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Abstract

Solar photovoltaic (PV) power is emerging as one of the most viable renewable

energy sources. The recent enhancements in the integration of renewable

energy sources into the power grid create a dire need for reliable solar power

forecasting techniques. In this paper, a new long‐term solar PV power

forecasting approach using long short‐term memory (LSTM) model with

Nadam optimizer is presented. The LSTM model performs better with the

time‐series data as it persists information of more time steps. The

experimental models are realized on a 250.25 kW installed capacity solar PV

power system located at MANIT Bhopal, Madhya Pradesh, India. The

proposed model is compared with two time‐series models and eight neural

network models using LSTM with different optimizers. The obtained results

using LSTM with Nadam optimizer present a significant improvement in the

forecasting accuracy of 30.56% over autoregressive integrated moving average,

47.48% over seasonal autoregressive integrated moving average, and 1.35%,

1.43%, 3.51%, 4.88%, 11.84%, 50.69%, and 58.29% over models using RMSprop,

Adam, Adamax, SGD, Adagrad, Adadelta, and Ftrl optimizer, respectively.

The experimental results prove that the proposed methodology is more
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conclusive for solar PV power forecasting and can be employed for enhanced

system planning and management.

KEYWORD S

long short‐term memory, Nadam, photovoltaic power forecasting, photovoltaic power plant,
time series forecasting

1 | INTRODUCTION

Electricity is one of the most essential facets of the life of
a modern man. The rapid increase in population and
industrialization has resulted in a steep rise in energy
demand. Taking the case of India, despite having an
enormous potential for renewable energy of around
900 GW; the country still confronts a massive electrifica-
tion problem. According to International Energy Agency
(IEA), approximately 25% of the total population of the
country is not connected to the electrical grid.1 Further-
more, India's energy demands are escalating and are
anticipated to reach around 15,820 TWh by the year 2040
as shown in Figure 1.2

As India aims at becoming self‐reliant on its energy
demands while meeting the COP'21 (Paris Agreement)
targets; it needs to tap onto its abundant renewable
energy potential as shown in Figure 2.3 Currently, it
relies heavily on its conventional energy sources, but the
power sector is witnessing a transition toward renewable
energy sources (RES). During FY16–20, it posted a fast‐
paced CAGR of 17.33% with an aim to attain a renewable
energy capacity of 225 GW (including the addition of
114 GW of solar and 67 GW of wind power capacity) by
the year 2022.2–9

Solar power offers a multitude of benefits such as
clean, environment‐friendly, and easily accessible energy
production.10 This aids in the integration of power grids

FIGURE 1 Solar photovoltaic power
potential of India.2
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with RES.11 For successful grid operation, energy
management, and economic scheduling, the need for
an optimal solar photovoltaic (PV) power prediction
technique becomes critical.12,13

The salient prediction techniques like autoregressive
integrated moving average (ARIMA)/seasonal autoregressive
integrated moving average (SARIMA; statistical), numerical
weather prediction (NWP; physical), artificial neural net-
work (ANN; machine learning), and hybrid methods have
shown modest results in their tenure. However, they can
only be applied for short‐term forecasts. Short‐term forecasts
may be adequate for primitive standalone or small PV
systems, but long‐term forecasts are required for the
operation of modern grid‐integrated PV systems. Hence,
there is an immediate requirement for a much enhanced and
reliable technique as the renewable power network becomes
increasingly complex in structure.12–16

The extensive literature review conducted on the
forecasting techniques suggests that most techniques
employed still focus on obsolete methods for solar
photovoltaic (SPV) power prediction.17 These methods
do not consider the impact of the most crucial
meteorological parameters which greatly affect the
accuracy of predictions and results in inefficient mon-
itoring, maintenance, and regulation of power generated
from RES.18 Mashud et al.19 predicted for forecasting
horizon of 5–60min. They used the best‐first search
algorithm with forwarding selection for the variable
selection algorithm. The data set was then fed into the
neural network (NN) ensemble and SVR as the

univariate and multivariate data set, respectively. It
provided an mean relative error (MRE) of 7.26% with
an NN ensemble in the univariate model. Behera et al.20

used a 15–60min forecasting horizon. They used extreme
learning machine (ELM) and its modifications like
particle swarm optimization‐extreme learning machine
(PSO‐ELM), craziness particle swarm optimization‐
extreme learning machine (CRPSO‐ELM), and accelerate
particle swarm optimization‐extreme learning machine
(APSO‐ELM). Among these, APSO‐ELM forecast the best
result for 15 min horizon having a root mean squared
error (RMSE) of 0.0178 for the 11.2 kW SPV plant.

Sonia leva et al.21 produced a persistence model to
predict the output power of a BIPVS; comprising various
data processing strategies like NN modeling and error
metrics analysis. Their intra‐day SPV power forecasting
proposal is confirmed with the help of a comparison
between their error metrics with the existing standards.
The total capacity of the SPV plant under consideration
was only 34 kW. An RMSE of 99.98 for 120min forecast
horizon was obtained using the ANN method.

Mishra et al.22 have produced short time‐horizon SPV
power forecasts (1‐to‐4‐h time horizon) using recurrent
neural networks (RNN) integrated with multitime‐
horizon predictions. This enabled forecasts by real‐time
inputs which can be employed for applications in the
smart grid. The same model has been trained for data sets
of various locations. For fixed as well as multitime
horizon forecasts, the results for Penn State were found
to be the most optimal.

FIGURE 2 Solar photovoltaic installed
capacity trends in India.3
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Kardakos et al.23 produced an NWP model for the power
prediction of a grid‐connected photovoltaic plant. The
predictions have been done on an hourly basis with a
SARIMA model applied for predicting the solar insolation
resulting from multiple inputs using ANN. The performance
of the model on both intraday and day‐ahead bases was
assessed using NRMSE values. The outcomes reflect the
annual average NRMSE readings as 11.12% for modified
SARIMA, 11.26%–11.46% for ANN, 12.89% for pure
SARIMA, and 13.71% for the persistence model. Chen
et al.24 prepared a 24‐h ahead forecasting model using a self‐
organized map (SOM) for weather data classification. This
was implemented along with meteorological parameters so
that their ANN–RBFNmodel is well trained. After testing for
some days, the mean absolute percentage error (MAPE)
obtained for sunny days was 9.45%, for cloudy days was
9.88%, and for rainy days was 38.12%.

Lee et al.25 produced two long short‐term memory
(LSTM) models having three hidden layers. They
provided a single SPV power output for hourly predic-
tions located at the Gumi City in South Korea. Inputs like
cloudiness, humidity, irradiance, atmospheric tempera-
ture, day, and month were fed to the first model whereas
the seasonal data of day and month were excluded from
the second model. Of all the above models, the LSTM‐1
seasonal model provided the best results compared with
ARIMA, SARIMA, feed‐forward ANN, deep‐learning
ANN, and seasonal deep‐learning ANN. Nasser et al.
produced, trained, and tested five LSTM models with
variable inputs, types of LSTM, and a number of layers
for an hour‐ahead SPV forecasting of a system located at
Aswan and Cairo, Egypt. Model 1 (base‐model) consist-
ing of a single hidden layer having 4‐LSTM cells was fed
the SPV output an hour ahead of the anticipated forecast
time. Model 2 differed from the first by getting SPV
output values from the last 3 h‐ahead time‐steps as
discrete input features. Model 3 transformed the last
three time steps. Model 4 differed from Model 1 by
employing LSTM blocks for making the network memo-
rize the trends over various training batches. Lastly, a
two‐layer LSTM network was employed as Model 5. The
training and testing data were in the ratio of 7:3. Training
and analysis for each model were done after 20, 50, and
100 epochs. It was observed that Model 3 showed the best
results with 50 epochs compared with the boosted
regression trees, multiple linear regression, and feed
forward neural networks.

William VanDeventer et al.26,27 and Mehdi
Seyedmahmoudian et al.28 produced models using the
genetic algorithm‐based support vector machine
(GASVM) model and differential evolution and the
particle swarm optimization (DEPSO) technique for
short‐term power forecasting, respectively. The peak

output of the PV system under consideration was only
3 kW situated at Deakin University, Australia. The
GASVM model classifies the historical weather data
using an SVM classifier initially and later it is optimized
by the genetic algorithm using an ensemble technique.
Experimental results demonstrated that the GASVM
model outperforms the conventional SVM model by a
difference of about 669.624W in the RMSE value and
98.7648% of the MAPE error. Whereas DEPSO forecasts
under three different time horizons (1‐, 2‐, and 4‐h) gave
the best results for the 1‐h time horizon as the RMSE,
MRE, mean average error (MAE) of the DEPSO based
forecasting as 4.4%, 3.1%, and 0.03, respectively.

The work proposed in this paper is an extension of
the work proposed by Nasser et al.29 which employs only
endogenous data for SPV power forecasting with differ-
ent LSTM‐models. The key distinction between the
proposed work and Abdel‐Nasser et al.29 is that here
24‐h time steps have been used as inputs compared with
1, and 2‐h time‐steps thus, reducing the number of steps
employed. This in turn reduces the learning time of the
model.30 A summary of various solar PV forecasting
methods is presented in Table 1.

1.1 | Research gaps

The various research gaps identified based on an
extensive bibliometric analysis are as follows:

(i) The existing literature is mostly focused on short
time‐horizon power forecasting methods which are
inappropriate for modern SPV plants. Thus, ample
focus must be given to the long‐time‐horizon power
forecasting of SPV systems. To impart clarity, it is
essential to have a comparison between the two
methods. However, literature available on the
comparison between the two is also scarce.

(ii) The conventional methods can maintain the accuracy
of SPV power prediction up to a few steps ahead but are
unsuccessful as the step count increases.

(iii) Majority of work reported in the literature has
addressed the problem of SPV plants with low capacity.
The ones focusing on larger plants have adopted only
short‐term forecasting. However, when existing tech-
niques are applied to large capacity plants, RMSE error
becomes significantly large.

(iv) Meteorological and power data employed for fore-
casting is usually of exceedingly small duration and
may have high inaccuracies.

Based on the research gaps, it can be assessed that
there is a necessity for efficient SPV power forecasting

2912 | SHARMA ET AL.



T
A
B
L
E

1
Su

m
m
ar
y
of

fo
re
ca
st
in
g
te
ch

n
iq
u
es

of
so
la
r
P
V
.

R
ef
er
en

ce
F
or
ec

as
t

h
or
iz
on

F
or
ec

as
t

re
so
lu
ti
on

M
et
eo

ro
lo
gi
ca

l
in
p
u
t

F
or
ec

as
te
d

p
ar
am

et
er

M
od

el
li
n
g

te
ch

n
iq
u
e

Si
te

u
n
d
er

st
u
d
y

R
an

a
et

al
.1
9

5–
60

m
in

5
m
in

G
H
I,
T
,
R
H
,
W

P
V

po
w
er

N
N
,
SV

R
B
ri
sb
an

e,
A
u
st
ra
li
a

B
eh

er
a
et

al
.2
0

15
–6
0
m
in

15
m
in

G
H
I,
T
,
R
H
,
W
,
cl
ou

d
co
ve
r

P
V

po
w
er

A
P
SO

‐E
L
M

B
h
u
ba

n
es
w
ar
,
In
di
a

de
P
ai
va

et
al
.2
1

12
0
m
in

15
m
in

G
H
I,
R
H
,
W
,
am

bi
en

t
te
m
pe

ra
tu
re
,
at
m
os
ph

er
ic

pr
es
su
re

P
V

po
w
er

A
N
N

G
oi
an

ia
,
B
ra
zi
l

M
is
h
ra

an
d
P
al
an

is
am

y2
2

1–
4
h

1
h

G
H
I,
so
la
r
ir
ra
di
an

ce
P
V

po
w
er

R
N
N

B
ou

ld
er

(C
O
);
B
on

dv
il
le

(I
L
);
D
es
er
t
R
oc
k

(N
V
);
F
or
t
P
ec
k
(M

T
);
G
oo

dw
in

C
re
ek

(M
S)
;
Si
ou

x
F
al
ls

(S
D
);
an

d
P
en

n
St
at
e

(P
A
),
U
SA

K
ar
da

ko
s
et

al
.2
3

24
h

1
h

So
la
r
ra
di
at
io
n

P
V

po
w
er

SA
R
IM

A
,
A
N
N

G
re
ek

te
rr
it
or
y

C
h
en

et
al
.2
4

24
h

1
h

G
H
I,
T
,
R
H
,
W

P
V

po
w
er

A
N
N

tr
ai
n
ed

w
it
h

N
W
P
cl
as
si
fi
ed

vi
a
SO

M

W
u
h
an

,
C
h
in
a

L
ee

an
d
K
im

25
1
h

1
h

C
lo
u
di
n
es
s,
h
u
m
id
it
y,

ir
ra
di
an

ce
,

at
m
os
ph

er
ic

te
m
pe

ra
tu
re

P
V

po
w
er

L
ST

M
G
u
m
i
C
it
y,

So
u
th

K
or
ea

V
an

D
ev
en

te
r
et

al
.2
6

1
h

1
h

So
la
r
ir
ra
di
an

ce
,
an

d
ai
r

te
m
pe

ra
tu
re

P
V

po
w
er

G
A
SV

M
V
ic
to
ri
a,

A
u
st
ra
li
a

Se
ye
dm

ah
m
ou

di
an

et
al
.2
8

1‐
,
2‐
,
an

d
4‐
h

1
h

So
la
r
ir
ra
di
an

ce
,
an

d
ai
r

te
m
pe

ra
tu
re

P
V

po
w
er

D
E
P
SO

V
ic
to
ri
a,

A
u
st
ra
li
a

A
bd

el
‐N

as
se
r
et

al
.2
9

1–
2
h

1
h

‐
P
V

po
w
er

L
ST

M
A
sw

an
an

d
C
ai
ro
,
E
gy
pt

So
ph

ie
et

al
.3
1

24
h

1
h

G
H
I,
T
,R

H
,W

,p
re
ss
u
re
,r
ai
n
fa
ll,

su
n
sh
in
e
du

ra
ti
on

,
an

d
w
in
d

di
re
ct
io
n

P
V

po
w
er

H
yb

ri
d
A
N
N

u
si
n
g

N
W
P
fo
r

op
ti
m
iz
at
io
n

C
or
n
w
al
l,
U
n
it
ed

K
in
gd

om

30
–6
0
da

ys
24

h
So

la
r
R
ad

ia
ti
on

,
A
tm

os
ph

er
ic

T
em

pe
ra
tu
re
,
R
el
at
iv
e

H
u
m
id
it
y,

W
in
d
Sp

ee
d

P
V

P
ow

er
L
ST

M
w
it
h
N
ad

am
op

ti
m
iz
er

B
h
op

al
,
In
di
a

SHARMA ET AL. | 2913



techniques for a long time horizon. Competent tech-
niques are needed for a successful and efficient setup of a
practical SPV plant that will facilitate better system
planning when large‐scale grid integration is required.

1.2 | Contributions and organization
of paper

In this paper, a new and improved SPV power forecasting
model is presented that significantly improves the forecasting
accuracy by effective use of optimizers. The initial study
comprises of the meteorological parameters like:

• Atmospheric temperature (AT),
• Relative humidity (RH),
• Solar insolation (SR), and
• Wind speed (WS).

The above parameters greatly affect the output power
from SPV panels. They are also the most frequently
mentioned factors employed under relevant studies.30,32

The data exploited for the present study contains 366 days
of operational data occupied from a 250.25 kW grid
connected SPV plant in the city of Bhopal, Madhya
Pradesh, India. None of the studies in recent literature
have considered such a large plant in their work for long‐
term forecasting.12,33,34 The long‐term solar forecasting is
very necessary for reserve planning and operation manage-
ment (for system operators) and efficient placement of
renewable plants (for renewable generators). Solar power
has emerged as a viable solution to cater to the growing
energy demands with minimal impact on the environment.
However, one of the key issues associated with the grid
scale integration of solar power is its inherent variability.
This hinders its prospect for large‐scale deployment on the
grid. To facilitate optimal planning, it is imperative that the
planning of large‐scale solar power plants be carried out on
the basis of sound long‐term forecasts. This asserts the
importance of development of efficient and accurate long‐
term forecasting techniques.

The major contributions of the paper addressing the
research gaps discussed in Section 1.1 can be listed as
follows:

i. In this paper, a novel long‐time‐horizon power
forecasting method for SPV systems using LSTM
with Nadam optimizer has been developed.

ii. The proposed method can be implemented for large
number of step counts.

iii. To enable an in‐depth understanding, comparison of
various parameters that significantly affect large
capacity SPV plants has been provided.

iv. A practical case study has been conducted for long‐
time horizon to demonstrate the efficacy of the
proposed technique. A comparison with existing
work has also been presented to validate the
superiority of the proposed approach.

The remaining paper is organized as follows:
In Section 2 several forecasting methods are discussed

and classified. Section 3 provides the description of
existing and proposed models on the current study.
Section 4 is devoted to the case study executed in steps of
collection, preparation, and analysis of data along with
the adopted models. Section 5 discusses the results
obtained by testing various models followed by a brief
comparison of their performances. Section 6 draws the
conclusions and the future avenues of research in solar
power forecasting are briefly discussed.

2 | CLASSIFICATION OF
FORECASTING METHODS

Forecasting is a statistical method used to predict a trait
using historical patterns in the data. Forecasts can be made
for several years ahead or for the next few minutes. Various
kinds of forecasting methods can be utilized for SPV power
forecasting depending upon the PV plant size, geographical
location, forecasting horizon, and other climatic variations.
Therefore, it is crucial to identify which method of
forecasting should be utilized in different circumstances so
that the risks of forecasting can be curtailed. Different
classifications of SPV forecasting methods are briefly
discussed in the following sections.

2.1 | Based on the forecasting horizon

The period for which the SPV power output is forecasted
is called the forecasting horizon. Figure 3 shows the
various kinds of solar PV forecasting methods based on
time‐horizon35–37 which are further described in Table 2.

2.2 | Based on historical data

In literature, numerous forecasting methods have been
developed for solar PV power forecasting as shown in
Figure 4. These methods are broadly classified in Table 3.

To attain accurate results, choosing the correct
forecasting method depending on the available data
and required time horizon is essential. In the next
section, some of the commonly used models along with
the proposed model are discussed.

2914 | SHARMA ET AL.



FIGURE 3 Classification of solar photovoltaic forecasting based on time‐horizon.

TABLE 2 Review on solar PV power forecasting based on time‐horizon.

Type of solar PV power
forecasting Time‐horizon Applications

Very short‐term 1 s–1 h Power and voltage regulation, real‐time electricity dispatch, and grid stability.

Short‐term 1–24 h Grid security, power reserve management.

Medium‐term 1 week–1 month Unit commitment decisions, planning, and maintenance scheduling of the power
system.

Long‐term 1 month–1 year Helps authorities in planning the generation, transmission, and distribution of
electricity along with the structuring and operation of electricity markets.

FIGURE 4 Classification of solar photovoltaic forecasting based on historical data.
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3 | DESCRIPTION OF EXISTING
AND PROPOSED MODELS

The analysis of data in accordance with the time it was
recorded (generally spaced at equal intervals), is called
time series. The objectives of time series analysis are to
define the course of generating the data and to predict
future values. ARIMA and SARIMA are among the most
popular time‐series forecasting models38 reported in the
literature. However, looking into the shortcomings as
discussed in Section 1.1, in this study, LSTM with Nadam
optimizer is proposed. All the three models have been
discussed in the following sections.

3.1 | Auto regressive integrated moving
average

ARIMA modeling is one of the most popular ways to
conquer time‐series forecasting. It is mostly used over the
nonseasonal and stationary time series. Mathematically,
it consists of three terms p, d, and q which are

nonnegative integers named autoregressive, integrated,
and moving average, respectively. Mathematically, AR-
IMA (1, 1, 1) can be represented as:

∆y d η= + ,t t (1)

η ϕ η e θ e= + + .t t t t1 ‐1 1 ‐1 (2)

Here, the first difference Δyt is a zero‐mean ARMA (1,
1) process ηt plus the drift term d.

By substituting ηt= yt− yt− 1− d, the same ARIMA
(1, 1, 1) process can be written as:

y y d ϕ y y d e θ e− − = ( − − ) + + ,t t t t t t−1 1 −1 −2 1 −1

(3)

where d is the drift term; ϕ1 is the AR (p) coefficient; θ1 is
the MA (q) coefficient.

For the proper selection of (p, d, q), auto_arima
function of pmdarima library of python has been used.
AIC is used to select the values of p, d, q exactly. Lower
the AIC for the given (p, d, q) higher will be the accuracy
or fit.38

TABLE 3 Review of solar photovoltaic (PV) power forecasting techniques based on historical data.

Forecasting approach Advantages Disadvantages

Physical models Can be employed without historical data sets. Sensitive to abrupt changes in the values of
meteorological variables.

Requires detailed models of solar PV and local
measurements.

Can be adapted to generate input variables for
statistical models.

Difficult to get physical input data.

More suitable for long‐term forecasting than
satellites.

Appropriate and frequent calibrations are required in
the recording devices.

Statistical models A reliable forecasting approach for short term as it
exploits readily available meteorological data.

Requires a considerable number of past input data.

Less accurate for long‐term forecasts.

Typically outperform physical models. Unable to capture the intermittent behaviour of input
variables.Easier to implement.

Machine Learning
models

Adaptable to a wide range of parameters. Needs large training data set and optimal

Learns through the training process (knowledge‐
based systems).

training algorithm.

Ability to capture high non‐linearities in PV power
generation data.

Complex and difficult design.

Requires more computational memory and time to
persist more information.Can be implemented for large systems with higher

accuracy.

Hybrid models Designed to improve the performance of physical
or statistical techniques.

Generally, the temporal changes in the PV historical
data are not considered.

Outperforms all the physical models. Requires larger memory and more time for computing
multiple datasets as it combines different methods.
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3.2 | Seasonal autoregressive integrated
moving average

SARIMA modeling is adopted where a seasonal change
in data is present. Thus, it has an advantage over
ARIMA as it can be applied to the seasonal data as
well. The mathematical equation of the SARIMA
contains nonseasonal as well as seasonal terms. The
representation of the SARIMA equation is done as
follows:

ARIMA (p, d, q) = nonseasonal part of the model,
(P, D, Q)m= seasonal part of the model,
m= number of observations per year.
Mathematically, the equations for SARIMA (1, 0,

1) × (0, 1, 1, 12) can be represented as follows:

Y ϕ y θ e e θ e D e= + + Θ ( + − ) + .t t t t t t1 −1 1 −1 1 −12 1 −13

(4)

In the above equation, et= error at a given time,
yt= value of function at a given time. Θ is the seasonal
moving average. D is the seasonal difference and m= 12
represents that data is used to identify the seasonality
over a year. Whereas ϕ is nonseasonal AR and θ
represents nonseasonal moving average.

For the proper selection of (p, d, q) × (P, D, Q)m,

auto_arima function of pmdarima library of python has
been used. AIC is used to select the values of p, d, q, P, D,
and Q exactly. Lower the AIC for the given (p, d, q) × (P,
D, Q)m higher will be the accuracy or fit.39

The flow diagram for implementing ARIMA and
SARIMA models can be seen in Figure 5.

3.3 | Proposed model using LSTM with
nadam optimizer

The LSTM networks are a type of RNN. Before discussing
LSTM, a brief discussion on RNN is necessary. RNN is a
class of ANN. ANN techniques pose various advantages
over the aforementioned techniques.19,40 But, RNN has a
distinctive feature that it can persist the information. It
can learn the short‐term dependencies, so as the data
grows bigger RNN may fail to eradicate this problem. To
remove this problem, LSTM is used to have a long‐term
learning dependency.41

A significant challenge faced while using a PV source
is to tackle its nonlinear output characteristics. LSTM‐
based models are effective in understanding the non-
linear relationship between the input and output
parameters of a given data set.42 Hence, LSTM models
have been employed for analyzing the effects of

meteorological parameters on the solar power out-
put.25,43–46 The diagram of a common LSTM cell can be
seen in Figure 6. The various “memory blocks” or “cells”
represented as rectangular blocks are used for

FIGURE 5 Flow diagram of ARIMA/SARIMA
implementation.
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memorizing information and can be exploited using
three main mechanisms known as “gates.” There are
three gates, that is, input, output, and forget gate in a
typical LSTM cell network. They are used to control as
well as protect the cell states which are transferred
toward the next cell; the hidden state and the cell state.41

The role of each LSTM gate and its mathematical
representation is as follows:

i. Input gate (i): It determines the extent of informa-
tion to be written onto the Internal Cell State.

σ w h x bi = ( [ ,   ] + ).t t ti ‐1 i (5)

ii. Forget gate (f): It determines the extent to which the
previous data is to be forgotten.

σ w h x bf = ( [ ,   ] + ).t t tf ‐1 f (6)

iii. Output gate (o): It determines what output (next
Hidden State) to generate from the current internal
cell state.

σ W h x bo = ( [ ,   ] + ).t t t oo ‐1 (7)

where it represents the input gate, ft represents forget
gate, ot represents output gate, σ represents a sigmoid
function, wx is weight for the respective gate (x) neurons,
Ht−1 is the output of the previous LSTM block, xt is input
at the current timestamp, bx represents biases for the
respective gates (x).

Hence, due to these numerous advantages of LSTM
networks, there has been a great shift of interest toward
employing them for solar radiation as well as solar PV
power predictions and forecasting. One of the main
reasons for this shift has been the type of data, that is,
exogenous, or endogenous being required for accurate
forecasts.29 While conventional techniques still rely on
exogenous data which is very often inaccessible,
uneconomic, or unreliable; LSTM can work simply fine
with endogenous data as well. This quality of LSTM

networks/models makes them stand out and the first
choice for SPV power predictions.

Initially, the data set was set into a supervised
learning format and normalized. The data set was
converted into the 3D format as anticipated by LSTM
(samples, time steps, features). The number of neurons
taken in the first hidden layer was 50 and in the output
predicting layer was 1. The model was tested for several
validation sets running over 50 epochs having a batch
size of 10. The flow diagram for the above work has been
presented in Figure 7.

For considering the weights of the LSTM network,
MAE has been used as the loss recovery method.

  y y

n
Mean absolute error=

ˆ −
,

i

n i i

=1 (8)

where ŷi = predicted value, yi = actual value, and n =
number of days for which the forecast is done.

Furthermore, Nadam has been used as the optimizer
for the stochastic gradient descent method. Furthermore,
a track of both the training and testing losses throughout
the training has been kept by settling the validation data
argument in the model. Nadam's one step ahead
functionality over adam has reduced the RMSE error.
The RMSE is evaluated as follows:

 y y

n
Root mean squared error =

( ˆ − )
,i

n
i i=1

2

(9)

where ŷi = predicted value, yi = actual value, and n =
number of days for which the forecast is done.

This is attributed to it being a combination of both
NAG and adam. Its employability for the high curvature/
noisy data makes it more useful for such unprecedented
datasets. The experiments have been carried out on the
following optimizers: SGD, Adamax, RMSprop, Adadelta,
Adagrad, Ftrl, Adam, and Nadam.47–53

4 | CASE STUDY

The proper selection of input variables, forecast horizon,
and climatic factors for the site under consideration
greatly affects the accuracy of any model. In general,
some input variables are used more frequently while
developing forecasting models:

• PV power output data.
• Meteorological parameters like atmospheric temperature,
relative humidity, solar radiation, wind speed, and so on.

FIGURE 6 Common long short‐term memory cell network.

2918 | SHARMA ET AL.



For demonstrating the implementation of the pro-
posed technique, a case study has been carried out for
Bhopal, India. Bhopal located at 23.2599°N; 77.4126°E is
estimated to have an annual energy output of 14 kWh/
m2.54 In this section, the procedure for implementing the
proposed framework of LSTM with Nadam optimizer has
been discussed. An overview of the forecasting horizons,
data collection, data analysis, and parameters used in the
study has been presented in the following sections.

4.1 | Data collection

The meteorological and observational solar energy output
data for 12 months starting from September 2019 to
September 2020 has been acquired from a weather station
located at MANIT Campus, Bhopal. Some of the meteoro-
logical data has been derived from the Central Pollution
Control Board (CPCB).55 The details of the data sets are
mentioned in the following sections.

4.1.1 | Solar (PV) output energy data

The Solar PV system under study for this experiment has
the following details (Table 4).

The SPV power system under study consists of solar
panels having a total capacity of 250.25 kW with a total of
five inverters (3 × 66 kW and 2 × 25 kW), situated at
MANIT, Bhopal, Madhya Pradesh, India.

4.1.2 | Meteorological (weather)
parameters data

The CPCB provides historical meteorological data for
different regions throughout India, consisting of several
weather metrics for each hour daily for the past few
years. The various weather metrics selected are atmo-
spheric temperature, relative humidity, solar radiation,
wind speed, and so on. Figure 8 shows the annual
variation of all parameters.

FIGURE 7 Flow diagram of the
proposed model.
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In addition to the meteorological metrics, the
specific day of the year is also included as a metric
since the variable nature of daylight influences the
solar intensity at any given site all over a year. The
observational SPV energy data from a weather station
deployed on the rooftop of the Energy Centre at
MANIT has been used in this study. The angle of tilt
of the PV arrays is fixed.

The SPV energy being monitored daily over our
selected 12‐month period, with the day‐zero being
September 17th, 2019, undergoes seasonal variations
which can be observed in Figure 8. As anticipated, the
graph reflects the SPV output energy being the least in
the month of December–January close to the winter
solstice {22/12/2019 for Bhopal} which rises on moving
toward the vernal equinox {20/03/2020 for Bhopal} and
consequently decreases with the onset of summer
thereafter.18

4.2 | Data preparation and analysis

To have a thorough investigation of the correlation between
SPV power forecasts and climate, the predictive models
were made taking into consideration all the meteorological
variables that may influence the SPV power output. The
dependent variable was the output energy of the SPV
system whereas the independent factors were normal
averages of atmospheric pressure, atmospheric tempera-
ture, relative humidity, solar radiance, wind direction, and
wind speed.56 However, after initial assessments it was
found that taking an unnecessarily high number of input
variables (training data) makes the model more complex
and increases its computational time leading to over-
simplification of the data causing problems like “over-
fitting” and “underfitting.”31,57 Hence, ineffective parame-
ters, for example, wind direction, atmospheric pressure,
and so on were eliminated.

TABLE 4 Plant specifications.Plant details Location details

Plant capacity 250.25 kW Address Energy Centre Road,
MANIT Bhopal (M.P.)

Panel make Renewsys Pin code 462007

Plant model 325 Coordinates Latitude: 23.212101;
Longitude: 77.406235

Temperature
coefficient

−0.004 Zone West

FIGURE 8 Variation of output energy
and selected meteorological parameters
with time.
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Thereafter, a database entailing the day‐to‐day values
of meteorological parameters and the energy created by
the SPV system through the period ranging from 17
September 2019 to 16 September 2020 was composed.
The data has been collected in a day‐wise format because
of the difficulties faced in dealing with the tuning of
minute/hour‐wise data.58 Of the 366 days of total
accessible data, 270–330 days (variable) are employed
for training and the rest for testing purposes. The missing
data is imputed, and noisy data is cleaned and normal-
ized with other data sets into the range [0, 1] to forfend
any alterations in the results.

The main purpose of the data analysis is to get an
insight as to how the power produced by an SPV system
is subject to variations with different meteorological
measurements. The intricacies, thus observed by initial
investigations are the core motivation for generating
enhanced SPV power prediction models and their
automation. Following the trends, the solar forecast
was analyzed using LSTM with a Nadam optimizer. For
comparing the results, similar work was carried out upon
other optimizers as well as two statistical models, that is,
ARIMA and SARIMA. In the upcoming sections, the
different models have been introduced.

4.3 | Parameters of adopted models

In this study, three different models have been designed;
the first two are based on conventional methods, that is,
ARIMA and SARIMA. The third model is proposed using
an LSTM network with a Nadam optimizer which
overcomes the drawbacks of the first two. The different
parameters and corresponding values for ARIMA,
SARIMA, and LSTM are presented in Tables 5, 6, and 7,
respectively.

The ARIMA model has been trained for different
ratios of data set. To select the most optimum p, d, q
values, the auto‐ARIMA technique has been used which
is able to check for the best set of (p, d, q) values.

The proposed model has been implemented using
LSTM with a Nadam optimizer. It has been trained on a

training set using 50 epochs to minimize the training and
validation losses. The weights of the network were
updated after every epoch. The batch size has been taken
as 10 with a learning rate of 0.0001 with weights being
regularized by mean absolute error and nadam optimizer
(and aforementioned optimizers).

5 | RESULTS AND DISCUSSION

This section represents the implementation details of
the proposed methods and the result analysis. The
following sections will contain model descriptions,
results of the proposed method, and comparison of all
the methodologies.

5.1 | Results using ARIMA

The ARIMA model having time‐series methodology has
been trained for a variable data set of 9–11 months.
Python library “statsmodels” has been utilised to obtain
the results. The model gave the best output with least
MSE and RMSE for 296 days of training and 70 days of
forecasting as shown in Figure 9. The RMSE value as
shown in Figure 10 for all the variable days of the data set
was comparable. The ARIMA error values have been
presented in Table 8.

TABLE 5 ARIMA parameters.

Parameters Values

p 1

d 1

q 1

Note: The SARIMA model has been trained for different ratios. It also uses
the auto‐ARIMA technique to check the best fit (p, d, q) ∗ (P, D, Q)m values.

TABLE 6 SARIMA parameters.

Parameters Values

p 1

d 0

q 1

P 0

D 1

Q 1

m 12

TABLE 7 LSTM parameters.

Network components used Quantity/type

Hidden layer 50

Output layer 1

Activation function Hyperbolic tangent function

Loss function Mean absolute error

Optimizer Nadam
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5.2 | Results using SARIMA

SARIMA also works on time‐series methodology and
the training data set contains 9–11 months. It has
been implemented using the “statsmodel” library by
making use of the seasonal parameter. The model
gave the least RMSE and MSE at 301 days of training
data and gave least RMSE for 65 days of forecasting as
shown in Figure 11. RMSE values as shown in
Figure 12 for all the variable days from the test data
set were also comparable. Table 9 presents the
SARIMA error values.

5.3 | Results using proposed LSTM with
Nadam

LSTM model works on NN and changes the weights of
neurons according to the data input. It has been
implemented using “keras” library of python. Nadam
optimizer has been used as the activation function for the
data set. Using Nadam optimizer has enhanced the model's
accuracy hence reducing RMSE and MSE. Figure 13
presents the forecast using LSTM models. Figure 14
represents the RMSE values of variable number of days
in the data set in LSTM. The number of days in training

FIGURE 9 Forecast graph using ARIMA model.

FIGURE 10 Root mean squared error values of a variable
number of days in data set for ARIMA.

TABLE 8 ARIMA error values.

Error type Amount

RMSE 124.126

MSE 15,407.301

FIGURE 11 Forecast results using SARIMA model.

FIGURE 12 Root mean squared error values of variable
number of days in the data set for SARIMA.

TABLE 9 SARIMA error values.

Error type Amount

RMSE 164.121

MSE 26,935.703
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data set was taken as 275 and test data consisted of 91 days.
RMSE curve for all the test data sets were in range. The
LSTM error values have been shown in Table 10.

5.4 | Performance comparison

All the three models were trained on the same data set by
taking into consideration the variations in all the
methods being used for time series analysis. All the
three models including various optimizers were trained
on the data set to forecast the result for the test duration
time. The LSTM network using Nadam optimiser

provided the best results. The broad comparison of all
the three models is presented in Figure 15.

The tabulated results showing contrasting results for
different optimizers based on RMSE values are presented
in Table 11.

The detailed comparison covering RMSE values of all the
optimizers is presented in Figure 16. Nadam's one step ahead
functionality over Adadelta, Ftrl, Adagrad and SGD has
reduced the RMSE error significantly while RMSprop,
Adamax and Adam provided comparable results.

The Standard deviation values for the different
optimizers were calculated according to (10) and can be
seen in Table 12. The respective findings have been
plotted on Figure 17.


σ

x x

n
Standard deviation ( ) =

( − ¯)
.i

2

(10)

where n is the number of predicted days, x̄ is the mean
of predicted values, and xi predicted value.

The uncertainty values for the different optimizers were
calculated according to (11) and can be seen in Table 13. The
respective findings have been plotted on Figure 18.


 x x

n n
Uncertainty (u) =

( − ¯)

( − 1)
.i

2

(11)

6 | DISCUSSION

As shown in Sections 5.3 and 5.4 the proposed model
outperforms the compared models. From the analysis made
of the results of different models, it can be observed that the
optimization through Nadamwas the key step in improving
the forecast accuracy. The actual output compared with the
predicted plant output results using the proposed approach
with LSTM and Nadam optimizer show significant

FIGURE 13 Forecast results using LSTM model.

FIGURE 14 Root mean squared error (RMSE) values of
variable number of days in the data set for LSTM.

TABLE 10 LSTM error values.

Error type Amount

RMSE 86.190

MSE 7428.716

FIGURE 15 Comparison curve of RMSE values for 3 different
models.
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improvement of 30.56% over ARIMA, 47.48% over SAR-
IMA, and 1.35%, 1.43%, 3.51%, 4.88%, 11.84%, 50.69%, and
58.29% over models using RMSprop, Adam, Adamax, SGD,
Adagrad, Adadelta, and Ftrl optimizer, respectively. Thus,
the proposed model used to forecast the long time‐horizon
values of the SPV system located at MANIT, Bhopal
significantly improves the accuracy of the predicted plant
output. However, there are some limiting factors:

• The model requires more time and memory to train.
• Less control over the memory of the forget gate of
LSTM architecture.

• Optimal removal of outliers is required to prevent
overfitting.

• The efficacy of the model varies on conversion from
online mode to hardware implementation depending
upon the input data set.

Despite having some limitations, the proposed
method can be used for the following applications:

• Optimal regulation of solar PV plants and protection
from operational issues such as inverse power flow,
and voltage spikes.

• Planning and installation of solar PV units based on
their optimal locations and sizes.

• Grid‐integration of standalone medium to large‐scale
solar PV plants.

• Systematic scheduling of auxiliary supplies and gener-
ators (e.g., diesel generators) with respect to the solar
PV power forecasts to ensure economic operation.

• Maintenance of power controller and storage devices
(e.g., batteries) for enhanced system operation.

The future work will be focused on removing the
aforementioned limitations and further expanding the
applications of the proposed model.

7 | CONCLUSIONS AND FUTURE
SCOPE

Accurate solar power forecasting is subject to the
planning and recording system of power plant design.
The intermittent behavior of solar irradiance makes solar

TABLE 11 RMSE values for different optimizers.

No. of days in
train data set Nadam RMSprop SGD Adadelta Adagrad Adamax Ftrl Adam ARIMA SARIMA

270 98.260 98.194 102.247 251.918 108.745 94.741 227.977 99.648 125.235 171.226

275 86.190 91.905 102.530 258.499 107.842 95.589 220.929 87.440 128.546 175.917

280 90.521 97.479 90.613 231.395 97.760 91.618 215.892 94.893 129.123 172.930

285 86.976 90.679 103.465 235.886 107.718 94.268 217.378 89.165 128.433 170.580

290 92.309 89.532 104.330 267.796 104.214 91.371 216.138 92.522 124.565 171.725

295 91.886 87.367 101.367 214.025 110.668 95.512 218.542 90.192 124.126 169.657

300 91.120 90.336 102.834 260.270 105.668 94.693 211.809 90.684 125.233 164.121

305 95.140 94.898 101.921 256.707 110.578 90.994 213.808 89.184 129.342 170.428

310 90.240 98.024 96.909 226.316 108.877 89.330 206.678 97.293 128.177 176.109

315 90.284 95.859 98.653 212.434 114.030 93.161 207.356 97.989 133.657 184.631

320 94.240 105.029 106.914 253.982 117.986 97.855 212.973 96.694 131.843 187.079

325 104.323 102.569 111.883 174.811 119.173 101.071 219.389 105.706 138.345 189.664

330 102.715 101.379 117.841 244.361 126.157 104.122 219.421 103.558 135.876 168.530

FIGURE 16 Comparison of RMSE values for 8 optimizers and
2 time‐series forecasting methods.
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forecasting one of the most essential components of
system planning. Inaccurate forecasting may lead to a
system design that has compromised reliability standards
and poor economic viability. In this paper, an effective
technique for long time horizon forecasting has been
proposed. The major contributions of this study can be
summarized as follows:

• A novel SPV power forecasting technique based on
LSTM using Nadam is proposed. The proposed
models show the variation in SPV output power
with respect to the meteorological parameters
under consideration.

• The performance of eight LSTM, as well as ARIMA
and SARIMA time series forecasting models with
different algorithms, are evaluated.

• The efficacy of the proposed technique is verified by
comparing it with two extensively used SPV power
forecasting methods.

The proposed method of predicting SPV power also
helps in the prediction of circumventing factors, such as
solar irradiance, the efficiency of the SPV module, and
the impact of other meteorological parameters. The
meteorological parameters that are studied for alternative
modeling methods also add to the accuracy and
reliability of the system.

As observed in Section 1.1, as the size of the SPV
plant under consideration and the forecasting time
horizon increases, the forecasting accuracy decreases
significantly. The proposed model which is developed on
a large‐scale SPV plant of 250.25 kW for a long time
horizon significantly reduces the difficulties faced in the
future analysis of varied sizes of plants without conduct-
ing a comprehensive analysis between the correlations of
meteorological and plant parameters. The model is
simple while parameterizing based on layers used and
epochs considered. The authors have emphasized more
on the optimization of optimizers used in the forecasting
of solar PVs. The usage of the Nadam optimizer helps in
driving the predictions in the right direction considering
the rolling momentum attached. Thus, the model will
scale on large data sets as well as this architecture will
help in creating a driving momentum for the forecasting

TABLE 12 Standard deviation values for different optimizers.

No. of days in
train data set Nadam RMSprop SGD Adam Adadelta Adagrad Adamax Ftrl ARIMA SARIMA

270 69.858 72.242 19.497 70.274 4.848 15.318 69.099 0.008 73.342 41.715

275 69.976 69.899 19.281 69.999 4.546 13.659 71.108 0.013 72.732 40.931

280 69.793 68.256 24.462 68.254 5.373 14.232 67.956 0.008 72.176 41.586

285 68.706 68.544 18.317 68.730 5.254 8.539 66.125 0.007 71.538 40.211

290 68.220 69.471 19.524 70.370 6.795 14.779 66.979 0.015 70.832 41.540

295 69.803 66.984 18.681 70.166 10.488 14.088 67.034 0.017 70.067 41.580

300 66.280 68.537 22.890 68.381 5.040 16.590 67.263 0.016 69.159 41.212

305 67.218 69.324 17.027 67.573 8.111 15.042 66.576 0.015 69.852 40.509

310 68.626 67.560 23.991 67.172 4.235 20.827 64.869 0.019 70.247 40.740

315 67.893 67.569 13.790 65.795 4.542 18.306 68.058 0.020 71.745 37.924

320 70.075 68.123 21.657 69.271 9.011 10.644 67.325 0.005 72.949 42.016

325 73.054 71.659 20.772 72.359 8.698 22.639 70.747 0.014 74.731 43.372

330 75.539 75.906 20.428 76.469 3.481 14.190 75.167 0.048 75.865 44.071

FIGURE 17 Comparison of standard deviation values for eight
optimizers and two time‐series forecasting methods.
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curve, and the forget gate of LSTM helps retain the
momentum calculated in previous steps.

None of the studies in recent literature have considered
such a large plant in their work for long‐term forecasts.
Thus, the proposed model can also be implemented even
for a smaller plant by downscaling the metrics of certain
parameters while maintaining good accuracy.

However, there are some limitations to the proposed
method such as less control over the memory of LSTM's
forget gate, more training time as the model cannot be
implemented without having minimal data set regarding
a few of the weather factors including the parameters of
the plant which may lead to some problems during the
hardware implementation of the virtual model.

Further work may be carried out on the same model
using more layers of neurons or by increasing the
training data set. Newer approaches like GRU, DNN,
and some hybrid models can be taken up making use of
the statistical methods with NN. More input parameters
like aerosol index, barometric pressure, and wind
direction can be considered depending upon the correla-
tion factor.

NOMENCLATURE
ACF auto‐correlation function
AIC Akaike information criterion
ANN artificial neural networks
APSO‐ELM accelerate particle swarm optimization‐

extreme learning machine
ARIMA auto‐regressive integrated moving average
BIC Bayesian information criterion
BIPVS building‐integrated photovoltaics system
CAGR compound annual growth rate
CRPSO‐ELM craziness particle swarm optimization‐

extreme learning machine
d difference
ELM extreme learning machine
GRU gated recurrent unit
LSTM long short‐term memory
m duration of training data set
MAE mean average error
MAPE mean absolute percentage error
MRE mean relative error
N number of input parameters

TABLE 13 Uncertainty values for different optimizers.

No. of days in
train data set Nadam RMSprop SGD Adam Adadelta Adagrad Adamax Ftrl ARIMA SARIMA

270 7.297 7.418 2.342 7.319 1.483 1.831 6.842 0.001 5.172 3.462

275 7.577 7.286 2.190 7.592 0.406 1.299 7.210 0.000 5.010 3.380

280 7.460 7.496 2.010 7.361 0.583 1.534 7.368 0.002 4.982 3.472

285 7.587 7.500 2.141 7.661 0.627 1.665 7.573 0.001 5.103 3.586

290 8.055 8.314 2.058 7.925 0.411 1.549 7.612 0.000 5.353 3.629

295 8.509 8.300 2.460 8.636 0.917 1.344 8.066 0.001 5.764 3.794

300 8.495 8.306 2.024 8.529 0.228 1.904 8.450 0.002 5.516 3.968

305 8.701 8.829 2.952 8.772 0.792 2.350 8.580 0.003 6.009 4.236

310 9.122 9.145 3.052 9.212 0.359 3.670 8.983 0.001 6.178 4.708

315 9.579 9.512 3.507 9.628 1.599 2.465 9.050 0.003 6.765 4.571

320 10.326 10.229 2.515 10.244 1.340 2.955 10.083 0.004 6.931 4.993

325 11.509 11.740 4.159 11.494 0.840 2.627 11.303 0.004 7.948 5.471

330 12.633 12.795 3.494 12.563 2.297 3.844 12.651 0.003 8.756 6.314

FIGURE 18 Comparison of Uncertainty values for 8
optimizers and 2 time‐series forecasting methods.
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NN neural networks
NRMSE normalized root mean square error
NWP numerical weather prediction
p auto‐regressive
PACF partial auto‐correlation function
PSO‐ELM particle swarm optimization‐extreme learn-

ing machine
q moving average
RES renewable energy sources
RMSE root mean square error
RNN recurrent neural networks
SARIMA seasonal auto‐regressive integrated mov-

ing average
SPV solar photovoltaic
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