across studies, selective reporting within studies)	The fixed effect estimates will be compared against the random effects model, and for each, forest and funnel plots developed to assess the possible presence of small sample effect on the bias. Mixed-effect meta- regression model used to explain bias across

			studies.
Confidence in cumulative evidence	17	Describe how the strength of the body of evidence will be assessed (such as GRADE)	Evidence was evaluated based on the Grading of Recommendations Assessment, Development and Evaluation. On this, quality encompassed risk of bias, publication bias, reliability, directness, and accuracy. The strength was rated as (i) high, (ii) moderate, (iii) low or (iv) very low

*The PRISMA-P Explanation and Elaboration (cite when available) for important clarification on the items. Amendments to a review protocol should be tracked and dated. The copyright for PRISMA-P (including checklist) is held by the PRISMA-P Group and is distributed under a Creative Commons Attribution Licence 4.0.

Adopted from (Moher et al., 2015)

Section B: Search strategy used for a systematic review-meta-analysis investigating the change in prevalence and concentration of *Campylobacter* spp. in broiler chickens during primary processing

Algorithm

((*Campylobacter** AND (((Chicken* OR Poultry*) OR broiler*) OR gallus)) AND (slaughter* OR process*))

Timespan: 01/01/1998- 29/10/2018 (Data of completion of database search)

Databases and captured citations prior to de-dublication

- 1. Web of Science
 - a. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC.
 - b. 1326 hits
- 2. PubMed- 731 hits
- 3. Web-searching
 - a. Databases searched: Google, Google Scholar, Scopus and CAB Abstracts
 - b. 12 hits

Section C: Screening tool for abstracts for the systematic-review meta-analysis investigating the change in prevalence and concentration of *Campylobacter* spp. in broiler chickens during primary processing.

RefID:

Reviewer:

Question 1 - Does this abstract pertain to primary research and results written in English?

- 1. From the title abstract, is it evident that the authors collected and analyzed their own data?
 - []Yes
 - [] No
 - [] Can't tell at this point

Take note of review articles

- 2. Can you retrieve an English version of this article?
 - []Yes
 - [] No
 - [] Can't tell at this point

Note that primary research in the screening process refers to Scalding, Defeathering, Evisceration, Inside-Outside Carcass wash, Chilling or Post-chill storage

Broiler chickens exclude spent hens and other fowl for human consumption. At this point, assume 'poultry' or 'chicken' refers to broilers.

- 3. Does the study investigate the effects of a decontamination intervention on the prevalence or concentration outcome, on broiler chickens, during primary processing of broiler chickens?
 - []Yes

[] No

- [] Can't tell at this point
- 4. Are the results from samples collected at specific points during primary processing of broiler chickens?

[]Yes

[] No

- [] Can't tell at this point
- 5. Does the study investigate the effects of a decontamination intervention on broiler chickens, and **NOT** the processing environment (surfaces, air, process water)?
 - []Yes
 - [] No
 - [] Can't tell at this point
- 6. Does the sample refer to typical broiler breeds slaughtered at 5-7 weeks of age?
 - []Yes
 - [] No
 - [] Can't tell at this point

Section D: Relevance screening tool for full articles for the systematic-review meta-analysis investigating the change in prevalence and concentration of *Campylobacter* spp. in broiler chickens during primary processing.

RefID: _____

Reviewer:

Relevance criteria

- 1. Have the authors used an appropriate study design in this study? Have the researcher adequately measured the outcome of interest before a treatment and after a treatment.
 - []Yes
 - [] No
 - [] Can't tell at this point

The samples can either be inoculated or naturally contaminated and the extent of an outcome may be from an earlier point during the primary processing. The designs to accept include Randomized control trials, challenge trials, Before-after-trials. Reject full articles if it's a cohort study, cross-sectional, surveillance reports, modelling and risk analysis publications based on secondary literature. Articles and trials were also accepted if sampling was done to evaluate the effects over a series of different sampling points. Trials refers to treatment-to-control comparisons made within a study. An effect is evaluated by changes in prevalence (frequency or presence/absence) or concentration (colony forming units (CFU) or most probable number (MPN) per unit measured) within a study.

- 2. Have the methods/ methodology/ procedures been adequately described and presented?
 - []Yes
 - [] No
- 3. Have the results being adequately presented?
 - []Yes
 - [] No
- 4. Can specific details of each trial together with its results (control and treatment) be properly extracted?
 - []Yes

[] No

[] Data can be adequately extracted from images using available R-packages

Section E: Risk of Bias Assessment Checklists used for the systematic-review meta-analysis investigating the change in prevalence and concentration of *Campylobacter* spp. in broiler chickens during primary processing.

The checklist was based on GRADE (Grading of Recommendations Assessment, Development, and Evaluation) as recommended (Schünemann et al., 2011).

Quality item	Coding (Please circle the	Description
	applicable one)	
Study design adequacy	Yes	The design is clearly stated
		including sample size, intervention
		details, outcomes and controls that
		will be measured.
	No	One or more of the components are
		missing.
Sample size justification	Yes	Used formulas, based on desired
		power or precision and estimate of
		expected variability to detect
		differences.
	No	No details in the text, convenient
		or judgemental sampling done.
Allocation sequence adequately	Yes	Allocation sequence is described in
generated		enough detail
	No	Sample picked with no formal
		process for randomization, that is,
		sampling was judgmental,
		convenient, & purposive
Allocation concealment or	Yes	Concealment or blinding described
blinding adequate	Not described	No enough details on allocation
		concealment/ blinding
Adequate description of	Yes	Clearly stated procedures (time,

procedure		temperature, process environment,
		process capacity
	No	Description not clearly stated
Study set-up	Actual factory set up	Intervention implemented in a
		typical broiler processing facility
		and used commercial equipment
	Pilot plant set up	Intervention implemented in a pilot
		plant
	Lab design	Simulated processing done in the
		lab
Appropriateness of control group	Yes	Yes
used	No	No
Use of standard methods to	Yes	Standard methods were used and
culture & confirmation		have been adequately described.
Campylobacter spp.	No	Not clear
Report all intended outcomes with	hYes	The results address all intended
no evidence of exclusion of some		outcomes
samples from the results	No	Evidence some outcomes have
		been excluded from the results
Appropriateness of statistical	Yes	The results fit the study design,
analysis, including presentation o	f	outcomes (parameter estimates &
measures of variability		measures of variability) adequately
		presented.
	No	Statistical analysis and measures of
		variability not properly presented
		or carried out.
Presence of a dose-response	Yes	The authors present a clear dose-
gradient		response effect in the study
	No	Not presented
Presence of any other any	Yes	Kindly state in brief

concerns that may contribute to	No	None detected during screening or
bias		inclusion
Based on GRADE, how would	Low Risk of Bias	Minimal biases indicated,
GRADE the risk of bias in this		acceptable bias is unlikely across
study (GRADE 1-10, new)		the study
	Unclear Risk of Bias	Elements of acceptable bias
		detected in the study, that creates
		uncertainty in the results
	High Risk of Bias	Unacceptable bias identified across
		the study that consequently affects
		the overall results

Adopted from (Centre for Reviews and Dissemination, 2009)

Section F: Findings on Risk of Bias Assessment

Allocation concealment and blinding was not reported by any study, and none of the studies justified the sample size used. Allocation sequence was inadequately generated in most studies.

Criterion	Description	Campylobacter	Campylobacter
		spp. conc	spp. prevalence
		n trials (studies)	n trials (studies)
Sample size justification	Clear justification	0(0)	0(0)
	Not described	198(37)	30(15)
Allocation sequence adequately	Yes	5(3)	5(3)
generated	No	193(34)	25(12)
Adequate allocation concealment	Yes	0(0)	0(0)
or blinding	No	198(37)	30(15)
Adequate description of	Yes	169(32)	28(13)
procedure	No	29(5)	2(2)
Appropriateness of control group	Yes	198(37)	30(15)
used	No	0(0)	0(0)
Use of standard methods to	Yes	198(37)	30(15)
analyze <i>Campylobacter</i> spp.	No	0(0)	0(0)
All intended outcomes	Yes	193(36)	30(15)
reported/no exclusion of some results	No	5(1)	0(0)
Presentation of measures of	Appropriate	195(36)	27(14)
variability & statistical analysis	Not appropriate	3(1)	3(1)
Presence of a dose-response	Yes	115(8)	5(2)
gradient	No	83(29)	25(13)
Presence of any other any concerns that may contribute to	Artificial contamination	31(6)	3(2)
bias	Multiple sampling factories	3(2)	8(3)
	Activity of prior intervention	2(1)	2(1)
	Others	10(2)	0(0)
	None	152(26)	17(9)
Overall Risk of Bias (RoB) rating	Unclear RoB	49(12)	16(7)
based on GRADE	Low RoB	149(25)	14(8)

Section G: Data extraction tool for a systematic-review meta-analysis investigating the change in prevalence and concentration of *Campylobacter* spp. in broiler chickens during primary processing

Variable	Description	Entry
Article ID	Brief description of article	Author, year, country
Sampling point	Point where samples were collected	Sampling point
Intervention type	Decontamination intervention done	Intervention type
Intervention details	Detailed description of the decontamination intervention	Technique, inoculum, exposure time, exposed part
Microbial sampling	Samples collection	Type of analysed sample
Microbial analysis	Description of steps done for microbial analysis	Non-selective enrichment, selective enrichment, isolation media, purification media, confirmation
Counts/ prevalence	Findings of the trial	Initial concentration (log counts)/ prevalence, variability (Standard deviation/ standard error)

Section H: Extracted data for the systematic review meta-analysis on the effectiveness of

ID	Samplin g point	Intervention type	Technique	Exposed part	Type of analysed sample	Conc / prev	<i>Campyl</i> <i>obacter</i> spp.
A21	Pre- Scalding	Physical decontamination	Additional washers- pre- scald brush washer (conventional)	WC	WCR	Conc	(0.46)
A45	Pre- Scalding	Washing→ squeezing	mechanical compression to induce defecation of carcasses	WC	WCR	Conc	0.30
A45	Pre- Scalding	Squeezing plus washing	mechanical compression to induce defecation of carcasses plus washing with tap water (6.8 L/min at 276 kPa, 0.5 liter per carcass)	WC	WCR	Conc	0.30
A3	Scalding	No treatment→ Sterile water	cloaca treatment during defeathering	Cloaca vent	Breast swabs	Conc	(0.20)
A3	Scalding	No treatment→ distilled white vinegar	cloaca treatment during defeathering	Cloaca vent	Breast swabs	Conc	(1.90)
A5	Scalding	Control pH(6.88) \rightarrow high pH (9.89)	↑pH using lime slurry (calcium hydroxide)	WC	WCR	Conc	(0.71)
A5	Scalding	Control pH(6.88) \rightarrow high pH (9.89)	↑pH using lime slurry (calcium hydroxide)	WC	WCR	Prev	(44.44)
A17	Defeath ering	Increase temperature of scald water	↑ scald water temperature: 53 C → 53.9 ± 0.1 C (for 3 min in a counter current scalder)	WC	WCR	Conc	(2.80)
A2	Defeath ering	Chlorine dioxide spray	portable water \rightarrow 50 ppm of ClO2	WC	WC	Conc	(1.04)
A34	Defeath ering	Prepick evisceration	evisceration by hand	WC	breast swab	Conc	(2.21)
A34	Defeath ering	vent plug	vent plug using commercial canned expanding foam	cloaca	breast swab	Conc	(0.21)
A34	Defeath ering	Upside-Down Hang	rehung carcass on the shackle by the neck and wings, head facing up and vent facing down	WC	breast swab	Conc	(0.28)
A43	Defeath ering	Acetic acid	control water \rightarrow 1 M acetic acid, 12 ml	cloaca	breast skin swab	Conc	(2.03)
A43	Defeath ering	Lactic acid	control water \rightarrow 1 M lactic acid, 12 ml	cloaca	breast skin swab	Conc	(1.23)

processing interventions along broilers abattoirs on Campylobacter spp.,

A43	Defeath ering	Propionic acid	control water \rightarrow 1 M propionic acid, 12 ml	cloaca	breast skin swab	Conc	(1.51)
A48	Defeath ering	plugged and sutured cloaca	Control→ plugged and sutured cloaca	cloaca	Breast swab	Conc	(1.70)
A48	Defeath ering	plugged and sutured cloaca	Control→ plugged and sutured cloaca	cloaca	Breast swab	Prev	(88.20)
A5	Defeath ering	High chlorine dip	High chlorine dip (83.3 mg/kg), high pH scalding (mean pH 9.89)→High chlorine dip (83.3 mg/kg), normal pH scalding (mean pH 6.04)	WC	WC	Conc	(0.66)
A15	Post- Defeath ering	Hot water post- plucking dip	delayed (30 min after defeathering) immersion rescald treatment of 28 s at 60 ± 1 C	WC	WCR	Conc	(0.50)
A15	Post- Defeath ering	Hot water post- plucking Spray	delayed (30 min after defeathering) spray rescald treatment of 20 s at 73 ± 1 C	WC	WCR	Conc	(0.10)
A15	Post- Defeath ering	Hot water post- plucking dip	immediate immersion rescald treatment of 28 s at 60 ± 1 C	WC	WCR	Conc	0.00
A15	Post- Defeath ering	Hot water post- plucking Spray	immediate spray rescald treatment of 20 s at 70 \pm 2 C	WC	WCR	Conc	(0.40)
A17	Post- Defeath ering	Additional spray wash	additional outside spray (3 secs) after defeathering (100 kPa, 400 l per hour)	WC	WCR	Conc	2.30
A21	Post- Defeath ering	Additional washers	post-defeathering spray washer	WC	WCR	Conc	(0.12)
A39	Post- Defeath ering	trisodium phosphate- pre pluck	distilled water control $\rightarrow 5\% \text{ w/v TSP}$	cloaca	swab	Conc	0.13
A39	Post- Defeath ering	trisodium phosphate- pre pluck	distilled water control $\rightarrow 10\%$ w/v TSP	cloaca	swab	Conc	(0.06)
A39	Post- Defeath ering	trisodium phosphate- pre pluck	distilled water control $\rightarrow 20\%$ w/v TSP	cloaca	swab	Conc	(0.18)
A39	Post- Defeath ering	citric acid- pre pluck	distilled water control $\rightarrow 1\%$ w/v citric acid	cloaca	swab	Conc	0.03
A39	Post- Defeath ering	citric acid- pre pluck	distilled water control $\rightarrow 5\%$ w/v citric acid	cloaca	swab	Conc	(0.37)

A39	Post- Defeath	citric acid- pre pluck	distilled water control $\rightarrow 10\%$ w/v citric acid	cloaca	swab	Conc	(0.55)
A39	ering Post- Defeath ering	lactic acid- pre pluck	distilled water control $\rightarrow 1\%$ w/v lactic acid	cloaca	swab	Conc	0.00
A39	Post- Defeath ering	lactic acid- pre pluck	distilled water control \rightarrow 5% w/v lactic acid	cloaca	swab	Conc	(0.33)
A39	Post- Defeath ering	lactic acid- pre pluck	distilled water control $\rightarrow 10\%$ w/v lactic acid	cloaca	swab	Conc	(0.53
A5	Post- Defeath ering	High chlorine dip + high pH scald	High chlorine dip (83.3 mg/kg) after normal pH scalding (mean pH 6.04) →High chlorine dip (83.3 mg/kg) after high pH scald (mean pH 9.89)	WC	WC	Prev	(32.22
A12	Eviscera tion	External or internal visible fecal contamination	External→Internal contamination, followed by similar IOCW	medial surface of the sternum	WCR	Conc	(1.00
A12	Eviscera tion	External or internal visible fecal contamination	1.0 g cecal content on breast skin, then left for 10 mins at room temperature, then washed off at IOBW	Breast skin	WCR	Prev	8.3
A12	Eviscera tion	External or internal visible fecal contamination	1.0 g cecal content on medial surface of the sternum, then left for 10 mins at room temperature, then washed off at IOBW	medial surface of the sternum	WCR	Prev	(25.00
A17	Eviscera tion	Additional spray wash	additional outside spray (3 secs) after defeathering (100 kPa, 400 l per hour)	WC	WCR	Conc	0.9
A17	Eviscera tion	Increase temperature of scald water	$53 \text{ C} \rightarrow 53.9 \pm 0.1 \text{ C}$ (for 3 min in a counter current scalder)	WC	WCR	Conc	(0.30
A34	Eviscera tion	Pre-scald evisceration	hand evisceration after bleeding befoore scalding	WC	breast swab	Conc	(2.45
A46	Eviscera tion	Pre-evisceration skin removal	Skin on→skin off (skin removal prior to evisceration using sterile scapel, then eviscerated and inside-outside wash done using spray wash)	surface skin	WCR	Conc	(1.60

A46	Eviscera tion	Pre-evisceration skin removal	Skin on→skin off (skin removal prior to evisceration using sterile	surface skin	inside carcass swab	Conc	(0.10)
			scapel, then eviscerated and inside-outside wash		Swab		
A46	Eviscera	Pre-evisceration	done using spray wash) Skin on→skin off (skin	surface	outside	Conc	(0.40)
	tion	skin removal	removal prior to evisceration using sterile	skin	carcass swabs		(0110)
			scapel, then eviscerated and inside-outside wash done using spray wash)				
A46	Eviscera tion	Pre-evisceration skin removal	skin removal prior to evisceration using sterile	surface skin	inside carcass	Prev	0.00
	tion	Skiii Teinovui	scapel, then eviscerated and inside-outside wash	SKIII	swab		
A46	Eviscera	Pre-evisceration	done using spray wash skin removal prior to	surface	outside	Prev	(53.33)
	tion	skin removal	evisceration using sterile scapel, then eviscerated and inside-outside wash	skin	carcass swabs		ζ,
A6	Eviscera	Steam and	done using spray wash Steam (90–94 °C) and	WC	Breast	Conc	(0.86
	tion	ultrasound	ultrasound at 30-40 kHz		skin	00110	
		treatment	for 15-20 mins after evisceration				
A6	Eviscera	Steam and	Steam (90–94 °C) and	WC	Breast	Conc	(1.11)
	tion	ultrasound treatment	ultrasound at 30–40 kHz for 15-20 mins after evisceration then 80		skin		
A6	Eviscera	Steam and	mins air chill Steam (90–94 °C) and	WC	Breast	Conc	(0.78
AU	tion	ultrasound treatment	ultrasound at 30–40 kHz for 15-20 mins after	we	skin	cone	(0.78)
A6	Eviscera	Steam and	evisceration Steam (90–94 °C) and	WC	Breast	Conc	(0.56
	tion	ultrasound	ultrasound at 30-40 kHz		skin		
		treatment	for 15-20 mins after evisceration then 80 mins air chill				
A26	Post- Eviscera	Steam + ultrasound	Steam + ultrasound	WC	WCR	Conc	2.51
A35	tion Post-	steam	Steam temperature: 90	WC	Breast	Conc	(0.46
1.1.3.3	Eviscera	pasteurization-	C in three stage: water		skin swab	COIR	עדיט
	tion	12 secs	removal, steam application and cold water spraving				
A35	Post-	steam	water spraying Steam temperature: 90	WC	Breast	Conc	(1.30)
	Eviscera	pasteurization-	C in three stage: water		skin swab		

	tion	24 secs	removal, steam application and cold				
	D		water spraying	WG	D	P	0.00
A35	Post-	steam	Steam temperature: 90	WC	Breast	Prev	0.00
	Eviscera	pasteurization- 12 seconds	C in three stage: water removal, steam		skin swab		
	tion	12 seconds	application and cold				
			water spraying				
435	Post-	steam	Steam temperature: 90	WC	Breast	Prev	(30.00
100	Eviscera	pasteurization-	C in three stage: water		skin swab	1100	(20.00
	tion	24 seconds	removal, steam				
			application and cold				
			water spraying				
A35	Post-	steam	Steam temperature: 90	WC	visceral	Prev	(10.00
	Eviscera	pasteurization-	C in three stage: water		cavity		
	tion	12 seconds	removal, steam		swab		
			application and cold				
125	Dent		water spraying	WC		D	(20.00
A35	Post- Eviscera	steam	Steam temperature: 90	WC	visceral	Prev	(30.00
	tion	pasteurization- 24 seconds	C in three stage: water removal, steam		cavity swab		
	tion	24 seconds	application and cold		Swab		
			water spraying				
A39	Post-	trisodium	distilled water control	cloaca	swab	Conc	(0.51
	Eviscera	phosphate- pre	→5% w/v TSP				
	tion	pluck					
A39	Post-	trisodium	distilled water control	cloaca	swab	Conc	(0.54
	Eviscera	phosphate- pre	→10% w/v TSP				
	tion	pluck				~	(a
A39	Post-	trisodium	distilled water control	cloaca	swab	Conc	(0.72
	Eviscera	phosphate- pre	$\rightarrow 20\%$ w/v TSP				
A39	tion Post-	pluck citric acid- pre	distilled water control	cloaca	swab	Conc	(0.11
A39	Eviscera	pluck	$\rightarrow 1\%$ w/v citric acid	cioaca	swab	Conc	(0.11
	tion	pluck					
A39	Post-	citric acid- pre	distilled water control	cloaca	swab	Conc	(0.82
	Eviscera	pluck	\rightarrow 5% w/v citric acid				(0.0-
	tion	1					
A39	Post-	citric acid- pre	distilled water control	cloaca	swab	Conc	(0.74
	Eviscera	pluck	$\rightarrow 10\%$ w/v citric acid				
	tion						
A39	Post-	lactic acid- pre	distilled water control	cloaca	swab	Conc	(0.63
	Eviscera	pluck	\rightarrow 1% w/v lactic acid				
1 20	tion Dest	lastici-l	distilledtonton 1	a1	arr1-	Carr	(0.00
A39	Post- Evisoara	lactic acid- pre	distilled water control \rightarrow 5% w/v lactic acid	cloaca	swab	Conc	(0.90
	Eviscera tion	pluck	\rightarrow 5 % w/v factic acid				
A39	Post-	lactic acid- pre	distilled water control	cloaca	swab	Conc	(0.66
	Eviscera	pluck	$\rightarrow 10\%$ w/v lactic acid	erouou	540	20110	(0.00
	tion	T					

A16	Inside- Outside wash	Trimming using a knife→ High pressure spray (HPS)	Carcass with visible gastrointestinal contamination. HPS- 1.5 L of potable water per carcass (0.5 to 2.0 ppm	external and/or internal surfaces	WCR	Prev	(11.69)
A16	Inside- Outside wash	High pressure spray (HPS)	of chlorine) with 10 kgf/cm2 of pressure Carcass with NO visible gastrointestinal contamination: HPS- 1.5 L of potable water per carcass (0.5 to 2.0 ppm of chlorine) with 10	external and/or internal surfaces	WCR	Prev	(6.88)
A21	Inside- Outside wash	Additional washers	kgf/cm2 of pressure pre IOBW spray washer	WC	WCR	Conc	(0.66)
A21	Inside- Outside wash	Additional washers	post IOBW brush washer	WC	WCR	Conc	(0.06)
A25	Inside- Outside wash	electrolyzed oxidizing water spray	EO (electrolyzed oxidising water) pH 2.4, oxidation reduction potential of 1,180 mV containing 50 mg/L of total chlorine	WC	WCR	Conc	(1.90)
A25	Inside- Outside wash	sodium hypochlorite spray	50 mg/L of HOCl solution (pH 8.0)	WC	WCR	Conc	(1.60
A54	Inside- Outside wash	Chlorine Conc and Water Temperature (spray washers)	0 ppm→50 ppm Chlorine, water temperature 21.1°C	WC	WCR	Conc	0.30
A54	Inside- Outside wash	(spray washers) Chlorine Conc and Water Temperature (spray washers)	0 ppm→50 ppm Chlorine, water temperature 43.3°C	WC	WCR	Conc	(0.40)
A54	Inside- Outside wash	(spray washers) Chlorine Conc and Water Temperature (spray washers)	0 ppm→50 ppm Chlorine, water temperature 54.4°C	WC	WCR	Conc	(0.20)
A7	Inside- Outside wash	(spray washers) acidified sodium chlorite Spray- 30 seconds	Portable water \rightarrow ASC (1,000 ppm at a pH range 2.39 and 2.67)	WC	breast skin	Conc	(1.09)
A7	Inside- Outside wash	chlorine dioxide Spray- 30 seconds	Portable water \rightarrow ClO2 (tank conc of 9.03 ppm (SD=3.78). Spray nozzles conc of 6.48 ppm (SD=1.45).	WC	Breast skin	Conc	0.06

A7	Inside- Outside wash	peroxyacetic acid Spray - 30 seconds	Portable water \rightarrow PAA (400 ppm of peracetic acid, 1,600 ppm of hydrogen peroxide and	WC	Breast skin	Conc	(0.96
A7	Inside- Outside	trisodium phosphate Spray	800 ppm of acetic acid.) Portable water \rightarrow TSP (High pH 12.4)	WC	Breast skin	Conc	(1.18
	wash	- 30 seconds					
A7	Inside- Outside wash	acidified sodium chlorite Spray - 30 seconds	Portable water \rightarrow 1,000 ppm ASC (pH range 2.39 and 2.67	WC	Neck skin	Conc	(1.20
A7	Inside- Outside wash	chlorine dioxide Spray - 30 seconds	Portable water → Chlorine dioxide (tank conc 9.03 ppm, Spray nozzles conc 6.48 ppm	WC	Neck skin	Conc	0.5
A7	Inside- Outside wash	peroxyacetic acid Spray - 30 seconds	Portable water $\rightarrow 400$ ppm of PAA, 1,600 ppm of hydrogen peroxide and 800 ppm of acetic acid.	WC	Neck skin	Conc	(0.57
A7	Inside- Outside wash	trisodium phosphate Spray - 30 seconds	Portable water \rightarrow TSP (pH 12.4)	WC	Neck skin	Conc	(2.01
A7	Inside- Outside wash	acidified sodium chlorite spray – 15 seconds	Portable water \rightarrow ASC 1,000 ppm at a pH range 2.39 and 2.67	WC	Breast skin	Conc	(0.82
A7	Inside- Outside wash	peroxyacetic acid spray – 15 seconds s	Portable water $\rightarrow 400$ ppm PAA (1,600 ppm of hydrogen peroxide and 800 ppm of acetic acid.	WC	Breast skin	Conc	(0.78
A7	Inside- Outside wash	trisodium phosphate spray – 15 seconds	Portable water \rightarrow TSP (pH 12.4)	WC	Breast skin	Conc	(0.55
A7	Inside- Outside wash		Portable water \rightarrow ASC 1,000 ppm at a pH range 2.39 and 2.67	WC	Neck skin	Conc	(1.22
A7	Inside- Outside wash	peroxyacetic acid spray – 15 seconds	Portable water $\rightarrow 400$ ppm of PAA, 1,600 ppm of hydrogen peroxide and 800 ppm of acetic acid.	WC	Neck skin	Conc	(0.73
A7	Inside- Outside wash	trisodium phosphate spray – 15 seconds	Portable water \rightarrow TSP (pH 12.4)	WC	Neck skin	Conc	(1.13
A24	Post- Inside- Outside wash	Trisodium phosphate immersion – 15 seconds	portable water→10% (wt/vol) TSP	WC	neck skin	Conc	(1.16

A40	Post- Inside- Outside wash	acidified sodium chlorite	offline reprocessing→ online continuous spray wash of visibly contaminated carcasses with visble fecal and	WC	WCR	Conc	(1.75)
A40	Post- Inside- Outside wash	acidified sodium chlorite	ingesta offline reprocessing→ online continuous spray wash of visibly contaminated carcasses with visble fecal and ingesta	WC	WCR	Prev	(24.10)
A44	Post- Inside- Outside Wash	lactic acid - spray tunnel	1.9% lactic acid, pH 3.9, flow rate 10400 g per min, time 7 sec	WC	breast skin swab	Conc	0.20
A44	Post- Inside- Outside Wash	lactic acid - spray tunnel	1.9% lactic acid, pH 3.9, flow rate 10400 g per min, time 7 sec	WC	breast skin swab	Conc	0.12
A44	Post- Inside- Outside Wash	lactic acid - spray tunnel	4.0 % lactic acid, pH 4.0, flow rate 29700 g per min, time 7 sec	WC	breast skin swab	Conc	0.05
A44	Post- Inside- Outside Wash	lactic acid- Hand held Electrostatic sprayer (ESS) quick	4.0 % lactic acid, pH 4.0, flow rate 184 g per min, time 21 sec	WC	breast skin swab	Conc	(0.12)
A44	Post- Inside- Outside Wash	lactic acid- Hand held Electrostatic sprayer (ESS) quick	4.0 % lactic acid, pH 4.0, flow rate 184 g per min, time 5 sec	WC	breast skin swab	Conc	0.48
A44	Post- Inside- Outside Wash	lactic acid- Hand held Electrostatic sprayer (ESS) slow	4.0 % lactic acid, pH 4.0, flow rate 184 g per min, time 21 sec	WC	breast skin swab	Conc	(0.22)
A44	Post- Inside- Outside Wash	lactic acid- Tunnel spray	4.0 % lactic acid, pH 3.9, flow rate 12500 g per min, time 7 sec	WC	breast skin swab	Conc	(0.43)
A44	Post- Inside- Outside Wash	lactic acid- Hozelock spray	8.0 % lactic acid, pH 3.9, flow rate 790 g per min, time 21 sec	WC	breast skin swab	Conc	(1.94)
A20	Pre- Chilling	cationic disinfectant spray	cetylpyridinium chloride	WC	WCR	Conc	(1.56)

A20	Pre- Chilling	cationic disinfectant spray	cetylpyridinium chloride	WC	WCR	Prev	(87.59)
A21	Pre- Chilling	Additional washers	Pre-chill spray washer	WC	WCR	Conc	(0.06)
A10	Chilling	Immersion vs air chilling	ice and potable water mixture (approximately 0.6 C), 2 rpm, 50-min \rightarrow continuous flow of air with velocity 3.5 m/s, air less than 0 C, for 150 mins	WC	WCR	Conc	(0.40)
A11	Chilling	Electrolyzed NaCl + overnight post- chill refrigeration	Plan water (0.1ppm free Cl, pH 7.5, redox 436mV→electrolyzed NaCl (1.2ppm free Cl, redox=574-697mV) Spray (during chilling)	WC	Breast swab	Conc	(0.35)
A11	Chilling	Electrolyzed water + overnight post- chill refrigeration	Plain water→electrolysed sodium chloride,2 pipes each with flow rate 786 g/min for 1 min, free cholorine= 0.2, pH=8.5, redox=790mV Spray- (Post Inside Outside wash)	WC	Breast swab	Conc	0.29
A11	Chilling	Electrolyzed water + overnight post- chill refrigeration	Plain water→electrolysed sodium carbonate, 2 pipes each with flow rate 786 g/min for 1 min, free cholorine= 0.2, pH=11.3, redox=15mV Spray- (Post Inside Outside wash)	WC	Breast swab	Conc	(0.20)
A11	Chilling	Electrolyzed NaCl + overnight post- chill refrigeration	2 electrolyzed NaCl sprays; first post-pluck (16.7ppm Cl, pH 7.3, redox 792mV) then second pre-chill (18.4ppm Cl, pH 7.3, redox 825mV). 0.5 ppm ClO2 spray. <i>Spray-</i> (<i>Post-Pluck and Post-</i> <i>Inside Outside Wash</i>)	WC	Breast swab	Conc	0.01
A17	Chilling	Additional spray wash	additional outside spray after defeathering (100 kPa, 400 l per hour)	WC	WCR	Conc	1.20

A17	Chilling	Increase temperature of	$53 \text{ C} \rightarrow 53.9 \pm 0.1 \text{ C}$ (for 3 min in a counter	WC	WCR	Conc	(0.20)
A18	Chilling	scald water immersion →air chilling	current scalder) three-stage countercurrent immersion chiller for a total time of 85 min. 1st stage water at 17.2°C, second stage water at 5.6 to 6.7°C, and third stage water at -1.1 to 0°C. Chlorine in chiller approximately 40 ppm. \rightarrow 120 min in an air-chilling room in two stages, with temperatures of -7.7 to - 5.5°C and -4.4 to -	WC	WCR	Prev	(9.40)
A20	Chilling	Air → immersion	1.1°C, respectively. 150 mins at 1.0 m/s cold (1.0 +/- 0.2 C) after disinfection with cetylpyridinium chloride \rightarrow 50 mins; Total chlorine conc in the chilling water (50- 90 ppm), free chlorine (0.4- 0.8 ppm), water temperature 0.5 +/- 0.4 C	WC	WCR	Conc	(0.40)
A20	Chilling	Air → immersion	150 mins at 1.0 m/s cold (1.0 +/- 0.2 C) after disinfection with cetylpyridinium chloride \rightarrow 50 mins; Total chlorine conc in the chilling water (50- 90 ppm), free chlorine (0.4- 0.8 ppm), water temperature 0.5 +/- 0.4	WC	WCR	Prev	(16.13
423	Chilling	Air → immersion	C air velocity 3.6 m/min, temperature of 0°C and RH of 72%, chilling time 120 min \rightarrow 0.5 to 1.1°C water with 5 mg/kg of free chlorine with birds exposed to air agitation during the first 25 min. total immersion 28	WC	WCR	Conc	(2.01)

			time 80 min				
A23	Chilling	Air \rightarrow immersion immersion \rightarrow Immersion-air combi	air velocity 3.6 m/min, temperature of 0°C and RH of 72%, chilling time 120 min \rightarrow 0.5 to 1.1°C water with 5 mg/kg of free chlorine with birds exposed to air agitation during the first 25 min. total immersion time 80 min \rightarrow Step 1: 4 tanks with temp at 8, 5, 5, and 2°C, respectively. Time 20 s (1st tank), 40 s (2nd tank), 80 s (3rd tank), and 80 s (4th tank). Drain time between tanks 30, 60, and 60 s. Step 2: air chill- velocity 3.6 m/min, 0°C and RH of 72%, for 120 mins 0.5 to 1.1°C water with 5 mg/kg of free chlorine with birds exposed to air agitation during the first 25 min. total immersion time 80 min \rightarrow Step 1: 4 tanks with temp at 8, 5, 5, and 2°C, respectively. Time 20 s (1st tank), 40 s (2nd tank), 80 s (3rd tank), and 80 s (4th tank). Drain time between tanks 30, 60, and 60 s. Step 2: air chill- velocity 3.6 m/min, 0°C and RH of	whole chicken	WCR	Conc	(0.55)
A23	Chilling	Air→immersion	72%, for 120 mins 0.5 to 1.1°C water with 5 mg/kg of free chlorine with birds exposed to air agitation during the first 25 min. total immersion time 80 min	WC	WCR	Prev	(40.00)
A23	Chilling	Air→Immersion -air combi	air velocity 3.6 m/min, temperature of 0°C and RH of 72%, chilling time 120 min	whole chicken	WCR	Prev	11.53

A23	Chilling	Immersion→Im mersion-air combi	Step 1: 4 tanks with temp at 8, 5, 5, and 2°C, respectively. Time 20 s (1st tank), 40 s (2nd tank), 80 s (3rd tank), and 80 s (4th tank). Drain time between tanks 30, 60, and 60 s. Step 2: air chill- velocity 3.6 m/min, 0°C and RH of 72%, for 120 mins	WC	WCR	Prev	51.53
A26	Chilling	Forced air chilling	forced air chiller on a continuous shackle line for 3 h to obtain an outer carcass temperature of approximately 3C.	WC	WCR	Conc	0.44
A28	Chilling	Air → immersion	refrigerated room (1°C) with a series of 3 circulation fans, for 150 min, air velocity 76.2 m/min, Relative humidity between 79.4 to 87.6% RH (ave. RH 81.6%) \rightarrow paddle- agitated chill tank filled with 151 L ice and tap water (average total chlorine level of 0.5 mg/L) for 50 min	WC	Half carcass rinse	Conc	(0.59)
A36	Chilling	chlorine stabilizers immersion	chlorine treatment (pH 7.34, 51.9 ppm of free chlorine)	drumme tte	drummett e rinse	Conc	(1.47)
A36	Chilling	chlorine stabilizers immersion	chlorine stabilizer (T- 128) based on phosphoric acid– propylene glycol (pH 2.99, 0.00 ppm of free chlorine)	drumme tte	drummett e rinse	Conc	(1.90)
A36	Chilling	chlorine stabilizers immersion	chlorine with chlorine stabilizer (T-128) based on phosphoric acid– propylene glycol (pH 3.59, 50.5 ppm of free chlorine)	drumme tte	drummett e rinse	Conc	(2.05)
A36	Chilling	chlorine stabilizers immersion	chlorine treated with phosphoric acid– propylene glycol chlorine stabilizer (pH 3.55, 50.6 ppm of free chlorine)→Chlorine	drumme tte	drummett e rinse	Conc	1.32

			treated with 0.01% H3PO4 (pH 3.42, 50.5				
			ppm of free chlorine)				
A4	Chilling	Chlorine drench	2.1 L/kg (low) \rightarrow 16.8	Half	Half	Conc	(0.30
	0	volume	L/kg (high) volume	carcass	carcass		X
			distilled water in bag		rinse		
A41	Chilling	rapid surface	immersed pre-chill in	breast	breast	Conc	(0.28
	8	cooling	liquid nitrogen- 2	skin	skin		(**
			seconds				
A41	Chilling	rapid surface	immersed pre-chill in	breast	breast	Conc	(0.77
	0	cooling	liquid nitrogen- 10	skin	skin		X • • • •
		U	seconds				
A41	Chilling	rapid surface	immersed pre-chill in	breast	breast	Conc	(1.04
	U	cooling	liquid nitrogen- 20	skin	skin		
		U	seconds				
A41	Chilling	rapid surface	immersed pre-inside-	breast	breast	Conc	(1.30
	U	cooling	outside wash in liquid	skin	skin		
		C	nitrogen- 20 seconds				
A41	Chilling	rapid surface	immersed pre-chill in	breast	breast	Conc	(0.04
	-	cooling	liquid nitrogen- 30	skin	skin		
		-	seconds				
A41	Chilling	rapid surface	fumigation with liquid	WC	breast	Conc	0.8
		cooling	nitrogen in a cabinet		skin		
			prechill- 120 seconds				
A41	Chilling	rapid surface	spray with liquid	WC	breast	Conc	(0.27
		cooling	nitrogen in a cabinet		skin		
			post-chill- 120 seconds				
A41	Chilling	rapid surface	spray with liquid	WC	breast	Conc	(0.09
		cooling	nitrogen in a cabinet		skin		
	~		pre-chill- 120 seconds			~	
A47	Chilling	chiller water	low volume chilling	WC	half	Conc	0.2
		volume	$(3.3L \text{ per Kg} \rightarrow \text{high})$	halves	carcass		
		immersion	volume chilling (6.7 L		rinse		
			per Kg), distilled water,				
			temperature 0.6 C, 45				
150	Ch:11:		minutes	WC	WCD	Cana	(0.10
A50	Chilling	visible ingesta	chilled with visible	WC	WCR	Conc	(0.10
		(immersion	ingesta \rightarrow chilled				
A 57	Chilling	chiller) Peracetic acid	without visible ingesta	WC	WCR	Prev	(26.00
A57	Chilling	mixture	30 ppm chlorine \rightarrow 85 ppm of PAHP (peracetic	wC	WCK	Prev	(26.00
		IIIXture	acid and hydrogen				
			peroxide)				
A60	Chilling	Fecal + cross	fecal contamination \rightarrow	half	half	Conc	0.1
100	Chining	contamination	no fecal contamination \rightarrow	carcass	carcass	Conc	0.1
		Contamination	during immersion	Carcass	rinse		
			chilling		11150		
A60	Chilling	Fecal	no fecal \rightarrow fecal	half	half	Prev	25.0
	B						20.0
		contamination	contamination during	carcass	carcass		

		contamination immersion					
A11	Post-	Electrolyzed	Diain water (0 1mm free	WC	Breast	Conc	(0.04)
AII		•	Plain water (0.1ppm free	wC	swab	Conc	(0.04)
	Chilling	NaCl + 7 day	Cl, pH 7.5, redox		swab		
		post-chill	$436 \text{mV} \rightarrow \text{electrolyzed}$				
		refrigeration	NaCl (1.2ppm free Cl,				
			redox=574-697mV)				
		T 1 1 1	Spray (during chilling)	MIG	D. I	~	
A11	Post-	Electrolyzed	Plain	WC	Breast	Conc	0.04
	Chilling	water $+7 day$	water→electrolysed		swab		
		post-chill	sodium chloride,2 pipes				
		refrigeration	each with flow rate 786				
			g/min for 1 min, free				
			cholorine= 0.2, pH=8.5,				
			redox=790mV;				
			Refrigerated Storage= 7				
			days 4°C Spray- (Post				
			Inside Outside wash)				
A11	Post-	Electrolyzed	Plain	WC	Breast	Conc	0.10
	Chilling	water + 7 day	water→electrolysed		swab		
		post-chill	sodium carbonate, 2				
		refrigeration	pipes each with flow				
			rate 786 g/min for 1				
			min, free cholorine= 0.2 ,				
			pH=11.3, redox=15mV;				
			Refrigerated Storage= 7				
			days 4°C Spray- (Post				
			Inside Outside wash)				
A11	Post-	Electrolyzed	2 electrolyzed NaCl	WC	Breast	Conc	(0.10)
	Chilling	NaCl + 7 day	sprays; first post-pluck		swab		
		post-chill	(16.7ppm Cl, pH 7.3,				
		refrigeration	redox 792mV) then				
			second pre-chill				
			(18.4ppm Cl, pH 7.3,				
			redox 825mV). 0.5 ppm				
			ClO2 spray;				
			Refrigerated = 7 days ,				
			4°C Spray- (Post-Pluck				
			and Post-Inside Outside				
			Wash)				
A26	Post-	Crust freezing	continuous CO2 belt	skinless	skinless	Conc	0.42
	Chilling	Belt freezing	freezer (low	breast	breast		
			temperature-freezing	fillets	rinse		
			zone (-55C). Fillets				
			crust frozen individually				
			to an outer surface				
			temperature of				
			approximately -1C				
A27	Post-	Chlorine	Portable water \rightarrow	WC	WCR	Conc	(0.10)
	Chilling		0.004% (40 ppm)				
	2		32				

		immersion	Chlorine- 20 seconds				
A27	Post- Chilling	peracetic acid <i>immersion</i>	Portable water $\rightarrow 0.04\%$ (400 ppm) peracetic acid (PAA)- 20 seconds	WC	WCR	Conc	(1.30)
A27	Post- Chilling	peracetic acid <i>immersion</i>	Portable water $\rightarrow 0.1\%$ (1000 ppm) peracetic	WC	WCR	Conc	(1.40)
A27	Post- Chilling	Lysozyme immersion	acid (PAA) - 20 seconds Portable water $\rightarrow 0.1\%$ (1000 ppm) lysozyme- 20 seconds	WC	WCR	Conc	0.00
A27	Post- Chilling	Lysozyme immersion	Portable water $\rightarrow 0.5\%$ (5000 ppm) lysozyme- 20 seconds	WC	WCR	Conc	(0.30)
A41	Post- Chilling	rapid surface cooling	fumigation with liquid nitrogen in a cabinet prechill	WC	breast skin	Conc	0.80
A41	Post- Chilling	rapid surface cooling	spray with liquid nitrogen in a cabinet post-chill	WC	breast skin	Conc	(0.36
A41	Post- Chilling	rapid surface cooling	spray with liquid nitrogen in a cabinet pre-chill	WC	breast skin	Conc	0.02
A51	Post- Chilling	Traditional versus modern processing	Traditional wet markets→ modern facilities	WC	Necks	Prev	(54.40
A53	Post- Chilling	acidified sodium chlorite <i>immersion</i>	600 and 800 ppm sodium chlorite, pH 2.5 and 2.7, for 15 secs	WC	WCR	Conc	(0.92
A53	Post- Chilling	acidified sodium chlorite <i>immersion</i>	600 and 800 ppm sodium chlorite, pH 2.5 and 2.7, for 15 secs	WC	WCR	Conc	(1.20)
A53	Post- Chilling	acidified sodium chlorite <i>immersion</i>	600 and 800 ppm sodium chlorite, pH 2.5 and 2.7, for 15 secs	WC	WCR	Prev	(87.50)
A53	Post- Chilling	acidified sodium chlorite <i>immersion</i>	600 and 800 ppm sodium chlorite, pH 2.5 and 2.7, for 15 secs	WC	WCR	Prev	(75.00)
A9	Post- Chilling	acidified sodium chlorite <i>immersion</i>	Control- No treatment \rightarrow 900 mg/kg sodium chlorite, pH 2.5–2.6, acidified using citric acid	WC	WCR	Conc	(3.80
A9	Post- Chilling	acidified sodium chlorite <i>immersion</i>	Control→900 mg/kg sodium chlorite, pH 2.5–2.6, acidified using citric acid	WC	WCR	Prev	(76.67

ID	Author(s)
A1	(Kemp, Aldrich, & Waldroup, 2000)
A2	(Berrang, Meinersmann, Cox, & Fedorka-Cray, 2011)
A3	(Berrang, Smith, & Hinton, 2006a)
A4	(Northcutt, Cason, Smith, Buhr, & Fletcher, 2006)
A5	(Berrang, Windham, & Meinersmann, 2011)
A6	(Musavian, Krebs, Nonboe, Corry, & Purnell, 2014)
A7	(Purnell, James, James, Howell, & Corry, 2014)
A8	(Cavani, Schocken-Iturrino, Garcia, & Oliveira, 2010)
A9	(Sexton et al., 2007)
A10	(Huezo, Northcutt, Smith, Fletcher, & Ingram, 2007)
A11	(Burfoot, Mulvey, Jewell, Foy, & Howell, 2015)
A12	(Smith et al., 2007)
A13	(Shin et al., 2012)
A14	(Uyarcan & Kayaardı, 2018)
A15	(Berrang, Dickens, & Musgrove, 2000)
A16	(Giombelli et al., 2015)
A17	(Lehner, Reich, & Klein, 2014)
A18	(Sanchez et al., 2002)
A19	(Souza et al., 2012)
A20	(Zhang, Jeong, Janardhanan, Ryser, & Kang, 2011)
A21	(Berrang & Bailey, 2009)
A22	(Pacholewicz, Lipman, Swart, Havelaar, & Heemskerk, 2016)
A23	(Demirok et al., 2013)
A24	(Whyte, Collins, Mcgill, Monahan, & O 'mahony, 2001)
A25	(Northcutt, Smith, Ingram, Hinton, & Musgrove, 2007)
A26	(Boysen & Rosenquist, 2009)
A27	(Nagel, Bauermeister, Bratcher, Singh, & McKee, 2013)
A28	(Berrang, Meinersmann, Smith, & Zhuang, 2008)
A29	(Bartenfeld et al., 2014)
A30	(Singh, Lee, Silva, Chin, & Kang, 2017)
A31	(Cason, Buhr, & Hinton, 2001)
A32	(McKee, Townsend, & Bilgili, 2008)
A33	(Stopforth et al., 2007)
A34	(Berrang, Smith, & Meinersmann, 2011)
A35	(Whyte, McGill, & Collins, 2003)
A36	(Schambach, Berrang, Harrison, & Meinersmann, 2014)
A37	(Trindade, Kushida, Montes-Villanueva, dos Santos-Pereira, & de Oliveira,
	2012)
A38	(S. M. Russell, 2008)
A39	(Meredith, McDowell, & Bolton, 2013)
A40	(Kemp, Aldrich, Guerra, & Schneider, 2001)
A41	(Burfoot et al., 2016)
A42	(Scott M. Russell & Axtell, 2005)
4 4 3	

A43 (Berrang, Smith, & Hinton, 2006b)

A44	(Burfoot, Allen, et al., 2015)
A45	(Northcutt, McNeal, Ingram, Buhr, & Fletcher, 2008)
A46	(Berrang, Buhr, Cason, & Dickens, 2002)
A47	(Northcutt, Cason, et al., 2008)
A48	(Berrang, Buhr, Cason, & Dickens, 2001)
A49	(L. J. Bauermeister, Bowers, Townsend, & McKee, 2008)
A50	(Bilgili, Waldroup, Zelenka, & Marion, 2002)
A51	(Rejab, Zessin, Fries, & Patchanee, 2012)
A52	(Fabrizio, Sharma, Demirci, & Cutter, 2002)
A53	(Oyarzabal, Hawk, Bilgili, Warf, & Kemp, 2004)
A54	(Northcutt, Smith, Musgrove, Ingram, & Hinton, 2005)
A55	(Bourassa, Fletcher, Buhr, Cason, & Berrang, 2005)
A56	(Yang, Li, & Slavik, 1998)
A57	(Laura J. Bauermeister, Bowers, Townsend, & McKee, 2008)
A58	(Higgins et al., 2005)
A59	(Özdemir & Pamuk, 2006)
A60	(Smith, Cason, & Berrang, 2005)

Section I: Detailed results for each meta-analysis of the effects of decontamination interventions on *Campylobacter* spp. during primary processing of broiler

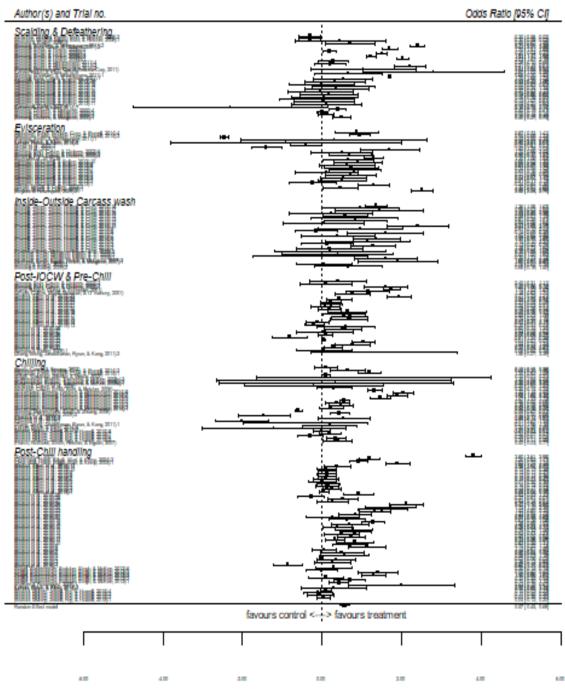


Figure 1: Illustrative Forest plots to represent the odds of *Campylobacter* spp. concentration reduction at different points along broiler chicken primary processing

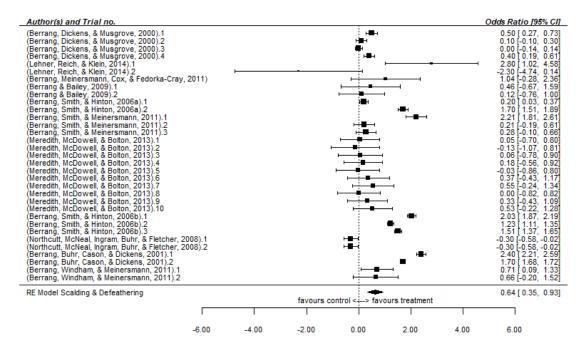


Figure 2a: Illustrative forest plot to represent the odds of Campylobacter spp. concentration reduction

during scalding and defeathering

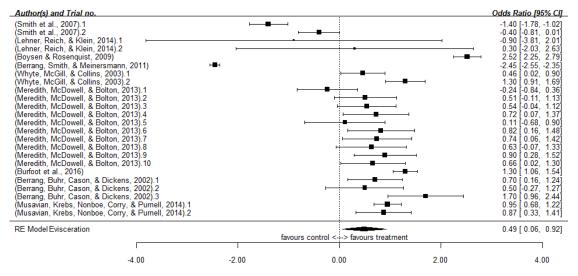


Figure 2b: Illustrative forest plot to represent the odds of Campylobacter spp. concentration reduction during evisceration

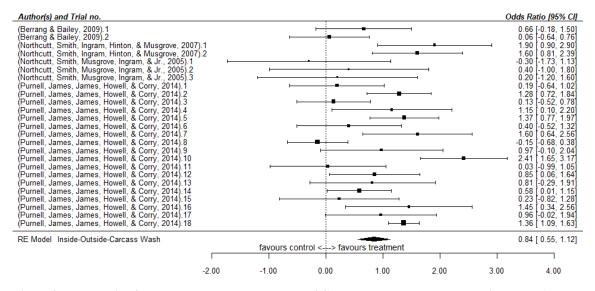


Figure 2c: Illustrative forest plot to represent the odds of Campylobacter spp. concentration reduction

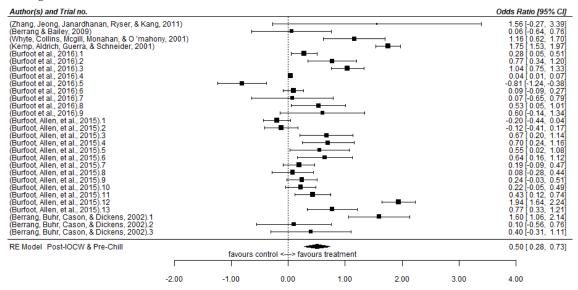


Figure 2d: Illustrative forest plots to represent the odds of Campylobacter spp. concentration reduction at post-Inside-Outside-Carcass-wash and Pre-chill

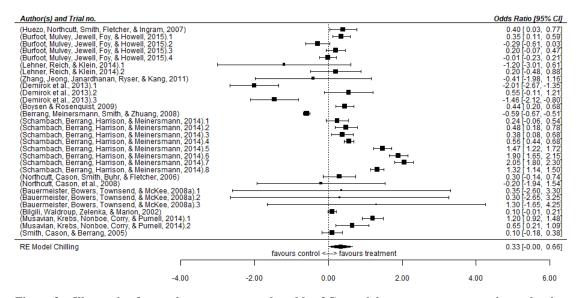


Figure 2e: Illustrative forest plots to represent the odds of Campylobacter spp. concentration reduction during chilling

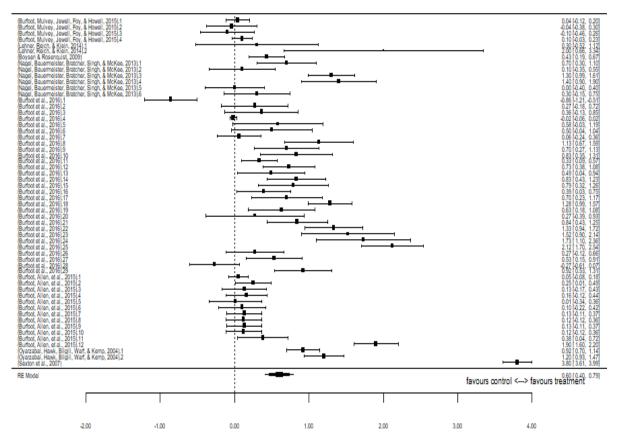


Figure 2f: Illustrative Forest plots to represent the odds of Campylobacter spp. concentration reduction post-chilling

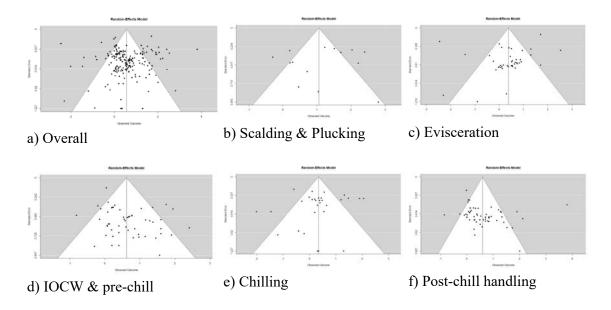
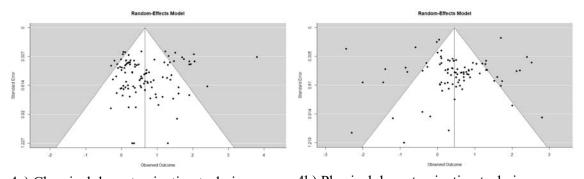
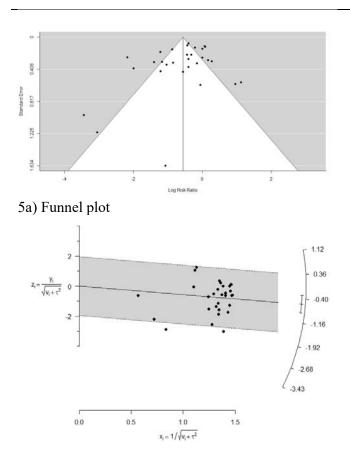




Figure 3 (a-f) Funnel plot to highlight publications bias on the effect of decontamination techniques on *Campylobacter* spp. concentration during broiler chicken primary processing

4a) Chemical decontamination techniques
4b) Physical decontamination techniques
Figure 4(a-b): Funnel plot to compare publication bias between chemical and physical decontamination
trials on *Campylobacter* spp. concentration during broiler chicken primary processing

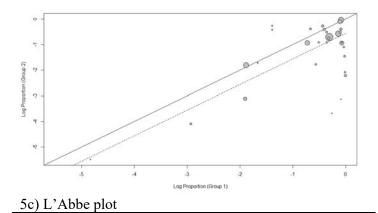


Figure 5(a-c): Funnel, radial and L'Abbe plots to bring out heterogeneity and publication bias within the *Campylobacter* spp. prevalence studies

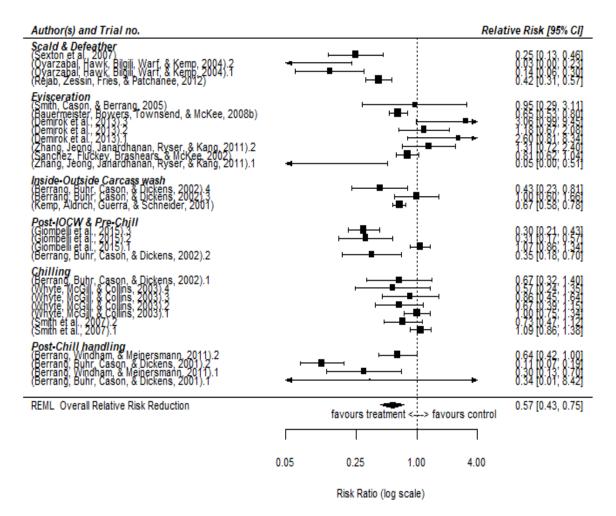


Figure 6: Forest plot to represent the relative risk of *Campylobacter* spp. prevalence reduction during broiler chicken primary processing

Reference:

- Bartenfeld, L. N., Fletcher, D. L., Northcutt, J. K., Bourassa, D. V., Cox, N. A., & Buhr, R. J. (2014). The effect of high-level chlorine carcass drench on the recovery of Salmonella and enumeration of bacteria from broiler carcasses. *Poultry Science*, 93(11), 2893–2899. https://doi.org/10.3382/ps.2014-04051
- Bauermeister, L. J., Bowers, J. W. J., Townsend, J. C., & McKee, S. R. (2008). The microbial and quality properties of poultry carcasses treated with peracetic acid as an antimicrobial treatment. *Poultry Science*, 87(11), 2390–2398. https://doi.org/10.3382/ps.2008-00087
- Bauermeister, Laura J., Bowers, J. W. J., Townsend, J. C., & McKee, S. R. (2008). Validating the Efficacy of Peracetic Acid Mixture as an Antimicrobial in Poultry Chillers. *Journal of Food Protection*, 71(6), 1119–1122. https://doi.org/10.4315/0362-028X-71.6.1119
- Berrang, M. E., & Bailey, J. S. (2009). On-line brush and spray washers to lower numbers of Campylobacter and Escherichia coli and presence of Salmonella on broiler carcasses during processing. *Journal of Applied Poultry Research*, 18(1), 74–78. https://doi.org/10.3382/japr.2008-00067
- Berrang, M. E., Buhr, R. J., Cason, J. A., & Dickens, J. A. (2001). Broiler Carcass Contamination with Campylobacter from Feces during Defeathering. *Journal of Food Protection*, 64(12), 2063–2066. https://doi.org/10.4315/0362-028X-64.12.2063
- Berrang, M. E., Buhr, R. J., Cason, J. A., & Dickens, J. A. (2002). Microbiological consequences of skin removal prior to evisceration of broiler carcasses. *Poultry Science*, 81(1), 134–138. https://doi.org/10.1093/ps/81.1.134
- Berrang, M. E., Dickens, J. A., & Musgrove, M. T. (2000). Effects of hot water application after defeathering on the levels of Campylobacter, coliform bacteria, and Escherichia coli on broiler carcasses. *Poultry Science*, 79(11), 1689–1693. https://doi.org/10.1093/ps/79.11.1689
- Berrang, M. E., Meinersmann, R. J., Cox, N. A., & Fedorka-Cray, P. J. (2011). Application of chlorine dioxide to lessen bacterial contamination during broiler defeathering. *Journal of Applied Poultry Research*, 20(1), 33–39. https://doi.org/10.3382/japr.2010-00178
- Berrang, M. E., Meinersmann, R. J., Smith, D. P., & Zhuang, H. (2008). The effect of chilling in cold air or ice water on the microbiological quality of broiler carcasses and the population of Campylobacter. *Poultry Science*, 87(5), 992–998. https://doi.org/10.3382/ps.2007-00406
- Berrang, M. E., Smith, D. P., & Hinton, a. (2006a). Application of distilled white vinegar in the cloaca to counter the increase in Campylobacter numbers on broiler skin during feather removal. *Journal of Food Protection*, 69(2), 425–427. https://doi.org/10.4315/0362-028X-69.2.425
- Berrang, M. E., Smith, D. P., & Hinton, A. (2006b). Organic acids placed into the cloaca to reduce Campylobacter contamination of broiler skin during defeathering. *Journal of Applied Poultry Research*, 15(2), 287–291. https://doi.org/10.1093/japr/15.2.287

Berrang, M. E., Smith, D. P., & Meinersmann, R. J. (2011). Variations on standard broiler

processing in an effort to reduce Campylobacter numbers on postpick carcasses. *Journal of Applied Poultry Research*, 20(2), 197–202. https://doi.org/10.3382/japr.2010-00274

- Berrang, M. E., Windham, W. R., & Meinersmann, R. J. (2011). Campylobacter, Salmonella, and Escherichia coli on broiler carcasses subjected to a high pH scald and low pH postpick chlorine dip. *Poultry Science*, 90(4), 896–900. https://doi.org/10.3382/ps.2010-00900
- Bilgili, S. F., Waldroup, A. L., Zelenka, D., & Marion, J. E. (2002). Visible ingesta on prechill carcasses does not affect the microbiological quality of broiler carcasses after immersion chilling. *Journal of Applied Poultry Research*, 11(3), 233–238. https://doi.org/10.1093/japr/11.3.233
- Bourassa, D. V., Fletcher, D. L., Buhr, R. J., Cason, J. A., & Berrang, M. E. (2005). Recovery of salmonellae following pH adjusted pre-enrichment of broiler carcasses treated with trisodium phosphate. *Poultry Science*, 84(3), 475–478. https://doi.org/10.1093/ps/84.3.475
- Boysen, L., & Rosenquist, H. (2009). Reduction of Thermotolerant Campylobacter Species on Broiler Carcasses following Physical Decontamination at Slaughter. *Journal of Food Protection*, 72(3), 497–502. https://doi.org/10.4315/0362-028X-72.3.497
- Burfoot, D., Allen, V., Mulvey, E., Jewell, K., Harrison, D., & Morris, V. (2015). Reducing Campylobacter numbers on chicken carcasses using lactic acid in processing plants. *International Journal of Food Science and Technology*, 50(11), 2451–2457. https://doi.org/10.1111/ijfs.12912
- Burfoot, D., Hall, J., Nicholson, K., Holmes, K., Hanson, C., Handley, S., & Mulvey, E. (2016). Effect of rapid surface cooling on Campylobacter numbers on poultry carcasses. *Food Control*, 70, 293–301. https://doi.org/10.1016/j.foodcont.2016.05.041
- Burfoot, D., Mulvey, E., Jewell, K., Foy, E., & Howell, M. (2015). Effect of electrolysed water on Campylobacter numbers on poultry carcasses under practical operating conditions at processing plants. *Food Control*, 50, 472–476. https://doi.org/10.1016/j.foodcont.2014.09.019
- Cason, J. A., Buhr, R. J., & Hinton, A. (2001). Unheated water in the first tank of a three-tank broiler scalder. *Poultry Science*, 80(11), 1643–1646. https://doi.org/10.1093/ps/80.11.1643
- Cavani, R., Schocken-Iturrino, R. P., Garcia, T. C. F. L., & Oliveira, A. C. de. (2010). Comparison of microbial load in immersion chilling water and poultry carcasses after 8, 16 and 24 working hours. *Ciência Rural*, 40(7), 1603–1609. https://doi.org/10.1590/S0103-84782010005000115
- Centre for Reviews and Dissemination. (2009). Systematic reviews: CRD's guidance for undertaking reviews in health care (Vol. 3). York.
- Demirok, E., Veluz, G., Stuyvenberg, W. V., Castañeda, M. P., Byrd, A., & Alvarado, C. Z. (2013). Quality and safety of broiler meat in various chilling systems. *Poultry Science*, 92(4), 1117–1126. https://doi.org/10.3382/ps.2012-02493
- Fabrizio, K. A., Sharma, R. R., Demirci, A., & Cutter, C. N. (2002). Comparison of Electrolyzed Oxidizing Water with Various Antimicrobial Interventions to Reduce

Salmonella Species on Poultry. *Poultry Science*, *81*, 1598–1605. https://doi.org/10.1016/j.meatsci.2004.04.013

- Giombelli, A., Hammerschmitt, D., Cerutti, M. F., Chiarini, E., Landgraf, M., Franco, B. D. G. M., & Destro, M. T. (2015). High pressure spray with water shows similar efficiency to trimming in controlling microorganisms on poultry carcasses. *Poultry Science*, 94(10), 2589–2595. https://doi.org/10.3382/ps/pev235
- Higgins, S. E., Wolfenden, A. D., Bielke, L. R., Pixley, C. M., Torres-Rodriguez, A., Vicente, J. L., ... Tellez, G. (2005). Application of ionized reactive oxygen species for disinfection of carcasses, table eggs, and fertile eggs. *Journal of Applied Poultry Research*, 14(4), 716–720. https://doi.org/10.1093/japr/14.4.716
- Huezo, R., Northcutt, J. K., Smith, D. P., Fletcher, D. L., & Ingram, K. D. (2007). Effect of Dry Air or Immersion Chilling on Recovery of Bacteria from Broiler Carcasses. *Journal* of Food Protection, 70(8), 1829–1834. https://doi.org/10.4315/0362-028X-70.8.1829
- Kemp, G. K., Aldrich, M. L., Guerra, M. L., & Schneider, K. R. (2001). Continuous online processing of fecal- and ingesta-contaminated poultry carcasses using an acidified sodium chlorite antimicrobial intervention. *Journal of Food Protection*, 64(6), 807–812. https://doi.org/10.1016/j.bbr.2004.08.018
- Kemp, G. K., Aldrich, M. L., & Waldroup, A. L. (2000). Acidified Sodium Chlorite Antimicrobial Treatment of Broiler Carcasses. *Journal of Food Protection*, 63(8), 1087– 1092. https://doi.org/10.4315/0362-028X-63.8.1087
- Lehner, Y., Reich, F., & Klein, G. (2014). Influence of process parameter on Campylobacter spp. counts on poultry meat in a slaughterhouse environment. *Current Microbiology*, 69(3), 240–244. https://doi.org/10.1007/s00284-014-0575-y
- McKee, S. R., Townsend, J. C., & Bilgili, S. F. (2008). Use of a scald additive to reduce levels of Salmonella Typhimurium during poultry processing. *Poultry Science*, 87(8), 1672–1677. https://doi.org/10.3382/ps.2008-00061
- Meredith, H., McDowell, D., & Bolton, D. J. (2013). An evaluation of trisodium phosphate, citric acid and lactic acid cloacal wash treatments to reduce Campylobacter, total viable counts (TVC) and total enterobacteriaceae counts (TEC) on broiler carcasses during processing. *Food Control*, 32(1), 149–152. https://doi.org/10.1016/j.foodcont.2012.11.026
- Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., ... PRISMA group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1–9. https://doi.org/10.1186/2046-4053-4-1
- Musavian, H. S., Krebs, N. H., Nonboe, U., Corry, J. E. L., & Purnell, G. (2014). Combined steam and ultrasound treatment of broilers at slaughter: A promising intervention to significantly reduce numbers of naturally occurring campylobacters on carcasses. *International Journal of Food Microbiology*, 176, 23–28. https://doi.org/10.1016/j.ijfoodmicro.2014.02.001
- Nagel, G. M., Bauermeister, L. J., Bratcher, C. L., Singh, M., & McKee, S. R. (2013). Salmonella and Campylobacter reduction and quality characteristics of poultry carcasses treated with various antimicrobials in a post-chill immersion tank. *International Journal*

of Food Microbiology, *165*(3), 281–286. https://doi.org/10.1016/j.ijfoodmicro.2013.05.016

- Northcutt, J. K., Cason, J. A., Ingram, K. D., Smith, D. P., Buhr, R. J., & Fletchert, D. L. (2008). Recovery of bacteria from broiler carcasses after immersion chilling in different volumes of water, part 2. *Poultry Science*, 87(3), 573–576. https://doi.org/10.3382/ps.2006-00444
- Northcutt, J. K., Cason, J. A., Smith, D. P., Buhr, R. J., & Fletcher, D. L. (2006). Broiler carcass bacterial counts after immersion chilling using either a low or high volume of water. *Poultry Science*, 85(10), 1802–1806. https://doi.org/10.1093/ps/85.10.1802
- Northcutt, J. K., McNeal, W. D., Ingram, K. D., Buhr, R. J., & Fletcher, D. L. (2008). Microbial recovery from genetically featherless broiler carcasses after forced cloacal fecal expulsion. *Poultry Science*, 87(11), 2377–2381. https://doi.org/10.3382/ps.2007-00426
- Northcutt, J. K., Smith, D., Ingram, K. D., Hinton, A., & Musgrove, M. (2007). Recovery of bacteria from broiler carcasses after spray washing with acidified electrolyzed water or sodium hypochlorite solutions. *Poultry Science*, 86(10), 2239–2244. https://doi.org/10.1093/ps/86.10.2239
- Northcutt, J. K., Smith, D. P., Musgrove, M. T., Ingram, K. D., & Hinton, A. (2005). Microbiological impact of spray washing broiler carcasses using different chlorine concentrations and water temperatures. *Poultry Science*, 84(10), 1648–1652. Retrieved from http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L4185 2236
- Oyarzabal, O. A., Hawk, I. C., Bilgili, F., Warf, I. C. C., & Kemp, G. K. (2004). Effects of Postchill Application of Acidified Sodium Chlorite To Control Campyabacter spp . and Escherichia coli on Commercial Broiler Carcasses. *Journal of Food Protection*, 67(10), 2288–2291. https://doi.org/10.4315/0362-028X-67.10.2288
- Özdemir, H., & Pamuk, S. (2006). Acidified Sodium Chlorite, Trisodium Phosphate and Populations of Salmonella Typhimurium and Staphylococcus Aureus on Chicken-Breats Skin. *Journal of Food Processing and Preservation*, *30*(2006), 110–117.
- Pacholewicz, E., Lipman, L. J. A., Swart, A., Havelaar, A. H., & Heemskerk, W. J. C. (2016). Pre-scald brushing for removal of solids and associated broiler carcass bacterial contamination. *Poultry Science*, 95(12), 2979–2985. https://doi.org/10.3382/ps/pew257
- Purnell, G., James, C., James, S. J., Howell, M., & Corry, J. E. L. (2014). Comparison of Acidified Sodium Chlorite, Chlorine Dioxide, Peroxyacetic Acid and Tri-Sodium Phosphate Spray Washes for Decontamination of Chicken Carcasses. *Food and Bioprocess Technology*, 7(7), 2093–2101. https://doi.org/10.1007/s11947-013-1211-8
- Rejab, S. B., Zessin, K. H., Fries, R., & Patchanee, P. (2012). Comparison of Campylobacter contamination levels on chicken carcasses between modern and traditional types of slaughtering facilities in Malaysia. J Vet Med Sci, 74(1), 121–124. https://doi.org/10.1292/jvms.11-0145
- Russell, S. M. (2008). The effect of an acidic, copper sulfate-based commercial sanitizer on indicator, pathogenic, and spoilage bacteria associated with broiler chicken carcasses

when applied at various intervention points during poultry processing. *Poultry Science*, 87(7), 1435–1440. https://doi.org/10.3382/ps.2007-00339

- Russell, Scott M., & Axtell, S. P. (2005). Monochloramine versus sodium hypochlorite as antimicrobial agents for reducing populations of bacteria on broiler chicken carcasses. *Journal of Food Protection*, 68(4), 758–763. https://doi.org/10.4315/0362-028X-68.4.758
- Sanchez, M. X. S., Fluckey, W. M., Brashears, M. M., Mckee, S. R., Nchez, M. X. S., Fluckey, W. M., ... Mckee, S. R. (2002). Microbial Profile and Antibiotic Susceptibility of Campylobacter spp. and Salmonella spp. in Broilers Processed in Air-Chilled and Immersion-Chilled Environments. *Journal of Food Protection*, 65(6), 948–956. https://doi.org/10.4315/0362-028X-65.6.948
- Schambach, B. T., Berrang, M. E., Harrison, M. A., & Meinersmann, R. J. (2014). Chemical Additive To Enhance Antimicrobial Efficacy of Chlorine and Control Cross-Contamination during Immersion Chill of Broiler Carcasses. *Journal of Food Protection*, 77(9), 1583–1587. https://doi.org/10.4315/0362-028X.JFP-14-092
- Schünemann, H. J., Oxman, A. D., Vist, G. E., Higgins, J. P. T., Deeks, J., Glasziou, P., & Guyatt, G. (2011). Interpreting results and drawing conclusions. In *Cochrane Handbook* for Systematic Reviews of Interventions (pp. 359–387).
- Sexton, M., Raven, G., Holds, G., Pointon, A., Kiermeier, A., & Sumner, J. (2007). Effect of acidified sodium chlorite treatment on chicken carcases processed in South Australia. *International Journal of Food Microbiology*, 115(2), 252–255. https://doi.org/10.1016/j.ijfoodmicro.2006.10.023
- Shin, D., Kakani, G., Molina, V. A., Regenstein, J. M., Choe, H. S., & Sánchez-Plata, M. X. (2012). Effect of kosher salt application on microbial profiles of poultry carcasses. *Poultry Science*, 91(12), 3247–3252. https://doi.org/10.3382/ps.2012-02457
- Singh, P., Lee, H. C., Silva, M. F., Chin, K. B., & Kang, I. (2017). Trisodium phosphate dip, hot water dip, and combination dip with/without brushing on broiler carcass decontamination. *Food Control*, 77, 199–209. https://doi.org/10.1016/j.foodcont.2017.02.015
- Smith, D. P., Cason, J. A., & Berrang, M. E. (2005). Effect of fecal contamination and crosscontamination on numbers of coliform, *Escherichia coli*, *Campylobacter*, and *Salmonella* on immersion-chilled broiler carcasses. *Journal of Food Protection*, 68(7), 1340–1345. https://doi.org/10.4315/0362-028X-68.7.1340
- Smith, D. P., Northcutt, J. K., Cason, J. A., Hinton, A., Buhr, R. J., & Ingram, K. D. (2007). Effect of external or internal fecal contamination on numbers of bacteria on prechilled broiler carcasses. *Poultry Science*, 86(6), 1241–1244. https://doi.org/10.1093/ps/86.6.1241
- Souza, L. C. T., Pereira, J. G., Spina, T. L. B., Izidoro, T. B., Oliveira, A. C., & Pinto, J. P. A. N. (2012). Microbiological Evaluation of Chicken Carcasses in an Immersion Chilling System with Water Renewal at 8 and 16 Hours. *Journal of Food Protection*, 75(5), 973–975. https://doi.org/10.4315/0362-028X.JFP-11-376
- Stopforth, J. D., O'Connor, R., Lopes, M., Kottapalli, B., Hill, W. E., & Samadpour, M. (2007). Validation of individual and multiple-sequential interventions for reduction of

microbial populations during processing of poultry carcasses and parts. *Journal of Food Protection*, 70(6), 1393–1401. https://doi.org/10.4315/0362-028X-70.6.1393

- Trindade, M. A., Kushida, M., Montes-Villanueva, N. D., dos Santos-Pereira, D. U., & de Oliveira, C. E. L. (2012). Comparison of Ozone and Chlorine in Low Concentrations as Sanitizing Agents of Chicken Carcasses in the Water Immersion Chiller. *Journal of Food Protection*, 75(6), 1139–1143. https://doi.org/10.4315/0362-028X.JFP-11-288
- Uyarcan, M., & Kayaardı, S. (2018). Effects of a dry-ice process on surface and carcase decontamination in the poultry industry. *British Poultry Science*, 59(2), 141–148. https://doi.org/10.1080/00071668.2017.1403565
- Whyte, P., Collins, J. D., Mcgill, K., Monahan, C., & O 'mahony, H. (2001). Quantitative Investigation of the Effects of Chemical Decontamination Procedures on the Microbiological Status of Broiler Carcasses during Processing. *Journal of Food Protection*, 64(2), 179–183. https://doi.org/10.4315/0362-028X-64.2.179
- Whyte, P., McGill, K., & Collins, J. D. (2003). An assessment of steam pasteurization and hot water immersion treatments for the microbiological decontamination of broiler carcasses. *Food Microbiology*, 20(1), 111–117. https://doi.org/10.1016/S0740-0020(02)00084-9
- Yang, Z. P., Li, Y. B., & Slavik, M. (1998). Use of antimicrobial spray applied with an inside-outside birdwasher to reduce bacterial contamination on prechilled chicken carcasses. *Journal of Food Protection*, 61(7), 829–832. https://doi.org/10.4315/0362-028X-61.7.829
- Zhang, L., Jeong, J. Y., Janardhanan, K., Ryser, E. T., & Kang, I. (2011). Microbiological Quality of Water Immersion–Chilled and Air-Chilled Broilers. *Journal of Food Protection*, 74(9), 1531–1535. https://doi.org/10.4315/0362-028X.JFP-11-032