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Highlights

e Seasonal factors significantly affected oxidative stress.
o Male body size is positively correlated to oxidative damage.

¢ Significant oxidative damage in males linked to exercised-induced oxidative
stress.

¢ Female reproductive strategies mediated by seasonal factors and
reproductive state.

¢ First mole-rat to demonstrate sex differences in exercise-induced oxidative
stress.

Abstract

Sub-lethal effects, such as oxidative stress, can be linked to various breeding and
thermophysiological strategies, which themselves can be linked to seasonal variability
in abiotic factors. In this study, we investigated the subterranean, social living Natal
mole-rat (Cryptomys hottentotus natalensis), which, unlike other social mole-rat
species, implements heterothermy seasonally in an attempt to avoid exercise-induced
hyperthermia and relies solely on behavioural reproductive suppression to maintain
reproductive skew in colonies. Subsequently, we investigated how oxidative stress
varied between season, sex and breeding status in Natal mole-rats. Oxidative markers

included total oxidant status (TOS measure of total peroxides present), total



antioxidant capacity (TAC), OSI (oxidative stress index) and malondialdehyde (MDA)
to measure oxidative stress. Breeding and non-breeding mole-rats of both sexes were
captured during the summer (wet season) and winter (dry season). Seasonal
environmental variables (air temperature, soil temperature and soil moisture) had a
significant effect on TOS, OSI| and MDA, where season affected each sex differently.
Unlike other social mole-rat species that use both physiological and behavioural
means of reproductive suppression, no oxidative costs to reproduction were present
in the Natal mole-rats. Males had significantly higher MDA than females, which was
most apparent in summer (wet season). We conclude that the significant oxidative
damage in males is a consequence of exercise-induced oxidative stress, exacerbated
by increased burrow humidities and poorer heat dissipation abilities as a function of
body mass. This study highlights the importance of both breeding and

thermophysiological strategies in affecting oxidative stress.
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1. Introduction

All mammals possess both behavioural and physiological adaptations that not only
allow for survival, but also reproduction in their respective habitat (Brommer, 2000;
Chainy et al., 2016; Dantas et al., 2021; Varpe, 2017; Withers et al., 2016). Abiotic
factors that mammals must adapt to, such as variation in ambient temperature or
resource availability can vary across seasons resulting in seasonal physiological and
behavioural changes. These physiological changes can occur in reproduction (Alagaili
et al., 2017; Hart et al., 2021a; Hart et al., 2020a), body condition (Scantlebury et al.,
2006; Yom-Tov and Geffen, 2011), body temperature (Riek et al., 2017), energetics
(Zelova et al., 2011) and thermoregulation (Moshkin et al., 2001), whereas behavioural
changes can include variation in activity profiles (Finn et al., 2022; Riek et al., 2017).
Consequently, mammals resort to physiological (Hart et al., 2019; Mitchell et al., 2002;
Schmidt-Nielsen et al., 1956; van Jaarsveld et al., 2021) and behavioural (Farsi et al.,
2020; Jacobs et al., 2020a) adaptations to mitigate these environmental stressors.
One of the most well-known physiological adaptations to an abiotic stressor is
the implementation of adaptive heterothermy in the Dromedary camel (Camelus
dromedaries) in response to heat and dehydration stress (Schmidt-Nielsen et al.,
1956). Heterothermy is one mechanism by which animals deal with variations in their
environment to avoid heat and water stress and for energy conservation (Giroud et al.,
2021; Giroud et al., 2020; Hetem et al., 2009; Morales et al., 2021; Oosthuizen et al.,
2021). A heterothermic response includes the facultative, reversible decrease in
metabolic rate (metabolic depression) and body temperature in response to the
environment (ambient temperature and/or reduced availability of energy resources)
(Lovegrove, 2000; McKechnie and Mzilikazi, 2011). It is generally accepted that
animals use long and deep bouts of heterothermy (hibernation) during winter/dry
period (i.e., low resource availability and increased cold stress) for energy
conservation and use short and shallow bouts of heterothermy in summer/wet period
(accompanied by high humidity) to avoid heat stress (hyperthermia) (Hetem et al.,
2009; Oosthuizen et al., 2021; Ozgul et al., 2010; Williams et al., 2012). Fitness
consequences of heterothermy may directly increase short-term survival and possible
future reproductive success (Desforges et al., 2021; Ozgul et al., 2010).
Heterothermy involves the process of metabolic depression (hypometabolism)

(Drew et al., 2004; Landes et al., 2020) and rewarming through either increased



metabolism or ambient rewarming, both of which vary in reactive oxygen species
production (Giroud et al., 2020). A lowered metabolic rate can reduce oxidative stress
(Frisard and Ravussin, 2006), whereas increased metabolism from very high oxygen
consumption or the return from hypometabolism has been observed to increase
oxidative stress markers (Hermes-Lima and Zenteno-Savin, 2002). Oxidative stress is
the overproduction of reactive oxygen species (ROS) (free radical production during
metabolism), where the reducing and oxidising balance (i.e., redox state) is disrupted
(Halliwell, 2007; Jacobs et al., 2021a; Sies, 2015; Speakman et al., 2015). ROS have
been shown to mediate other stressful processes in an animal's environment, from
reproduction to survival (Costantini, 2019; Dowling and Simmons, 2009; Viblanc et al.,
2018). Furthermore, at functional levels, ROS have essential physiological functions,
such as signal transduction (Chainy et al., 2016), oxygen sensing (Acker et al., 2006),
the immune system (initiator on the autoimmune response) (Vodjgani et al., 2020;
Yang et al.,, 2013), inflammatory response (Giordano, 2005), osmo-protective
signalling (Burg et al., 2007), regulation of gene expression (Turpaev, 2002) and
cellular functions (Droge, 2002). ROS becomes a problem when levels exceed the
levels for normal physiological function, which is a result of either the overproduction
of ROS or a compromised antioxidant system (generally referred to as oxidative
stress), which can result in damaging proteins, lipids, and DNA affecting survival and
reproduction (Costantini, 2008; Finkel and Holbrook, 2000; Sies, 1991). Since ROS
production is directly dependant on metabolism, ROS production is dependent on
resting metabolic rate (RMR), with an increase of RMR resulting in increased
production of ROS and thus increased oxidative stress (Frisard and Ravussin, 2006).
Consequently, the implementation of heterothermy, torpor and hibernation is mainly
devoid of oxidative stress, likely due to a reduction of RMR and thus reduced ROS
production, and could result in a net positive oxidative status (Orr et al., 2009).
Reproduction, as well as heterothermy, can also affect oxidative stress
(Agarwal et al., 2012; Costantini, 2016; Metcalfe and Monaghan, 2013). Oxidative
stress research regarding the cost to reproduction has garnered attention due its
contradictory results of no link or weak support for a life history trade-off (Metcalfe and
Monaghan, 2013). Hypotheses such as oxidative shielding (Blount et al., 2016; Viblanc
et al., 2018) and hormesis (Costantini, 2014; Oliveira et al., 2018) have been used to
explain contradictory findings of this oxidative stress cost trade-off, where several

experiments were flawed based on experimental setup (Costantini, 2016; Metcalfe and
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Monaghan, 2013; Speakman and Garratt, 2014). One major flaw included the artificial
manipulation of reproductive effort, where individuals were forced not to reproduce or
required an extra cost to the reproductive effort, which may not occur naturally
(Costantini, 2016). Importantly, individuals can set their limits on reproductive effort,
where body condition, hormonal profile, behaviour, food availability and glucocorticoid
concentration, can all influence reproduction (Costantini, 2014, 2016; Fischer et al.,
1995; Norris and Lopez, 2010; Novikov et al., 2015; Palmer, 2010), which is likely to
vary between and within species. From this, it has been suggested that social African
mole-rats are ideal candidates for investigating oxidative stress between reproductive
and non-reproductive individuals, as these animals circumvent most of these
complications (Jacobs et al., 2021a). This is largely due to their cooperative breeding
and a reproductive division of labour where a single reproductive female (RF) and one
to three of the largest males (RMs) monopolise reproduction within the colony (Bennett
and Faulkes, 2000; Burland et al., 2004). The remaining colony members (non-
reproductive males and females - NRM and NRF, respectively) are, however,
reproductively suppressed either physiologically (Bennett et al., 2018; Blecher et al.,
2020; Medger et al., 2019) or behaviourally (e.g., incest avoidance) (Bennett et al.,
1997; Bennett et al., 1996; Burda et al., 1990; Lutermann et al., 2013) or even the two
in unison (Bennett et al., 1996; Hart et al., 2022).

African mole-rats have been used as an ideal model family to investigate the
morphological, physiological (including heat-induced heterothermy) and biochemical
(including oxidative stress) adaptations to their unique subterranean lifestyle and the
associated constraints (Logan et al., 2020; Oosthuizen et al., 2021). Mole-rats live in
burrow systems with complex structures (Bennett and Faulkes, 2000; Sumbera, 2019;
Sumbera et al., 2008; Thomas et al., 2009; Thomas et al., 2016), which predisposes
them to intermittent hypoxic and hypercapnic conditions, high air humidity in the soll
and potential heat stress due to complications in heat dissipation and/or poor thermal
tolerance (Hart et al., 2021c; Roper et al., 2001; Sumbera, 2019; Wallace et al., 2021).
Furthermore, water-clogged soils from rain can result in even poorer gaseous
exchange, further exacerbating hypoxic and hypercapnic conditions (Arieli, 1979;
Burda et al., 2007; Holtze et al., 2018). Importantly, the excavation of tunnel systems
is energetically more expensive than aboveground exploration (Vleck, 1979), with
energy requirements of digging directly related to soil moisture and hardness

(Lovegrove, 1989; Thomas et al., 2009). These constraints imposed by the burrow
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system have resulted in African mole-rats displaying lower RMRs and low body
temperatures in comparison to other terrestrial rodent species (Bennett et al., 1994;
Bennett et al., 1992; Bennett et al., 1993a; Lovegrove, 1986; McGowan et al., 2020;
McNab, 1966). Furthermore, some African mole-rats may be more active during the
cooler periods of the day (often at night) to avoid exercise-induced hyperthermia in
their humid tunnel systems (Haupt et al., 2017; Sumbera, 2019).

Studies linking oxidative stress and reproduction in the African mole-rats family
have focused on species that use some form of physiological reproductive
suppression, namely, the Highveld (Cryptomys hottentous pretoriae), Damaraland
(Fukomys damarenesis) and naked (Heterocephalus glaber) mole-rat, that use some
form of physiological reproductive suppression (Jacobs et al., 2021a; Jacobs et al.,
2021b). Currently, no study has linked the implementation of heterothermy, heat stress
and oxidative stress in an African mole-rat species. As such, this study aimed to
address this dearth of knowledge by asking two critical questions. Firstly, is there a
blood plasma oxidative cost to reproduction in an aseasonal behavioural suppressed
social African mole-rat species with different seasonal climates? Secondly, is there an
oxidative consequence involved in the seasonal implementation of heterothermy used
to avoid hyperthermia in African mole-rat species? The Natal mole-rats (C. h.
natalensis) is an ideal species to address these questions as this species possesses
many unique behavioural and physiological differences compared to other social
African mole-rat species.

The Natal mole-rat, similar to other social mole-rats, shows a reproductive
division of labour (Bennett and Faulkes, 2000; Moolman et al., 1998; Oosthuizen et
al., 2008), but relies solely on behavioural reproductive suppression through incest
avoidance (Oosthuizen et al., 2008). Congruent in other Cryptomys hottentotus sp.
(Hart et al., 2020b; Malherbe et al., 2003; Spinks et al., 1999; Spinks et al., 1997), the
Natal mole-rat is an induced ovulator (Jackson and Bennett, 2005), which breed
throughout the year (aseasonal breeder) (Oosthuizen et al., 2008). A specific gestation
length for this species is missing, however, the closely related Highveld mole-rat has
a gestation period of 63-66 days, where offspring are weaned after 33 days (Bennett
and Faulkes, 2000; Malherbe et al., 2003). This duration suggests 3-4 litters are
possible per year. Interestingly, no difference in activity is observed between
reproductive and non-reproductive individuals, suggesting more equal contributions to

burrow maintenance and other cooperative behaviours (Finn et al., 2022). This is in
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contrast to the Damaraland mole-rat, where reproductive individuals are less active
than non-reproductive individuals (Francioli et al.,, 2020; Houslay et al., 2020;
Oosthuizen and Bennett, 2015). Additionally, the Natal mole-rat is unique in that they
demonstrate heterothermy in the wild (Boyles et al., 2012; Oosthuizen et al., 2021).
Both the implementation of heterothermy and the reduction of activity has been
hypothesised to prevent hyperthermia (even from exercise),_while digging during
periods of increased temperature and humidity in the burrow system (Hart et al.,
2021c; Oosthuizen et al., 2021). Of all the social mole-rat species, the Natal mole-rat
inhabits the most mesic and highest rainfall (Hart et al. 2022b in press), resulting in
increased soil moisture and even water logged soils during certain times of the year
(Finn, pers. obs/comm.). This increase may result in even higher hypoxic, hypercapnic
and humid conditions of their burrow systems (Burda et al., 2007), but burrow
conditions in the Natal mole-rat has not been investigated. A recent study on the
burrow conditions of the naked mole-rat, which inhabit the dry and arid regions of
Ethiopia and Kenya, have revealed burrow temperatures and humidities ranging from
24.6 - 48.8°C and 31.2- 89.7%, respectively (Holtze et al., 2018). Unsurprisingly, the
humidity ranges experienced by naked mole-rats within their tunnel systems was
vastly higher than those at the surface (6.0 — 42.6 %) (Holtze et al., 2018). Since, the
Natal mole-rat lives in a more mesic environment, one could predict that the Natal
mole-rat would experience higher humidities than those experienced by the naked
mole-rat, which is supported by higher rainfall and by higher air humidities present in

that habitat obtained from climate data.

In light of this, we investigated the oxidative balance response to season,
reproduction and the implementation of heterothermy (in response to seasonal
variation of environmental variables) in male and female Natal mole-rats. We predicted
that oxidative markers (total antioxidant capacity-TAC; total oxidant status TOS; OSI-
Oxidative stress index; MDA-malondialdehyde) would vary significantly across
reproductive status (reproductive vs. non-reproductive) and across the seasons
(summer/wet vs. winter/dry) as the result of the inherent cost of reproduction and the
seasonal implementation of heterothermy, respectively. We used plasma markers as
we did not intend to remove individuals from the population due other longevity studies

taking place at this field site.



2. Methods
2.1. Ethics Statement

All protocols were approved by the University of Pretoria ethics committee
(permit EC001-19 and NAS128/2020) and complied with regulations stipulated in the
Guidelines for the use of Animals in Research (Council, 2010). In addition, the
Ezemvelo KZN Wildlife Authority provided permits for capturing mole-rats (permits
OP27-20 and OP1545-2021).

2.2. Reagents
Unless otherwise stated, all chemicals and reagents used in this study were
obtained from Merck (Pty) Ltd (Gauteng, South Africa).

2.3.  Animal capture and maintenance

Natal mole-rats were captured using Hickman live traps baited with sweet
potato (Hickman 1979) during the summer/wet (February to March 2021) and
winter/dry (July to August 2021) period. Captured mole-rats were housed with family
members at ambient temperature (15-25°C) in large boxes and provided with wood
shavings, a cloth towel to hide under, and sweet potatoes ad libitum (Bennett and
Jarvis, 1995). At capture, all animals were sexed and weighed (+1 g; Pelouze SP5,
Rubbermaid, USA). In addition, individuals were sexed and assigned a reproductive
status, either as reproductive or non-reproductive. Reproductive females were easily
recognized by having a perforate vagina and prominent nipples (Bennett and Faulkes,
2000). Breeding male mole-rats possess inguinal testes above or adjacent to the
penis, which may sometimes be felt by palpation in reproductive individuals (Bennett
and Faulkes, 2000).

2.4. Sample Collection

Blood samples were collected upon animal capture as follows: the animals were
handheld, and venous blood samples were collected from the hindfoot. Approximately
300-500ul of blood was collected into heparinised micro-haematocrit tubes and
centrifuged for 5 minutes at 2000g. Plasma was separated from the red blood cells,
and both fractions were kept at -20°C while in the field, then transferred to a -80°C

freezer upon return to the University of Pretoria. Only 1% or less of the total body mass



of the individual of whole blood was allowed to be collected as set out by the University
of Pretoria, Faculty of Veterinary Science Animal Ethics Committee. Sample sizes for
summer/wet period were ten reproductive females (RFs), ten non-reproductive
females (NRFs), nine reproductive males (RMs) and eight non-reproductive males
(NRMs). While in winter/dry period, eight RFs, ten NRFs, nine RMs and nine NRMs

were sampled.

2.5. Environmental data

Hourly environmental data during the collection period (February to August
2021) was obtained from the global atmospheric reanalysis dataset ERAS5-Land
(Munoz Sabater, 2019). The ERA5-Land dataset is a global environmental data
analysis model based on satellite and weather station environmental data
observations allowing for accurate estimates of environmental data variables at
specific locations with a 9 km accuracy (0.1° x 0.1°; Mufioz-Sabater et al. (2021)).
Users can specify the boundary GPS points of less than 9 km to query data from the
database, and we selected a 1 km radius to encompass the study site. The dataset is
freely available from the Copernicus Climate Change Service and holds the intellectual
property rights of the raw data. The results contain modified Copernicus Climate
Change Service information. We obtained air temperature data (Tair: °C), soil
temperature (Ts1-3: °C), precipitation (T,: - m) and soil moisture (Ms1-3: m®m=3) (Table
1). We used soil temperature and moisture measured at depths of 0 — 7 cm (Ts1 &
Ms1), 7 — 28 cm (Ts2 & Ms2), and 28 — 100 cm (Ts3 & Ms3z), which correspond to the
depths of foraging tunnels (Ts1-2 & Ms1-2) and the nest (Ts3 & Ms3) of mole-rats (Bennett
and Faulkes, 2000). A temperature logger (DS1922L iButton, Maxim Integrated
Products, Dallas, TX, USA) was buried at the study site at 15 cm below the soil surface
in an area of direct sunlight and set to record hourly temperatures from August to
October 2020. We compared the soil temperatures from the data logger and Ts2 from
the ERA5-Land dataset. We found that soil temperatures from the data logger were
on average 3.67 + 1.32 °C higher than Ts», yet the daily fluctuation in temperature was
similar between temperature loggers and ERA5-Land values (Supplementary Figure
S1). Therefore, we assumed that soil temperatures from ERA5-Land were a fair
representation of the actual variability of soil temperatures. It is important to note that

the soil temperatures in this study may not accurately represent burrow temperatures
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and that ambient temperature in tunnels may be higher than the surrounding soil
(sensu Holtze et al. (2018)). For the current study, hourly data from the study site for
Tair, Ts, Tp, and Ms were converted to daily values for the periods between February-
March (summer/wet period) and July-August (winter/dry period) corresponding to
animal captures, whereT, was converted to represent total rain. Data were analysed
using the Welch t-test to compare variables between seasons. Data are presented as

mean % standard error (s.e.m).

2.6. Total antioxidant capacity (TAC) assay

Plasma TAC levels were quantified using a commercially available kit (Antioxidant
Assay Kit, Cayman Chemical Co., Ann Arbor, MI, USA) which measures the oxidation
of ABTS (2,29-Azino-di- [3-ethybenzthiazoline sulphonate]) by metmyoglobin, which
is inhibited by non-enzymatic antioxidants contained in the sample. Oxidised ABTS is
measured by spectrophotometry at a wavelength of 750 nm. The capacity of
antioxidants in the sample to inhibit oxidation of ABTS is compared with the capacity
of known concentrations of Trolox, and the results are expressed as micromole Trolox
equivalents per litre (umol Trolox equivalents/L). Samples were run in duplicate and
only once per plate with a repeatability of r = 0.96. Intra-assay variability (%CV) was
3.65%.

2.7. Total oxidant status (TOS) assay

Plasma TOS levels were measured through Erel’s method (Erel, 2004). Briefly, this
method is based on the oxidation of ferrous ion to ferric ion in the presence of various
oxidative species. The oxidation reaction is enhanced by glycerol molecules, which
are abundantly present in the reaction medium. In an acidic medium, the ferric ion
makes a coloured complex with xylenol orange. The colour intensity, measured
spectrophotometrically is related to the total amount of oxidant molecules that are
present in the sample. The results are expressed in terms of micromole hydrogen
peroxide equivalent per litre (umol H202 equivalent/L). Samples were run in duplicate
and not repeated once per plate with a repeatability of r =0.99. Intra-assay variability
(%CV) was 4.5%.
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2.8. Oxidative stress index (OSI)
Oxidative stress was determined by the TOS:TAC ratio, which represents the oxidative
stress index (OSI) arbitrary unit, which was calculated as follows: OSI = [(TOS, pmol
H2O2 equivalent/L)/ (TAC, umol Trolox equivalent/L)] * 100 (Jacobs et al., 2021a;
Jacobs et al., 2021b).

2.9. Maldondiadehyde (MDA) lipid peroxidation
The concentration of MDA was measured in all plasma samples collected and was
quantified using a commercially available kit (Sigma-Aldrich, cat. No. MAK085, A6283,
258105 and 360465), following standard procedures (Halliwell and Chirico, 1993).
Polyunsaturated fatty acids (lipids) are susceptible to oxidative attack through ROS,
resulting in malondialdehyde (MDA). The kit determines MDA content by reacting with
thiobarbituric acid (TBA) to form a colorimetric complex at 532nm. Absorbance was
read using Spectramax M2 plate reader (Molecular Devices Corp., Sunnyvale, CA,
USA) and compared to a 2mM MDA standard (2-10nmol/ml). Samples were run in

duplicate with repeatability of r=0.93.

2.10. Statistical analysis for oxidative variables

All statistical analyses were performed in R 4.0.5 (R Development Core Team, 2021).
The normality of the response variables (body mass, TOS, TAC, OSI or MDA) was
determined using Shapiro Wilk tests. Homogeneity of all dependent variables was
confirmed with Levene’s test. Log-transformation was attempted to normalise all non-
normal data. Normally distributed dependent variables, TAC, TOS and OSI were
analysed using a linear model. Body mass and MDA was log-transformed for normality
and analysed using a log-link generalised linear model using the Ime4 package (Bates
et al., 2015).

Body mass was run as a response variable with sex (male and female), season
(wet vs dry) and reproductive state (reproductive (breeder) or non-reproductive (non-
breeder)) and all two- and three- way interactions as predictors. Consequently, each
oxidative variable (OSI, TAC, TOS or MDA) was used as the response variable and
reproductive state, season (wet vs dry) and sex (male or female) as predictors, with
all two-way and three-way interactions included. Post hoc comparisons were
conducted using Tukey’s HSD pairwise comparisons using the emmeanspackage

(Lenth et al., 2018). Linear regression lines for each sex were fitted to find the
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relationship between body mass and each oxidative variable (OSI, TAC, TOS or

MDA). Data are presented as mean + standard error (s.e.m), and a p-value of <0.05

was defined as significant.

3. Results

3.1. Environmental data

All environmental data differed significantly between the two seasons (Table 1).

Temperatures (both Tair and Ts1-s3) were higher in the wet season compared to the dry

season (Table 1). Likewise, Tp and Ms1.s3, were significantly higher in the wet season

compared to the dry season (Table 1).

Table 1. Seasonal difference in mean daily climatic variables, consisting of air temperature (°C), soil

temperature (Ts1-Ts3: °C), precipitation (m) and soil moisture (Ms1-Ms3: m®m3), in summer/wet period

and winter/dry period. Statistical result of Welch t-test with appropriate F value and p statistic. Data

represents mean * s.e.m.

(MS3 - m3m'3)

Period Statistical results

Environmental variable Summer/wet Winter/dry F p
Air temperature (Tair- °C) | 16.05 £ 0,29 7.29+£0,41 311.17 p<0.05*
Soil temperature at 0-

17.68 £ 0,22 7.05+0,37 616.42 | p<0.05*
7cm (Ts1-°C)
Soil temperature at 7-

17.67 £ 0,17 7.33+0,29 946.9 p<0.05*
28cm (Ts2- °C)
Soil temperature at Ts

17.55 £ 0,06 8.30+0,14 3631.1 p<0.05*
28-100cm (Ts3- °C)
Precipitation (Tp - m) 2.93+£0,59 0.61+0,28 12.598 | p<0.05*
Soil moisture 0-7 cm (Ms1

0.46 £ 0.00 0.41+0.00 83.703 | p<0.05*
- m3m-3)
Soil moisture 7-28 cm

0.47 £ 0. 00 0.41+£0.00 200.49 | p<0.05*
(Ms2 - m3m-3)
Soil moisture 28-100 cm

0.48 £ 0.00 0.41+£0.00 513.85 | p<0.05*

Note: An asterisk (*) indicates significance (p < 0.05).
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3.2. Body mass

All statistical results are presented in Table 2. Body mass was significantly affected by
reproductive state, sex and the interactions between season*sex and reproductive
state*sex, but not by season, reproductive state*season or the three-way interaction
between season*sex*reproductive state (Table 2; Fig. 1). Females (77.7+£3.0g) had
significantly lower body mass than males (117.1£5.9g) (Table 2). Reproductive
individuals had a significantly higher body mass (106.7+3.9g) than non-reproductive
individuals (86.7+5.8g) (Table 2; Fig. 1). For post hoc comparisons (sex*reproductive
state), RMs (121.3+5.4g) had a significantly higher body mass than RFs (92.0+3.09)
(p<0.001). Furthermore, NRFs (64.8+2.6g) also had significantly lower body mass
than NRMs (112.5+8.8g) (p<0.0001). For within-sex reproductive state comparisons,
RFs were significantly larger than NRFs (p<0.0001), but this trend was not significant
in males (p=0.38) (Fig. 1). For season*sex comparison, male body mass in the
summer/wet period (140.7+2.5g) was significantly larger compared to females
(80.3+4,09) (p<0.0001), with a similar trend in the winter/dry period (male: 94.7+5.8g;
female: 74.8+4.49) (p=0.0054) (Fig. 1). Male body mass in the summer/wet period was
significantly higher than body mass in winter/dry period (p<0.0001), but not in females
(p=0.79) (Fig. 1). As a note, body mass analysis was only performed on individuals
where oxidative variables were available. An analysis of body mass in a larger dataset
on the population (n = 472) did not find a difference in body mass between seasons,
but body condition (relationship between body mass and body size) was higher in
summer (Finn, unpublished data), similar to the results from this study. All remaining

comparisons are not significant.

3.3. TAC
All statistical results are presented in Table 2. TAC was unaffected by all primary

predictors (season, reproductive state or sex) or interactions (Table 2, Fig. 2A).

3.4.TOS

All statistical results are presented in Table 2. TOS concentrations were significantly
affected only by season, but not any other primary predictors (sex and reproductive
state) or interactions (Table 2, Fig. 2B). Natal mole-rats captured in the summer/wet

period (4.51+£0.32 pmol H202 equivalent/L) possessed lower plasma TOS
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concentrations than Natal mole-rats captured in the winter/dry period (6.06£0.37 pmol

H202 equivalent/L).

3.5. 0slI

All statistical results are presented in Table 2. OSI was significantly affected only by
season but not any other primary predictors (sex and reproductive state) or
interactions (Table 2, Fig. 2C). Natal mole-rats captured in the summer/wet period
(0.341£0.03%) possessed lower plasma OSI values than Natal mole-rats captured in
the winter/dry period (0.49+0.03%).

3.6. MDA

All statistical results are presented in Table 2. MDA was significantly affected by
season, sex and sex*season, but reproductive state, and any interactions with
reproductive state were not significant (Table 2, Fig. 2D). Overall males had
significantly  higher MDA (2752,5£290.0nmol/ml) compared to females
(1090.6£124.6nmol/ml) (Table 2). The summer/wet period individuals had significantly
higher MDA (2182.0£310.0nmol/ml) as compared to winter/dry period
(1584.6+£173.0nmol/ml) (Table 2). Post hoc comparisons show that within season
(season*sex), female MDA during the summer/wet period (849.4+151.1nmol/ml) was
significantly lower compared to female MDA during the winter/dry period
(1358.6+187.0 nmol/ml) (p=0,04) (Fig. 2). Contrastingly, male MDA during the
summer/wet period (3749.8£393.1 nmol/ml) was significantly higher than male MDA
during the winter/dry period (1810.5£297.0 nmol/ml) (p=0.007) (Fig. 2). Lastly,
summer/wet period females MDA was significantly lower as compared to summer/wet
period males (p<0.0001). Contrastingly the winter/dry period MDA did not significantly
differ between the sexes (p=0.78).

3.7. Oxidative variable-body mass relationship

There was no effect of body mass on any oxidative variable (OSI, TAC, TOS or MDA)
in female Natal mole-rats (Table 3, Fig. 3). Similarly, in male Natal mole-rats, no effect
of body mass on OSI, TAC or TOS was observed (Table 3, Fig. 3); however, a strong

effect of body mass on MDA was observed in males Natal mole-rats (Table 3, Fig. 3).
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Table 2. The statistical outputs from the models investigating the effects of season (wet vs. dry),

breeding status (reproductive vs. non-non-reproductive) and sex (male vs. female), their two-way and

three-way interactions on the body mass, total antioxidant capacity (TAC), total oxidant status (TOS),

oxidative stress index (OSI) and malondialdehyde (MDA) of Natal mole-rats (Cryptomys hottentotus

natalensis), respectively.

Variable Body Mass TAC TOS oSl MDA
t ¢] t p T ¢] t p t p
Season 0.093 | 0.93 1 (593 0.28 | 2.102 | 0.04* | 2.615 | 0.01* | 2.801 | <0.01*
Reproductive state 3.523 <0.05* | -0.57 | 0.571 | 1.9 | 0.06 1353 0.19 | 1.746 0.09
Sex 5.017 | <0.05* 1 1'23 0.27 | -0.59 | 0.55 [ 0.201 | 0.84 | 5.495 | <0.001*
Season*reproductive - -
state 1.04 0.30 [0.284 | 0.78 [ 0.529 | 0.60 | 0.066 | 0.95 1.467 0.15
Season*Sex 2572 0.01* | 0.008 | 0.99 0.838 0.41 0.945 0.35 3.601 <0.001*
Reproductive - " - -
state*Sex 2575 0.01 0.492 0.62 |1 1.198 | 0.24 [ 1.417 | 0.16 1.065 0.29
Season*Reproductive - - -
state*Sex 0469 0.64 |0.321 ] 0.75 0523 0.6 0.421 0.68 | 1.059 | 0.29

Note: An asterisk (*) indicates significance (p < 0.05).

Table 3. The statistical outputs, using linear regressions between body mass and total antioxidant
capacity (TAC), total oxidant status (TOS), oxidative stress index (OSl) and malondialdehyde (MDA),

respectively, for male and female Natal mole-rats (Cryptomys hottentotus natalensis).

Male Female

Slope y-intercept | F p Slope | y-intercept | F p
TAC 1.794 1012.0 1.06 | 0.31 -1.89 1554 048 | 0.49
TOS -0.01 5.73 0.26 | 0.61 0.02 4.11 0.68 | 0.41
OsI 0.00 0.55 0.78 | 0.38 0.00 0.25 1.71 | 0.20
MDA 23.9 -47.9 6.95 | 0.01* -5.50 1517.0 0.62 | 043

Note: An asterisk (*) indicates significance (p < 0.05).
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4. Discussion

This study attempted to address two simple, but critical questions. First, whether there
is a blood plasma oxidative cost to reproduction in an aseasonally breeding mole-rat,
which only utilises behavioural reproductive suppression with different seasonal
climates. Secondly, whether there is an oxidative consequence involved in the
seasonal implementation of heterothermy in male and female Natal mole-rats. Unlike
the social seasonal breeding Highveld mole-rat and the eusocial aseasonal breeding
naked mole-rat (Jacobs et al., 2021a; Jacobs et al., 2021b), there was no indication of
a direct physiological oxidative cost to reproduction in either sex of Natal mole-rats, as

seen by a lack of significant results in TOS, OSI and MDA between reproductive and
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non-reproductive individuals. In both female naked and Highveld mole-rats on
achieving reproductive activation (i.e. no longer under reproductive suppression), TOS
and OSI significantly increased, indicating that the physiological changes associated
with breeding and the subsequent loss of reproductive suppression results in oxidative
stress (Jacobs et al., 2021b). Both the Highveld and naked mole-rat show a joint
physiological and behavioural reproductive suppression mechanism (Bennett et al.,
2018; Faulkes et al., 1990; Van der Walt et al., 2001), while the Natal mole-rats exhibits
only reproductive inhibition through incest avoidance (Oosthuizen et al., 2008).
Physiological reproductive suppression inherently suppresses reproductive hormones
such as oestrogen, progesterone and testosterone (Levine and Muneyyirci-Delale,
2018; Nna et al., 2016). Oestrogens promote antioxidant enzyme functions (Miller et
al., 2007; Strehlow et al., 2003; Wassmann et al., 2005), whereas progesterone may
antagonise the vasoprotective effects of oestrogens amplifying oxidative stress (Yuan
et al., 2016). In comparison, the behavioural suppression observed in the Natal mole-
rat does not result in drastic decreases in reproductive hormones as seen in the naked
and Highveld mole-rat (Oosthuizen et al., 2008). The current study demonstrated that
in the absence of physiological suppression, Natal mole-rats do not show an oxidative
cost to reproduction as there is almost no discernible physiological difference between
reproductive and non-reproductive within in each season. However, the absence of
enzymatic antioxidant investigation limits conclusive explanations of whether Natal
mole-rats may employ oxidative shielding or hormesis. Female Natal mole-rats have
lower levels of oxidative stress than males, possibly due to the increased antioxidant
activity and less ROS production in females compared to males, as observed in other
mammals (Barp et al., 2002; Miller et al., 2007; Vina et al., 2005). Lastly, the
antagonistic nature of high testosterone levels (Alonso-Alvarez et al., 2007; Metcalfe
and Alonso-Alvarez, 2010) is unlikely to explain the increased MDA in Natal mole-rat
males as testosterone levels have previously been shown to be lower in the
summer/wet period as compared to the winter/dry period (Oosthuizen et al., 2008), the
opposite trend to what is observed in the present study.

In the current study, season had a more substantial influence on the redox
balance than sex and reproductive state in Natal mole-rats. Seasonal variation in
ambient temperature, precipitation and soil temperature (Bennett, 1989; Finn et al.,
2022; Hartetal., 2021b; Hart et al., 2021c; Herbst et al., 2004; Oosthuizen et al., 2021;
Wallace et al., 2021) and soil moisture (Lovegrove, 1989; Okrouhlik et al., 2015;
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Vejmélka et al., 2021) play a critical role in the ecology of the African mole-rats. Our
results indicate that soil moisture and temperature play a vital role in the thermal
physiology and behaviour of the Natal mole-rat. In an effort to reduce the risk of
activity-induced hyperthermia due to increased burrow temperatures during the
summer/wet period, this species avoids activity during midday and is suspected to
implement heterothermy (Finn et al., 2022; Oosthuizen et al., 2021). However, in this
case, heterothermy is unlikely to be used for energy conservation, as food resources
are likely available in dry and wet seasons due to food caching behaviour of the mole-
rats (Bennett and Faulkes, 2000). The food caches are a possible reason why TAC
concentrations remained constant across both seasons as Natal mole-rats have
access to similar food quality and quantity year-round. Thus, heterothermy is likely
used to avoid hyperthermia and possibly the damaging effects of long-term exposure
to increased soil temperature and humidity during summer (Bennett and Faulkes,
2000; Finn et al., 2022). The more frequent implementation of heterothermy, results in
lowered RMR, which may subsequently result in lower TOS and OSI values (Orr et
al., 2009). We found similar decreases in this study during the summer/wet period and
this decrease was particularly evident in females

However, the opposite pattern is observed in plasma MDA concentration in
Natal mole-rats. Overall, during the summer/wet period, lipid damage (MDA) was
higher than during the winter/dry period, a surprising result as the increased TOS and
OSl in the winter/dry period would be expected to result in increased MDA. On closer
evaluation, female Natal mole-rats followed the expected pattern where MDA
increases during the winter/dry period as compared to the summer/wet period,
however, males exhibited the opposite trend. Oosthuizen et al. (2021) found that
female Natal mole-rats implement heterothermy more often during the summer/wet
period, while the male Natal mole-rats implement heterothermy more often during the
winter/dry period. Since the Natal mole-rat is an aseasonal breeder, and heterothermy
is primarily used for self preservation, reproductive strategies may differ within and
between seasons for each sex in order to allow for year round breeding, but this
requires further investigation. The sexual dimorphism in the implementation of
heterothermy across seasons mirrors MDA values of male and female Natal mole-
rats. The sexual dimorphism in body mass may play a significant role in redox balance

of Natal mole-rats.
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Body mass plays a significant role in thermoregulation, and heat stress
(Gardner et al., 2011; Rezende and Bacigalupe, 2015; Sheridan and Bickford, 2011),
particularly the larger/ heavier the animal is, the slower it takes to dissipate heat, which
may result in several negative consequences (Speakman and Krél, 2010). In the
current study, the effects of MDA varied within sex, where males, at the upper end of
their body mass limit had significantly higher MDA during summer/wet period. In
support of this, regression analyses demonstrated a significant positive correlation of
body mass with MDA in males but not in females. Since soil temperatures did not
exceed thermal neutral zone temperatures (Bennett et al., 1993b), it is therefore
unlikely that environmental conditions alone were sufficient for heat and/or desiccation
based oxidative stress (Jacobs et al., 2020b). Therefore, we propose that these
heavier males may have experienced exercise-induced oxidative damage (Gdkbel,
2006; Powers et al., 2016; Vollaard et al., 2005). Firstly, digging and burrow excavation
is energetically expensive (Lovegrove, 1989; Zelova et al., 2010). The metabolic
output of exercise in soil conditions that are very humid could lead to mild
hyperthermia, accentuating oxidative stress and consequently leading to increased
oxidative damage (Hillman et al., 2011; McAnulty et al., 2005). The Natal mole-rat is
better equipped to deal with colder temperatures with high thermal conductivity due to
its dense pelage (Kotze et al., 2008; Vejmélka et al., 2021). Heat dissipation capability
of these mole-rats could be a factor, as mole-rats are inherently poor at heat
dissipation (Hart et al., 2021c; Vejmélka et al., 2021; Wallace et al., 2021), which would
be more prominent in larger individuals (Speakman and Krél, 2010; Vejmélka et al.,
2021). The soil environment of the Natal mole-rat during the summer/wet period is
water clogged and would further complicate heat dissipation as evaporative heat loss
may not be possible (Bennett et al., 1994; Hart et al., 2021¢c; McGowan et al., 2020;
Wallace et al., 2021; Zelova et al., 2010). However, mole-rats may shed excess heat
through their feet and ventral surfaces (Sumbera, 2019; Vejmélka et al., 2021) and/or
by passing damp soil (soil cooler than body temperature) under their belly while
digging, body temperature can be regulated through conduction and convection
(Okrouhlik et al., 2015). Digging activity of wild mole-rats in humidity near saturation
or in various soil temperatures has yet to be investigated. Several physiological
differences are present between the sexes in the Natal mole-rat, where larger males
have a higher sustained metabolic scope, RMR, daily energy expenditure and water

turnover rate (Hart et al. 2022b in press; Hart, Bennett and Scantlebury unpublished
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results). Furthermore, females are inherently better at dealing with oxidative stress
from exercise-induced hyperthermia (Garcia et al., 2018; Gokbel, 2006). Additionally,
females have physiological advantages of oestrogen which can upregulate enzymatic
antioxidant defenses and produce less hydrogen peroxide in mitochondria (Borras et
al., 2003; Tiidus, 2000; Vina et al., 2005). These factors, along with the smaller body
size of females in the current study, may explain why females were not oxidatively
damaged as males in the summer/ wet period. We suggest that all these factors
together could have contributed to the high oxidative stress observed in male Natal
mole-rats.

There are some shortcomings with the research which need to be stated.
Firstly, this study involved investigating reproduction under natural conditions, which
means we could not account for the oxidative state of the animals before measurement
or the age of individuals. Furthermore, the lack of antioxidant enzymatic investigation
does not allow us to draw significant direct conclusions about other means of
antioxidant defence from being oxidatively stressed (Birben et al., 2012; Habashy et
al., 2019; Limén-Pacheco and Gonsebatt, 2009; Sohal et al., 1990) or conclusive
evidence of either oxidative shielding (Blount et al., 2016) or hormesis (Alonso-Alvarez
et al.,, 2017; Costantini, 2014; Luna-Ldpez et al., 2014; Oliveira et al., 2018).
Furthermore, we cannot determine how enzymatic antioxidant defences were affected
by heat stress. Lastly, despite preventing terminal endpoints for animals, plasma
markers is limiting when providing information about tissue oxidative stress (Nussey
et al., 2009; Otdakowski et al., 2012). The benefits of using plasma include the non-
destructive (no euthanasia of the animals and tissue harvesting) sampling, where
studies on rare animals, or the removal of individuals from a population are not
feasible, leaving blood sampling as the only option (Christensen et al., 2015). Lastly,
previous research has shown that some oxidative markers measured in plasma can
reflect tissue (heart, liver and kidney) oxidative stress (Margaritelis et al., 2015;
Veskoukis et al., 2009). Plasma values however, do not reflect long term oxidative
stress due to the fast turn over rate of plasma (Nussey et al., 2009). Lastly, oxidative
damage can vary between tissue types depending on the type of oxidative stress
investigated (Costantini, 2008; Jacobs et al., 2021c; Jacobs et al., 2020b; Schmidt et
al., 2014). Since we expect the source of the male oxidative damage to be a
consequence of exercise-induced stress and/or heat related due to lack of heat

dissipation, the tissues most vulnerable to heat stress are the brain (Chen et al., 2013;
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Hsu et al., 2006), liver (Zhang et al., 2004; Zhang et al., 2003), kidneys (Jacobs et al.,
2021c; Jacobs et al., 2020b) and the small intestine (Henle and Leeper, 1982),
whereas for exercise-induced oxidative damage, tissue related changes are lacking
(Powers et al., 2011; Powers et al., 2016). It is speculated that tissues such as heart
and lungs are also greatly affected by increased ROS generation during exercise,
which could lead to oxidative damage (Powers et al., 2011). Additionally, exercise-
induced hyperthermia as a result of digging in warm wet soils could exacerbate the
possible environmental oxidative damage experienced even further (Georgescu et al.,
2017; Hillman et al., 2011; McAnulty et al., 2005). However, skeletal muscle tissue has
a high heat tolerance and is unlikely to experience significant oxidative damage from
exercise induced hyperthermia or whole-body hyperthermia (King et al., 2016).
However, heavy exertional exercise can induce oxidative stress in skeletal muscle
(Davies et al.,, 1982), and since digging is energetically expensive and costly
(Lovegrove, 1989), skeletal muscle damage could likely be observed despite the high
heat tolerance of skeletal muscle, as oxidative damage is primarily predicted to be
caused by exercise and not heat stress (King et al., 2016). Since we do not know the
antioxidants available to these tissues or the concentration of enzymatic antioxidants,
we can only predict that oxidative stress would reflect plasma values and that oxidative
damage would be elevated in these tissues. Lastly, another shortcoming in the current
study, is the reliance on satellite reanalysis climate dataset for soil temperatures. While
climate reanalysis models (e.g., ERA5-Land used in this study) provide ease of data
access, some variables may be under estimated compared to actual local conditions.
For example, soil temperatures collected from data loggers at the study site were
higher than the soil temperatures from the climate dataset (Finn et al., 2022;
Oosthuizen et al., 2021). Maximal soil temperatures observed can be as high as
29.4°C closer to the surface and 22-24°C at depths between 25-30cm (Oosthuizen et
al., 2021). Thus, soil temperatures at the study site may be much higher than
suspected, in addition to great fluctuation to these soil temperatures depending on
year or vegetation cover. Furthermore, soil humidity would be high in the summer/wet
period due to the higher moisture soil content and air humidity from climate data
regularly exceeding 90%. This study highlights the need to collect accurate
atmospheric conditions of burrows and soil types from different African mole-rat
species to better understand their evolutionary adaptations to their unique habitat type

and soil conditions.
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In conclusion, this study brings to light two important hypotheses. Firstly, the
means of reproductive suppression (i.e solely behavioural vs. physiological and
behavioural) that plays a significant role in a cooperative animal redox balance.
Secondly, implementing heterothermy may be used to avoid the detrimental oxidative
consequences of environmental and/or exercise-induced hyperthermia. Further
research is required to increase our knowledge of these two critical hypotheses. Lastly,
sex specific differences of exercise-induced oxidative stress is the first observed for
an African mole-rat species, and may be a relevant sex difference in the longevity of

females compared to male social mole-rats.
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