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Abstract. In this paper we present an explicit formula for the semigroup gov-

erning the solution to hyperbolic systems on a metric graph, satisfying general

linear Kirchhoff’s type boundary conditions. Further, we use this representa-
tion to establish the long term behaviour of the solutions. The crucial role is

played by the spectral decomposition of the boundary matrix.

1. Introduction. In this paper we consider systems of linear hyperbolic equations
on a bounded interval, say, [0, 1], known also as port-Hamiltonians, [13], coupled
by boundary conditions relating the incoming and outgoing values of the solution
at the endpoints x = 0 and x = 1. In particular, we study systems of the form

∂t

(
υ

$

)
=

(
−C+ 0

0 C−

)
∂x

(
υ

$

)
+ K

(
υ

$

)
, 0 < x < 1, t > 0, (1a)

υ(x, 0) = υ̊(x), $(x, 0) = $̊(x), 0 < x < 1, (1b)

Ξout(υ(0, t),$(1, t))T + Ξin(υ(1, t),$(0, t))T = 0, t > 0, (1c)

where υ and $ represent the densities of the flow from 0 to 1 and from 1 to
0, respectively, C+ and C− are m+ × m+ and m− × m− diagonal matrices with
positive entries, K is a 2m × 2m matrix, where 2m = m+ + m−, Ξout,Ξin are
2m × 2m matrices relating the outgoing, υ(0) and $(1), and incoming, υ(1) and
$(0), flows at the boundary points.

An important class of such problems arises from dynamical systems on metric
graphs. Let Γ be a graph with r vertices {vj}1≤j≤r =: Υ and m edges {ej}1≤j≤m
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(identified with [0, 1] through a suitable parametrization). The dynamics on each
edge ej is described by

∂tp
j + Mj∂xp

j + Njpj = 0, t > 0, 0 < x < 1, 1 ≤ j ≤ m, (2)

where pj = (pj1, p
j
2)T , Mj = (M j

lk)1≤k,l≤2,N
j = (N j

lk)1≤k,l≤2 are real matrix func-
tions defined on [0, 1]. We assume that Mj are continuously differentiable and Nj

are bounded on [0, 1]. The central assumption is that Mj(x) is a strictly hyperbolic
matrix for each x ∈ [0, 1] and 1 ≤ j ≤ m. System (2) is complemented with initial
conditions and suitable transmission conditions coupling the values of pj at the
vertices which the edges ej are incident to. Then, (1) can be obtained from (2) by
diagonalization so that (suitably re-indexed) υ and $ are the Riemann invariants
of p = (pj)1≤j≤m, see [8, Section 1.1].

Such problems have been a subject of extensive research in the recent years. Let
us mention here e.g., [1, 10, 6, 5, 16, 17, 20] for the dynamics on graphs point of
view, and [8, 24, 14, 13] for the 1-D hyperbolic systems point of view. Many of
these papers are focused on well-posedness of the problem under various boundary
conditions ensuring asymptotic stability of the resulting semigroup. There is a fairly
comprehensive theory of long term behaviour of the solutions to transport problems
on networks, which are of the first order on each edge (and which are a special case
of (1)), [15, 18, 10, 6], while a class of 2 × 2 systems in Hilbert space setting are
discussed in [21]. In this paper, we try to extend these results to general systems of
the form (1) in arbitrary Lp spaces.

There are two main approaches for studying the long term asymptotics of semi-
groups. The first and most powerful is the spectral theory for semigroups and gen-
erators, used, for instance, in [15] for the transport semigroup with Kirchhoff’s-type
boundary conditions. However, it requires many advanced tools from functional and
complex analysis. The second, potentially easier, approach is to find an explicit rep-
resentation of the semigroup. Though it is not always possible, if we succeed, then
we can employ direct calculations or spectral theory for simpler objects such as
matrices.

An explicit formula for the transport semigroup with unit velocities appeared first
in [9] and it was used in [6] for investigating long term behaviour of the semigroup
solving a transport problem on a network, with more general boundary conditions
than those in [15]. We mention that these papers focused on finding conditions
ensuring the periodicity of the limit semigroup and it turned out that both methods
yielded the same results, [18].

In this paper we extend the approach of [6] to general hyperbolic systems. We
would like to emphasize that while the considerations in [15, 6] are carried out in
the L1 setting, our theory works equally well in any Lp space with p ∈ [1,∞) and
does not depend on the value of the exponent p. Since the problems in [15, 6] fit
into our framework as well, the main result of this paper, that is, Theorem 4.5, is
a generalization of the existing results.

The considerations in this paper are mostly done for the principal part of (1),
that is, the system with K = 0. We recognize that this is a serious restriction but,
as K induces a bounded perturbation, the structure of the full semigroup associated
with (1) is well understood once we know the semigroup generated by its principal
part by, say, the Phillips–Dyson expansion, see e.g., [12, Theorem III.1.10]. The
construction of an explicit formula for the solution to the full problem (1) is possible
in some special cases such as unidirectional transport, see [7, Theorem 2.9] or, in a



ASYMPTOTICS OF PORT-HAMILTONIANS 3

similar way, if K is block diagonal with blocks corresponding to the same directions
of transport. Otherwise, the approach presented here leads to problems with shifted
argument, see [22, Example 1].

The paper is organized as follows. In Section 2 we briefly recall the notation
and results concerning the well-posedness of (1) from [3]. Section 3 is focused on
deriving the explicit formula. First, we convert the problem (1) (with K = 0) to
an equivalent one, but with unit velocities. Next, we construct the formula for
the unperturbed problem and show the relation of our semigroup to the transport
semigroup. Section 4 deals with the asymptotic behaviour of the semigroup and in
the last section we present an example illustrating the theory.

2. Notation, definitions and earlier results. We consider a network repre-
sented by a finite, connected and simple (without loops and multiple edges) metric
graph Γ with r vertices {vj}1≤j≤r =: Υ and m edges {ej}1≤j≤m. Let Ev be the
set of edges incident to v, Jv := {j; ej ∈ Ev} and |Ev| = |Jv| be the valency
of v. Each edge is identified with the unit interval through a sufficiently smooth
invertible function lj : ej 7→ [0, 1]. In particular, we call v with lj(v) = 0 the tail
of ej and the head if lj(v) = 1. On each edge ej we consider the system (2). Let

λj− < λj+ be the eigenvalues of Mj , 1 ≤ j ≤ m (the strict inequality is justified by

the strict hyperbolicity of Mj). The eigenvalues can be of the same sign as well as

of different signs. In the latter case, we set λj− < 0 < λj+. By f j± = (f j±,1, f
j
±,2)T we

denote the eigenvectors corresponding to λj±, respectively, and by

Fj =

(
f j+,1 f j−,1
f j+,2 f j−,2

)
the diagonalizing matrix on each edge. The Riemann invariants uj = (uj1, u

j
2)T , 1 ≤

j ≤ m, are defined by

uj = (Fj)−1pj and pj =

(
f j+,1u

j
1 + f j−,1u

j
2

f j+,2u
j
1 + f j−,2u

j
2

)
. (3)

Then, we diagonalize (2) as

∂tu
j =

(
−λj+ 0

0 −λj−

)
∂xu

j + Njuj (4)

for each 1 ≤ j ≤ m. Our assumptions ensure that uj 7→ Njuj induces a bounded
perturbation in any (Lp(0, 1))2m space, hence it is irrelevant for the generation of
a semigroup. As noted in Introduction, further considerations are carried out with
Nj = 0.

2.1. Boundary conditions – from networks to port-Hamiltonians. The
most general linear local boundary conditions for (2) at any vertex v ∈ Υ can
be written as

Φvp(v) = 0, (5)

where p(v) = ((pj1(v), pj2(v))j∈Jv)T and Φv is a real l × |Jv| matrix, where l is the
number of equations relating the boundary values of pjs at v. Such a formulation
is, however, not convenient as it does not provide a clear set of conditions on Φv

and, in particular, on l that ensure the well-posedness of (2), (5). To proceed, we
employ the paradigm introduced in [8, Section 1.1.5.1] requiring that at any vertex
the outgoing data should be determined by the incoming ones. Since for (2) it is,
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in general, impossible to tell which data are outgoing and which are incoming, we
re-write (5) in terms of the Riemann invariants, defined by (3), as

Ψvu(v) := ΦvF(v)u(v) = 0, (6)

where F(v) = diag{Fj(v)}j∈Jv . We observe that (6) makes sense only for v that
is not a sink, that is, a vertex with no outgoing data, see [4, Definition 2.2]. The
boundary condition (6) is called generalized Kirchhoff’s condition at v.

For that, we notice that by the continuity and strict hyperbolicity of Mj , 1 ≤ j ≤
m, the eigenvalues λj+, λ

j
− are never zero and hence each equation in (4) describes

a flow in a fixed direction. Hence, we only need to distinguish functions describing
the flow from 0 to 1 and from 1 to 0, with no reference to the network structure.
Accordingly, we group the Riemann invariants u into parts corresponding to positive
and negative eigenvalues and rename them as

υ :=
(

(uj1)j∈J1∪J2 , (u
j
2)j∈J2

)
= (υj)j∈J+ ,

$ :=
(

(uj1)j∈J0 , (u
j
2)j∈J1∪J0

)
= ($j)j∈J− ,

(7)

where J+ and J− are the sets of indices j with at least 1 positive eigenvalue, and
at least 1 negative eigenvalue of Mj , respectively. Since in J+ (respectively J−)
the indices from J2 (respectively J0) appear twice, we renumber them in some
arbitrary (but consistent) way to avoid confusion. This results in just re-labelling
of the components of (1) without changing its structure.
This procedure converts the problem (2) on Γ into a first order transport problem on
a multi digraph Γ with the same vertices Υ and where each edge in Γ was split into
two edges in Γ paramterized by x ∈ [0, 1]. Then, after combining the matrices Ψv

over all vertices v that are not sinks to a global matrix Ψ, splitting the latter into
the outgoing and incoming parts and re-indexing, see [3], the boundary conditions
(6) can be written as

Ξ(υ(0),υ(1),$(0),$(1))T = Ξout(υ(0),$(1))T + Ξin(υ(1),$(0))T = 0.

This formulation does not depend on the fact that Ξ has a special form coming
from Kirchhoff’s boundary conditions but it can be an arbitrary 2m× 4m matrix.
Hence, we arrive at the problem (1), where

C+ = diag(cj(x))j∈J+ , C− = diag(cj(x))j∈J−

and the functions cj equal the absolute values of the corresponding eigenvalues.

2.2. Well-posedness of (1). Without loss of generality, see [24, Theorem 3.3 (2)],
we assume that Ξout is invertible and introduce the matrix B := Ξ−1

outΞin. Finally,
we denote Xp := (Lp(0, 1))2m and define the operator (Ap,B, D(Ap,B)) in Xp as
A|D(Ap,B), where

A := diag(−C+,C−) diag(∂x, . . . , ∂x︸ ︷︷ ︸
2m times

), (8a)

D(Ap,B) :=

{(
υ

$

)
∈ (W p

1 (0, 1))2m :

(
υ(0)

$(1)

)
= B

(
υ(1)

$(0)

)}
. (8b)

Then, combining [3, Thms. 4.1 & 4.2] we have the following

Theorem 2.1. Let B be an arbitrary matrix. The operator (Ap,B, D(Ap,B)) gener-
ates a C0-semigroup (Gp(t))t≥0 on Xp for any 1 ≤ p < ∞. Moreover, for p > 1,
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the semigroup (Gp(t))t≥0 is the restriction of the semigroup (G1(t))t≥0 to the space
Xp.

The case p = 1 was proved in [24] (see also [11], [13]), however, the proof there is
based on control theory methods from [23]. In [3] we provided an alternative, purely
semigroup-theoretic proof based on the result from [5]. Then, the well-posedness
for p > 1 follows from direct estimates of the L1 solutions with Lp data.

Remark 1. Since the proof of the well-posedness uses only the form (1) that does
not take into account any particular feature of the systems on the graph, we can
make the following points.

1. Restricting our attention in [3, 4] to 2 × 2 systems is purely for notational
convenience – the theory remains valid for systems of arbitrary (but finite)
dimension on each edge.

2. The hyperbolicity of the matrices Mj(x) is not necessary as long as each of
them is diagonalizable with nonvanishing and differentiable in x eigenvalues
– e.g., when the eigenvalues are constant and semisimple.

3. The interval [0, 1] can be replaced by intervals [0, lj ], with lj varying between
the edges.

3. An explicit formula. We emphasise that our theory works in each Lp space
and does not depend on p. Thus, in the remaining part of the paper, we do not
make any specific assumption on p ∈ [1,∞).

3.1. Conversion to unit velocities. Our starting point is (1) with K = 0 and
the boundary condition (1c) solved with respect to the outgoing boundary values,
that is, in the form that appears in (8b).

In this subsection we show that under the assumption that the traverse times
along each edge are natural multiples of one reference time, problem (1) can be
reduced to an equivalent problem with cj ≡ 1 for all j ∈ {1, . . . , 2m}. The idea was
first introduced in [15] for the transport problem with constant velocities. In [6], the
authors used this assumption to convert that problem to a transport problem with
unit velocities. In [2, 7], the authors described a similar conversion for x-dependent
velocities. Here we present a detailed construction for the considered problem.

For a given j ∈ {1, . . . , 2m}, we define a function Lj : [0, 1]→ [0, Lj(1)] by

Lj(x) =

x∫
0

1

cj(s)
ds.

Then, we adopt the following assumption:

∃c∈R ∀j∈{1,...,2m} lj := cLj(1) ∈ N. (9)

Remark 2. We observe that Lj(1) is the time needed to traverse the edge ej with
the velocity cj from the tail at x = 0 to the head at x = 1 or in the reversed
direction (depending on whether j ∈ J+ or j ∈ J−), see [3]. Hence, the assumption
(9) states that all traverse times are natural multiples of a single reference time.

Remark 3. It may seem that the assumption (9) is rather strong. However, as it
was shown in [18], if this assumption is not satisfied, then the semigroup generated
by first-order transport along the edges (which is a special case of our semigroup)
with the peripheral spectrum on the unit circle has no nontrivial periodic solutions,
hence it may be only stable or unstable (up to a subspace).
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By rescaling time as τ = ct and introducing a new spatial variable y = cLj(x)
for each j, we convert the differential equations in (1) to

∂τυj(y, τ) = −∂yυj(y, τ), τ > 0, y ∈ (0, lj), j ∈ J+,

∂τ$j(y, τ) = ∂y$j(y, τ), τ > 0, y ∈ (0, lj), j ∈ J−,
(10)

see [7, Section 2.2.5]. In the above problem, the velocities equal 1 at the cost of
different lengths of the intervals. However, due to the assumption (9), we can divide
each interval [0, lj ] into lj intervals of unit length, which are then translated to the
interval [0, 1] and become the new edges. The dividing points will become the new
endpoints. Then, each function is identified with an lj-tuple of functions defined on
the new edges, where, to preserve the structure of the original problem, we require
the continuity of the functions in each lj-tuple across the new endpoints. Following
the preceding discussion, we introduce the notation

ν = (νj)j∈J+ = ((νj,i)i=1,...,lj )j∈J+ ,ω = (ωj)j∈J− = ((ωj,i)i=1,...,lj )j∈J−

and ` :=
∑2m
j=1 lj , which is the dimension of the new system. Since each Lj is

strictly increasing, the inverse L−1
j exists and we can define an operator Q : Xp →

(Lp(0, 1))` by(
Q

(
υ

$

))
j,i

(y) = νj,i(y) := υj

(
L−1
j

(
y + i− 1

c

))
, j ∈ J+,

(
Q

(
υ

$

))
j,i

(y) = ωj,i(y) := $j

(
L−1
j

(
lj + y − i

c

))
, j ∈ J−,

where y ∈ [0, 1], i = 1, . . . , lj . The map Q provides a correspondence between the
original variables (υ,$)T and the new variables (ν,ω)T . Precisely speaking, the
function νj,i represents the values of the function υj on the i-th subinterval of the
interval [0, 1], while the function ωj,i represents the values of the function $j on
the (lj − i+ 1)-th subinterval of [0, 1].

Remark 4. We could keep the order of identification between $ and ω the same
as for υ and ν, that is, from 0 to 1. However, for j ∈ J−, the flow described by the
function $j occurs from 1 to 0, thus it seems reasonable to reverse the order of the
identification.

The operator Q transforms (1) to the following, equivalent, problem:

∂τν(y, τ) = −∂yν(y, τ), τ > 0, y ∈ (0, 1),

∂τω(y, τ) = ∂yω(y, τ), τ > 0, y ∈ (0, 1),

ν(y, 0) = ν̊(y), ω(y, 0) = ω̊(y), y ∈ (0, 1),(
ν(0, τ)

ω(1, τ)

)
= B̃

(
ν(1, τ)

ω(0, τ)

)
, τ > 0,

(11)

where the ` × ` matrix B̃ describes the new boundary condition for the converted
problem. Precisely speaking,

νj,1(0) =
∑
k∈J+

bjkνk,lk(1) +
∑
k∈J−

bjkωk,lk(0), j ∈ J+,

ωj,1(1) =
∑
k∈J+

bjkνk,lk(1) +
∑
k∈J−

bjkωk,lk(0), j ∈ J−,
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which corresponds to the old boundary condition, and

νj,i(0) = νj,i−1(1), j ∈ J+, i = 2, . . . , lj ,

ωj,i(1) = ωj,i−1(0), j ∈ J−, i = 2, . . . , lj ,
(12)

which describes the continuity condition in the artificial vertices. By Theorem
2.1, to each of the problems (1), (11) there correspond C0-semigroups (G(t))t≥0,
generated by the operator A, and (G(τ))τ≥0, generated by the operator A, where
A and A are defined as in (8). Since we do not distinguish between different values
of p, we dropped the index p for clarity.

It is easy to see that Q is a bounded linear bijection and by standard argument
we can establish that

(i) Q(D(A)) ⊂ D(A) and Q−1(D(A)) ⊂ D(A),
(ii) the operator Q−1cAQ is the generator of the semigroup (Q−1G(ct)Q)t≥0,

(iii) Q−1cAQ = A.

Hence we can formulate the following similarity result.

Theorem 3.1. The operator Q is an isomorphism such that

G(t) = Q−1G(ct)Q, t ≥ 0. (13)

Due to Theorem 3.1, for the remaining part of the paper we assume

∀j∈{1,...,2m} cj ≡ 1.

3.2. An explicit formula. In this subsection we construct an explicit formula
for the semigroup governing the solution to the principal part of (1), that is, with
K = 0. Let us start with necessary notation. If f : [0, 1]→ R2m, then we write

f =

(
f+

f−

)
,

where f+ : [0, 1]→ R|J+| and f− : [0, 1]→ R|J−|. Similarly, for any (|J+|+ |J−|)×
(|J+|+ |J−|) matrix M we write

M =

(
M11 M12

M21 M22

)
,

where M11,M12,M21,M22 are submatrices of the dimension |J+| × |J+|, |J+| ×
|J−|, |J−| × |J+|, |J−| × |J−|, respectively. These blocks of the boundary matrix
B play an essential role in the explicit formula for the semigroup. Further, let us
denote

Φ̊(x) =

(
υ̊(x)

$̊(x)

)
, 0 < x < 1.

The formula for the semigroup is found using the method of characteristics, hence
we recall here the formulae for the solutions to scalar transport problems. The
solution to

∂tυ + ∂xυ = 0, υ(x, 0) = υ̊(x), υ(0, t) = ϕ(t),

t > 0, 0 < x < 1, is given by

υ(x, t) =

{
υ̊(x− t), 0 < t < x,
ϕ(t− x), x < t < x+ 1,

(14)

and, similarly, to

∂t$ − ∂x$ = 0, $(x, 0) = $̊(x), $(1, t) = ψ(t),
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by

$(x, t) =

{
$̊(x+ t), 0 < t < 1− x,
ψ(x+ t− 1), 1− x < t < 2− x. (15)

Let us return to the problem (1). For small times, (1) describes a decoupled trans-
port process and hence the solution is given by the translation of the initial condi-
tion, that is, (

υ(0)(x, t)

$(0)(x, t)

)
=

(
υ̊(x− t)
$̊(x+ t)

)
,

where υ(0)(x, t) is defined for 0 < t < x and $(0)(x, t) for 0 < t < 1 − x. In
particular, the values υ(0)(1, t) = υ̊(1 − t) and $(0)(0, t) = $̊(t) are well-defined
for 0 < t < 1. Applying the boundary condition, we have(

υ(1)(0, t)

$(1)(1, t)

)
= B

(
υ(0)(1, t)

$(0)(0, t)

)
= B

(
υ̊(1− t)
$̊(t)

)
.

Using (14) and (15), we get(
υ(1)(x, t)

$(1)(x, t)

)
=

(
B11υ̊(1− t+ x) + B12$̊(t− x)

B21υ̊(2− t− x) + B22$̊(t+ x− 1)

)
.

Here, υ(1)(x, t) is defined for x < t < x+ 1, while $(1)(x, t) for 1− x < t < 2− x.
Continuing this procedure inductively, we can define a family of operators (T (t))t≥0

by the formula

T (t)

(
υ̊

$̊

)
(x) =

(
(T (t)Φ̊)+(x)

(T (t)Φ̊)−(x)

)
=

(
(Bn)11υ̊ (n− t+ x) + (Bn)12$̊ (1− n+ t− x)

(Bn)21υ̊ (1− t+ n− x) + (Bn)22$̊ (t− n+ x)

)
,

(16)

where (T (t)Φ̊)+(x) is defined for n − 1 + x < t < n + x, and (T (t)Φ̊)− is defined
for n− x < t < n+ 1− x, n ∈ N0. Then, we have the following

Theorem 3.2. The family T = (T (t))t≥0 is a C0-semigroup whose generator is the
operator (A,D(A)), that is,

T (t) = G(t), t ≥ 0.

Proof. Since (A,D(A)) is the generator of a C0-semigroup, it suffices to show that
the Laplace transform L{T} of (T (t))t≥0 equals the resolvent operator R(λ,A).
From the proof of [3, Theorems 4.1 & 4.2], we know that

R(λ,A)

(
f+

f−

)
(x) =

(
e−λx+ 0

0 e
λ(x−1)
−

) ∞∑
n=0

(
Be−λ

)n
B


1∫
0

e
λ(s−1)
+ f+(s) ds

1∫
0

e−λs− f−(s) ds



+


x∫
0

e
λ(s−x)
+ f+(s) ds

1∫
x

e
λ(x−s)
− f−(s) ds

 ,

where we defined

ez+ := diag(ez)j∈J+ , ez− := diag(ez)j∈J− , ez := diag(ez+, e
z
−).

By [3, Theorem 4.2], it suffices to prove the result in X1.
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We have, by (16),

L{T}(λ) =

∞∫
0

e−λtT (t)

(
f+

f−

)
dt =


1∫
0

e
−λ(x−s)
+ f+(s) ds

1∫
0

e
−λ(s−x)
+ f−(s) ds



+

∞∑
n=1


1∫
0

e
−λ(n−s+x)
+ (Bn)11f+ (s) ds+

1∫
0

e
−λ(s+x+n−1)
+ (Bn)12f− (s) ds

1∫
0

e
−λ(n+1−s−x)
− (Bn)21f+ (s) ds+

1∫
0

e
−λ(s−x+n)
− (Bn)22f− (s) ds

 .

Changing the summation parameter from n to n− 1, the second summand can be
written as

∞∑
n=0


1∫
0

e
−λ(n+1−s+x)
+ (Bn+1)11f+ (s) ds+

1∫
0

e
−λ(s+x+n)
+ (Bn+1)12f− (s) ds

1∫
0

e
−λ(n+2−s−x)
− (Bn+1)21f+ (s) ds+

1∫
0

e
−λ(s−x+n+1)
− (Bn+1)22f− (s) ds



=

∞∑
n=0

(
e−λx+ e−λn+ (Bn+1)11 e−λx+ e−λn+ (Bn+1)12

e
λ(x−1)
− e−λn− (Bn+1)21 e

λ(x−1)
− e−λn− (Bn+1)22

)
1∫
0

e
λ(s−1)
+ f+ (s) ds

1∫
0

e−λs− f− (s) ds



=

∞∑
n=0

(
e−λx+ e−λn+ 0

0 e
λ(x−1)
− e−λn−

)
Bn+1


1∫
0

e
λ(s−1)
+ f+ (s) ds

1∫
0

e−λs− f− (s) ds



=

(
e−λx+ 0

0 e
λ(x−1)
−

) ∞∑
n=0

e−λnBn+1


1∫
0

e
λ(s−1)
+ f+ (s) ds

1∫
0

e−λs− f− (s) ds



=

(
e−λx+ 0

0 e
λ(x−1)
−

) ∞∑
n=0

(
Be−λ

)n
B


1∫
0

e
λ(s−1)
+ f+ (s) ds

1∫
0

e−λs− f− (s) ds

 ,

since the matrix e−λn commutes with B. Comparing the formulae, we obtain
L{T}(λ) = R(λ,A).

3.3. Reduction to the transport semigroup. If we take J− = ∅, then (1)
becomes a pure transport problem, which was extensively investigated in [15, 9, 6]
in the case p = 1. In [9, Prop. 3.3] it was shown that if B is stochastic, then the
family (S(t))t≥0 defined by

S(t)

(
υ

$

)
(x) = Bn

(
υ

$

)
(n− t+ x), 0 < n− t+ x < 1, n ∈ N0, (17)

is a C0-semigroup on X1, which governs the solution to the transport problem.
It is not difficult to show, [5, Theorem 3.1], that it is also a C0-semigroup for an
arbitrary matrix B as well. Since (S(t))t≥0 is a special case of (G(t))t≥0, the family
(S(t))t≥0 is also the transport semigroup on any Xp, 1 ≤ p < ∞. We shall show
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that (G(t))t≥0 is similar to (S(t))t≥0. The advantage of this similarity relation is
that, by allowing for a straightforward application of the spectral decomposition of
the matrix B, it significantly simplifies the analysis of the long term asymptotics of
(G(t))t≥0, given in Section 4.

Define V : Xp →Xp by

V

(
υ

$

)
(x) =

(
υ(x)

$(1− x)

)
.

The action of this operator reverses the direction of the edges with j ∈ J− so that
the flows occur now from 0 to 1 on all edges.

Proposition 1. The operator V is an isometric isomorphism in any Xp with

V−1 = V, (18)

satisfying

G(t) = VS(t)V, t ≥ 0. (19)

In particular, for 0 < n− t+ x < 1, n ∈ N0,

G(t)

(
υ

$

)
(x) = VBnV

(
υ

$

)
(n− t+ x). (20)

Proof. That V is an isomorphism satisfying (18) is clear. For (19), we have

VG(t)

(
υ

$

)
(x) =

(
(VG(t)Φ)+(x)

(VG(t)Φ)−(x)

)

=

(
(Bn)11υ (n− t+ x) + (Bn)12$ (t− n+ 1− x)

(Bn)21υ (n− t+ x) + (Bn)22$ (t− n+ 1− x)

)
.

Observe that the formula for (VG(t)Φ)+(x) is valid for n − 1 + x < t < n + x,
while (VG(t)Φ)−(x) is defined for n− (1− x) < t < n+ 1− (1− x). Both of these
conditions yield 0 < n− t+ x < 1, as in (17). Hence, we can write

VG(t)

(
υ

$

)
(x) = BnV

(
υ

$

)
(n− t+ x) = S(t)V

(
υ

$

)
(x). (21)

4. Asymptotic behaviour. Let σ(B) = {λ1, . . . , λk}, k ≤ 2m, be the set of the
eigenvalues of the matrix B. For any i ∈ {1, . . . , k}, denote by αi the algebraic
multiplicity of λi. Further, let {Ei1 , . . . ,Eiαi

} and {F i1 , . . . ,F iαi} be the sets of

right and left (generalized) eigenvectors corresponding to the eigenvalue λi, respec-
tively, selected so as F ij ·Eil = δjl for any j, l ∈ {1, . . . , αi}. Then, denoting by Πi

the spectral projection onto the right eigenspace Lin{Ei1 , . . . ,Eiαi
}, for any vector

U ∈ R2m we have

U =

k∑
i=1

ΠiU =

k∑
i=1

 αi∑
j=1

(
F ij ·U

)
Eij

 . (22)
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Since the matrices Πj , 1 ≤ j ≤ k, form the spectral resolution of identity, that is,∑k
j=1 Πj = I, using the binomial expansion, for n ∈ N0 we have

Bn =

k∑
j=1

BnΠj =

k∑
j=1

(λjI + B − λjI)nΠj

=

k∑
j=1

n∑
r=0

(
n

r

)
λn−rj (B − λjI)rΠj =

k∑
j=1

λnj pj(n)Πj ,

(23)

where pj is a matrix-valued polynomial in n of the degree strictly smaller than αj .
Let us take eigenvalues λj1 , . . . , λjh ∈ σ(B) for some 1 ≤ h ≤ k and consider

a family (Gλ(t))t≥0 of linear and bounded operators given by

Gλ(t)

(
υ

$

)
(x) := V

h∑
r=1

λnjrpjr (n)ΠjrV

(
υ

$

)
(n− t+ x), (24)

defined for 0 < n− t+ x < 1, n ∈ N0.

4.1. Invariant subspaces. First, we show that the family (Gλ(t))t≥0 has an in-
variant subspace. We begin with the following lemma.

Lemma 4.1. The family (Gλ(t))t≥0 is a semigroup.

Proof. We see that (24) can be written, by (17) and (23), as

Gλ(t) =

h∑
r=1

VS(t)ΠjrV, (25)

where we identify the matrix multiplication by Πjr with the operator on Xp defined
by [Πjru](x) = Πjru(x),u ∈ Xp, for a.a. x ∈ [0, 1]. Now, using again (17) and
(23), ΠjS(t) = S(t)Πj and hence S(t + s)Πj = S(t)S(s)Π2

j = S(t)ΠjS(s)Πj , for
each 1 ≤ j ≤ k, t, s ≥ 0. Thus, for any 1 ≤ i, j ≤ k,

VS(t)ΠjVVS(s)ΠiV = VS(t)ΠjΠiS(s)V =

{
VS(t+ s)ΠjV if i = j,
0 if i 6= j.

Then,

Gλ(t)Gλ(s) =

h∑
r=1

VS(t+ s)ΠjrV = Gλ(t+ s).

The last formula implies, in particular, that

Gλ(0)Gλ(t) = Gλ(t)Gλ(0) = Gλ(t), t ≥ 0. (26)

In other words, for any t ≥ 0 and (υ,$)T ∈Xp,

Gλ(t)

(
υ

$

)
∈ rngGλ(0),

where “rng” denotes the range of an operator. This shows that the range of Gλ(0)
is a candidate for an invariant subspace for the semigroup (G(t))t≥0. We shall
investigate this observation further. Let us define sets

Zj :=

{
VΠjV

(
υ

$

)
:

(
υ

$

)
∈Xp

}
, j = 1, . . . , k.
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Certainly, each set is a linear subspace of the space Xp. Moreover, Zj1 ∩Zj2 = {0}
for j1 6= j2. Indeed, take any (υ,$)T ∈ Zj1 ∩ Zj2 . Then there exist (υ1,$1)T ∈
Zj1 , (υ2,$2)T ∈ Zj2 such that

VΠj1V

(
υ1

$1

)
=

(
υ

$

)
= VΠj2V

(
υ2

$2

)
.

Applying the operator V and multiplying by Πj1 , we obtain

0 = Π2
j1V

(
υ1

$1

)
= Πj1V

(
υ1

$1

)
= V

(
υ

$

)
.

Since V is an isomorphism, (υ,$)T = 0.
By the definition of the image of a map we have

Zλ := rngGλ(0) =

{
V

h∑
r=1

ΠjrV

(
υ

$

)
:

(
υ

$

)
∈Xp

}
=

h⊕
r=1

Zjr ,

where the fact that the sum is direct follows as above. We observe also that the
subspace Zλ is closed since the operators induced by the matrices Πjr are also
continuous projectors on Xp and V is an isomorphism.

Lemma 4.2. The subspace Zλ is invariant under (G(t))t≥0.

Proof. Take any element from Zλ, which is of the form V
∑h
r=1 ΠjrV(υ,$)T for

some (υ,$)T ∈Xp. We have, by (21), (25) and (26),

G(t)

(
V

h∑
r=1

ΠjrV

(
υ

$

))
= VS(t)V

(
V

h∑
r=1

ΠjrV

(
υ

$

))

= Gλ(t)

(
υ

$

)
= Gλ(0)Gλ(t)

(
υ

$

)
∈ rngGλ(0) = Zλ.

From the above proof we see also that the family (Gλ(t))t≥0 is the restriction of
the semigroup (G(t))t≥0 to the subspace Zλ. Since this subspace is invariant and
closed, we have proved the following

Proposition 2. The family (Gλ(t))t≥0 is a C0-semigroup on the space Zλ =
rngGλ(0).

4.2. Asymptotic stability. Let us assume now that σ(B) is ordered as σ(B) =
{λ1, . . . , λd, λd+1, . . . , λk}. We consider a family (G2(t))t≥0 given by

G2(t)

(
υ

$

)
(x) = V

k∑
j=d+1

λnj pj(n)ΠjV

(
υ

$

)
(n− t+ x),

defined for 0 < n−t+x < 1, n ∈ N0. By Proposition 2, (G2(t))t≥0 is a C0-semigroup
on the space Z2 := rngG2(0).

Lemma 4.3. If

|λj | < 1, j = d+ 1, . . . , k, (27)

then the semigroup (G2(t))t≥0 is uniformly asymptotically stable.
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The proof is similar to that of [6, Thm. 5.1(iii)], which, although carried out
for the L1 case, can be easily adapted to any Lp space. Before we proceed with
the proof, let us clarify that in the space R2m we consider the p-norm |x| =

(
∑2m
i=1 |xi|p)1/p, and for any 2m × 2m matrix A by |A| we denote the norm of

the linear operator induced by A corresponding to the p-norm. This notation does
not lead to any confusion since the distinction between a vector and a matrix is
clear from the context. In particular, for any f ∈Xp,

‖f‖ =

 1∫
0

|f(x)|p dx


1
p

=

 1∫
0

2m∑
i=1

|fi(x)|p dx


1
p

.

Proof. First, let us take j ∈ {d+1, . . . , k} and let τn = t−n be such that 0 ≤ τn ≤ 1.
Using the fact that |λj | < 1, we can find 0 < λ̄j < 1 such that |λj |/λ̄j < 1. Taking
λ = maxj |λj |/λ̄j we have that |λj |/λ̄j ≤ λ < 1 for all d + 1 ≤ j ≤ k. Since
|λ̄npj(n)Πj | is uniformly bounded with respect to n ∈ N0, denoting θ(n, x, t) =
n− t+ x, we have∥∥∥∥λnj pj(n)ΠjV

(
υ

$

)
(n− t+ ·)

∥∥∥∥p ≤ λnp
1∫

τn

∣∣∣∣λ̄nj pj(n)ΠjV

(
υ

$

)
(θ(n, x, t))

∣∣∣∣p dx
+ λ(n+1)p

τn∫
0

∣∣∣∣λ̄n+1
j pj(n+ 1)ΠjV

(
υ

$

)
(θ(n+ 1, x, t))

∣∣∣∣p dx
≤ Cppjλ

np

 τn∫
0

∣∣∣∣( υ(θ(n+ 1, x, t))

$(1− θ(n+ 1, x, t))

)∣∣∣∣pdx+

1∫
τn

∣∣∣∣( υ(θ(n, x, t))

$(1− θ(n, x, t))

)∣∣∣∣pdx


= Cppjλ
np

 1∫
−τn+1

∣∣∣∣( υ(s)

$(1− s)

)∣∣∣∣p ds+

−τn+1∫
0

∣∣∣∣( υ(s)

$(1− s)

)∣∣∣∣p ds


= Cppjλ
np

∥∥∥∥(υ$
)∥∥∥∥p .

Moreover, since 0 < n− t+ x < 1 implies n ≤ t+ 1, we can write∥∥∥∥G2(t)

(
υ

$

)∥∥∥∥ ≤
 k∑
j=d+1

Cpj

λn
∥∥∥∥(υ$

)∥∥∥∥ ≤
 k∑
j=d+1

Cpjλ

 et lnλ

∥∥∥∥(υ$
)∥∥∥∥ ,

with lnλ < 0, which shows the uniform asymptotic stability of (G2(t))t≥0.

4.3. Periodicity. In a similar way as in the previous paragraph, we define a family
(G1(t))t≥0 by

G1(t)

(
υ

$

)
(x) = V

d∑
j=1

λnj pj(n)ΠjV

(
υ

$

)
(n− t+ x),

0 < n − t + x < 1, n ∈ N0. Again, (G1(t))t≥0 is a C0-semigroup on the space
Z1 := rngG1(0). Let us assume that the eigenvalues λj , j = 1, . . . , d, are semisimple
of the form

λj = e
2πi(j−1)

d , (28)
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where i is the imaginary unit. This implies that BΠj = λjΠj , j = 1, . . . , d.

Lemma 4.4. The semigroup (G1(t))t≥0 is periodic with period d.

Proof. In the first step we prove that the semigroup (G1(t))t≥0 is periodic. Put
n′ = n+ d. Then, 0 < n′ − (t+ d) + x < 1 and, by (28), we have

G1(t+ d)

(
υ

$

)
(x) = V

d∑
j=1

λn
′

j ΠjV

(
υ

$

)
(n′ − t− d+ x)

= V

d∑
j=1

e
2πi(j−1)n

d ΠjV

(
υ

$

)
(n− t+ x) = G1(t)

(
υ

$

)
(x).

Hence, (G1(t))t≥0 is indeed periodic and its period does not exceed d. To prove
that it equals d, let us calculate the Laplace transform of (G1(t))t≥0. We have

∞∫
0

e−µtG1(t)

(
υ

$

)
(x) dt =

∞∫
0

e−µtV

d∑
j=1

e
2πi(j−1)n

d ΠjV

(
υ

$

)
(n− t+ x) dt

= V

d∑
j=1

 x∫
0

e−µ(x−s)Πj

(
υ(s)

$(1− s)

)
ds

+

∞∑
n=1

e(
2πi(j−1)

d −µ)n
1∫

0

e−µ(x−s)Πj

(
υ(s)

$(1− s)

)
ds

 .

Since
∞∑
n=1

e(
2πi(j−1)

d −µ)n =
e(

2πi(j−1)
d −µ)

1− e(
2πi(j−1)

d −µ)
=: fj(µ)

for <µ > 0 and fj extends to an analytic function on C except for µ = 2πi(j−1)/d+
2πil for any l ∈ Z (the set of integers), where it has first order poles, the resolvent
of the generator of (G1(t))t≥0 has singularities only where one of the fjs has a pole.
Since any k ∈ Z can be written as k = ld+ j − 1 for some l ∈ Z, 1 ≤ j ≤ d, we see
that 2πik/d = 2πil + 2πi(j − 1)/d and thus the resolvent is analytic in C except
for µ ∈ 2πi

d · Z. Hence, by [12, Lemma IV.2.25], we conclude that the period of

(G1(t))t≥0 equals d.

4.4. The limit semigroup. To formulate the main theorem of this section, we
note that

G(t) = G1(t) +G2(t), t ≥ 0,

and, since the matrices Πj , j = 1, . . . , k, form the spectral resolution of identity,
there holds

Xp = Z1 ⊕ Z2.

Then, combining Lemmas 4.3 and 4.4, we obtain

Theorem 4.5. Under the assumption (27), there exists a decomposition Xp = Z1⊕
Z2 into (G(t))t≥0-invariant subspaces Z1 and Z2 such that (G(t))t≥0 asymptotically
as t→∞ behaves as (G1(t))t≥0 = (G(t)|Z1)t≥0 in the sense that

lim
t→∞

(G(t)−G1(t)) = 0 (29)
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in the uniform operator topology in any Xp, p ∈ [1,∞). The semigroup (G1(t))t≥0

is explicitly given by

G1(t)

(
υ

$

)
(x) =

(
(G1(t)Φ)+(x)

(G1(t)Φ)−(x)

)
,

where

(G1(t)Φ)+(x) =

d∑
j=1

λnj
(
(pj(n)Πj)

11υ(n− t+ x)

+ (pj(n)Πj)
12$(1− n+ t− x)

)
,

valid for n− 1 + x < t < n+ x, and

(G1(t)Φ)−(x) =

d∑
j=1

λnj
(
(pj(n)Πj)

21υ(1− t+ n− x)

+ (pj(n)Πj)
22$(t− n+ x)

)
,

valid for n− x < t < n+ 1− x. If, in addition, (28) is satisfied, then (G1(t))t≥0 is
periodic with period d and

G1(t)

(
υ

$

)
(x) =


d∑
j=1

e
2πi(j−1)n

d

(
Π11
j υ(n− t+ x) + Π12

j $(1− n+ t− x)
)

d∑
j=1

e
2πi(j−1)n

d

(
Π21
j υ(1− t+ n− x) + Π22

j $(t− n+ x)
)
 .

Remark 5. We note that if B is stochastic, which is the case considered in [6], then
the assumptions (27) and (28) are automatically satisfied by [19, Chapter 8, p. 696].
However, in general, it may happen that the boundary matrix is not stochastic, yet
these assumptions are still satisfied.

Let us finish with a simple corollary which follows from the proof of Lemma 4.3.

Corollary 1. If there exists an eigenvalue λ ∈ σ(B) with |λ| > 1, then the semi-
group (G(t))t≥0 is not stable.

Proof. First, observe that, by (19), it suffices to consider the semigroup (S(t))t≥0 de-
fined in (17). Let λ ∈ σ(B) be an eigenvalue with |λ| > 1 and v ∈ R2m a correspond-
ing eigenvector. Take (υ,$)T ≡ v ∈ Xp and consider the sequence tn = n, n ∈ N.
Then, for x ∈ (0, 1),

S(tn)

(
υ

$

)
(x) = Bnv = λnv,

and hence ∥∥∥∥S(tn)

(
υ

$

)∥∥∥∥p =

1∫
0

|λnv|p dx = |λ|np|v|p →∞

as n→∞, i.e., the semigroup (S(t))t≥0 is not stable.
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5. Example. Let υ = (υ1, υ2),$ = ($3, $4) and consider

∂tυ(x, t) = −∂xυ(x, t), t > 0, 0 < x < 1,

∂t$(x, t) = ∂x$(x, t), t > 0, 0 < x < 1,

υ(x, 0) = υ̊(x), $(x, 0) = $̊(x), 0 < x < 1,(
υ(0, t)

$(1, t)

)
= B

(
υ(1, t)

$(0, t)

)
, t > 0,

(30)

on the graph presented in Figure 1, with l1(v1) = l2(v2) = 0 and l1(v2) = l2(v3) =
1.

e1 e2

v1 v2 v3

• ••

υ1

$3

υ2

$4

Figure 1. The graph for the problem (30) with the directions of
the flows.

Let

B =


0 0 1 0
1
4 0 0 1

2
3
4 0 0 1

2
0 1 0 0

 .

Then, we have λ1 = 1, λ2 = −1, λ3 = 1
2 , λ4 = − 1

2 and the right and left eigen-

vectors corresponding to the peripheral spectrum are E1 = (2, 1, 2, 1)T ,F 1 =
1
6 (1, 1, 1, 1)T ,E2 = (2,−1,−2, 1)T and F 2 = 1

6 (1,−1,−1, 1)T . We calculate the
projections to be

Π1 =
1

6


2 2 2 2
1 1 1 1
2 2 2 2
1 1 1 1

 , Π2 =
1

6


2 −2 −2 2
−1 1 1 −1
−2 2 2 −2
1 −1 −1 1

 .

By Theorem 4.5, the semigroup (G(t))t≥0 governing the solution to (30) converges
asymptotically to the periodic semigroup (G1(t))t≥0 given by

(G1(t)Φ̊)+(x) =
1

6

((
2 2
1 1

)
+ (−1)n

(
2 −2
−1 1

))(
υ̊1(n− t+ x)
υ̊2(n− t+ x)

)
+

((
2 2
1 1

)
+ (−1)n

(
−2 2
1 −1

))(
$̊3(1− n+ t− x)
$̊4(1− n+ t− x)

)
,

(G1(t)Φ̊)−(x) =
1

6

((
2 2
1 1

)
+ (−1)n

(
−2 2
1 −1

))(
υ̊1(1− t+ n− x)
υ̊2(1− t+ n− x)

)
+

((
2 2
1 1

)
+ (−1)n

(
2 −2
−1 1

))(
$̊3(t− n+ x)
$̊4(t− n+ x)

)
.
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