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Abstract

Statistical techniques for detecting influential data are well developed and
commonly used in linear regression, and to some extent in linear mixed-effects
models. However, even though the application of multivariate survival models
is widely done, the development of diagnostic tools for the models has been
scarce. In this paper, we extend the martingale-based residuals and leverage
commonly used in univariate survival regression to derive influence statistics
for the multivariate survival model. The performance of the proposed influence
statistics is illustrated with simulations, and the tools are applied to an analysis
of child clustered survival data to identify influential clusters of observations
and their effects on the estimate of fixed-effect coefficients.
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1 Introduction

Statistical inference for multivariate Cox proportional hazard model involves use of

mixed regression effects, in order to account for dependence between event-times that

are clustered into groups, such as families, communities, study sites, or recurrent

events (Guo et al., 1994). In such clustered contexts, the independence assumptions

for observed survival times that are commonly used for inference in the Cox regres-

sion are violated. The observational units from the same cluster share the unobserved

covariates, hence the need to use multivariate methods for such survival data. A com-

mon model for correlated data is the so called shared frailty model, which introduces

dependence in the model by having observations in the same cluster sharing the un-

observed random (or frailty) effects (Ripatti & Palmgren, 2000; Manda, 2011).

The estimation methods for the multivariate survival data models are well-established.

For example, this is done using penalised fixed effects partial conditional likelihood

(Ripatti & Palmgren, 2000; Parner, 2001), marginal likelihood (Manda, 2001; Aalen

et al., 2004), L1 penalised (lasso) method (Goeman, 2010), and profile likelihood (Xu

et al., 2009). These are now implemented in several statistical computer packages

that either use standard Cox regression software or numerical technique packages,

such as Newton-Raphson iterations, EM algorithm, Monte Carlo EM algorithm, and

Bayesian MCMC (Ripatti et al., 2002; Manda, 2011). The available software pro-

grammes for fitting multivariate models include the R pakages: coxph (Fox, 2002),

phmm (Donohue & Xu, 2010), and lme4 (Bates, 2010). As is the case with other

statistical models, for instance linear and linear mixed models, it is critical to under-

take residual analysis and diagnosis assessment to identify observations that might

exert excessive influence on parameter estimates from the fitted multivariate survival

model, resulting into biased estimates (Xiang et al., 2002; Zewotir, 2008).

However, development and application of diagnostic statistics for multivariate

survival data models have been lagging behind the application of the models. With
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survival data, influence statistics are only available for univariate survival model

(Therneau et al., 1990), or for single observations even when a multivariate survival

model is fitted to clustered data, and usually with methods that are not analytic but

numerically implemented (Tang et al., 2017). This paper concerns the derivation of a

detection statistic for influential clusters of observations that could have impact on the

estimation of parameters in multivariate survival data models. The performance of

the proposed influence statistic is evaluated using simulation studies, and with further

application on real child survival data from Malawi. The next section presents the

multivariate survival model and reviews influence measures developed for univariate

survival data. The third section develops the influence statistics for multivariate

survival data model. This is followed by a simulation study and the application. The

paper ends with conclusion of findings.

2 The model and review of influence statistics

2.1 Multivariate survival model

Suppose there are M distinct clusters, each with ni units, i = 1,2, ...,M . Let T

denotes a random survival time, with tij its observed value for j-th unit in i-th

cluster, j = 1,2, ...,ni, and ti a set of all survival times in cluster i, whereas t be total

of all the observed survival times. Further, let Xij denotes a p× 1 covariate vector

for unit ij and β the corresponding vector of fixed effects. Also, we have Zi as a

q×1 vector of cluster-level covariates, that are associated with bi random coefficient

vector consisting of both random intercepts and random slopes. The random effect

vectors are usually normally distributed, that is, bi ∼MVN(0,D), where D is q× q

diagonal covariance matrix. The q random effects are a subset of the p fixed effects.

Furthermore, let δij have value of 1 or 0 depending on whether or not the ij-th unit

experienced the event. Conditional on random effects bi, the hazard of failure for

unit j in cluster i, denoted λij(t|β,bi) (Abrahantes & Burzykowski, 2005; Xu et al.,
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2009), is given by:

λij(t|β,bi) = λ0(t)exp(X
T
ijβ+ZTi bi), (1)

where λ0(t) is baseline hazard function.

The primary goal of model (1) is to estimate the effects of covariates on the risks

for failure times (Guo et al., 1994). This can be done through constructing marginal

likelihood, where the focus is on fixed effects and the dependence among failure times

is treated as a nuisance, normally through integrating out the random effects (Ri-

patti & Palmgren, 2000; Manda, 2001). However, in large datasets, the marginal

likelihood approach becomes computationally demanding, as the integrals are usu-

ally not in closed forms, such that numerical integration is engaged and also each

group’s random effect has to be separately integrated out from the likelihood (Guo

et al., 1994; Manda, 2001). An alternative method is to use joint partial likelihood

estimation, which considers a product of conditional likelihood function and the like-

lihood for random effects, and solve for the maximum likelihood estimators for the

fixed and random effects simulateously (Ripatti & Palmgren, 2000). In this paper,

we used the joint partial likelihood approach.

Suppose that in cluster i there are ri failure event-times, each denoted by dij ,

so that ri =
∑ni
j=1 dij . Using ideas developed in the original Cox model (Cox, 1992),

let ti1 < ti2 < ... < tiri be the ri ordered observed event-times in cluster i, with cor-

responding covariates Xi1,Xi2, ...,Xiri . Also, let R(til), l = 1,2, ..., ri be the set of

individuals who are at risk of failure at time tij , called the risk set. For simplicity,

in this paper we restrict the multivariate survival model (1) to its special case, called

shared frailty model with fixed covariates, and thus we let Zi = {1}, in which case

bi ∼N(0,D) (Ripatti & Palmgren, 2000). Then, the contribution to the full partial

likelihood by observations in cluster i is given by:

Li(β,bi|ti,Xij) =
ri∏
l=1

[
exp(XT

il β+ bi)∑
s∈R(til) exp(X

T
isβ+ bi)

]. (2)
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The full joint partial likelihood of the data and random effects is the product of the

conditional likelihood (2) over all clusters and with the likelihood function of the

random effects, f(bi). This is given by:

L(β,b|t,X) =
M∏
i=1

ni∏
j=1

[
exp(XT

il β+ bi)∑
s∈R(til) exp(X

T
isβ+ bi)

]× (2π)
−n
2 |D|

−n
2 exp(−1

2
bTD−1b).

(3)

The full joint partial log-likelihood function is:

l(β,b|t,X) =

M∑
i=1

ni∑
j=1

[(XT
ijβ+ bi)− ln

∑
s∈R(til)

exp(XT
isβ+ bi)]+ ln[(2π)

−n
2 |D|

−n
2 ]− 1

2
bT D−1b. (4)

The score functions for β and b follow from the log-likelihood (4) and are, respectively,

given by:

Uβ =
∂l(β,b)

∂β
=

ni∑
j=1

M∑
i=1

[Xij−
∑
s∈R(til)Xisexp(X

T
isβ+ bi)∑

s∈R(til) exp(X
T
isβ+ bi)

], (5)

and

Ub =
∂l(β,b)

∂b
=

ni∑
j=1

M∑
i=1

[1−
∑
s∈R(til)Ziexp(X

T
isβ+ bi)∑

s∈R(til) exp(X
T
isβ+ bi)

]−bTD−1. (6)

The estimates for β and bi are found by solving the score functions (5) and (6)

simultaneously, when they are equated to zero. The values of estimates are computed

through numerical algorithms, such as Newton-Raphson method, since the equations

(5) and (6) are not in closed form (Ripatti & Palmgren, 2000).

2.2 Influence statistics for univariate survival model

Suppose θ̂ is a set of maximum likelihood estimators of model parameters θ, with

θ consisting of β, bi, D, and other parameters, and let θ̂(ij) denotes the estimator

of θ obtained from the data without j-th observation from i-th cluster. Then, the

influence of j-th data record from i-th cluster on the estimator θ̂ is defined as the

difference in estimators, ∆θ̂ij = θ̂− θ̂(ij) (Das & Gogoi, 2015; Cain & Lange, 1984).

This can be obtained for each observation by manually deleting the observation from

data and obtain the difference in parameter estimates upon refitting the model to the
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reduced dataset. Also, for nonlinear models that use iteratave estimation techniques,

∆θ̂ij can be manually obtained using one-step iterative approximation, upon remov-

ing a data record. But, these approaches are computationally demanding, since the

model has to be refitted several times. In that regard, efficient model post-estimation

influence statistics that result from fitting the model to data once are developed and

made available in literature.

With generalised linear and linear mixed-effects models, where parameter esti-

mators θ̂ are obtained analytically, influence measure ∆θ̂ij is a function of model’s

basic building blocks, i.e. Studentized residuals, error contrast matrix, and inverse

of covariance matrix of response variable (Zewotir & Galpin, 2005). In such models,

∆θ̂ij is either computed analytically using methods like Cook’s distance (Cook, 1977)

or it is approximated for one-step ML estimation using updating formulae techniques

(Zewotir, 2008; Nobre & Singer, 2011). Others use first-order Taylor series expansion

on score function around θ̂(ij) (Xiang et al., 2002). For Cox proportional hazard (PH)

model, the analytic influence techniques such as Cook’s distance do not apply, since

subjects enter the likelihood as members of various risk sets, such that deleting a

data point affects a number of these risk sets other than one (Cox, 1992).

Therefore, various approximations for influence statistics have been developed for

univariate survival data. One technique is through first-order Taylor series expansion

about a unity weight $ij of an observation in score function, where $ij = 0 for a

subject that has been removed from data and$ij = 1 otherwise (Cain & Lange, 1984).

The weights $ij of observations result into a weighted partial likelihood L(β($ij)),

as well as weighted score function Uβ($ij) for the model. Subsequently, the weighted

ML estimators ˆβ($ij) become β̂(1) = β̂ or β̂(0) = β̂(ij), where β̂(ij) is the estimator

obtained upon dropping ij-th case in the dataset, and β̂ the one obtained from full

data. Then, using first-order Taylor series expansion about $ij = 1, an estimate of

influence is given by ∆β̂ij = β̂− β̂(ij) = ∂β̂/∂$ij , which is obtained by solving for
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∂β̂/∂$ij when the score function is equated to zero (Cain & Lange, 1984), as follows:

(∂U/∂β̂)(∂β̂/∂$ij) +∂U/∂$ij = 0

∴ ∂β̂/∂$ij = (−∂U/∂β̂)−1∂U/∂$ij .

(7)

where the likelihood for univariate model is: L(β|t,X) =
∏
r[

exp(XT
ijβ)∑

s∈R(til)
$ijexp(X

T
isβ)

]$ij ,

and the weighted score function is first derivative of logarithm of L(β|t,X) with re-

spect to β. The approach in equation (7) is also referred to as infinitesimal jackknife

measure of influence of a data record on β̂ (Therneau et al., 1990).

A related method is the score residual, which is a product of a subject’s residual

and its extremity in covariate value (Therneau et al., 1990). It is given by:

vij(β̂) =
∫ ∞
0

[Xijp(t)− X̄p(β̂, t)]dm(tij), (8)

where m(tij) =N(tij)−
∫ tij
0 Yij(t)exp(X

T
ij(t)β̂)dĤ0(t) is residual of ij-th unit at time

tij , also called martingale residual, which measures excess number of events; and p

denotes number of covariates; while X̄p =
∑
Xijpexp(X

T
ij β̂)∑

s∈R(til)
exp(XT

isβ̂)
is the weighted average

of covariate Xijp over R(til) risk sets. The measure (8) is used to estimate sensitivity

of log-likelihood to infinitesimal displacements of β̂. Using a weighted partial likeli-

hood, Therneau et al. (1990) showed that the residual (8) is similar to the jackknife

measure (7) and that ∂U/∂$ij = (vij1,vij2, ...,vijp)
T .

The third method is the augmented or perturbed regression model (Storer &

Crowley, 1985; Therneau et al., 1990), which is a one-step update in θ̂ when a single

indicator covariate is added to the model. The added covariate has value 1 for ij-th

data point and 0 for all other observations (Therneau et al., 1990). The augmented

model influence statistic for univariate survival model (Storer & Crowley, 1985) is
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given by:

β̂1 = β̂0 + I−1(β̂0)l̇(β̂0)

⇒ β̂1− β̂0 = I−1(β̂0)l̇(β̂0)

=
−I−1(β̂0)ξij

πij− ξTijI−1(β̂0)ξij
m(tij)

(9)

wherem(tij) is the martingale residual defined along with equation (8), ξijp = Ĥ0(Xijp−

X̄p(β̂))exp(XT
ij β̂) represents a column vector from matrix X corresponding to 1′s,

πij = Ĥ0(t)(1− c̄ij(β̂))exp(β̂TXT
ij) is the diagonal identity matrix with entries 1

throughout, except for the subject that has been removed, which has 0 entry, and cij

is the indicator covariate that has been added to the dataset (Storer & Crowley, 1985).

These methods are related, since they are a function of subject’s leverage and

residual measures. Moreover, Therneau et al. (1990) showed that the three methods

yield similar estimates of influence, but the score residual (8) has a number of ad-

vantages, including simplicity of interpretation. For this reason, we applied the score

residual approach to derive the influence statistic for the multivariate survival model

(1).

3 Proposed influence statistic for multivariate sur-

vival model

We notice from Section 2.1 that the estimation of β for model (1) is completed us-

ing numerical methods. This means that effect of dropping a cluster on β̂ can be

approximated manually by one-step Newton-Raphson process, through refitting the

model to the data for each removal of a cluster. However, this is time-consuming,

because it requires refitting the model for each removal of a cluster. We thus propose

an extension of the score residual (8) (Therneau et al., 1990), that results from fit-

ting the model to data once, to study influence of clusters on fixed effects estimators

from model (1). As for estimates of random effects b, model (1) assumes that bi are
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mutually independent between clusters, hence deleting a cluster will not affect the es-

timator b̂ for the other clusters. This has been shown for linear mixed-effects models

using first-order Taylor-series expansion on score function (Xiang et al., 2002). This

study therefore focuses on deriving group influence statistic for fixed effect estimators

β̂, that depend on observations from all clusters.

To study influence for grouped observations, we first define a leverage and a

residual for a single unit ij at a given time tij . The score process (5) derived for the

model (1) is essentially a row vector of differences between the individual ij covariate

value and the average for the covariates of all individuals at risk at time tij . In

essence, this is analogous to leverage in linear models (Sarkar et al., 2011; Zhang,

2016). For individual ij, we let rij = exp(XT
ij β̂ + b̂i) be a risk score of ij-th unit.

Then, at the il-th event time til, the Schoenfeld residual (or leverage) (Schoenfeld,

1982), denoted by wil, is given by:

wil =Xil−
∑
s∈R(til) risXis∑
s∈R(til) ris

,

=Xil− X̄(β̂, b̂i, til),

(10)

where ris = exp(XT
isβ̂ + b̂i) is the risk score for unit ij in the risk set R(til), and

Xil is the covariate vector of the individual experiencing the event at time til. Fur-

ther, β̂ and b̂i are, respectively, fixed and random effects terms estimated from the

log-likelihood (4). In addition, X̄(.) is a vector whose elements are the conditional

weighted means of the covariates values for the individuals at risk of event at time

tij . Hence, the dimension of (10) is 1×p vector corresponding to each ij-th unit in

the risk set.

The quantity (10) is also a residual proposed by Schoenfeld (1982) that sums

the score processes (5) of units with failure time at each unique event, assuming no

ties. Denote Wil as leverages wil for all nl data points in the risk set and p co-

variates, then Wil will be nl× p matrix. Furthermore, wil ∈ [−∞,+∞], with mean
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E(wil) = E(Xil)−E[X̄(β̂, b̂i, til)] = E(Xil)−E(Xil) = 0. The value 0 of wil corre-

sponds to observations with intermediate covariates values and are thus close to the

weighted average for covariate Xil, and hence their leverage on the fitted survival

curve is negligible. While large negative and positive values of wil correspond to ob-

servations that have unusual covariates values, that are far from the weighted average

of Xil, and hence they have high leverage on the fitted survival curve (Zhang, 2016).

A residual, on the other hand, means the difference between the observed and

fitted outcome. The smaller this is, the better the model’s fit for the observation of

interest (Aguinis et al., 2013; Zhang, 2016). For survival data, one of the residuals

is the martingale, defined along equation (8), which is an estimate of difference in

counts of observed and estimated events at each observation time (Therneau et al.,

1990). Extending the univariate martingale residual to multivariate survival data

model (1), we obtain an nl× 1 stacked vector of residuals for units in the risk set

R(til) given by:

m(til) =N(til)− Λ̂0(t)exp(X
T
il β̂+ b̂i)

⇒



m(t11)

...

m(t1n1)

m(t21)

...

m(t2n2)

...

m(tM1)

...

m(tMnM
)



=



N(t11)− Λ̂0(t)exp(X
T
11β̂+ b̂1)

...

N(t1n1)− Λ̂0(t)exp(X
T
1n1 β̂+ b̂1)

N(t21)− Λ̂0(t)exp(X
T
21β̂+ b̂2)

...

N(t2n2)− Λ̂0(t)exp(X
T
2n2 β̂+ b̂2)

...

N(tM1)− Λ̂0(t)exp(X
T
M1β̂+ b̂M )

...

N(tMnM
)− Λ̂0(t)exp(X

T
MnM

β̂+ b̂M )



.
(11)

where Λ̂0(t) =
∫ t
−∞λ0(h)dh is the estimated cumulative baseline hazard. The residual

(11) has values in the range (−∞,1], becauseN(til) is either 0 or 1 and Λ̂0(t)exp(X
T
il β̂+
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b̂i) has values in the interval [0,∞). In addition, E(m(til)) =E(N(til))−E(Λ̂0(t)exp(X
T
il β̂+

b̂i)) = E(N(til))−E(N(til)) = 0, since the off-minus quantity in (11) is the average

number of events.

Both leverage quantity (10) and residual (11) have correlated values for subjects

that are in the same cluster due to shared random effect, but independent values

between clusters. Due to this property, we utilise the independence of clusters to

derive an influence statistic for detecting impact of dropping a cluster on the estimate

of β. Influence of an observation on regression parameter estimates is a product of its

outlier and leverage values. Many studies, for example (Cook, 1977) for linear models,

(Zewotir & Galpin, 2005) for linear mixed-effects models, (Therneau et al., 1990) for

univariate survival models, have shown this. Thus, in deriving influence statistics,

appropriate case-deletion residual and leverage measures need to be defined first.

Using the residual defined in (11) and leverage in (10) for model (1), we propose an

analogue of the score residual (8) (Therneau et al., 1990) to measure influence of a

cluster on β̂ for the model (1) as a vector product of values of vector (11) and those of

columns of matrix (10) for subjects under risk set R(til) in the same cluster i, given

by:

vi(β̂) = [m(til)]
T ×Wil. (12)

The extended score residual (12) is an ((1×n1)×(n1×p)...(1×nM )×(nM×p)) =

M ×p matrix, as the value v1(β̂) for first cluster will be a (1×n1)× (n1×p) = 1×p

vector reflecting influence of first cluster on each β̂ for p covariates, while v2(β̂) for

second cluster will be a (1×n2)× (n2× p) = 1× p vector, and so forth. The mea-

sure (12) will quantify joint influence of observations in a cluster on the estimate β̂,

since each of its components is a measure of joint extremity of cluster observations

in terms of survival outcomes, as well as in covariates’ values off the fitted survival

curve. Since Wil in (12) has elements wil ∈ [−∞,+∞] and m(til) ∈ (−∞,1], both

with mean 0, then the proposed influence statistic (12) is expected to have mean 0.
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Large positive value of the proposed statistic (12) means a cluster has majority of

subjects that have high positive values in wil that coincide with high positive values in

m(til), or large negative values in wil coinciding with large negative values in m(til).

Technically, this means the cluster has majority of large positive leverage subjects

that experienced more events (i.e. failed too early) than predicted by the model or

has most subjects with large negative leverage that survived longer than predicted

by the model. Hence, such a cluster requires further investigation.

On the other hand, large negative value of (12) implies that a cluster has majority

of subjects that have large positive leverage wil that coincide with large negative

values of the residual m(til) or viceversa. In other words, this implies that the cluster

has majority of large positive leverage observations that experienced fewer events

(i.e. survived longer) than predicted by the model or has majority of large negative

leverage subjects that failed too early than predicted by the model. Again, such

a cluster will need further investigation. The values of (12) that are close to zero

imply most subjects of the corresponding clusters have either leverage close to zero or

residual close to zero, hence such clusters have no issues for follow up investigation.

To decide on influential groups, some studies in linear mixed-effects models have

used a cutoff of ±2/
√
M for the values of the influence statistic (Belsley et al., 2005;

Nieuwenhuis et al., 2012). However, graphical methods or relative comparisons of

influence values for groups are commonly used (Zewotir & Galpin, 2007). We applied

graphical techniques in the next two sections to examine influential clusters to the

fitted survival mixed models using the proposed influence statistic (12).

4 Simulation study

In order to evaluate performance of the proposed influence statistic in equation (12),

a simulation study was carried out. A shared frailty model given below was as-

sumed. The covariates X1 ∼ Bernoulli(0.7) and X2 ∼ N(0,1), and random effects

bi ∼N(0,0.42) were used. The event-time T ∼Exp(1) was generated from the model
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below using cumulative hazard inversion method (Brilleman et al., 2018):

λij(t|bj ,Xij) = λ0(t)exp(β1Xij1 +β2Xij2 + bi), (13)

where λ0(t) ∼ Weibull(0.1,1), i.e. λ0(t) = cdtd−1, with c = 0.1 and d = 1 mak-

ing λ0(t) = 0.1; β1 = 0.5 and β2 = 1. The inversion method derived tij from t∗ij =

Λ−1ij (−log(S(tij))), where S(tij)∼ Unif(0,1) and hence Λij(t) =−log(Unif(0,1))∼

Exp(1). The random censoring data were generated from Bernoulli(0.4), based on

literature (Manda & Meyer, 2005). The R package simsurv (Moriña & Navarro,

2014; Brilleman et al., 2018) was used to set up and draw data from the exponential

distribution. Samples of size 10, 20, and 50 clusters each were generated. The cluster

sizes were set at 80 and 500. This helped to assess effect of both sample size per

cluster and number of clusters per dataset on performance of the statistic (12). The

sampling in each case was replicated 100 and 1000 times.

The examination process involved simulating regular data set as per model (13),

and then perturbing data in first two clusters in each case (Zewotir & Galpin, 2006).

The first perturbations involved β1 = 1.8,2.7 followed by β2 = 2.0,2.5, leaving the

rest parameters unchanged each time. Then, perturbing jointly β1 = 1.8,2.7 and

β2 = 2.0,2.5, leaving bi intact. The success of the proposed influence statistic (12),

in picking cluster 1 or 2 as influential to β̂1 or β̂2 was evaluated using proportion of

correct identification of the two clusters among all 100 or 1000 simulations given a

cutoff (Xiang et al., 2002). Upon fitting model (13) to the data, the proposed statistic

(12) was computed.

4.1 Results of simulation study

We inspected performance of the derived influence statistic prior to its detailed eval-

uation. The findings in Figure 1 indicate that the proposed statistic had detected

influence of the first two clusters on β̂1 and β̂2, at varying cutoffs. The values of the

statistic were outstandingly higher in the first two clusters, where the coefficients were
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perturbed, than in the other clusters. This study therefore assessed success rates of

the proposed influence statistic under each simulation scenario using different cutoffs

that were informed by prior graphical inspections.

(a) Scatter plots of influence statistic vs clus-
ter id for a case of data with perturbed
β2 = 2.0 in 2 of 50-clusters sample, each with
80 subjects and with 100 replications

(b) Scatter plots of influence statistic vs clus-
ter id for a case of data with perturbed
β1 = 2.7 in 2 of 50-clusters sample, each with
500 subjects and with 1000 replications

Figure 1: Plots of cluster influence on β̂1 or β̂2 under different simulations. Source:
Researcher

Table 1 provides success rates of the proposed influence statistic in detecting im-

pact of cluster 1 or 2 on β̂1 over 100 and 1000 simulations. The results show that the

statistic correctly identified the two influential clusters with high percentage, when

the perturbations involved β1 or β1 and β2 jointly. The rates for influence of cluster 1

or 2 on β̂1 were relatively low, when it was β2 that was twirked. The results also show

that the sensitivity of the proposed residual improved with cluster sample size, such

that the success rates were as high as 100% where cluster size was 500 and lower with

varying degrees when cluster size was 80 subjects. In addition, performance of the

statistic improved with size of perturbed parameter value, and this was noticeable

where cluster sample sizes were low.

It is also shown that performance of the influence statistic was not different be-

tween 100 and 1000 simulation sizes, when cluster sample size was 500 subjects. But

the success rates generally slumped in 1000 replications, when cluster size was 80. Fi-

nally, the results show that the influence statistic was equally effective across different

number of clusters per dataset.
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Table 1: Percentage of simulations1 that identified cluster 1 or 2 as influential
to β̂1

100 replicates 1000 replicates
M nj β1 β2 %Cluster1 %Cluster2 %Cluster1 %Cluster2

10 80 1.8 1 84 87 60.9 59.4
80 2.7 1 100 100 99.3 99.2

10 500 1.8 1 100 100 100 100
500 2.7 1 100 100 100 100

20 80 1.8 1 74 75 46.4 44.9
80 2.7 1 99 99 95.3 95.1

20 500 1.8 1 100 100 100 100
500 2.7 1 100 100 100 100

50 80 1.8 1 34 31 10.7 11.8
80 2.7 1 75 75 52.7 55.3

50 500 1.8 1 100 100 100 100
500 2.7 1 100 100 100 100

10 80 0.5 2.0 19 22 42 49
80 0.5 2.5 36 38 32.3 36.3

10 500 0.5 2.0 27 29 13.1 15.1
500 0.5 2.5 47 39 41.1 38.5

20 80 0.5 2.0 27 25 10.6 13.1
80 0.5 2.5 27 31 36.9 40.4

20 500 0.5 2.0 29 30 18.9 20.4
500 0.5 2.5 60 51 43.9 45

50 80 0.5 2.0 30 29 13.2 12.9
80 0.5 2.5 60 54 43.7 42.8

50 500 0.5 2.0 30 28 23.5 22.1
500 0.5 2.5 63 62 47.6 48.6

10 80 1.8 2.0 69 77 57.5 59
80 2.7 2.5 99 96 84.6 83

10 500 1.8 2.0 100 100 100 100
500 2.7 2.5 100 100 100 100

20 80 1.8 2.0 70 69 43.8 46.2
80 2.7 2.5 92 92 76.6 74.7

20 500 1.8 2.0 100 100 100 100
500 2.7 2.5 100 100 100 100

50 80 1.8 2.0 67 51 45.8 44.9
80 2.7 2.5 86 87 71.9 70.6

50 500 1.8 2.0 100 100 100 100
500 2.7 2.5 100 100 100 100

1 No perturbations were done to data in other clusters than 1 and 2, in those other
clusters model (18) had β1 = 0.5, β2 = 1.

The results in Table 2 are for success rates over 100 and 1000 replications for the

proposed influence statistic in identifying cluster 1 or 2 as having influence on β̂2.
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The findings show that the proposed influence statistic highly detected impact of first

two clusters on β̂2, when it was β2 or jointly β2 and β1 that was perturbed during

data generation. The success rates of the statistic in detecting influence of cluster 1

or 2 on β̂2 were low when it was β1 that was perturbed.

As was the case with β̂1, the success rates of the statistic in sensing impact of

cluster 1 or 2 on β̂2 improved with cluster size, as the rates were consitently high for

cluster sizes of 500 and low with cluster sizes of 80 subjects. Again, the performance

of the statistic improved with size of perturbed parameter value, a situation that was

also noticeable in low cluster sizes like before. Likewise, there was no difference in

performance of the statistic between 100 and 1000 simulation sizes, this was much

apparent in large cluster sample sizes. Lastly, it is also shown that the influence

statistic performed equally across different number of clusters per sample.
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Table 2: Percentage of simulations1 that identified cluster 1 or 2 as influential
to β̂2

100 replicates 1000 replicates
M nj β1 β2 %Cluster1 %Cluster2 %Cluster1 %Cluster2

10 80 1.8 1 2 2 0.9 0.7
80 2.7 1 4 4 1.2 1.3

10 500 1.8 1 0 0 0 0
500 2.7 1 0 0 2.6 2.3

20 80 1.8 1 14 12 4.8 5.5
80 2.7 1 0.8 0.6 4.6 4.6

20 500 1.8 1 0.9 1.2 1.3 1.4
500 2.7 1 1 0.8 2 1.2

50 80 1.8 1 34 40 13.7 14.8
80 2.7 1 34 33 19.6 20.0

50 500 1.8 1 26 18 13.4 11
500 2.7 1 18 14 8.5 7.4

10 80 0.5 2.0 94 97 93.8 93.5
80 0.5 2.5 98 100 98.5 97.9

10 500 0.5 2.0 100 100 100 100
500 0.5 2.5 100 100 100 100

20 80 0.5 2.0 98 98 93.4 92.7
80 0.5 2.5 100 100 97.7 97.4

20 500 0.5 2.0 100 100 100 100
500 0.5 2.5 100 100 100 100

50 80 0.5 2.0 99 97 94.4 94.6
80 0.5 2.5 100 100 97.3 97.6

50 500 0.5 2.0 100 100 100 100
500 0.5 2.5 100 100 100 100

10 80 1.8 2.0 72 77 39.1 42.5
80 2.7 2.5 99 92 81.6 81.3

10 500 1.8 2.0 100 100 100 100
500 2.7 2.5 100 100 100 100

20 80 1.8 2.0 64 73 46.7 45
80 2.7 2.5 88 81 65.2 63.7

20 500 1.8 2.0 100 100 100 100
500 2.7 2.5 100 100 100 100

50 80 1.8 2.0 59 53 43.4 43.4
80 2.7 2.5 78 74 63.6 61.5

50 500 1.8 2.0 100 100 99.9 99.8
500 2.7 2.5 100 100 100 100

1 No perturbations were done to data in other clusters than 1 and 2, in those other
clusters model (18) had β1 = 0.5, β2 = 1.
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5 Application to clustered survival data fromMalawi

We applied the proposed influence statistic on child survival data that were collected

as part of 2015-16 Malawi Demographic and Health Survey (MDHS) data. Malawi is

a country in south-eastern Africa that borders Tanzania to the north, Zambia to the

west, and Mozambique to its east, south, and west. The country is divided into 28

administrative districts, with a total population of just over 17 million people (Malawi

National Statistical Office (NSO), 2019). The MDHS was conducted between 19 Oc-

tober 2015 and 18 February 2016 and it collected child survival data from women

respondents and caregivers aged 15-49 years, who provided birth histories. The sur-

vey used two-stage stratified sampling design, with emuneration areas as primarily

sampling units and households as secondary units (Malawi National Statistical Office

(NSO) & ICF, 2017). We analyse mortality data for 17,286 children who were born

within the last 5 years of the survey. The data are available at www.DHSprogram.com.

The analysis used district’s rural and urban strata as clusters, totalling to 56

clusters. Child birth order and sex were used as predictors of child mortality, based

on findings from previous studies (Manda, 1999). We used death of a child from any

cause before 60 months of age as event of interest and age-at-death in months or

censoring point as event-time. We transformed into random uniform (0,1) values all

zero ages-at-death to reflect proportion of month-days for the event-time. There were

5% of children who experienced the event of death. We censored all children who

were still alive during the survey or who had survived up to 60 months. We fitted the

Cox frailty model to the data and computed values of the proposed influence statistic

for each of the 56 clusters. The fitted frailty model is:

λij(age) = λ0(age)exp(−0.2127×Female−0.0085×Birthorder+ cluster). (14)

The model results showed that female children had significantly lower risk of

death than their male counterparts (p-value = 0.0024). Studies attribute this trend
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to genetic and biological makeup as well as preconception environments that put male

babies to higher risk of suffering from diseases than female children (Pongou, 2013).

While children with higher birth order had slight reduced risk of death, but this was

not statistically significant (p-value = 0.6100). Other studies have observed that the

relationship between birth order and logarithm of child mortality is quadratic and

not linear (Manda, 1999). Thus, the insignificant result for birth order could reflect

the form in which the covariate was entered in the survival model. The variance

of cluster random-effects was 0.0465 and it was significantly different from zero (p-

value = 0.003). We proceeded to analyse influence of each cluster on effect of sex

on child mortality and ignored effect of birth order due to its insignificance in the

model. We used the national under-five mortality rate of 63 deaths per 1000 live

births (Malawi National Statistical Office (NSO) & ICF, 2017) as baseline hazard

when computing influence values. Upon identifying the influential clusters to the

model, we analysed their impact on regression parameter estimates by re-fitting the

model to data without the detected clusters and observe the changes in parameter

estimates.

5.1 Application results

The results in Figure 2 show that, at a cutoff of ±2, the proposed influence statistic

detected Kasungu rural cluster as having outright positive influence on effect of fe-

male gender on child mortality. This means that Kasungu rural cluster had majority

of children with high positive leverage on estimated mortality that had also died too

early than predicted by the model, such that dropping this cluster from the model

would cause a significant change on estimated effect of female gender on child mortal-

ity. It may also imply this cluster had majority of children with high negative leverage

on the mortality curve that had also survived longer than predicted by the model.

While Salima urban cluster was identified as having negative borderline influence on

effect of being female on child mortality. This implies that Salima urban cluster had

majority of children with high positive leverage on estimated mortality, who survived

longer than predicted by the model, such that removing the cluster would impact on
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estimated effect of female gender on child mortality. It may also mean the cluster had

majority of children with high negative leverage that died too early than predicted

by the model. Thus, the two clusters required further investigations.

Figure 2: Sub-district level estimates of the proposed influence statistic for effect of
female gender upon fitting a frailty Cox hazard regression model to Malawi child
survival data, 2015-16 MDHS. Source: Researcher

We performed further analyses to study impact of the idetified influential clusters

on regression coefficients. Table 3 shows results for model estimates using full Malawi

child survival dataset and the data without each of the two identified influential

clusters. The findings show that removal of Kasungu rural cluster from analysis

resulted in further reduction in hazard of death for female children by 0.0145. We

also noticed a reduction in p-value by 0.001. Thus, the survival model was better

off without data from Kasungu rural cluster. While dropping Salima urban cluster

increased the hazard of death in female children by 0.0014. The p-value also got

higher upon removing this cluster. This means that the data from Salima urban

cluster were required in the model. Removing both clusters from analysis resulted in
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reduction of hazard of death, but not as higher as when Kasungu rural cluster was

dropped alone. Thus, the effect of dropping the two clusters at the same time did

not add value to the estimation compared to dropping each one of them separately.

This was the case since Kasungu rural cluster had positive influence on effect of being

female on mortality, while Salima urban had negative influence. The standard errors

of the parameter estimates slightly increased in each case, implying that the original

estimates from full data were biased. The variance of random effects also got lower

in both cases. Further, the results vindicate the magnitude of influence of each of

the two clusters as reported by our proposed statistic in the previous paragraph. It

is shown in Table 3 that impact of Kasungu rural cluster on the estimate of effect of

female gender on mortality was so huge compared to that of Salima urban cluster.

Table 3: Estimates of effect of being female on mortality with and without Kasungu
rural or Salima urban clusters or both in the Malawi child survival dataset

Parameter Full dataWithout Kasungu rural (diff1)Without Salima urban (diff1)Without Both (diff1)

β̂ -0.2127 -0.2270 (0.0145) -0.2113 (-0.0014) -0.2256 (0.0130)
se(β̂) 0.0701 0.0710 (-0.0009) 0.0702 (-0.0001) 0.0711 (-0.0010)
p-value 0.0024 0.0014 (0.001) 0.0026 (-0.0002) 0.0015 (0.0009)
var(re) 0.0465 0.0443 (0.0021) 0.0462 (0.0003) 0.0440 (0.0025)

diff1 = estimate under full data - estimate from reduced data, se(β̂) is standard error of β̂, var(re)
is variance of random effects.

6 Conclusion

This paper has developed an influence statistic for analysing impact of a cluster of ob-

servations on regression coefficient estimates from multivariate survival model. This

was accomplished by extending the score residual that was available for univariate

survival data. A simulation study has shown that the proposed statistic is very ef-

fective in identifying influential clusters to the model’s fixed effect estimates. The

proposed statistic detects both direction and magnitude of influence of a cluster on

regression parameter estimates. Evaluation of the proposed statistic has shown that

its application requires no definitive cutoff, but relative comparisons of its values

suffice, with large positive or large negative values indicating clusters that require
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further investigation (Zewotir & Galpin, 2006).

For the identified influential clusters, one could investigate contribution of indi-

vidual units in making the clusters as such (Xiang et al., 2002; Zewotir & Galpin,

2006). We recommend such analyses for future research. Further, we recommend

that an analysis of multivariate survival data should be accompanied by assessment

of influential clusters to avoid having biased estimates and inaccurate conclusions.
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