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Researchers from the field of econophysics have favoured the idea that financial markets are a complex 

adaptive system, consisting of entities that behave and interact in a diverse manner, leading to non-linear, 

emergent behaviour of the system. In the last twenty years, there has been an increasing focus on modelling 

complex adaptive systems using network theory. Correlation-based networks, where stocks are represented as 

entities in the network, and the relationships amongst the stocks are based on the strength of the co-movements 

of the stocks, have been widely studied. Network filtering tools, such as the Minimal Spanning Tree (MST), 

and the Planar Maximally Filtered Graph (PMFG), have been useful to attenuate the impact of noise in these 

networks, thereby allowing important macroscopic and mesoscopic structures to emerge. One of the main 

benefits of the PMFG is that it is accompanied by a hierarchical clustering algorithm called the Directed Bubble 

Hierarchical Tree (DBHT). This method has the benefit of being fully unsupervised in that it does not require 

the user to decide a priori on the number of clusters that the data should be split into. 

 

These techniques have been applied here to analyse the complex interactions amongst stocks on the 

Johannesburg Stock Exchange. A structure emerged in which shares from similar ICB sectors tended to cluster 

together. However, the so-called Rand Hedge shares, and shares which exhibited low liquidity, tended to 

override the sector effect and clustered together. From a dynamic perspective, the MST and PMFG seemed to 

shrink during market crashes, while the Basic Materials sector was typically the most important or central 

sector over time. Over the long-term, the DBHT divided the stocks in the South African stock market into six 

clusters. This technique was compared to other popular hierarchical clustering algorithms, and the amount of 

economic information that each method extracted was quantified. The most recent PMFG and DBHT showed 

a changed structure as compared to the long-term data, highlighting that the way that market participants view 

South African shares can change over time.  
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Hierarchical Cluster 
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Chapter 1 Introduction 

 

1.1 Motivation for the Study - Stock Markets as Systems 

The job of an equity fund manager is a difficult one. They must digest large quantities of information from 

varying sources, and then determine what information is relevant to the universe of stocks that they can invest 

in. Once this information has been synthesised into views on the stocks, a portfolio must be constructed, while 

considering all the relevant information about the joint behaviour of these stocks. For many decades, 

practitioners have turned to traditional financial market theories to help navigate this difficult task. However, 

many practitioners have found that these theories have struggled to match the complicated reality of financial 

markets. This is borne out by the proliferation of many empirical anomalies that are observed in real financial 

market data but are at odds with the traditional theories of finance.  

 

These contradictions are often due to the assumptions upon which these theories are built, namely that financial 

markets are efficient; that stock price returns are normally distributed; that investors behave rationally; and that 

risk and return are linearly related. Over time, the focus of academic researchers has shifted to try and explain 

these anomalies by relaxing some of the assumptions. The field of behavioural finance is one such attempt in 

which researchers focus on how psychological biases can lead to investors behaving irrationally, thereby 

explaining some of the anomalies that are observed in financial markets. 

 

An alternate track was followed by engineers, mathematicians, and physicists, who began joining financial 

markets in earnest in the late 1980s. These researchers applied methods from physics to match the observed 

financial market data, including the so-called financial market anomalies, followed by proposing more general 

theoretical frameworks to explain the results. This approach was counter to traditional financial markets theory 

in which simplified theories were given precedence (for the sake of mathematical tractability), despite 

disagreement with empirical data. This field was named econophysics, a portmanteau of economics and 

physics. Many of the physicists came from the sub-field of statistical mechanics which provides a mathematical 

description of the relation between large quantities of microscopic entities and the macroscopic behaviour that 

emerges from such a system (i.e., how does the collective behaviour of the small entities impact the large scale 

behaviour of the system). Such systems are called complex adaptive systems if they consist of entities, or agents, 
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that behave and interact in a diverse manner, which can then lead to non-linear emergent behaviour of the 

system. 

 

Mauboussin (2012) describes complex adaptive systems as follows: 

 

You can think of a complex adaptive system in three parts... First, there is a group of heterogeneous 

agents. These agents can be neurons in your brain, bees in a hive, investors in a market, or people in 

a city. Heterogeneity means each agent has different and evolving decision rules that both reflect the 

environment and attempt to anticipate change in it. Second, these agents interact with one another, 

and their interactions create structure— scientists often call this emergence. Finally, the structure that 

emerges behaves like a higher-level system and has properties and characteristics that are distinct 

from those of the underlying agents themselves. 

 

One can see how stock markets can be viewed as complex adaptive systems. The stock market consists of a 

variety of agents (such as retail investors, institutional investors, hedge funds, banks, regulatory institutions, 

etc.), each with various incentives, and therefore behaving in a heterogeneous manner. Given that these agents 

observe the market and then adapt their behaviour (often irrationally so), they create feedback loops as the 

output from one phase of the market becomes the input for the next phase of the market, therefore changing 

the structure of the market. This collective behaviour cannot be predicted by analysing and observing the 

individual market participants alone. Furthermore, the complex adaptive behaviour of market participants can 

lead to the complex adaptive behaviour of the underlying stocks in the market. 

 

In the last twenty years, there has been an increasing focus on modelling complex adaptive systems using 

network theory. A network is a representation of entities or agents in a system and the interactions or 

relationships between these entities. Network theory has been used to model a variety of such systems. For 

example, in biological sciences, network theory has been used to model human diseases (Barabási, Gulbahce 

and Loscalzo, 2011) as well as the spread of infectious diseases (Brockmann and Helbing, 2013). Another 

example is social network analysis in which social structures are investigated using networks. This analysis 

extends from physical, real-life networks, such as students in classrooms (Grunspan, Wiggins and Goodreau, 

2014), to online social networks (Grandjean, 2016). Recent literature from the econophysics field has focused 

on the modelling of financial and economic systems using such a network-based approach (see Section 2.8 for 

more information).  
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1.2 Research Aim 

In this dissertation, we aim to apply techniques from network theory to analyse the complex interactions 

amongst stocks in the South African stock market. We study correlation-based networks where stocks are 

represented as entities in the network, and the relationships amongst the stocks are based on the strength of the 

co-movements of the stocks (as measured by the standard Pearson correlation metric).  

 

In particular, network filtering tools are used to prune less relevant information, or noise, in these networks, 

thereby allowing the important macroscopic and mesoscopic (i.e., on a scale between macro and micro) 

structures to emerge.  

 

These filtered networks are also accompanied by a visual representation that allows the user to easily unearth 

meaningful information about the complex market dynamics and its emergent structure. Furthermore, one can 

extract useful metrics from such networks that describes their structure or topology, highlighting which shares 

are important or central in the network. The analysis of the temporal evolution of networks can also assist in 

understanding the underlying trends in the structure of the market.  

 

Lastly, many of these techniques have also been shown to have deep relationships with traditional hierarchical 

cluster analysis, allowing the user to draw on the rich knowledge base from this field. 

1.3 Research Objectives 

We focus on the application of network filtering tools to financial markets, by introducing the Minimal 

Spanning Tree (MST), and the Planar Maximally Filtered Graph (PMFG). The PMFG is an interesting 

technique that has a hierarchical clustering representation called the Directed Bubble Hierarchical Tree 

(DBHT). This method is novel in that it is fully unsupervised and does not require the user, or the use of an 

external technique, to choose or validate the number of groups or clusters that the stocks are separated into.  

 

While the MST has been applied to the South African stock market, to the best of our knowledge this is the first 

application of the PMFG and the DBHT in such a setting. 

1.4 Dissertation Structure 

This dissertation is organised as follows. In Chapter 2 we introduce the basic concepts of network theory, 

followed by real-life examples of networks from a variety of fields. We then address the application of network 

filtering tools to financial markets. We begin by discussing how the relationships between stocks have been 

modelled in the academic literature, followed by the introduction of simple filters such as Asset Graphs, and 
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Threshold Networks, leading towards the more advanced methods such as MSTs, and PMFGs. We also 

highlight the deep relationship between these network filters and hierarchical cluster analysis, paying particular 

attention to the DBHT. We then provide a detailed examination of network topology measures, highlighting 

the important metrics that measure importance or centrality in networks. 

 

In Chapter 3 we discuss various modelling, pre-processing, and sample/feature selection techniques and 

considerations. The choices associated with many of these concepts can have a significant impact on the 

outcome of any analysis, and so we discuss each of them in detail, referring to published literature or 

practitioner insights to guide the choices that are made. We then provide a thorough insight into the 

methodology that has been followed in the analysis. 

 

In Chapter 4 we present the results of our analysis of the South African stock market. We consider both a long-

term (or static) analysis, followed by a dynamic (or temporal) analysis. The dynamic analysis is highly relevant 

to investment professionals as it allows us to determine the impact that varying market conditions have on the 

nature of the structure of the South African stock market. 

 

In Chapter 5 we discuss the results and propose future directions of research. 

 

Appendix A contains the full list of the shares that were considered for the analysis, as well as their full names, 

and economic classifications. It also contains the filtering that was applied at each step to reduce the universe 

of stocks from 136 down to 72. Appendix B contains information relating to the source code that was used to 

conduct the analysis. 
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Chapter 2 Network Analysis 

 

2.1 What is a Network? 

A network is a representation of objects/entities in a system and the interactions/relationships between these 

entities. The entities are referred to as nodes or vertices, and the relationships between the entities are referred 

to as links or edges. In mathematics, networks are often referred to as graphs, and the area of mathematics 

concerning the study of graphs is called graph theory. In this dissertation, we will use the terms networks and 

graphs interchangeably. 

 

The earliest academic work on networks and graph theory is thought to have stemmed from the work by the 

mathematician Leonard Euler in 1736 in relation to a riddle called the Seven Bridges of Königsberg (Newman, 

Barabási and Watts, 2006). In the city of Königsberg, there existed seven bridges that connected various land 

masses and a popular brainteaser was to devise a walk through the city that would cross each of those bridges 

once and only once. Euler proved the impossibility of such a path by making use of a graph. He abstracted 

away all details of the original problem except for the connectivity, leaving four vertices which represented the 

four land masses and the seven edges joining the vertices in the pattern of the seven bridges, i.e. leaving a 

graph. 

 

In the subsequent sections of this chapter, we introduce the following basic concepts of graph theory that will 

be used to describe and analyse networks in this dissertation:  

• The definitions of the components of a network (or graph) 

• The types of edges (or links) in a network 

• Vertex (or node) attributes 

• The topology or structure of a network 

• Algorithms for the layout of a network 
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2.2 Basic Definitions and notation 

A network can be represented either (i) graphically, (ii) using set notation, or (iii) using matrix notation. We 

illustrate these representations using a hypothetical example of a simple network of friendships amongst a 

group of five people (taken from the website ‘Graph Theory – The Network Pages’, no date) Each person in 

the network is represented by a node or vertex, while the existence of a relationship between two people is 

represented by a link or edge between the two relevant nodes. 

 

A graphical representation of this simple network can be seen in Figure 2.1, with the original figure on the left, 

and a software-generated graph on the right. 

 

 
 

Figure 2.1 Simple Friendship Network: Illustration (left) and Abstracted Graph (right) 

 

One can immediately see the various relationships among these people. For example, Diana is friends with 

three people (Anne, Carl, and Bob), while Elisa is friends with Carl and Anne.  

 

Secondly, using set notation, a graph (G) can also be characterised by a set of nodes/vertices (𝑉𝑉), which consists 

of a list of all of the nodes/vertices (𝑉𝑉𝑖𝑖) in the graph, and a set of edges (𝐸𝐸) which consists of a list (𝐸𝐸𝑖𝑖) of all 

of the connected vertices in the graph. Using this notation, the friendship graph from Figure 2.1 can also be 

represented as follows: 

 

 𝑉𝑉 = {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐵𝐵𝐵𝐵𝐵𝐵}. 

 𝐸𝐸 = {(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵), (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸), (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶),  

                       (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝐵𝐵𝐵𝐵𝐵𝐵), (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐵𝐵𝐵𝐵𝐵𝐵)} . 
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Finally, a network or graph can be represented by an adjacency matrix. This is a square matrix 𝐴𝐴 where: 

𝐴𝐴𝑖𝑖𝑖𝑖 =   �
1, 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑗𝑗

0,        otherwise.                                                                     
 

 

Using this notation, the adjacency matrix of the friendship graph from Figure 2.1 can be represented as follows: 

Table 2.1 Simple Friendship Network: Adjacency Matrix 

 Anne Bob Carl Diana Elisa 

Anne 0 1 0 1 1 

Bob 1 0 1 1 0 

Carl 0 1 0 1 1 

Diana 1 1 1 0 0 

Elisa 1 0 1 0 0 
 

 

2.3 The Types of Network Edges 

The edges of a network can be embedded with additional information about the relationships between each of 

the entities (which are represented by the vertices). This additional information gives rise to the following types 

of edges in a network: 

• Undirected edges: There is a simple connection between two vertices with no implication of any 

directionality or flow in the relationship (e.g. a simple friendship between two people). 

• Directed edges: There is directionality from one vertex to the other (e.g. unrequited love between 

two people in a friendship network). 

• Weighted edges: An edge can contain quantitative information about the strength of the link 

between two vertices (e.g. the strength of the relationship in a friendship network). 

 

Weighted edges in a network can be represented by a weighted adjacency matrix. If there is an edge between 

vertices 𝑖𝑖 and 𝑗𝑗 then  

𝐴𝐴𝑖𝑖𝑖𝑖 =   �
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑖𝑖, 𝑗𝑗), 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑗𝑗

0,                                               otherwise.                                                                     
 

 

Returning to the hypothetical example of the friendship network from Figure 2.1, let us assume that varying 

levels of friendship are represented on a scale of zero to four (with a value of zero indicating no relationship 

and a value of four indicating the strongest level of friendship), leads to the weighted adjacency matrix in Table 

2.2. 
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Table 2.2 Simple Friendship Network: Weighted Adjacency Matrix  

 Anne Bob Carl Diana Elisa 

Anne 0 2 0 1 4 

Bob 2 0 2 1 0 

Carl 0 2 0 1 4 

Diana 1 1 1 0 0 

Elisa 4 0 4 0 0 
 

 

In this example, while Diana has three friendships and Elisa has two, the strength of Elisa’s two friendships is 

much stronger (with a higher weight of four), as compared to Diana’s friendships (each with a lower weighting 

of one). These edge weights can also be encoded in the visual graph by varying the thickness, the line style, or 

the colour of each edge, in proportion to the value of each weight. An example of this is shown in Figure 2.2, 

with the thickest edges originating from Elisa, and the thinnest from Diana. 

 

 
Figure 2.2 Simple Friendship Network: Graph Representation of the Weighted Adjacency Matrix 

 

2.4 Vertex (or Node) Attributes 

Like the edges in a network, the vertices of a network may also have additional information attached to them. 

This information may be a qualitative attribute of each vertex (perhaps some sort of categorical data, or data 

on an ordinal scale), or quantitative data. This data can again be encoded on the graph by varying the colour or 

the size of each vertex in accordance with each vertex’s attribute. For example, in the simple friendship 

network, we can perhaps colour each vertex according to the school that each person goes to. If the three 

strongest friends (Anne, Elisa, and Carl) go to the same school, then the graph may look like the one in Figure 

2.3. 
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Figure 2.3 Simple Friendship Network: Graph Representation of Node Attributes 

 

2.5 An Introduction to Network Topology 

Many real-life networks are large, contain many vertices, and have complicated structures. However, they also 

have properties which can be extracted to glean various insights from the network. The way that the vertices 

and edges in a network are arranged is referred to as the topology of the network. These topological properties 

may refer to the overall network, or the vertices or edges. For example, the normalised length can be used to 

calculate the overall strength of the relationships amongst all of the entities in the network. However, the 

various centrality metrics are used to describe which vertices and edges are important in a network. The 

centrality metric that one chooses, depends on the definition of importance. For example, the degree of a vertex 

is a metric which defines importance based on the number of connections (or edges) emanating from a vertex. 

Vertices with many edges are deemed to be important (and likened to a person having many friends in the 

network from Figure 2.1). If importance was defined as the ability to connect other vertices, then the so-called 

betweenness centrality metric would be useful in identifying important vertices. Alternatively, the closeness 

centrality metric defines importance as a vertex that is close to other vertices.  

 

Figure 2.4 from Oldham et al. (2019) shows how various vertices can be deemed to be important depending 

on the topology of the network and the definition of importance. Panel A shows an example of a star network. 

The red vertex in the middle has the greatest number of connections, the highest closeness centrality, and the 

highest betweenness centrality. For this network, the three centrality measures agree. However, Panel B shows 

a network in which vertex importance, depends on the metric that is being used. The red node has the highest 

betweenness and closeness centrality, but it also has the lowest number of connections. 
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Figure 2.4 An Example of Network Topologies and Centrality Metrics (Oldham et al., 2019) 

 

2.6 Graph Layout Algorithms 

Humans are visual creatures by nature. The theory of multimedia learning (Mayer, 1997) states that we can 

learn more deeply from words and pictures together than we can from just words alone, i.e. it is often easier 

for people to retain and understand information if there is an accompanying visual component. Edward Tufte, 

who is considered to be a pioneer in the field of data visualisation, said the following in his book “The Visual 

Display of Quantitative Information” (2001): 

 

Modern data graphics can do much more than simply substitute for small statistical tables. At their 

best, graphics are instruments for reasoning about quantitative information. Often the most effective 

way to describe, explore, and summarize a set of numbers - even a very large set - is to look at pictures 

of those numbers. Furthermore, of all methods for analyzing and communicating statistical 

information, well-designed data graphics are usually the simplest and at the same time the most 

powerful. 

 

Therefore, using a graph to visually represent a network, as opposed to examining an adjacency matrix, is often 

preferred. For high dimensional networks, a graph representation can often reveal patterns, trends, outliers, and 

connections that may be especially difficult or impossible to find in any other way. 

 

However, graphs of larger networks must be created using dedicated visualisation software or toolboxes. The 

following list is a sample of such software: 

• Gephi (Bastian, Heymann and Jacomy, 2009) 

• Pajek (Batagelj and Mrvar, 2004) 

• MATLAB (MATLAB, 2022) 

• The Networx toolbox (Hagberg, Swart and S Chult, 2008) in Python (Van Rossum and 

Drake, 2009). 

• The Statnet toolbox (Pavel N. Krivitsky et al., 2003) in R (R Core Team, 2016). 
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Drawing a graph is not a simple process. This is because the method that is used to draw the graph can have a 

significant impact on the interpretation of the graph. For example, if the vertices of two entities are plotted near 

each other, the user may infer that the two entities have a significant relationship even if they do not have any 

significant edges or paths that link them together. Therefore, the objective of any graph layout algorithm is to 

reveal important relationships without misleading the user. 

 

Gibson, Faith and Vickers (2013), Hu (2011), and Bajramovic et al. (2011) provide surveys of commonly used 

methods for visualising networks. These methods typically fall into one of three categories: force-directed 

methods, dimension reduction methods, and multi-level methods. For simple networks, such as the Friends 

network in Figure 2.1, the circular layout (which is the layout used in that figure) can be a useful starting point. 

 

The force-directed methods are the most widely used algorithms and are typically integrated into many network 

visualisation tools. These methods aim to create graphs that target certain aesthetic properties such as 

minimising edge crossing; enforcing symmetry; imposing uniform lengths of edges and distribution of vertices; 

separating vertices that are not linked; and preventing vertices from overlapping. Maximising these aesthetic 

principles should intuitively improve the readability of a graph. However, for large graphs, these aesthetics can 

have a long runtime and may not lead to a globally optimal layout (violating the targeted aesthetic principles). 

Popular force-directed methods are the Fruchterman-Reingold layout (Fruchterman & Reingold 1991), the 

Kamada-Kawai layout (Kamada & Kawai 1989), and the ForceAtlas method which was developed by Jacomy 

et al. (2014) for use in Gephi. 

 

The dimension reduction techniques are used to take high dimensional data and project them down onto a lower 

dimensional space while retaining as much of the information from the high dimensional space as possible. 

Popular dimension reduction techniques are Multi-Dimensional Scaling (MDS) methods such as Pivot MDS 

by Brandes and Pich (2007), linear dimension reduction methods such as High-Dimensional Embedding from 

Harel and Koren (2004) and self-organising maps (SOM). 

 

Multi-level (or multi-scale, or multi-dimensional) techniques that are used for large graphs, start with force-

directed algorithms and make them more efficient. They do this by recursively coarsening the graph and then 

refining it using layout refinements. Examples of this technique are the Yifan Hu Multilevel method (Hu, 2005) 

and the OpenOrd method (Martin et al., 2011) which is available in Gephi. 

 

Table 2 in Gibson, Faith and Vickers (2013) contains a useful summary of the various methods, their 

performance, the key differences, and size limitations. In this dissertation, given that the number of entities that 

are being graphed is not onerous (less than one hundred), the Kamada and Kawai method (in the Pajek graphing 

software) is used to layout the graph. 
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2.7 Examples of Networks 

The hypothetical network shown in Figure 2.1 is a simple example, which was used to explain the basic 

concepts of a network. In this section, we provide examples of network graphs that were generated from actual 

data, followed by a brief commentary on the insights that can be gleaned from each one. 

 

2.7.1 Character Interactions in Game of Thrones  

Beveridge and Shan (2016) generated a network based on the Game of Thrones series of books, and the 

television series, by George R. R. Martin. The franchise is well known for its complicated plotlines, with a vast 

number of characters and groups of characters, that are spread over multiple geographic locations. Therefore, 

these books provide the perfect environment to showcase the benefits of network theory. The authors generated 

a network based on the interactions between the characters in the third book of the series, “A Storm of Swords” 

(Martin, 2002). This network can be seen in Figure 2.5. The authors noted the following about the structure of 

the network: 

 

The complex structure of our network reflects the interweaving plotlines of the story. Notably, we 

observe two characteristics found in many real-world networks. First, the network contains multiple 

denser subnetworks, held together by a sparser global web of edges. Second, it is organized around a 

subset of highly influential people, both locally and globally. 

 

They also mentioned the following conclusion regarding important characters in the book: 

 

In our network, three characters stand out consistently: Tyrion, Jon, and Sansa. Acting as the Hand of 

the King, Tyrion is thrust into the center of the political machinations of the capitol city. Our analysis 

suggests that he is the true protagonist of the book. Meanwhile, Jon Snow is uniquely positioned in 

the network, with connections to highborn lords, the Night’s Watch militia, and the savage wildlings 

beyond the Wall. The real surprise may be the prominence of Sansa Stark, a de facto captive in King’s 

Landing. However, other players are aware of her value as a Stark heir and they repeatedly use her as 

a pawn in their plays for power. If she can develop her cunning, then she can capitalize on her network 

importance to dramatic effect. 
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Figure 2.5 A Social Network Generated from the Book, A Storm of Swords 

 (Beveridge and Shan, 2016) 

 

So, using techniques from network theory, the authors were able to take a complex storyline, and synthesise 

important information from it. They were also able to provide conclusions regarding the importance of certain 

characters that may not be obvious upon cursory reading. 

 

2.7.2 Passing Networks in Football 

Advances in technology have led to the rapid growth in the quantity and type of data that is available for 

modern football teams to analyse. By using wearable devices, video tracking systems, and manual data capture 

processes, large quantities of data can be obtained. This data can be used for a variety of purposes, such as 

player scouting, opposition analysis, individual player improvement, and tactical/positional analysis. The way 

that players interact with each other on the football pitch (by passing the ball to each other) has led to the 

creation of passing networks. In a passing network, the vertices are the football players and edges represent the 

number of passes between any two players of the team. Buldú et al. (2019) used techniques from network 

science to analyse the passing signature of the historic Futbol Club (FC) Barcelona team that was managed by 

Pep Guardiola from the period 2008 to 2012. Figure 2.6 shows the passing network for F.C. Barcelona during 

a match played against Real Madrid, during the season 2009/2010. The position of each vertex/player reflects 
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their average position on the field, and the width of the edges/links is proportional to the number of passes 

between the connected players. 

 

 

Figure 2.6 A Football Passing Network for F.C. Barcelona (Buldú et al., 2019) 

 

The large size of the vertex for the player Xavi, indicated that he was important in the passing network (and 

many football fans who have him play would agree with this result), while the width of the edge from the 

players Iniesta to Messi, indicated that Iniesta provided the bulk of the passes forward to Messi (who scored a 

total of 47 goals in all competitions that season, winning his first Ballon d'Or trophy). 

 

2.7.3 A Network of Illegal Ivory Trade 

The illegal hunting of wild animals is a global problem that has led to the decline of many species of wildlife. 

In Africa, the period from 1979 to 1989 saw the population of elephants decline by 50% as they were hunted 

for their ivory. Huang, Wang and Wei (2020) constructed a country-level ivory trading network to illustrate 

the smuggling routes and the volume of ivory that was smuggled between countries. The analysis aimed to 

determine which countries were the key hubs in this network, and what were the most significant smuggling 

routes. Figure 2.7 shows this network laid out on to a map of the world. Countries from the different continents 

are marked with different colours and the size of a vertex illustrates the largest trading routes. The thickness of 

the edges represents the trafficking intensity of ivory between countries (with a thicker edge implying a higher 

intensity). 
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Figure 2.7 Illegal Ivory Trading Network (Huang, Wang and Wei, 2020) 

 

Based on the analysis, Huang, Wang and Wei (2020) provided various insights, as well as targeted strategies 

to effectively control the ivory trading network. They noted that the most important hubs in the worldwide 

ivory trade were identified as the USA, the UK, Zimbabwe, South Africa, China, Japan, Sudan, Belgium and 

Hong Kong. They suggested that customs should strengthen inspections of vessels coming and going between 

these countries. They also noted stated that three significant ivory trafficking routes will be of more concern in 

the future and should be closely monitored. These routes were from African countries to Asian countries, from 

Belgium to Asian countries, and between Japan and Hong Kong. 

 

2.8 Networks in Stock Markets 

A network in a stock market can be modelled using the strength of the relationships (which are captured by the 

edges/links) amongst the various stocks in the market (which are represented by the nodes/vertices). The 

strength of the relationship is usually defined by determining the similarity of stocks based on the Pearson 

correlation of share price movements (or returns). This results in a network that is based on how market 

participants view stocks and trade them accordingly.  

 

While return-based Pearson correlation networks have been studied extensively, one can define similarity in 

terms of a variety of metrics to highlight features of stock price co-movements that are also believed to be 

important (such as the non-linear share price co-movements or the lead-lag relationships amongst stocks). 

Similarity measures that focus on non-linear relationships amongst stock price movements, and a sample of 

academic studies that address these measures, are shown in Table 2.3. 
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Table 2.3 Studies of Stock Market Networks that use Non-linear Metrics 

Metric Reference 

Copula methods Wang et al. (2014) 

Kendall’s tau 
Millington and Niranjan (2021) 

Musmeci et al. (2016) 

Mutual information 

Barbi and Prataviera (2019) 

Goh, Hasim and Antonopoulos (2018) 

Guo, Zhang and Tian (2018) 

Spearman’s rank correlation 
Millington and Niranjan (2021) 

Musmeci et al. (2016) 

Tail dependence 

Denkowska and Wanat (2020) 

Lohre, Rother and Schäfer (2020) 

Musmeci et al. (2016) 
 

 

One can also focus on how the movements in one stock’s price affects the prices of other stocks, such as partial 

correlations, lead-lag relationships, and Granger causality. Studies that focus on these measures, can be seen 

in Table 2.4. 

 

Table 2.4 Studies of Stock Market Networks that use Causal-Type Metrics 

Metric Reference 

Granger causality Billio et al. (2012) 

Lead-lag relationships Bennett, Cucuringu and Reinert (2022) 

Partial correlations 
Kenett et al. (2010)  

Millington and Niranjan (2020) 
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Instead of focusing exclusively on share price movements (which tells us how market participants view each 

stock), one could analyse the similarity amongst other features, such as volatility, trading volumes, accounting 

fundamentals, risk factor exposures, or the language/commentary in annual reports or on earnings calls. 

 

Table 2.5 Studies of Stock Market Networks that use Alternative Features 

Feature Reference 

Accounting fundamentals 

Fodor, Jorgensen and Stowe (2021) 

Henningsen (2019) 

Knudsen, Kold and Plenborg (2017) 

Language/commentary in annual reports or 

earnings calls  
Winton (2018) 

Risk factor exposures Heywood, Marsland and Morrison (2003) 

Share price volatility Miccichè et al. (2003) 

Trading volumes Brida and Risso (2008) 
 

 

 

Returning to the commonly used correlation-based network, 𝜌𝜌𝑖𝑖𝑖𝑖  can be defined as an entry in a 𝑁𝑁 × 𝑁𝑁 

correlation matrix representing the correlation between any two shares, 𝑖𝑖 and 𝑗𝑗, and can be calculated in the 

usual manner as follows: 

 

Let 𝑁𝑁 = the number of stocks in the market.  

Let 𝑃𝑃𝑡𝑡𝑖𝑖  = the price of stock 𝑖𝑖 at time 𝑡𝑡.  

Then 𝑟𝑟𝑡𝑡𝑖𝑖 = 𝑃𝑃𝑡𝑡
𝑖𝑖

𝑃𝑃𝑡𝑡−1
𝑖𝑖 − 1 = the return of stock 𝑖𝑖 at time 𝑡𝑡.  

Let 𝑇𝑇 = the number of return observations.  

Let 𝑟̅𝑟𝑖𝑖 = 1
𝑇𝑇
� 𝑟𝑟𝑡𝑡𝑖𝑖

𝑇𝑇
𝑖𝑖=1  = the average return of stock 𝑖𝑖.  

Then 𝜌𝜌𝑖𝑖𝑖𝑖 =
� (𝑟𝑟𝑡𝑡

𝑖𝑖 − 𝑟̅𝑟𝑖𝑖)(𝑟𝑟𝑡𝑡
𝑗𝑗 − 𝑟̅𝑟𝑗𝑗)

𝑇𝑇

𝑡𝑡=1

�� (𝑟𝑟𝑡𝑡
𝑖𝑖 − 𝑟̅𝑟𝑖𝑖)2

𝑇𝑇

𝑡𝑡=1
� (𝑟𝑟𝑡𝑡

𝑗𝑗 − 𝑟̅𝑟𝑗𝑗)2
𝑇𝑇

𝑡𝑡=1

 . (1) 
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Table 2.6 contains a small sample example of a correlation matrix1 consisting of ten stocks that were listed on 

the Johannesburg Securities Exchange (JSE) in South Africa. We use the JSE ticker code to represent each 

share, while the full names and other details of these shares can be found in Appendix A1. The sample of stocks 

emanated from a variety of economic sectors such as general mining (AGL, and BHG), gold mining (GFI, and 

ANG), banking (FSR, SBK, and ABG), and retail (MRP, TFG, and TRU) sectors.  

 

Table 2.6 Example of a Ten Stock Correlation Matrix  

 AGL BHG GFI ANG FSR SBK ABG MRP TFG TRU 
AGL 1.00 0.63 -0.13 -0.10 -0.23 -0.28 -0.07 -0.29 -0.19 -0.51 
BHG 0.63 1.00 -0.16 0.00 -0.29 -0.25 -0.27 -0.22 -0.12 -0.36 
GFI -0.13 -0.16 1.00 0.78 -0.56 -0.55 -0.65 -0.34 -0.47 -0.23 

ANG -0.10 0.00 0.78 1.00 -0.51 -0.62 -0.75 -0.36 -0.38 -0.31 
FSR -0.23 -0.29 -0.56 -0.51 1.00 0.64 0.63 0.02 0.11 0.10 
SBK -0.28 -0.25 -0.55 -0.62 0.64 1.00 0.72 0.08 0.08 0.11 
ABG -0.07 -0.27 -0.65 -0.75 0.63 0.72 1.00 0.12 0.06 0.16 
MRP -0.29 -0.22 -0.34 -0.36 0.02 0.08 0.12 1.00 0.34 0.29 
TFG -0.19 -0.12 -0.47 -0.38 0.11 0.08 0.06 0.34 1.00 0.33 
TRU -0.51 -0.36 -0.23 -0.31 0.10 0.11 0.16 0.29 0.33 1.00 

 

 

Even in this simple correlation matrix, one can that there was some structure, where stocks within the same 

sector had a positive correlation to each other, and stocks across sectors had a low or negative correlation. This 

indicated that even in this simple example, the sector classification employed by the JSE did agree with the 

manner in which stocks actually traded. We will discuss this phenomenon in more detail in later sections. 

 

However, to apply the techniques of network theory to a correlation matrix, one cannot simply use the 

correlation metric in its raw form. This is because many of the techniques from network theory require that the 

weights of the edges in a network must satisfy the three axioms of a metric space. One must therefore define a 

distance metric 𝑑𝑑(𝑖𝑖, 𝑗𝑗) such that:  

 

I. 𝑑𝑑(𝑖𝑖, 𝑗𝑗)  ≥  0  and 𝑑𝑑(𝑖𝑖, 𝑗𝑗)  =  0 if and only if 𝑖𝑖 = 𝑗𝑗.  

II. 𝑑𝑑(𝑖𝑖, 𝑗𝑗)  = 𝑑𝑑(𝑗𝑗, 𝑖𝑖). 

III. 𝑑𝑑(𝑖𝑖, 𝑗𝑗)  ≤ 𝑑𝑑(𝑖𝑖, 𝑘𝑘) + 𝑑𝑑(𝑘𝑘, 𝑗𝑗). 

 

(2) 

 

 

 
1 Note that these correlations were calculated after having subtracted the average return across the ten stocks 

from each stock. This is one of the methods for removing the market mode and creates a relative 

correlation matrix, which makes it easier to identify any emergent structure. Section 3.1.3 contains 

more information in this regard. 
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Axiom I is referred to as positivity, Axiom II as symmetry, and Axiom III as the triangle inequality. One can 

see why a network that is constructed purely from a correlation matrix would not satisfy the above axioms. For 

example, correlations can vary in value from -1 to 1, violating the first axiom. Also, the correlation of a stock 

with itself is equal to 1, and not 0 as required by the first axiom. The third axiom could also be violated in cases 

where you have two stocks that have a high correlation with each other, but each stock has a low correlation 

with a third stock (Birch, 2016). 

 

Following Mantegna (1999) and Gower and Ross (1969) one can transform the correlation coefficient between 

stocks 𝑖𝑖 and 𝑗𝑗 into a valid distance metric as follows: 

𝑑𝑑(𝑖𝑖, 𝑗𝑗)  =  �2(1 − 𝜌𝜌𝑖𝑖𝑖𝑖). (3) 

 

The relationship between the distance metric and the correlation coefficient can be seen in Figure 2.8. The 

relationship is negative and non-linear, with a correlation of -1 implying a distance of 2, a correlation of 0 

implying a distance of √2 (≈ 1.41), and a correlation of 1 implying a distance of 0. So, highly correlated stocks 

will have a distance close to 0, and in the extreme case, the distance of a stock to itself is 0. Therefore, this 

metric satisfies the axioms of a distance metric and can be used to create correlation-based networks where the 

smaller the weight of an edge (or the shorter the length) between any two vertices, the higher the correlation 

between them.  

 

Figure 2.8 Inverse Relationship Between Distance and Correlation 

 

Using the distance metric from Equation (3) one can construct a distance matrix associated with the correlation 

matrix from Table 2.6. This distance matrix is shown in Table 2.7. 
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Table 2.7 Example of a Ten Stock Distance Matrix 

 AGL BHG GFI ANG FSR SBK ABG MRP TFG TRU 
AGL 0.00 0.86 1.50 1.48 1.57 1.60 1.46 1.61 1.54 1.74 
BHG 0.86 0.00 1.52 1.41 1.60 1.58 1.59 1.56 1.50 1.65 
GFI 1.50 1.52 0.00 0.66 1.77 1.76 1.82 1.64 1.71 1.57 

ANG 1.48 1.41 0.66 0.00 1.74 1.80 1.87 1.65 1.66 1.62 
FSR 1.57 1.60 1.77 1.74 0.00 0.85 0.86 1.40 1.33 1.34 
SBK 1.60 1.58 1.76 1.80 0.85 0.00 0.75 1.36 1.36 1.33 
ABG 1.46 1.59 1.82 1.87 0.86 0.75 0.00 1.33 1.37 1.29 
MRP 1.61 1.56 1.64 1.65 1.40 1.36 1.33 0.00 1.15 1.19 
TFG 1.54 1.50 1.71 1.66 1.33 1.36 1.37 1.15 0.00 1.16 
TRU 1.74 1.65 1.57 1.62 1.34 1.33 1.29 1.19 1.16 0.00 

 

 

 

As discussed, in Section 2.1 one can also represent such a network as a graph. This can be seen in Figure 2.9. 

Note that in this graph, the thickness of each edge is proportional to the correlation between the two connected 

or adjacent shares (vertices). Negative correlations between any two shares are depicted by edges that are 

coloured red. We have used a basic circular layout for this graph. 

 

 

Figure 2.9 Graph Representation of the Ten Stock Correlation Matrix 

 

From Figure 2.9 one can see that even in the case of this small network, inferring any meaningful insights from 

the graph is difficult because the network is fully connected (i.e. all vertices are connected). So, although a 

correlation matrix can be used to represent a network in a stock market, one needs to use techniques to filter 

out the less relevant edges from the network. This would leave us with the most informative connections and 

assist in revealing the hidden insights in the network. We discuss these filtering processes in the following 

section. 
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2.9 Network Filtering Techniques 

Most analysis of stock markets tends to suffer from the curse of dimensionality. This refers to the fact that an 

analysis of a large number of stocks, with a limited length of time series data that is being used to model the 

relationships amongst the stocks, can often lead to spurious or noisy results. Therefore, a process that can filter 

out the noise, while still retaining the maximum amount of useful information (or the underlying signal in the 

data), is vital.  

 

Furthermore, although stock markets consist of a large universe of stocks, the behaviour of these stocks tends 

to be to be driven by a smaller number of factors. In his well-known paper, Sharpe (1963) introduced the single 

index model, in which the returns of stocks are influenced (in varying degrees) by a general market factor. This 

theory was expanded upon by Ross (1976) with the concept of the Arbitrage Pricing Theory (APT) which 

posited the idea that the returns on stocks are driven by multiple factors from a variety of settings (e.g. equity 

markets, equity sectors, interest rates, currencies, economic factors, etc.). King (1966) put forward the idea that 

the share prices of certain groups of stocks tend to behave similarly, due to market participants viewing them 

as homogenous groups. This was one of the earliest known academic works that used the concept of cluster 

analysis to identify these homogenous groups. So, although stock markets can be viewed through one lens as 

a high dimensional setting, one can use techniques to reduce the complexity by grouping together stocks that 

exhibit similarity in the selected set of features.  

 

To this end, network filtering techniques have been shown to be effective tools that can convert a dense network 

(such as a correlation matrix in a stock market) into a sparse network, and one can then analyse the structure 

of such a network to discover important insights on the collective properties of the underlying system. Many 

applications of network filtering in financial markets have been proposed. Mantegna (1999), is thought to be 

the pioneer of the utilisation of network filtering techniques in financial markets, proposing the use of a 

Minimal Spanning Tree (MST) to uncover structure (i.e. whether groups of stocks behaved similarly) amongst 

stocks in the Dow Jones Industrial Average and S&P500 indices. Other popular techniques include Asset 

Graphs, Threshold Networks, and Planar Maximally Filtered Graphs (PMFG). We discuss these network 

filtering techniques next. 

 

2.10 Threshold Networks and Asset Graphs 

Perhaps the simplest method to filter a correlation-based network is to focus on the strongest correlations (and 

therefore the shortest distances in the network) and to discard the rest of the connections (effectively setting 

the weights of these edges to a value of zero).  
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The Asset Graph, which was first proposed in Onnela, Chakraborti, Kaski, Kertesz, et al. (2003a), is a method 

in which pairwise correlations (which represent the weights of the edges in the network) are ranked from the 

strongest (i.e. the most correlated stocks) to the weakest and then most anti-correlated (or is terms of distances, 

the pairs are ranked from the shorted distance to the longest). Only a certain number of the top correlated pairs 

of stock are retained. In a stock market of N stocks (which results in a correlation matrix with 1
2
𝑁𝑁(𝑁𝑁 − 1) 

unique entries), this number is usually set to N-1, but can be varied to create a denser network (by retaining 

more edges), or a sparse one by retaining fewer of the ranked edges. 

 

The Threshold Network was introduced by Boginski, Butenko and Pardalos (2005). In this method, the fully 

connected stock market network is filtered to a less complex one by only including an edge between two stocks 

if their correlation is larger than a set threshold value. The complexity/density of the resulting network can be 

determined by varying this threshold value. The threshold may be absolute in nature (keeping the largest 

positive and negative correlations), or it may focus on only large positive correlations, in which case the 

network would favour stocks that are highly correlated to each other and ignore other information. For example, 

applying an absolute correlation threshold of |0.25| to the ten stock correlation matrix in Table 2.6 leads to the 

filtered correlation matrix in Table 2.8 

 

Table 2.8 Ten Stock Correlation Matrix: Threshold Filtered = |0.25| 

 AGL BHG GFI ANG FSR SBK ABG MRP TFG TRU 
AGL 1.00 0.63    -0.28  -0.29  -0.51 
BHG 0.63 1.00   -0.29  -0.27   -0.36 
GFI   1.00 0.78 -0.56 -0.55 -0.65 -0.34 -0.47  

ANG   0.78 1.00 -0.51 -0.62 -0.75 -0.36 -0.38 -0.31 
FSR  -0.29 -0.56 -0.51 1.00 0.64 0.63    

SBK -0.28  -0.55 -0.62 0.64 1.00 0.72    

ABG  -0.27 -0.65 -0.75 0.63 0.72 1.00    

MRP -0.29  -0.34 -0.36    1.00 0.34 0.29 
TFG   -0.47 -0.38    0.34 1.00 0.33 
TRU -0.51 -0.36  -0.31    0.29 0.33 1.00 

 

 

Similar to Figure 2.9, one can represent the filtered correlation network from Table 2.8 as a graph. This can be 

seen in Figure 2.10. We show the original, fully connected network on the left and the filtered network on the 

right. One can see how the network has been “pruned” to keep only the largest (in magnitude) connections. 
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Figure 2.10 Graph of the Filtered Correlation Matrix (right-hand side) with Threshold = |0.25| 

 

According to MacMahon and Garlaschelli (2015), because these methods discard the weakest correlations, and 

these correlations tend to be the noisiest, these methods tend to be more robust to noise. However, the choice 

of the threshold (in the case of the Threshold Network), or the number of edges to include (in the case of the 

Asset Graph) is arbitrary. One usually investigates how the properties of the filtered network changes as the 

threshold or the number of edges is varied. 

 

But more importantly, the Asset Graph (and the Threshold Network if one only focuses on positive correlations, 

or the shortest distances), may also ignore an important feature of complex systems. In complex systems, such 

as stock markets, there are important relationships that exist on a local or microscopic scale (i.e. amongst the 

most closely linked vertices or stocks), but also on a global or macroscopic scale, with a hierarchical structure 

that may exist in the data. As mentioned by Song, Di Matteo and Aste (2012): 

 

We are therefore facing the problem of catching simultaneously two complementary aspects: on one 

side there is the need to reduce the complexity and the dimensionality of the data by identifying 

clusters which are associated with local features; but, on the other side, there is a need of keeping the 

information about the emerging global organisation that is responsible for cross-scale activity. It is 

therefore essential to detect clusters together with the different hierarchical gatherings above and 

below the cluster levels. 

 

The Asset Graph and the Threshold Network methods only consider the local, pairwise correlation structure 

amongst stocks, and typically ignore any global or hierarchical correlation structure. This is because the use of 

a global correlation threshold (i.e. the same threshold or ranking cut-off across the entire network) prevents the 

identification of clusters where the correlation of the stocks within a cluster (i.e. the intra-cluster correlations) 

is lower than the threshold (and these connections will therefore be excluded from the network), but this 

correlation is still stronger than the correlation that these stocks have with other clusters (i.e. the inter-cluster 

correlations). Therefore, although the Asset Graph and Threshold Networks are valuable filtering techniques, 
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they tend to discard a significant amount of information and are not best suited to detect any emergent clustering 

structure that may occur amongst stocks.  

 

2.11 Minimal Spanning Trees (MST) 

2.11.1 An Introduction to MSTs 

One of the most popular methods of filtering a correlation-based network is to construct a Minimal Spanning 

Tree (MST) from the distance matrix of the network. In graph theory, a tree is a graph (with undirected edges) 

in which any two vertices are connected to each other by exactly one unique path (i.e. there are no loops or 

alternative paths that join one vertex to another). The MST is a tree in which all vertices are connected, which 

is what the term spanning refers to. Furthermore, the total distance across all the edges of the tree is minimised, 

hence the reference to minimal.  

 

The MST is one of the most important and well-known filtering techniques emanating from graph theory. This 

is because there are algorithms to calculate the MST that are efficient and suitable for large networks. As such, 

it is a tool that has been used in many settings, such as the optimisation of computer and telecommunication 

networks, electrical grids, transportation routes, and water supply networks (Graham and Hell, 1985). Although 

the most popular and efficient algorithms that are used to create an MST are attributed to Kruskal (1956) and 

Prim (1957), it was thought to be Borůvka (1926), who presented the first algorithm to create an MST from a 

network. Note that all algorithms result in the same tree (unless there are non-unique distances between all 

edges), however, they can vary in the time taken, and the computational power required, to arrive at the 

solution. For the interested reader, Graham and Hell (1985), and Nešetřil (1997), provided a detailed history 

of the MST. 

 

In finance, since the seminal work of  Mantegna (1999), who applied the MST technique to uncover structure 

amongst stocks in the Dow Jones Industrial Average and S&P500 indices, there have been numerous papers in 

which the authors apply the MST technique to various other financial settings. Given the extended list of these 

papers, we list them in tabular format in Table 2.9, with the setting in which MSTs have been applied (on the 

left), followed by the reference (on the right). 

 

Table 2.9 Studies of MSTs Applied to Financial Markets 

Setting Reference 

Stocks: New York Stock 

Exchange (NYSE) 

Bonanno et al. (2003) 

Onnela, Chakraborti, Kaski, Kertesz, et al. (2003b) 
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Setting Reference 

Coronnello et al. (2007) 

Stocks: United Kingdom (UK) 
Coelho et al. (2007) 

Coronnello et al. (2005) 

Stocks: Brazil Tabak, Serra and Cajueiro (2010b) 

Stocks: Germany Birch, Pantelous and Soramäki (2016) 

Stocks: Korea Jung et al. (2006) 

Stocks: Greece Garas and Argyrakis (2007) 

Stocks: Vietnam Nguyen, Nguyen and Nguyen (2019) 

Stocks: Italy  Coletti (2016) 

Global Equity Markets 

Bonanno, Vandewalle and Mantegna (2000) 

Roy and Sarkar (2011) 

Aslam et al. (2020) 

Fixed Income 
Lucey (2010) 

Dias (2012) 

Global Listed Real Estate Wang and Xie (2015) 

Currency Markets 

Kwapien et al. (2009) 

McDonald et al. (2005) 

Jang, Lee and Chang (2011) 

Wang et al. (2012) 

Keskin, Deviren and Kocakaplan (2011) 

Wang and Xie (2016) 

Wang et al. (2013) 

Commodities 
Sieczka and Hołyst (2009) 

Ji and Fan (2016) 
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Setting Reference 

Tabak, Serra and Cajueiro (2010a) 

Hedge Funds Miceli and Susinno (2004) 

Cryptocurrencies 

Briola and Aste (2022) 

Nguyen et al. (2022) 

Song, Chang and Song (2019) 

Giudici and Polinesi (2021) 

Hong and Yoon (2022) 

Asset Classes Výrost, Lyócsa and Baumöhl (2019) 

Portfolio Selection 

Peralta and Zareei (2016) 

Pozzi, Di Matteo and Aste (2013) 

López de Prado (2016) 

 

In their aptly titled paper “A Review Of Two Decades Of Correlations, Hierarchies, Networks And Clustering 

In Financial Markets”, Marti et al. (2021) provide a comprehensive review of the various settings, metrics, 

advances, and problems with MSTs. 

2.11.2 MSTs in the South African setting 

We now discuss applications of MSTs in settings that include South African assets. The South African Rand 

has been featured in analyses of global currencies markets, such as Kwapien et al. (2009), Jang, Lee and Chang 

(2011), Keskin, Deviren and Kocakaplan (2011), Wang et al. (2012), Wang et al. (2013), and Wang and Xie 

(2016), while South African stock market indices have featured in analysis by Bonanno, Vandewalle and 

Mantegna (2000), and Aslam et al. (2020).  

 

A long-term analysis of stocks on the South African stock market, the JSE, was performed by Gopi (2008), 

Gopi (2010), Gopi (2012b), and Gopi (2014). The author found that the grouping of shares on the MST did 

somewhat agree with the Industry Classification Benchmark (ICB) economic sector classification. However, 

the overlap was not perfect, especially with the so-called Rand Hedge shares. These shares typically emanate 

from the Financial or Industrial ICB sectors and derive a large portion of their revenue from offshore markets. 

Therefore, the earnings of these companies tend to benefit from a weakening in the Rand Dollar exchange rate 

and consequently, during these periods, market participants tend to bid up the prices of these shares (we discuss 

this phenomenon in more detail in Section 4.2.2). Particular attention was also paid to enhancing the visual 
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nature of the tree by allowing the edges in the tree to vary by colour and size. This was used to highlight factor 

exposures or the correlation/distance between the two adjacent shares on an edge/link. Furthermore, the 

vertices/nodes in the tree were varied in colour and size to highlight various attributes. For example, the size 

of the vertex was used to indicate the market capitalisation of a share, or the weight of a share in a portfolio. 

This can be useful in identifying portions of a market or a portfolio that are under-diversified. The size and 

colour of the vertices were also used to highlight the exposure of stocks to particular economic factors (such 

as commodity prices, interest rates, or the Rand Dollar exchange rate), showing the overlap between the 

economic factor exposures and the positioning of shares on the tree. This same technique was also used to 

show the quantitative style characteristics of stocks such as momentum, value, growth, and growth at a 

reasonable price (GARP). This allowed the author to highlight pockets of style opportunities on the tree. 

 

Majapa and Gossel (2016) performed a long-term analysis of the South African stock market, and also found 

substantial clustering and homogeneity among stocks. Furthermore, the authors performed a sub-sample 

analysis and found that the tree shrank before and during the 2008 financial crisis, and slowly expanded 

afterwards. Mbatha and Alovokpinhou (2022) investigated the topology of the South African stock market 

network during the COVID-19 hard lockdown2. The results showed an expansion of MST during the (strictest) 

level 5 lockdown and shrinkage of the MST after the level 5 lockdown. After the level 5 lockdown period, 

stocks in the Health Care Equipment & Services sector formed a small cluster that did not exist before the 

lockdown period. Both papers, therefore, highlighted the dynamic nature of the MST and the changing structure 

of the South African stock market. 

 

2.11.3 An Example of an MST in the South African Setting 

We return to the simple ten stock correlation matrix from Table 2.6 and its associated distance matrix from 

Table 2.7. The MST filtered correlation matrix for this example is shown in Table 2.10, and in Figure 2.11 one 

can see the MST using the circular layout (on the left-hand side), while the MST using the Fruchterman and 

Reingold (1991) force-directed layout (which was discussed in Section 2.6) can be seen on the right. 

 

 

 
2 A lockdown was a set of measures that were aimed at reducing the transmission of COVID-19 and was 

typically mandatory. These measures included stay-at-home orders, curfews, quarantines, and other social 

restrictions. 
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Table 2.10 Ten Stock Correlation Matrix: MST Filter 

 AGL BHG GFI ANG FSR SBK ABG MRP TFG TRU 
AGL 1.00 0.63     -0.07    

BHG 0.63 1.00  0.00       

GFI   1.00 0.78       

ANG  0.00 0.78 1.00       

FSR     1.00 0.64     

SBK     0.64 1.00 0.72    

ABG -0.07     0.72 1.00   0.16 
MRP        1.00 0.34  

TFG        0.34 1.00 0.33 
TRU       0.16  0.33 1.00 

 

 

 

 

 

 
 

Figure 2.11 Ten Stock Correlation Matrix: MST Filtered - Circular vs Force-Directed Layout 

 

From Figure 2.11 it is apparent that the force-directed layout does a better job of representing the relationships 

in this example (as it uses the underlying data in the network to determine the layout), than the arbitrary circular 

layout. 

 

2.11.4 Linking MSTs to Hierarchical Cluster Analysis 

In his seminal paper, Mantegna (1999), highlighted an important property of MSTs – the fact that the filtered 

distance matrix from an MST satisfies the properties of a subdominant ultrametric distance. An ultrametric 

distance, 𝑢𝑢(𝑝𝑝, 𝑞𝑞), must satisfy the following axioms (Birch, 2016):  
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I. 𝑢𝑢(𝑝𝑝, 𝑞𝑞)  ≥  0  and 𝑢𝑢(𝑝𝑝, 𝑞𝑞)  =  0 if and only if 𝑝𝑝 = 𝑞𝑞. 

II. 𝑢𝑢(𝑝𝑝, 𝑞𝑞)  = 𝑢𝑢(𝑞𝑞, 𝑝𝑝). 

III. 𝑢𝑢(𝑝𝑝, 𝑞𝑞)  ≤ 𝑚𝑚𝑚𝑚𝑚𝑚[𝑢𝑢(𝑝𝑝, 𝑟𝑟),𝑢𝑢(𝑟𝑟, 𝑞𝑞)]. 

(4) 

 

Condition III is a stronger version of the triangle from Equation (2) and is known as the ultrametric inequality. 

A subdominant ultrametric is a unique ultrametric distance that satisfies the above axioms in addition to 

𝑢𝑢(𝑝𝑝, 𝑞𝑞)  ≤ 𝑑𝑑(𝑞𝑞, 𝑝𝑝). 

 

While seemingly esoteric, ultrametricity is a useful concept because it is directly linked to the concept of 

hierarchy or taxonomy (Onnela, 2002). In the case of the MST, the fact that it satisfies the properties of a 

subdominant ultrametric distance implies that the MST has an equivalent hierarchical representation or 

taxonomy. Even though Mantegna (1999) was the first author to highlight the link between the MST and 

hierarchical clustering in a stock market setting, it was Gower and Ross (1969) who provided the first published 

evidence of this link (in a generic setting), showing that an MST has all the information required to construct 

a specific hierarchical representation that can be created by a hierarchical clustering technique called Single 

Linkage Cluster Analysis (SLCA). 

 

As alluded to in Section 2.9, King (1966), put forward the idea that although stock markets can be viewed 

through one lens as a high dimensional setting, one can use techniques, such as cluster analysis, to reduce 

dimensionality by grouping together stocks that exhibit similarity in selected features. In a network setting, 

clustering can be used to reveal communities, or clusters, of entities in any system. Entities belonging to the 

same community share more information (i.e. they are highly similar) than entities belonging to different 

communities (i.e. they are less dissimilar). In hierarchical clustering, entities are sharing information according 

to the communities that they belong to, and communities are organised in a nested structure or taxonomy.  

 

This is intuitive in stock markets, which already have a hierarchical structure as defined by companies such as 

FTSE (who created the Industry Classification Benchmark or ICB), and MSCI and Standard & Poor's (who 

created the Global Industry Classification Standard or GICS). The ICB classifies companies into the following 

hierarchy (from the top down): industries, super-sectors, sectors, and subsectors. Figure 2.12 shows an example 

(Vass, 2019) of the hierarchical structure (or taxonomy) of the Consumer Staples Industry. For example, one 

can see that the Sugar subsector is contained in the Food Producers sector, which is contained in the Food, 

Beverage, and Tobacco super-sector which is finally contained in the Consumer Staples Industry. However, 

the construction of these structures was typically performed using qualitative information (e.g. the business 

segment that companies operate in), or fundamental accounting information (e.g. where they derive their 

revenue from), and may not mirror the way that stock prices actually move together. To this end, it is useful to 

have a technique that can determine such a hierarchical structure, without using any pre-specified qualitative 

or accounting information (or to use modern machine learning jargon, the process would be unsupervised).  
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Figure 2.12 Example of the ICB Taxonomy for the Consumer Staples Industry 

 

The most popular method of hierarchical clustering is referred to as agglomerative clustering in that each object 

starts as an individual cluster, and at each step, the closest pair of clusters is merged (or agglomerated) to form 

a new cluster. This process continues until all objects reside in a single cluster. The example below from Rhys 

(2020) illustrates this process well. The clusters that are closest to each other at each iteration are merged, with 

ellipses indicating the formation of clusters at each iteration, going from top left to bottom right.  
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Figure 2.13 Illustration of Agglomerative Clustering from Rhys (2020) 

 

One of the requirements for a hierarchical clustering algorithm is a method to determine the distance between 

clusters so the closest two clusters can be merged. Calculating the distance between two individual objects is 

relatively simple, but how does one calculate the distance between two clusters that may contain multiple 

objects? This requires the use of a linkage function. Each type of linkage function uses a different criterion to 

define the notion of closeness between clusters. These linkage functions are summarised in Table 2.11, while 

Figure 2.14 from Rhys (2020) depicts the various linkages methods visually. As mentioned previously, it was 

Gower and Ross (1969) who showed the link between the MST and SLCA, i.e. hierarchical clustering using 

the single linkage function.  

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2.11 Minimal Spanning Trees (MST) 

Department Of Mathematics and Applied Mathematics 
University of Pretoria  

32 

Table 2.11 Summary of Popular Linkage Methods 

Method Description 

Centroid linkage Minimises the distance between each cluster’s centroid. 

Single linkage (SLCA) 
Minimises the smallest distance between objects in the two clusters (also 

referred to as nearest neighbour). 

Complete linkage 
Minimises the largest distance between objects in the two clusters (also 

referred to as farthest neighbour). 

Average linkage (ALCA) 
Minimises the average distance between all pairs of objects in the two 

clusters. 

Ward’s method 
Minimises the incremental variance, i.e. the increase in the total within-

cluster variance as a result of merging two clusters. 
 

 

 

 

Figure 2.14 Various Linkage Methods from Rhys (2020) 

 

The result of hierarchical clustering is usually depicted visually using a dendrogram. This is a tree-like structure 

that shows how clusters merge. The ICB sector classification example, in Figure 2.12 is an example of a 

dendrogram. In Figure 2.15 we show a dendrogram of the small sample correlation matrix from Table 2.6 using 

SLCA. 
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Figure 2.15 Ten Stock Correlation Matrix: Dendrogram using SLCA 

 

It is interesting to note how even in this simple example, the clustering of the stocks aligns closely with the 

ICB sector classification of the shares - gold mining (GFI, and ANG), general mining (AGL, and BHG), retail 

(MRP, TFG, and TRU), and banking (FSR, SBK, and ABG). It is also interesting to note how GFI, ANG, 

BHG, and AGL, which form part of the Basic Resources ICB super-sector, also form a cluster together at a 

high level on the dendrogram. 

 

2.11.5 Analysing the topology of an MST Using Network Metrics 

As mentioned in Section 2.5, networks can be analysed using various metrics to summarise important 

properties about their structure. Metrics such as tree length, degree, or centrality can be used to glean insights 

from an MST. For example, Onnela, Chakraborti, Kaski and Kertész (2003) showed how the tree length of an 

MST of stocks on the NYSE, shortens during times of market crashes, while Majapa and Gossel (2016) show 

a similar result for the South African stock market. Tabak, Serra and Cajueiro (2010a) used network metrics to 

show that agricultural commodities are very important in a commodity network, followed by metals and 

energy. Di Matteo, Pozzi and Aste (2010) introduced measures, which differentiate between well-connected 

stocks and central stocks. They showed that stocks could be well-connected in the network, but at the same 

time they could be peripheral, that stocks could be poorly connected but also central, and that stocks could be 

both poorly connected and peripheral.  
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2.11.6 A Summary of MSTs 

The MST offers a variety of benefits when being used to analyse financial markets. It has been widely 

researched, and therefore there are many theoretical results, and analyses relating to it. It offers a customisable 

visual representation, whereby one can highlight valuable information, or metadata, on the MST. A cluster 

structure emerges on the MST without the use of any prior information, and one can observe how the various 

clusters are connected. The hierarchical clustering representation also provides intuitive information, which 

aligns closely with the standard ways of classifying stocks using qualitative information. Furthermore, network 

metrics can be used to analyse MSTs and they can be calculated dynamically over time. 

 

However, MSTs are not without their disadvantages. Firstly, the clusters that form, as well as the edges of the 

MST, can be unstable. Small changes in the input data, noise, and even various choices in the pre-processing 

of data can have a large impact on the outcome of the analysis. The instability of the MST is thought to be 

related to the sensitivity of SLCA to outliers, as well as the chaining effect in SLCA in which clusters that are 

produced are elongated and difficult to interpret. Due to these problems, Marti et al. (2021) emphasise that 

although there is broad agreement in the conclusions of the various empirical studies, there are also various 

contradictory claims among them. The fact that there are no widely utilised benchmarks to compare the various 

methods of implementation is also problematic.  

 

Finally, with many types of cluster analysis (and the MST/SLCA is no different), the user must specify up front 

how many clusters the data should be grouped into. This is difficult to do unless the user has prior knowledge 

of the data set and the expected number of clusters in the data. While there are many different methods of 

determining the optimal number of clusters in a dataset, there is no consensus on the best method. Often the 

best method depends on the dataset being analysed. Ullmann, Hennig and Boulesteix (2022) and Akhanli and 

Hennig (2020) contain interesting comments in this regard. The network filtering approach that is outlined in 

the next section offers a solution to this problem (i.e. it has a built-in community detection algorithm), as well 

as embedding additional information in the network, and therefore potentially reducing the sensitivity of the 

filtered network to noise and outliers. 

 

2.12 Planar Maximally Filtered Graph (PMFG) 

2.12.1 An Introduction to PMFGs 

Although the MST has been shown to have appealing properties, especially in a financial market setting, there 

were certain concerns relating to the stability and robustness of the MST. Furthermore, the filtering of a 

network down to a tree structure (i.e. an undirected graph in which any two vertices are connected by exactly 

one unique path), may perhaps be too strict a constraint, resulting in the loss of potentially useful information. 
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So although the MST is not as strict as the Asset Graph or Threshold Network, and it does allow some global 

correlations to filter into the network, it may be overly punitive as a network filter. Aste, Shaw and Matteo 

(2010) offer the following example: 

 

In particular, the condition that the extracted network should be a tree is a strong constraint. Indeed, 

let us, for instance, consider the case where three companies are involved in similar activities and 

therefore have strongly correlated behaviors in the dynamics of their stock prices. In the MST 

construction, unavoidably only two of these companies can be directly connected with an edge in the 

filtered graph because the connection with an extra edge of the third company will form a triangular 

cycle, a 3-clique, which is not allowed in a tree. Ideally, one would like to be able to maintain the 

same powerful filtering properties of the MST but also allow the presence of extra links, cycles and 

cliques in a controlled manner. 

 

In graph theory, a clique is a group of vertices in which every vertex is connected (via undirected edges) with 

every other vertex in the clique (or more mathematically, a clique is a graph, or a sub-graph, such that every 

two distinct vertices are adjacent). Typically, a clique looks like a triangle or a structure composed of triangles. 

Figure 2.16 shows examples of 2-cliques (top-left), 3-cliques (top-right), 4-cliques (bottom-left), and 5-cliques 

(bottom-right). Tumminello et al. (2005) introduced a network filter that allows 3 and 4-cliques, thereby 

enriching the information retained in the filtered network. They named this method a Planar Maximally Filtered 

Graph (PMFG). In graph theory, a planar graph is a graph that can be embedded in the plane, i.e. it can be 

drawn on a flat surface such that no edges cross each other.  

 

The PMFG can be thought of as a less constrained version of the MST, allowing the filtered network to retain 

more links. In fact, Tumminello et al. (2005) prove the MST is always a sub-graph of the PMFG. While the 

MST has 𝑁𝑁 − 1 edges, the PMFG has 3 × (𝑁𝑁 − 2) edges, and the number of 3-cliques in the PMFG will be 

more than 2 × (𝑁𝑁 − 4). The construction algorithm and the topological constraints on the PMFG force each 

element to participate in at least one 3-clique. While an MST can be constructed from a fully connected network 

using the methods of Kruskal (1956) or Prim (1957), the PMFG can be constructed using the algorithm 

described in Briola and Aste (2022). 
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Figure 2.16 Examples of 2-Cliques, 3-Cliques, 4-Cliques, and 5-Cliques  

(Clockwise from the top-left) 

 

Even though the PMFG was introduced in 2005, it was initially not applied as widely to financial markets as 

the MST. However, in recent years the application of this filtering tool has increased. Table 2.12 contains a 

sample of various studies that have used the PMFG to analyse financial markets. Note that there is some overlap 

between the studies in the table below and the studies on the financial market applications of the MST in Table 

2.9. 

Table 2.12 Studies of PMFGs Applied to Financial Markets 

Setting Reference 

Stocks: New York Stock 

Exchange (NYSE) 

Tumminello et al. (2005), Aste, Shaw and Matteo (2010) 

Kenett et al. (2010) 

Yan, Xie and Wang (2015) 

Zhao, Li and Cai (2016) 
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Setting Reference 

Musmeci, Aste and Matteo (2015) 

Kukreti et al. (2020) 

Coronnello et al. (2007) 

Stocks: United Kingdom (UK) Coronnello et al. (2005) 

Stocks: Australia 
Yan et al. (2020) 

Pozzi, Di Matteo and Aste (2013) 

Stocks: China Guo et al. (2022) 

Stocks: Germany Birch, Pantelous and Soramäki (2016) 

Global Equity Markets 

Wen, Yang and Zhou (2019) 

Song et al. (2011) 

Eryiğit and Eryiğit (2009) 

Fixed Income Aste et al. (2005) 

Currency Markets Wang and Xie (2016) 

Cryptocurrencies 

Briola and Aste (2022) 

Giudici and Polinesi (2021) 

Hong and Yoon (2022) 

Asset Classes Výrost, Lyócsa and Baumöhl (2019) 

Portfolio Selection Pozzi, Di Matteo and Aste (2013) 

 

2.12.2 An Example of a PMFG in the South African Setting 

We return to the simple ten stock correlation matrix from Table 2.6 and its associated distance matrix from 

Table 2.7. The PMFG filtered correlation matrix for this example is shown in Table 2.13. One can see that a 

larger number of entries in the matrix was retained here as compared to the correlation matrix that was filtered 

using the MST (see Table 2.10).  
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On the right-hand side of Figure 2.17, one can see the PMFG filtered network using the Fruchterman and 

Reingold (1991) force-directed layout. The MST, which is a sub-graph in the PMFG, is also visible on the left 

of  Figure 2.17 and is also depicted in the PMFG (on the right) by highlighting the edges that are common 

between the MST and PMFG in red. One can see that the PMFG is a more complex version of the MST, but 

hopefully, the added complexity provides additional benefits in the form of retaining additional relevant 

information.  

 

Table 2.13 Ten Stock Correlation Matrix: PMFG Filter 

 AGL BHG GFI ANG FSR SBK ABG MRP TFG TRU 

AGL 1.00 0.63 -0.13 -0.10   -0.07  -0.19  

BHG 0.63 1.00 -0.16 0.00   -0.27 -0.22 -0.12  

GFI -0.13 -0.16 1.00 0.78       

ANG -0.10 0.00 0.78 1.00     -0.38  

FSR     1.00 0.64 0.63  0.11 0.10 

SBK     0.64 1.00 0.72   0.11 

ABG -0.07 -0.27   0.63 0.72 1.00 0.12 0.06 0.16 

MRP  -0.22     0.12 1.00 0.34 0.29 

TFG -0.19 -0.12  -0.38 0.11  0.06 0.34 1.00 0.33 

TRU     0.10 0.11 0.16 0.29 0.33 1.00 
 

 

 

 

 

  

Figure 2.17 Ten Stock Correlation Matrix: MST (left) vs PMFG (right) 
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2.12.3 Linking PMFGs to Hierarchical Cluster Analysis 

As highlighted in the prior sections, the MST shares a deep connection to a hierarchical clustering method, the 

SLCA. Interestingly, Song, Di Matteo and Aste (2011) explored a method to characterise the hierarchical 

structure of a PMFG and proposed a framework to define communities on these graphs and to extract their 

hierarchical structure.  

 

As mentioned previously, the PMFG has a property of typically being constructed of 3-cliques, and these 

building blocks also define a class of larger sub-graphs, that Song, Di Matteo and Aste (2011) name bubbles. 

They showed that a hierarchical relationship emerges naturally in a planar graph, and this relationship is 

directly associated with the system of 3-cliques and the bubble structure. Song, Di Matteo and Aste (2012) 

formally introduce an algorithm that exploits this property and named this technique the Directed Bubble 

Hierarchical Tree (DBHT). The DBHT exploits the distinction between separating and non-separating 3-

cliques to identify clustering partitions of all the nodes in the PMFG. This structure can then be depicted in the 

traditional dendrogram visualisation.  

 

An important benefit of the DBHT algorithm is that the user of such a technique does not have to specify a 

priori how many clusters to group the data into. This is in contrast to typical hierarchical clustering techniques, 

in which objects/clusters are iteratively agglomerated based on the similarity of the clusters into a hierarchical 

structure, and the user must then decide how many clusters to split the data into. Alternatively, one must use 

cluster validation techniques to determine the optimal number of clusters. In the case of the DBHT, the objects 

are split upfront into the optimal number of clusters, and the hierarchy is then inferred from the inter-cluster 

and intra-cluster similarities. The algorithm to construct the DBHT can be found in Song, Di Matteo and Aste 

(2012), and a modified version written using the MATLAB programming language can be found in Aste 

(2014). 

 

Note that the DBHT technique is not the first to have automatic cluster/community detection built in. Omran, 

Salman and Engelbrecht (2005) discuss a variety of clustering techniques that do not require an a priori 

specification of the number of clusters. In the econophysics setting, Giada and Marsili (2002) propose an 

unsupervised, parameter-free approach to finding clusters, based on the maximum likelihood principle. The 

authors applied this technique to stocks on the NYSE, while authors such as Mbambiso (2008), and  Hendricks, 

Wilcox and Gebbie (2016) have applied the same technique to stocks on the JSE. However, a comparison of 

this technique to the DBHT is beyond the scope of this dissertation. 

 

The DBHT technique has not been widely applied to financial market data. Musmeci, Aste and Matteo (2015) 

used the DBHT technique for the first time in financial markets and compared this technique to other popular 

clustering algorithms. Using the ICB classification as a benchmark, they showed that the DBHT could 

outperform other methods, being able to retrieve more information with fewer clusters. Raffinot (2017) utilised 
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the DBHT to construct a hierarchical clustering-based asset allocation method. He found that the DBHT-based 

portfolios attained marginally superior risk-adjusted returns across a variety of settings. 

 

2.12.4 PMFGs and DBHTs in the South African setting 

The application of the PMFG and the DBHT to South African instruments has been limited. Song et al. (2011) 

analysed global equity markets and the South African Industrial 25 index (INDI25) formed part of that analysis, 

while Wang and Xie (2016) analysed the global currency market, which included the South African Rand. To 

the best of our knowledge, PMFGs and DBHTs have not been used to analyse the South African stock market. 

 

2.12.5 A Summary of PMFGs and DBHTs 

The PMFG was introduced by Tumminello et al. (2005) as a technique that can maintain the powerful filtering 

properties of the MST but also encodes a larger amount of information into its internal structure, in a controlled 

manner. This should lead to a more informative graph, but at the expense of a more complex graphical 

depiction. The PMFG does, however, have the MST embedded in it. Furthermore, the PMFG also has a 

hierarchical representation (similar to the MST and SLCA) called the DBHT. The DBHT has the benefit of 

having automatic cluster/community detection built-in, and therefore the user does not need to specify the 

required number of clusters/communities a priori. To the best of our knowledge, these techniques have not 

been used to analyse the South African stock market. 

 

2.13 A Detailed Examination of Network Topology Measures 

Many real-life networks are large, contain many vertices, and have complicated structures. However, they also 

have properties, which can be extracted to glean various insights from the network. As discussed in Section 

2.5, the way that the vertices and edges in a network are arranged is referred to as the topology of the network. 

These topological properties can refer to the overall network, or specific vertices or edges. In this section, we 

introduce various metrics that can be used to describe a network’s topology (while leaving the detailed formulae 

for Section 3.2.11). It should be noted that this list is not exhaustive, but is a list of commonly utilised metrics 

for analysing networks in financial markets. Newman (2010), and Fornito, Zalesky and Bullmore (2016) 

contain general introductions to a variety of network measures and metrics, while Pozzi, Di Matteo and Aste 

(2013), and Samal et al. (2021) contain information relating to network metrics that have been applied to 

financial markets. 
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2.13.1 Overall Topology 

The normalised tree length (NTL) was introduced in Onnela, Chakraborti, Kaski, Kertesz, et al. (2003b), as a 

method to calculate the overall strength of the relationships amongst the entities in the network. A larger NTL 

would indicate larger distances between vertices and therefore weaker relationships in the network. A smaller 

NTL would indicate smaller distances between vertices and therefore stronger relationships in the network. 

Note that since we will be calculating distances from a correlation matrix using Equation (3), the NTL will be 

inversely related to the correlation matrix. 

2.13.2 Measures of Centrality 

Researchers analysing a graph, or a network, often want to identify the roles that different vertices/nodes play, 

determining which vertices are important or central, and which are peripheral. However, there are many 

possible definitions of importance, and correspondingly many centrality measures for networks. The centrality 

metric that one chooses, depends on what the researcher deems to be important. 

 

The simplest centrality metric is the degree or degree centrality of a vertex, and it is measured (in an 

unweighted network) by counting the number of edges that are connected to that vertex. The logic is easy to 

understand – important vertices have many connections. A variation of the vertex degree is the normalised 

degree centrality in which the degree of each vertex is normalised by taking into account the number of edges 

in the graph. This allows comparisons across various types of networks. Although simple, degree centrality 

can be a highly effective measure of the importance of a vertex. For example, in many social networks, people 

with more connections tend to be more important. However, one limitation of degree centrality is that all 

connections are treated equally. 

 

Eigenvector centrality can be thought of as an extension of degree centrality, in which we take into account 

not only how many neighbours a vertex has, but also how central or important those neighbours themselves 

are. Therefore, it caters not only for the quantity of connections, but also for the quality of the connections. In 

a social network, connections to people who are themselves influential will offer a person more influence than 

connections to less influential people. Interestingly, a variant of eigenvector centrality is PageRank centrality 

(Brin and Page, 1998) which is one of the algorithms used by Google to rank websites in the results of their 

search engine. 

 

Closeness centrality is a metric that is based on the concept of a network path. A path in a network is the 

sequence of vertices that is travelled along by following edges from one vertex to another. Closeness centrality 

measures the importance of a vertex by first calculating the shortest paths from that vertex to all other vertices, 

and then calculating the average of those path lengths. The closer a vertex is to the other vertices (on average), 

the more important it is. 
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Related to closeness centrality, is the concept of eccentricity centrality. Similarly, one calculates the shortest 

paths from a vertex to all other vertices, but instead of finding the average path length, one uses the maximum, 

or longest path. The closer a vertex is to the other vertices (based on the longest path that it has to other vertices), 

the more important it is. 

 

Betweenness centrality is also a metric that is also built upon the notion of a network path. It defines importance 

as being able to connect vertices to each other. This is done by measuring the number of times a vertex appears 

in a path between other vertices. The more often a vertex appears in paths, the more important it is in the 

network. Betweenness centrality can be thought of as a measure of the control that a vertex exerts over the flow 

of information between other vertices in the network. In the context of a social network, a vertex with high 

betweenness centrality will not necessarily exert influence by being highly connected, but by connecting other 

vertices to each other. 

 

Figure 2.18 is an example from Pike (2015) that shows the difference between closeness, betweenness, and 

eigenvector centrality, as highlighted by the vertices coloured red. One can see that closeness centrality favours 

vertices that are close to other groups of vertices, while betweenness centrality favours vertices that connect 

other vertices. Eigenvector centrality favours vertices that are connected to other important vertices. 

 

Figure 2.18 Examples of Three Types of Centrality Metrics (Pike, 2015) 

 

Several centrality measures have been proposed in the literature (many of which have not been discussed here), 

and given that they can reflect different criteria for assessing importance, it is not unusual that a vertex can be 

considered central for one measure and peripheral for another. Pozzi, Di Matteo and Aste (2013) therefore 
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proposed the concept of hybrid centrality. They introduced two measures X and Y, whereby X is an average 

of the ranks of degree centrality and betweenness centrality (both weighted and unweighted metrics, and so 

four metrics in total), while Y is an average of the ranks of eccentricity centrality, closeness centrality, and 

eigenvector centrality (all weighted and unweighted, and so six metrics in total). Given these two measures, 

the authors assert the following guidelines for assessing the importance of each vertex: 

 

• Small X, small Y – a highly connected vertex, connected to other highly connected vertices. 

• Small X, large Y – a highly connected vertex, connected to scarcely connected vertices. 

• Large X, small Y – a scarcely connected vertex, connected to highly connected vertices. 

• Large X, large Y – a scarcely connected vertex, connected to scarcely connected vertices. 

 

Therefore, the quantity (X + Y) is small for central vertices and large for peripheral vertices, while the quantity 

(X – Y) is large if the vertex has few important connections and it is small if it has many unimportant 

connections. In this dissertation, we utilise the hybrid centrality quantity (X + Y) when we analyse networks 

of the South African stock market. 

 

In Figure 2.19 we plot the ranks of the five centrality measures of interest (degree, betweenness, closeness, 

eccentricity, and eigenvector centrality), as well as the hybrid centrality (X+Y) quantity from Pozzi, Di Matteo 

and Aste (2013), for the PMFG of the small sample correlation matrix from Table 2.6 and its associated distance 

matrix from Table 2.7. Note that these metrics are ranked in ascending order, so stocks which rank better in 

terms of these centrality metrics (i.e. they would be considered to be more central) would have lower ranks 

(closer to a value of one). The vertices have been enhanced in terms of colour and size, with better ranked 

stocks having a larger vertex, and being shaded closer to a yellow colour. Stocks which rank poorer in terms 

of these metrics (i.e. they are peripheral) would have smaller vertices and vertices that are shaded closer to a 

blue colour. Figure 2.20 shows the ranks of the various centrality measures in a bar chart, while Figure 2.21 

shows a bar chart of the final (X + Y) hybrid centrality metric. 

 

In this simple network, one can see that TFG, and ABG consistently rank highly (with lower values) across the 

various metrics. These stocks would be considered to be highly central in the network. Interestingly, the 

eccentricity centrality for ABG is relatively worse as compared to its other metrics (with AGL, and BHG 

having better outcomes for this metric). This highlights the motivation to use various centrality metrics and 

combine them into a hybrid centrality score, as done by  Pozzi, Di Matteo and Aste (2013). 

 

Of the other stocks, BHG, and AGL also rank highly. GFI, SBK, ANG, FSR, MRP, and TRU show more 

peripheral behaviour in the network. 
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Figure 2.19 Ten Stock Correlation Matrix: PMFG Centrality Measures Overlaid onto the Graph 
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Figure 2.20 Ten Stock Correlation Matrix: PMFG Centrality Measures 

 

 

 

Figure 2.21 Ten Stock Correlation Matrix: PMFG Hybrid Centrality (X+Y)  

 

 

2.14 Practitioner’s Viewpoint 

We conclude this section by addressing the relevance of this analysis, both network filtering as well as cluster 

analysis techniques, to financial market practitioners. As discussed in Section 1.1, network filtering tools are 

useful to prune noise in stock market networks, thereby allowing important macroscopic and mesoscopic 
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structures to emerge. These filtered networks are also accompanied by a visual representation that allows the 

user to easily unearth meaningful information about the complex market dynamics and its emergent structure. 

Furthermore, one can extract useful metrics from such networks that describes their structure or topology, 

highlighting which shares are important or central in the network. The analysis of the temporal evolution of 

networks can also assist in understanding the underlying trends in the structure of the market. 

 

On a more granular level, Marti et al. (2021) provided a detailed list of academic studies in which these 

techniques have been used. They broke down the use cases into four main groups: portfolio design, trading 

strategies, risk management, and financial policy making. In the following paragraphs, we highlight various 

papers that fall into the first three categories, which are the most relevant categories for investment 

professionals. 

 

From a portfolio design point-of-view, clustering techniques are valuable tools to reduce the complexity of 

analysing many shares, into a smaller, more manageable, subset of clusters. One could even use shares that are 

within the same cluster as proxies for each other, if there is a constraint on investing in one of the shares. There 

have also been several studies in which portfolios have been constructed based on the results from network 

filters or cluster analysis. For instance, Pozzi, Di Matteo and Aste (2013) stated that one gets better 

diversification benefits by investing in shares that are on the periphery of a network, while López de Prado 

(2016) introduced a portfolio diversification technique called hierarchical risk parity in which one allocates an 

equal risk budget to hierarchical clusters. 

 

In terms of trading strategies, one may find that when searching for mean-reverting trading opportunities such 

as pair trades, stocks that are found within the same cluster may be better candidates for such strategies Han, 

He and Toh (2022) and Sarmento and Horta (2020) provided strategies in which clustering techniques were 

used to construct profitable pair trades, while Qu et al. (2016) apply these techniques to mean-reverting 

strategies from long-short basket trades (where the baskets are based on statistical clusters). 

 

And finally for the risk management category, monitoring the contribution to risk from clusters may provide a 

better understanding of the risk concentration in a portfolio (as opposed to using an economic sector 

classification). As done in Gopi (2012b), the ability to overlay portfolio weights, factor exposures, and risk 

contributions onto an MST or PMFG (by varying the size and colour of the vertices) also provides an intuitive 

method for portfolio managers to easily visualise the risks inherent in their funds. Seabrook, Caccioli and Aste 

(2021) utilised network filtering techniques in a stress testing framework, and lastly, Cook, Soramäki and 

Laubsch (2016) made use of network-based methods to visually identify systemic risks. 
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Chapter 3 Methodology, Modelling 
Considerations, and Data  

In this section we discuss various modelling, pre-processing, and sample/feature selection techniques and 

considerations. The choices associated with many of these concepts often have a significant impact on the 

outcome of any analysis, so we discuss each of them in detail here, referring to published literature or 

practitioner insights to guide the choices that are made. Section 3.1 contains a general discussion regarding 

modelling considerations, while in Section 3.2 we discuss the actual data that was used and the methodology 

that we followed. 

 

3.1 Modelling Considerations 

3.1.1 Universe of Stocks, Thin-trading Concerns, and Frequency of Data 

In this dissertation, the relationships among stocks listed on a South African stock exchange, the JSE, are 

analysed. The focus is on stocks that are listed on the main board of the JSE, and more specifically, stocks that 

form part of the main equity index, namely the All Share Index, or ALSI. Note that while the SWIX and Capped 

SWIX are also popular indices, all three indices are constructed using the same set of shares, with only a 

difference in the weighting scheme in each index. This was done to ensure that the analysis is relevant for 

practitioners, since shares that are not listed on the main board, or do not form part of the ALSI, are often not 

investable for many investment professionals. Furthermore, these shares do not trade regularly and when they 

do trade, they often trade in small lot sizes. Stocks that do not trade frequently or in a realistic lot size often 

seem to be less volatile than stocks that trade frequently (i.e. they have a lower volatility). However, this 

apparent lower volatility is misleading, as the lack of proper market liquidity tends to artificially bias down the 

volatility of these stocks making them seem less volatile than they are. Additionally, any relationships that are 

modelled with other stocks (e.g. calculating a correlation between these stocks) will tend to also show an 
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artificially weaker relationship. This effect has been modelled and catered for when estimating stock market 

betas by using various techniques to adjust the beta estimates (see for example Bradfield, 2003). 

 

However, applying these techniques to bivariate (and higher dimensional modelling) like correlation estimation 

is difficult. One can use techniques that adjust for the lack of synchronicity between stock prices (i.e. thinly 

traded stocks do not trade at the same time, which artificially lowers the strength of the correlation between 

them), such as those employed by Hayashi and Yoshida (2005), Clayton (2018), or Münnix, Schäfer and Guhr 

(2010). We choose to employ the simpler method of screening out stocks that trade infrequently or in lower 

volumes. The trade-off for the use of this method is that our universe of stocks becomes smaller, and we would 

potentially miss interesting outcomes that may have occurred by including these shares in the analysis.  

 

Furthermore, the use of weekly data to estimate the cross-correlations amongst the shares would also lessen 

the thin-trading/asynchronous effect as compared to using daily data. This is because the effect of asynchronous 

prices is averaged out over the course of each week. This was the approach followed by Bonanno, Vandewalle 

and Mantegna (2000) when estimating correlations amongst global stock market indices that trade at different 

times, and is also the approach that is followed here (i.e. the use of weekly data as opposed to daily).  

 

3.1.2 Dealing with Noisy Correlation Matrices 

Given that correlation matrices are estimated from noisy time series data, and that typically the number of 

historical observations that are used in the estimation process is limited (as compared to the number of stocks 

that are involved in the estimation process), the estimate of the correlation matrix will include some amount of 

noise. This noise may negatively impact the quality of the analysis that is performed using the correlation 

matrix, and in extreme cases may render the analysis to be spurious. The goal of this section is to discuss 

various procedures for reducing the noise and enhancing any signal that is inherent in an empirical correlation 

matrix, prior to performing any network filtering techniques on it. These procedures have generally followed 

two paths, the Random Matrix Theory (RMT) path, and the shrinkage path. 

 

Researchers in the econophysics field pioneered the application of the concept of RMT, which dates back to 

work by Marčenko and Pastur (1967) and Wigner (1955),  to remove noise from correlation matrices. Marčenko 

and Pastur (1967) showed that the eigenvalues of a correlation matrix constructed from 𝑁𝑁 completely random 

time series of length 𝑇𝑇 has a specific distribution known as the Marčenko-Pastur distribution. In particular, the 

eigenvalues, 𝜆𝜆𝑖𝑖, for these random matrices fall within the range of 𝜆𝜆± = �1 ± �𝑁𝑁
𝑇𝑇
�
2

, which is also called the 

noise band. So, in theory, one can calculate the eigenvalues of an empirical correlation matrix and compare 

these to the Marčenko-Pastur distribution. If there are eigenvalues that do fall within the noise band, they are 

deemed to be noise, and should be filtered out or attenuated to reduce their impact on the overall correlation 

matrix. Typically, eigenvalues of the correlation matrix that are greater than the upper bound of the Marčenko-
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Pastur distribution (𝜆𝜆+), are treated as having violated the random matrix hypothesis and are therefore regarded 

as containing true information. From the equation, one can see that the upper bound of the noise band increases 

as the ratio of 𝑁𝑁 to 𝑇𝑇 gets bigger, i.e. as the number of stocks increases in comparison to the number of data 

points. Laloux et al. (1999) were amongst the first authors to use RMT techniques to analyse empirical 

correlation matrices on the NYSE, while Laloux et al. (2000) suggested a process in which one replaces the 

eigenvalues that fall within the noise band with a constant value, thereby removing the bias associated with 

them. Since those early applications, there have been improvements suggested in the literature, with a 

comprehensive review found in Bun, Bouchaud and Potters (2017). 

 

Independently of the econophysics field, the application of the shrinkage path to financial markets was 

pioneered Olivier Ledoit and Michael Wolf. These techniques drew inspiration from Stein (1956), and James 

and Stein (1961), who proposed that when estimating a mean vector in a multivariate setting, a better estimator 

than the sample mean can be constructed by using a linear combination of the sample mean and a target vector, 

i.e. by shrinking the sample mean to a target vector. Ledoit and Wolf (2003) suggested that linearly blending 

the sample covariance (or correlation) matrix with a structured pre-defined target matrix such as the identity 

matrix (Ledoit and Wolf, 2003), one defined by a factor model (Ledoit and Wolf, 2004a), or one with a constant 

correlation  (Ledoit and Wolf, 2004b), results in a better estimate of the covariance matrix, as compared to 

each matrix on its own. The target matrix generally requires a smaller number of parameters to be estimated 

(because it is highly structured) and therefore has little estimation error. However, this comes at the expense 

of having a high bias due to the simplistic nature of these matrices. This is in contrast to the sample covariance 

matrix which, is an unbiased estimator but contains a large number of free parameters. Therefore, optimally 

combining these two matrices results in better outcomes as compared to using either of them on their own. 

 

Later, Ledoit and Wolf (2012), the authors introduced the concept of non-linear shrinkage by noting that instead 

of shrinking the empirical covariance matrix by a global factor towards a predefined target, one can improve 

on this by shrinking individual eigenvalues of the empirical covariance matrix by varying amounts, resulting 

in sizeable improvements over linear shrinkage (Ledoit and Wolf, 2017). Finally, in Ledoit and Wolf (2020) 

the authors draw inspiration from Stein (1975), whereby non-linear shrinkage was used to robustify the 

covariance matrix against noise. They introduced the concept of Quadratic Inverse Shrinkage (QIS) in which 

sample eigenvalues are shrunk to close neighbours on either side, with the level of shrinkage decaying with the 

distance away from these neighbouring eigenvalues. In terms of accuracy, speed, and scalability, QIS 

performed extremely well compared to other state-of-the-art covariance matrix estimators, but it was also 

significantly less complex than many of these alternatives. It is for these reasons that we choose to use the QIS 

approach to remove the noise inherent in the estimated correlation matrix, prior to performing any analysis. 

For the interested reader,  Ledoit and Wolf (2022) provided a comprehensive review of shrinkage estimation, 

both linear and nonlinear (although this review does not include the QIS method). 
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3.1.3 The Market Mode/Factor 

If one of the aims of our analysis is to determine if any natural clustering structure emerges from the data, then 

one should not want to distinguish between two stocks that differ only in terms of overall market exposure. In 

simpler terms, one does not want shares to group together only due to the fact that they have a high beta, or 

they have a low beta, but rather due to sensitivities to various other economic factors. Consequently, much of 

the literature advocates removing the largest common factor affecting all of the shares in the market, prior to 

performing any network or cluster analysis. This largest common factor is often referred to as the market mode, 

as all stocks are affected by this factor in the same direction, i.e. a positive return on this factor implies a 

positive return on all shares (but in varying magnitudes depending on each share’s exposure to this factor) and 

vice versa. The impact of this factor is usually significantly larger as compared to any other factor, and 

consequently, it tends to swamp any other interesting effects or hidden structures in the underlying data. 

MacMahon and Garlaschelli (2015) provide a useful analogy, comparing the market mode to the manner in 

which the tide affects all boats in a harbour. They state that:  

 

… all boats in a harbor will rise and fall with the tide. In order to clearly see which ‘boats’ are rising 

and falling relative to one another, one must subtract out the common ‘tide’. 

 

Interestingly, Borghesi, Marsili and Miccichè (2007) show that although removing the market mode lowers the 

average correlation amongst stocks, it also makes any cluster structure more evident. They also find that the 

cluster structure is less sensitive to the periodicity of the data used (at least within the intraday time horizon), 

when the market mode is removed. Furthermore,  Musmeci, Aste and Matteo (2015) show that removing the 

market mode increases the amount of economic information that weaker hierarchical clustering methods, such 

as SLCA and ALCA, can extract from a return-based correlation matrix. 

 

3.1.4 The Dynamic (Temporal) Analysis 

A long-term analysis, over the full historical period of data, can provide a useful long-term view of the South 

African stock market. However, analysing the evolution of networks through time will provide valuable 

insights into the dynamic structure of the stock market, over varying market environments. This analysis 

mirrors the work done by Majapa and Gossel (2016) and Mbatha and Alovokpinhou (2022) in the South 

African setting, and Musmeci, Aste and Matteo (2015) on the NYSE. 

 

To ensure that changing market conditions are captured in a timeous manner, and to prevent observations that 

are rolling out of the data set at each point in time from having an outsized effect on the analysis, exponentially 

weighted estimation techniques are used. Using this technique, more recent data points are upweighted, while 

older data points are downweighted. These techniques are applied to both the process in which the market 
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mode is removed and for the estimation of the correlation matrix. This is similar to the analysis done by Pozzi, 

Di Matteo and Aste (2012) and Musmeci, Aste and Matteo (2015). 

 

3.1.5 Assessing the Robustness of the Analysis 

For any statistical analysis, it is worthwhile to determine how robust the results are to small changes in the data 

set. This type of sensitivity analysis can assist in highlighting the reliability (or lack therefore) of the various 

insights that we aim to extract from the filtered networks. One of the common statistical ways of assessing 

reliability or confidence in statistical inference is the use of the concept of bootstrapping, which was introduced 

by Efron (1979). The idea behind bootstrapping is simple, choose random samples with replacement from a 

data set, perform the analysis on each sample, and recalculate any metrics of interest. One can then look at the 

distribution of the metrics across all of the samples to determine if they are robust (i.e. small variability across 

samples would indicate highly robust metrics). This idea was used by Tumminello et al. (2007), Gopi (2008), 

and Musciotto et al. (2018) to determine the reliability of the links in a filtered network such as the MST and 

PMFG.  

 

The bootstrap is used here to assess the reliability of the links in the long-term MST and PMFG, and to assess 

the reliability of the number of clusters that emerges unsupervised from the long-term DBHT. 

 

3.2 Methodology and Data 

In this section, we discuss the actual data that was used in the analysis and the methodologies that were 

followed. 

 

3.2.1 Period of Analysis 

The period of the analysis that was considered was approximately 20 years (over 1000 points of weekly data), 

from 2003 to 2020. This was considered to provide a good balance between having a sufficient amount of 

historical data over which to conduct the analysis (also including a variety of market conditions such as bull 

markets, bear markets, and crashes), and retaining a sufficiently large number of stocks that have the data over 

this period. 
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3.2.2 Universe of Stocks 

The ALSI, as at the end of June 2022, was selected as the starting point to determine the universe of stocks for 

the analysis. The index consisted of 136 unique stocks at this date. There were 58 stocks that were removed 

due to insufficient historical data over the period of analysis (2003-2022). Stocks that had thin-trading concerns 

were also removed. This list consisted of 6 stocks that traded in less than 95% of the total trading days, as well 

as stocks that had wide bid-ask spreads. Taking the above into consideration, the universe of stocks that was 

eventually used in the analysis was filtered as shown in Figure 3.1. Appendix A2 contains a full list of stocks 

that were considered for inclusion, reasons for exclusions, as well as the final list of stocks that were used for 

the analysis. 

 

 

Figure 3.1 Filtering Process for the Universe of Stocks 

 

3.2.3 Data Frequency/Periodicity 

With regards to the periodicity of the return data that was used to estimate the correlation matrices, one may 

argue that the use of daily data may be subjected to high levels of market noise, but also that this noise should 

be averaged out over longer time horizons (such as weekly, or monthly). Given this assumption, monthly data 

should contain the least amount of noise. However, using monthly data will also result in a smaller number of 

historical observations to employ in the estimation of the correlation matrix. As discussed in Section 3.1.2, 

RMT indicates that the reduced number of data points may result in statistically noisier estimates of the 

correlation matrix (especially if the number of stocks is fixed). Therefore, weekly data was chosen as a 

compromise between daily data and monthly. Furthermore, the use of weekly data should mitigate some of the 

thin-trading effects seen in less liquid shares (as mentioned in Section 3.1.1). 
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Note that although we have not focused on methods of quantitatively choosing the optimal length of the period 

of analysis, or the optimal frequency of the data, Marti et al. (2015), and Marti et al. (2016) provided a 

framework to tackle these questions, that the interested reader may find useful. 

 

3.2.4 Removing the Market Mode 

Borghesi, Marsili and Miccichè (2007) discussed various methods of removing the market mode. These 

methods vary according to the definition of the market mode and how it is calculated. Some of the definitions 

included the use of the average return across all stocks, the use of the return of a market index, or the use of 

the largest factor from a Principal Component Analysis (PCA). There are also a variety of methods in which 

the market mode can be removed, i.e. by simple subtraction, or by orthogonalising the return of each stock to 

the market mode using a regression framework. 

 

The method employed here is as follows: 

1. Standardise (z-score) the return data to remove the impact of stock volatilities. This effectively takes 

the stock returns into correlation space. 

2. Perform a Principal Component Analysis (PCA) on the standardised stock return data.  

3. Check that the first principal component is indeed the market mode. This is reasonable if all or most 

of the entries in the first eigenvector have the same sign.  

4. Find the first principal component scores, which represent the returns of the market mode.  

5. For each stock, perform a regression of the stock returns against the first principal component 

scores.  

6. Replace the stock returns with the residual returns from this regression analysis. 

 

According to Borghesi, Marsili and Miccichè (2007), the use of this method resulted in increased stability of 

clusters across various periodicities, and improved information gain relative to the economic sectors. Note that 

these steps were performed before any denoising processes were applied. 

 

3.2.5 The Choice of the Similarity Measure 

As discussed in Section 2.8 a variety of similarity measures have been employed in financial market networks, 

such as Spearman’s rank correlations, Kendall’s tau, mutual information, tail dependence, and copula methods. 

 

In this dissertation, the well-understood Pearson correlation estimate was used to create the correlation-based 

networks using the formula in Equation (1). Note that each correlation estimate in a correlation matrix was 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3.2 Methodology and Data 

Department Of Mathematics and Applied Mathematics 
University of Pretoria  

54 

converted to a distance metric before any analysis was performed, as discussed in Section 2.8, using Equation 

(3). Note that for the long-term analysis no exponential weighting of time points was applied. 

 

3.2.6 De-noising the Correlation Matrices 

As discussed in Section 3.1.2 we removed noise inherent in the correlation matrix prior to performing any 

filtering techniques. We employed the Quadratic-Inverse Shrinkage (QIS) method using MATLAB code from 

Ledoit (2022).  

 

3.2.7 Quantifying the Amount of Economic Information Retrieved 

As done in Musmeci, Aste and Matteo (2015), we quantified and compared the degree of economic information 

that was extracted from the various clustering methods using the Adjusted Rand Index (ARI). The ARI was 

introduced by Hubert and Arabie (1985), and allows one to compare the outcomes from differing clustering 

methods on the same set of data. Given that the ICB classification can be used to partition the stocks into 

various groups, we used the ARI to determine the overlap/similarity between the clusters and the various ICB 

classifications. The ARI then served as a proxy for the economic information that was extracted from each 

clustering method. 

 

Assume that we are given an 𝑛𝑛 object set 𝑆𝑆 =  {𝑂𝑂1, . . . ,𝑂𝑂𝑛𝑛}, and suppose 𝑈𝑈 =  {𝑈𝑈1, . . . ,𝑈𝑈𝑅𝑅} and 𝑉𝑉 =

 {𝑉𝑉1, . . . ,𝑉𝑉𝐶𝐶} represent two different partitions (e.g. a clustering or an ICB classification) of 𝑆𝑆. Letting 𝑛𝑛𝑖𝑖𝑖𝑖 denote 

the number of objects that are common to classes 𝑢𝑢𝑖𝑖 and  𝑣𝑣𝑗𝑗, the information on class overlap between the two 

partitions U and V can be written in the form of the contingency table below. 

 

Table 3.1 Contingency Table 

 𝑉𝑉1 𝑉𝑉2 ⋯ 𝑉𝑉𝐶𝐶 sums 

𝑈𝑈1 𝑛𝑛11 𝑛𝑛12 ⋯ 𝑛𝑛1𝐶𝐶 𝑎𝑎1 

𝑈𝑈2 𝑛𝑛21 𝑛𝑛22 ⋯ 𝑛𝑛2𝐶𝐶 𝑎𝑎2 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝑈𝑈𝑅𝑅 𝑛𝑛𝑅𝑅1 𝑛𝑛𝑅𝑅2 ⋯ 𝑛𝑛𝑅𝑅𝑅𝑅  𝑎𝑎𝑅𝑅 

Sums 𝑏𝑏1 𝑏𝑏2 ⋯ 𝑏𝑏𝐶𝐶   
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The Adjusted Rand Index (ARI) is then calculated as below: 

 

𝐴𝐴𝐴𝐴𝐴𝐴 =
∑𝑖𝑖𝑖𝑖  �

𝑛𝑛𝑖𝑖𝑖𝑖
2 � − �∑𝑖𝑖  �

𝑎𝑎𝑖𝑖
2 �∑𝑗𝑗  �

𝑏𝑏𝑗𝑗
2
�� / �𝑛𝑛2�

1
2 �∑𝑖𝑖  �

𝑎𝑎𝑖𝑖
2 � + ∑𝑗𝑗  �

𝑏𝑏𝑗𝑗
2
�� − �∑𝑖𝑖  �

𝑎𝑎𝑖𝑖
2 �∑𝑗𝑗  �

𝑏𝑏𝑗𝑗
2
�� / �𝑛𝑛2�

 .  (5) 

 

Where 

�
𝑛𝑛
𝑘𝑘
� =

𝑛𝑛 × (𝑛𝑛 − 1) × … × (𝑛𝑛 − 𝑘𝑘 − 1)
𝑘𝑘 × (𝑘𝑘 − 1) × … × 1

 . 

 

The ARI typically takes on values between zero and one (with a value of one indicating full agreement between 

the clustering method and the ICB classification). However, negative values are possible if there is a negative 

correlation between the ICB classification and the clustering method. 

 

Another method that was used to help identify the link between each ICB industry or super-sector was to use 

a Sankey chart. Sankey charts are used to depict the flow of data from one (or more) groups, clusters, or 

partitions to another set of groups, clusters, or partitions. Marti et al. (2015) used this method to visualise how 

a variety of perturbations in the clustering inputs, led to changes in the resultant clusters. 

 

3.2.8 Network Filtering and Clustering Techniques 

The MSTs, PMFGs, and DBHTs were all created using MATLAB code. The MSTs were created using the 

built-in MATLAB function, the PMFGs were built using code from Aste (2012), and the DBHTs were 

constructed using code from Aste (2014). We also compared the DBHT clustering to clusters that were 

extracted from hierarchical clustering using SLCA, ALCA, and Ward’s linkage functions (which were 

discussed in Section 2.11.4).  

 

For the network visualisations we used the Pajek (Batagelj and Mrvar, 2004) graphing software to plot the 

basic layout of the networks (using the force-directed method of Kamada and Kawai method for the layout, as 

discussed in Section 2.6). These figures are then exported as SVG files and imported into the vector graphics 

editor program, Inkscape (Inkscape Project, 2022) to edit and improve the overall quality of the visualisation. 

 

Figure 3.2 depicts the methodological flow that is followed for the long-term (full period) analysis. 
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Figure 3.2 Process Flow for the Long-Term Analysis 

 

3.2.9 The Dynamic (Temporal) Analysis 

For the dynamic analysis, steps 2 – 8 from Figure 3.2 were calculated using a rolling 3-year (156-week) 

window, stepping forward by 4 weeks (approximately 1 month) each time. Note that we did not redetermine 

the universe of stocks at each point in time, but we used the overall universe of stocks as described in Section 

3.2.2. These were the stocks that traded continuously over the full period of analysis. While this may have 

resulted in some survivorship bias, given that we were not using these techniques to predict any future 

outcomes, but rather to analyse the structure of the market at each point in time, we do not believe that this was 

a stumbling block. 

 

As discussed in Section 3.1.4, exponentially weighted estimation techniques were used to ensure that the 

changing market conditions were captured in a timeous manner, and to prevent observations that are rolling 

out of the data set at each point in time from having an outsized effect on the analysis. The following formula 

was used to determine the weight applied to each data point 𝑡𝑡 amongst the 𝑇𝑇 = 156 weekly observations used 

for each rolling window: 

1. Obtain weekly share prices for universe of shares 

2. Calculate weekly returns

3. Remove market mode

4. Calculate the unweighted correlation matrix

5. Denoise the correlation matrix

6. Calculate the distance matrix

7. Apply network filter or clustering technique
(MST, PMFG, DBHT, etc)

8. Visualise (draw), analyse (network topology metrics) and compare 
techniques (ARI, Sankey)
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𝑤𝑤𝑡𝑡  = 𝑤𝑤0 𝑒𝑒𝛼𝛼(𝑡𝑡−𝑇𝑇), ∀ 𝑡𝑡 ∈ {1,2, . . . ,𝑇𝑇}.  (6) 

The 𝛼𝛼 parameter is referred to as the exponential decay factor, and controls the amount of weight being applied 

to more recent observations, i.e. the larger the 𝛼𝛼 parameter, the larger the weight being applied to more recent 

observations. The constant value, 𝑤𝑤0, is solved for by ensuring that the weights all sum up to a value of one. 

In our analysis, the exponential decay factor was set to a value of 0.005. This resulted in the most recent year 

in each rolling window receiving a weight of 42%, the second most recent year receiving 33%, and the earliest 

of the three years receiving a weight of 25%. This provided a good balance between responsiveness to market 

changes and robustness of the results (i.e. less susceptibility to market noise). Figure 3.3 shows the weight 

applied to each time point in a 156-week estimation period using a normal/equal time-weighting scheme, as 

compared to an exponentially-weighted scheme (with a decay factor of 0.005). One can see how the more 

recent observations have an increasingly larger weight, as compared to older observations. 

 

 

Figure 3.3 Time Weighting Schemes: Equal vs Exponential for a 3-Year Window 

 

Having established the weighting scheme that will be used, an exponentially weighted correlation matrix can 

be calculated as follows: 
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Let 𝑃𝑃𝑡𝑡𝑖𝑖 = the price of stock 𝑖𝑖 at time 𝑡𝑡.  

Then 𝑟𝑟𝑡𝑡𝑖𝑖  =  𝑃𝑃𝑡𝑡
𝑖𝑖

𝑃𝑃𝑡𝑡−1
𝑖𝑖 − 1 = the return of stock 𝑖𝑖 at time 𝑡𝑡.  

Let 𝑇𝑇 = the number of return observations.  

Let 𝑤𝑤𝑡𝑡 = weight of time point 𝑡𝑡 as described in Equation (6).  

Let 𝑟̅𝑟𝑖𝑖   =   ∑ 𝑤𝑤𝑡𝑡 × 𝑟𝑟𝑡𝑡𝑖𝑖𝑇𝑇
𝑖𝑖=1 = the weighted average return of stock 𝑖𝑖.  
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Note that the removal of the market mode and the denoising process (which were repeated at each time step) 

also needed to be adapted to cater for the non-standard time weighting. For the removal of the market mode, 

the PCA step was conducted using a weighted-PCA approach (in which the weight of each observation was 

incorporated into the estimation of the PCA scores), and the orthogonalisation/regression step was conducted 

using a weighted least squares approach. Both steps made use of built-in MATLAB functions. For the denoising 

process, the MATLAB code of Ledoit (2022) was adapted to cater for the non-standard time weighting scheme. 

 

3.2.10 How to Use Bootstrapping to Assess the Robustness of the Analysis 

3.2.10.1 Assessing the Robustness of the Filtered Networks 

The bootstrap samples were determined using the MATLAB function “bootstrp”. The statistical bootstrapping 

process that was used to assess the reliability of the links in the MSTs and PMFGs is described in Figure 3.4. 

The number of samples needs to be sufficiently large so that the random error due to the bootstrap process is 

small. For this analysis, the number of bootstrap samples was set to 10 000, as this was deemed to be 

sufficiently large given that the full period data set consisted of approximately 1 000 weekly observations. This 

was also confirmed by comparing the results from 1 000 samples to the results using 10 000 samples. We noted 

that the results were not significantly different between these two scenarios. 

 

Then 𝜌𝜌𝑖𝑖𝑖𝑖 =
� 𝑤𝑤𝑡𝑡(𝑟𝑟𝑡𝑡

𝑖𝑖 − 𝑟̅𝑟𝑖𝑖)(𝑟𝑟𝑡𝑡
𝑗𝑗 − 𝑟̅𝑟𝑗𝑗)

𝑇𝑇

𝑡𝑡=1

�� 𝑤𝑤𝑡𝑡(𝑟𝑟𝑡𝑡
𝑖𝑖 − 𝑟̅𝑟𝑖𝑖)2

𝑇𝑇

𝑡𝑡=1
� 𝑤𝑤𝑡𝑡(𝑟𝑟𝑡𝑡

𝑗𝑗 − 𝑟̅𝑟𝑗𝑗)2
𝑇𝑇

𝑡𝑡=1

 . (7) 
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Figure 3.4 Process Flow: Bootstrap Reliability Analysis for the Filtered Networks 

 

3.2.10.2 Assessing the Robustness of the Number of Clusters 

The bootstrapping analysis was also used to determine the robustness of the number of clusters that was 

extracted from the DBHT. This process is described in Figure 3.5, and similar to the bootstrapping analysis 

described in the previous section, the number of samples used was 10 000. Although not reported here, it should 

be noted that the number of clusters seemed to converge to the overall average after a relatively small number 

of samples (approximately 100 samples). 

 

 

1. Sample (with replacement) from the original return data series

2. Re-calculate the MST or PMFG according to steps 3-7 from Figure 3.2

3.1 Check which links from the original networks still exist in the recreated 
network

3.2. Calculate the hybrid centrality metrics

4. Repeat steps 1-3 many times (10 000)

5.1 Calculate the reliability of each link in the original network by finding 
the proportion of times (out of 10 000) that the link exists in each sample

5.2. Calculate the standard error of the hybrid centrality metrics to 
determine which stocks have less reliable metrics
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Figure 3.5 Process Flow: Bootstrap Reliability Analysis for the DBHT 

 

3.2.11 Network Topology Measures 

In this section, we adapt the notation from Oldham et al. (2019) and MATLAB (2022) to precisely define the 

calculations of the various network topology metrics. A network can be represented as an 𝑁𝑁 × 𝑁𝑁 adjacency 

matrix 𝐴𝐴 in which the element 𝐴𝐴𝑖𝑖𝑖𝑖 = 1 if vertices 𝑖𝑖 and 𝑗𝑗 are connected, and 𝐴𝐴𝑖𝑖𝑖𝑖 = 0 otherwise. We denote the 

adjacency matrix of a weighted network 𝑊𝑊, where the element 𝑊𝑊𝑖𝑖𝑖𝑖 contains the weight of the edge between 

vertices 𝑖𝑖 and 𝑗𝑗. Following Pozzi, Di Matteo and Aste (2013), we set 𝑊𝑊𝑖𝑖𝑖𝑖 =  (1 + 𝜌𝜌𝑖𝑖𝑖𝑖), where 𝜌𝜌𝑖𝑖𝑖𝑖  is the 

correlation between stock 𝑖𝑖 and 𝑗𝑗 for the weighted degree, and weighted eigenvector centrality metrics. Using 

this method, a higher weight is given to stocks that have a higher correlation with other stocks. However, for 

the weighted closeness, eccentricity, and betweenness centrality metrics we set 𝑊𝑊𝑖𝑖𝑖𝑖 =  �2(1 − 𝜌𝜌𝑖𝑖𝑖𝑖), which is 

the standard transformation of the correlation measure into a distance metric (as shown in Section 2.8), and is 

the same distance metric used to filter the networks. Similarly, for the normalised tree length (NTL), we set 

𝑊𝑊𝑖𝑖𝑖𝑖 =  �2(1 − 𝜌𝜌𝑖𝑖𝑖𝑖), as we are interested in the total distance of all edges in the network. We also let 𝑁𝑁𝑣𝑣 

represent the number vertices in the network, while 𝑁𝑁𝐸𝐸 is the number of edges in the network, and 𝐸𝐸𝑘𝑘 is the 

weight of the 𝑘𝑘𝑡𝑡ℎ edge in the network. 

 

1. Sample (with replacement) from the original return data series

2. Re-calculate the DBHTaccording to steps 3-7 from Figure 3.2

3. Extract the number of clusters from the DBHT

4. Repeat steps 1-3 many times (10 000)

5. Analyse the distribution of the number of clusters across bootstrap 
samples
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3.2.11.1 Normalised Tree Length (NTL) 

𝑁𝑁𝑁𝑁𝑁𝑁 =
1

𝑁𝑁𝐸𝐸 − 1
 �𝐸𝐸𝑘𝑘 .
𝑁𝑁𝐸𝐸

𝑘𝑘=1

 
(8) 

 

3.2.11.2 Degree Centrality (DC) 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷𝑖𝑖 =  𝐷𝐷𝐷𝐷𝑖𝑖𝑢𝑢 = �𝐴𝐴𝑖𝑖𝑖𝑖 .
𝑗𝑗≠𝑖𝑖

 (9) 

 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷𝑖𝑖 =  𝐷𝐷𝐷𝐷𝑖𝑖𝑤𝑤 = �𝑊𝑊𝑖𝑖𝑖𝑖
𝑗𝑗≠𝑖𝑖

. (10) 

3.2.11.3 Eigenvector Centrality (EVC) 

If 𝑣𝑣u is the eigenvector associated with the largest eigenvalue 𝜆𝜆1u of the adjacency matrix 𝐴𝐴 then 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢 =  
1
𝜆𝜆1𝑢𝑢 

�𝐴𝐴𝑗𝑗𝑗𝑗𝑣𝑣𝑗𝑗𝑢𝑢 .
𝑗𝑗

 (11) 

 

If 𝑣𝑣w is the eigenvector associated with the largest eigenvalue 𝜆𝜆1w of the weighted adjacency matrix 𝑊𝑊 then 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑤𝑤 =  
1
𝜆𝜆1𝑤𝑤  

�𝑊𝑊𝑗𝑗𝑗𝑗𝑣𝑣𝑗𝑗𝑤𝑤 .
𝑗𝑗

 (12) 

 

3.2.11.4 Closeness Centrality (CC) 

If 𝑁𝑁𝑁𝑁𝑗𝑗 is the number of reachable vertices from vertex 𝑗𝑗 (not including 𝑗𝑗 itself) and 𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢  is the shortest unweighted 

distance between vertices 𝑖𝑖 and 𝑗𝑗 then 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝑖𝑖 = 𝐶𝐶𝐶𝐶𝑖𝑖𝑢𝑢 =  �
𝑁𝑁𝑁𝑁𝑗𝑗
𝑁𝑁𝑣𝑣 − 1

�
2 1
∑ 𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢𝑗𝑗

. 
(13) 

 

 

If 𝑁𝑁𝑁𝑁𝑗𝑗 is the number of reachable vertices from vertex 𝑗𝑗 (not including 𝑗𝑗 itself) and 𝑙𝑙𝑖𝑖𝑖𝑖𝑤𝑤 is the shortest weighted 

distance between vertices 𝑖𝑖 and 𝑗𝑗 then 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝑖𝑖 = 𝐶𝐶𝐶𝐶𝑖𝑖𝑤𝑤 =  �
𝑁𝑁𝑁𝑁𝑗𝑗

𝑁𝑁𝑣𝑣 − 1
�
2 1
∑ 𝑙𝑙𝑖𝑖𝑖𝑖𝑤𝑤𝑗𝑗

. 
(14) 
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3.2.11.5 Eccentricity Centrality (EC) 

If 𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢  is the shortest unweighted distance between vertices 𝑖𝑖 and 𝑗𝑗 then 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝑖𝑖 = 𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢 =  
1

𝑚𝑚𝑚𝑚𝑚𝑚(𝑙𝑙𝑖𝑖𝑖𝑖𝑢𝑢 )
. (15) 

 

If  𝑙𝑙𝑖𝑖𝑖𝑖𝑤𝑤 is the shortest weighted distance between vertices 𝑖𝑖 and 𝑗𝑗 then 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝑖𝑖 = 𝐸𝐸𝐸𝐸𝑖𝑖𝑤𝑤 =  
1

𝑚𝑚𝑚𝑚𝑚𝑚(𝑙𝑙𝑖𝑖𝑖𝑖𝑤𝑤)
. (16) 

 

3.2.11.6 Betweenness Centrality (BC) 

If 𝑔𝑔𝑝𝑝𝑝𝑝 is the number of shortest paths between vertices p and q and 𝑔𝑔𝑝𝑝𝑝𝑝(𝑖𝑖) is the number of shortest paths 

between vertices 𝑝𝑝 and 𝑞𝑞 which pass through node 𝑖𝑖, then the betweenness centrality of node 𝑖𝑖 is 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐵𝐵𝐵𝐵𝑖𝑖 = 𝐵𝐵𝐵𝐵𝑖𝑖𝑢𝑢 =  �
𝑔𝑔𝑝𝑝𝑝𝑝(𝑖𝑖)
𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝≠𝑖𝑖,𝑝𝑝≠𝑞𝑞,𝑞𝑞≠𝑖𝑖

. 
(17) 

 

In a weighted network, the shortest path is calculated as the path with the smallest edge-weighted sum. If 𝑔𝑔𝑝𝑝𝑝𝑝 

is the number of shortest paths between vertices p and q and 𝑔𝑔𝑝𝑝𝑝𝑝(𝑖𝑖) is the number of shortest paths between 

vertices 𝑝𝑝 and 𝑞𝑞 which pass through node 𝑖𝑖, then the betweenness centrality of node 𝑖𝑖 is 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐵𝐵𝐵𝐵𝑖𝑖 = 𝐵𝐵𝐵𝐵𝑖𝑖𝑤𝑤 =  �
𝑔𝑔𝑝𝑝𝑝𝑝(𝑖𝑖)
𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝≠𝑖𝑖,𝑝𝑝≠𝑞𝑞,𝑞𝑞≠𝑖𝑖

. 
(18) 

 

 

3.2.11.7 Hybrid Centrality (X+Y) 

If the ten centrality metrics (five unweighted and five weighted) are ranked in ascending order (i.e. the lower 

the better), then 

𝑋𝑋𝑖𝑖 =  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝑖𝑖𝑢𝑢) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝑖𝑖𝑤𝑤) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐵𝐵𝐵𝐵𝑖𝑖𝑢𝑢) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐵𝐵𝐵𝐵𝑖𝑖𝑤𝑤) − 4

4 × (𝑁𝑁𝑣𝑣 − 1)
. (19) 

 

 

 

𝑌𝑌𝑖𝑖 =  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐸𝐸𝐸𝐸𝑖𝑖𝑤𝑤) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝑖𝑖𝑢𝑢) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝑖𝑖𝑤𝑤)

6 × (𝑁𝑁𝑣𝑣 − 1)

+  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑢𝑢) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑤𝑤) − 6

6 × (𝑁𝑁𝑣𝑣 − 1)
. 

(20) 
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(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝑖𝑖 = 𝑋𝑋𝑖𝑖 + 𝑌𝑌𝑖𝑖. (21) 

3.2.12 Data Sources 

The constituents of the ALSI, as well as the weekly share price data, volume data, bid-ask spreads, and 

price/book data for these constituents, was retrieved from Bloomberg. The weekly data for the Rand Dollar 

exchange rate, was retrieved from IRESS. 
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Chapter 4 Results 

 

In this section, we present the results of our analysis of the South African stock market. Given that the cross-

correlation amongst stocks is the metric that was used to measure the strength of relationships in the network, 

we begin with a brief empirical analysis of the distribution of values in the correlation matrix. We considered 

both a long-term (full period) analysis, followed by a dynamic (rolling) analysis, in which we determined the 

impact that varying market conditions had on the structure of the correlation matrix. We then proceeded to 

analyse the MST (both long-term and dynamic), followed by a similar analysis of the PMFG and the DBHT. 

 

Figure 4.1 depicts a flowchart of the five main sections of this chapter, along with a summary of the underlying 

analysis that was performed in each of them. 
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Figure 4.1 Flow Chart: Summary of Analysis 
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4.1 Empirical Distribution of Financial Correlations 

4.1.1 Long-Term Correlations 

We begin by depicting the impact of removing the market mode on the distribution of correlations for our 

universe of stocks. This is shown using an empirical distribution of the correlations in Figure 4.2. One can see 

that the values of the correlations amongst stocks typically ranged between -0.2 to 0.8, with a peak at a 

correlation of 0.2. Removing the market mode did lower the level of correlation, with the peak of the 

distribution moving to a value close to 0. However, the range of correlations was still wide, varying 

between -0.4 to 0.8. As discussed in 3.1.3, even though the process of removing the market mode lowers the 

average correlation amongst stocks, it does have other useful benefits from a clustering point of view.  

 

 

Figure 4.2 Long-Term Correlation Distribution: Normal vs Market Mode Removed 

 

4.1.2 Dynamic Correlations 

In Figure 4.3 we show the distribution of the dynamic correlations (calculated using a 3-year exponential-

weighing scheme), and the impact of removing the market mode. It was interesting to note that while the range 

of normal correlations was affected by general market events (such as market crashes), the distribution of 

correlations with the market mode removed was not affected by these events. Note that in all of the subsequent 

analyses, the market mode was removed from the data. 
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Figure 4.3 Dynamic Correlation Distribution: Normal vs Market Mode Removed 

 

4.2 Analytic Results for the MST 

This section contains the results of the application of the MST to the South African stock market, on both a 

long-term basis, as well as from a dynamic point of view. 

 

4.2.1 Long-Term MST: Sector Overlay 

Figure 4.4 depicts the basic, long-term MST for South African stocks based on the correlation matrix. It is 

important to note that the positions of vertices on the page are not unique and depends on the layout algorithm 

used. So, the closeness of stocks needs to be considered in the context of their position along the edges of the 

MST (see Section 2.6 for more information regarding the various layout algorithms). 
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Figure 4.4 Long-Term MST: Standard View 

 

An experienced investment analyst would have been able to glean meaningful insights from here, noticing that 

shares that were in related ICB sectors were located close to each other on the MST. As discussed in Section 

2.4, the visual nature of the MST can be enhanced by overlaying the ICB classification of each share. This 

would allow the user to determine if the MST recovers the ICB classification in an unsupervised manner (i.e. 

without any a priori knowledge). This is shown in Figure 4.5, where each vertex was shaded in a colour that 

reflected the underlying share’s ICB super-sector classification. 
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Figure 4.5 Long-Term MST: Super-sector Overlay 

 

Overlaying the ICB super-sector classification onto the MST, highlighted the overlap between each share’s 

positioning on the MST and the sector classification. We also manually labelled various locations on the MST 

(in red) to highlight the overlap between the position of shares on the MST and the ICB classifications.  

 

It was easy to see that in general, shares that formed part of the same super-sector tended to be located near 

each other on the MST. If one recalls that the MST was constructed by filtering the return-based correlation 

matrix, and the fact that the correlation matrix captures the co-movement of shares, the MST was effectively 

highlighting that the share prices of companies within the same sector tended to move together. 
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4.2.2 Long-Term MST: Currency Exposure Overlay 

Although the positioning of many shares conformed to their ICB classification, certain shares did not follow 

this classification. For example, shares from the Industrial Goods and Services super-sector tended to be 

dispersed across the MST. There was also a cluster of shares at the top-right of the MST (e.g. CFR, NPN, INP, 

BTI, etc.) that emanated from a variety of sectors. This indicated that while the ICB super-sector classification 

tended to be a good representation of the manner in which shares co-move, the MST captured additional effects 

over and above this classification. To investigate this further, a variety of alternative information was overlaid 

onto the MST (by varying the size and colour of each vertex), beginning with the exposure of each share to the 

Rand Dollar exchange rate in Figure 4.6.  

 

The exposures are relative in nature because the market mode was removed from the data set (as described in 

Section 3.2.4). The vertices that are shaded in the dark blue colour represent shares that had a positive exposure 

to weakness in the Rand (i.e. they had a positive beta emanating from a regression of the share’s returns against 

the Rand Dollar exchange rate). These shares would have been expected to perform relatively well when the 

Rand weakened. The vertices that are shaded in the teal colour represent shares that had a positive exposure to 

strength in the Rand (i.e. they had a negative beta emanating from a regression of the share’s returns against 

the Rand Dollar exchange rate). These shares would have been expected to perform relatively well when the 

Rand strengthened. The size of each vertex represents the magnitude of these exposures.  

 

One can clearly see that the cluster of shares at the top-right of the MST represents shares that have a large 

exposure to Rand weakness (with large vertices that are shaded in dark blue), i.e. they would have benefited to 

a relatively large extent when the Rand weakened.  These types of shares have been referred to in the literature 

(and by practitioners) as Rand Hedge shares (e.g. see Barr, Kantor and Holdsworth, 2007). Fundamentally, 

these companies, although listed on the JSE, have a large proportion of their revenues and costs that are not 

Rand denominated. Therefore, their economic performance is often independent (i.e. hedged) from the 

performance of the South African economy. One can therefore posit that the Rand Hedge nature of these shares 

overrides that of the ICB classification, with these shares forming a cluster of their own.  

 

It is also interesting to note that shares which benefited from Rand weakness (with vertices shaded in dark 

blue) are located on the right of the MST, while shares which benefited from Rand strength (the so-called Rand 

Play shares) are located on the left. This highlights that the Rand Dollar exchange rate was an important overall 

factor that impacted the co-movement of shares on the JSE in a global manner. It was once again interesting, 

that this structure emerged from the MST in an unsupervised manner. 
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Figure 4.6 Long-Term MST: Currency Exposure Overlay 

 

4.2.3 Long-Term MST: Liquidity Overlay 

As discussed in Section 3.1.1, shares that do not trade regularly (i.e. they suffer from lower liquidity, or have 

wider bid-ask spreads) tend to have biases in metrics that are calculated based on price data (such as market 

betas, or cross-correlations). This effect was catered for by applying a liquidity filter to the universe of shares 

that were included in the analysis. Nevertheless, some groups of shares may have traded in significantly lower 

volumes as compared to larger and more liquid shares. Therefore, in Figure 4.7, we highlight shares that fell 

into the lower third of our universe for liquidity. The liquidity metrics used here were an average of a ranking 

based on volume-traded and a ranking based on bid-ask spreads. 

 

From Figure 4.7 one can see that many of the less liquid shares (which are shaded in the dark blue colour) were 

located on the periphery (or edges) of the MST. However, there was also a cluster of shares in the middle of 

the MST, centred around TSG, that exhibited lower liquidity. This was informative, as ordinarily, one would 

not expect sectors such as Travel & Leisure to be located close to the Chemicals sector, as well as other shares 
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such as HDC, ADH, and CSB, which come from a variety of sectors. This highlighted that the liquidity of 

shares was also an important factor that impacted the co-movement of shares on the JSE and was not 

necessarily captured by the ICB classification. Again, this structure emerged from the MST in an unsupervised 

manner. 

 

 
Figure 4.7 Long-Term MST: Low Liquidity Overlay 

 

4.2.4 Long-Term MST: Hybrid Centrality Overlay 

As discussed in Section 2.13, there are a variety of measures that can be used to assess the importance of a 

share in a network, such as the MST. In Figure 4.8 we depict the MST with an overlay of the hybrid centrality 

metric of Pozzi, Di Matteo and Aste (2013) to obtain a better understanding of the importance of each share 

on the MST. 
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Figure 4.8 Long-Term MST: Hybrid Centrality Overlay 

 

It is clear to see that TSG ranked highly in terms of centrality/importance (with the largest vertex). RDF, AGL, 

BHG, HYP, SOL, ABG, CFR, NED, AMS also featured among the top ten most central stocks (highlighted in 

the dark blue colour). One can also see the values of the subcomponents of the hybrid centrality metric in 

Figure 4.9. The benefit of using the hybrid approach is highlighted here with several shares scoring well on a 

few metrics, but poorly on others (for example see ABG). 

 

TSG scored the highest in terms of betweenness, and closeness centrality. This implied that it was important 

in being able to connect vertices and was also close (on average) to other shares. AGL was a top scorer in terms 

of both degree and eigenvector centrality. It was therefore a well-connected share, but furthermore, it was 

connected to other important shares. 
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Figure 4.9 Long-Term MST: Centrality Metrics for Best Ranked Stocks by Hybrid Centrality  

 

Curiously, there seemed to be a contradiction between TSG being a highly central vertex (as seen in Figure 

4.8), and the fact that it fell into the less liquid group of shares (see Figure 4.7). Even though we had applied 

the QIS denoising procedure, there may still have been remnants of spurious relationships in the correlation 

matrix, which may have potentially been driven by the lower liquidity of certain shares (such as TSG). In the 

following section we report on the application of the bootstrapping methodology, which was used to assess the 

reliability of the structure of the MST (as discussed in Section 3.1.5). 

 

4.2.5 Long-Term MST: Measuring Reliability 

Having used the bootstrapping procedure described in Figure 3.4 to determine the reliability of each edge in 

the MST, we then calculated the average reliability for each share by averaging across all edges that are 

connected to that share’s vertex. This average reliability factor was then overlaid onto the MST by varying the 

size of each vertex in accordance with this metric (with small vertices indicating shares that are part of less 

reliable edges). The vertices of the top third of the most reliable shares were shaded in a light blue colour. This 

is shown in Figure 4.10. 

 

Examining the number of smaller vertices in the MST, one can see that there are several links in the MST that 

would have disappeared if the underlying data changed marginally (as is done in a bootstrapping procedure). 

In particular, TSG showed poorer reliability than one would have expected given its high ranking in terms of 

the centrality metrics. 
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Figure 4.10 Long-Term MST: Average Edge Reliability Overlay 

 

Examining the reliability of each of the seven edges that TSG formed a part of (which is shown in Table 4.1), 

one can see that many of the links had relatively low reliability (apart from the intra-sector link to SUI), 

occurring in only 46% to 65% all bootstrap samples. This confirmed our suspicion that TSGs importance in 

the network may have been overstated if one only considered the full period MST. 
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Table 4.1 Long-Term MST: Bootstrap Edge Reliability for TSG 

Vertex 1 Vertex 2 Reliability 

SOL TSG 54.6% 

RDF TSG 62.4% 

CLH TSG 65.4% 

SUI TSG 98.7% 

OMN TSG 62.2% 

FBR TSG 46.0% 

TSG HDC 48.2% 

Average  62.5% 
 

 

One can also gain interesting insights by examining the relationship between correlation and edge reliability. 

This was done by plotting, for each edge in the MST, its related correlation (i.e. the correlation between the 

two shares that are linked by the edge) against the bootstrap reliability value of each edge. This is depicted in 

Figure 4.11. 

 

 

Figure 4.11 Long-Term MST: Bootstrap Edge Reliability vs Correlation 

 

In terms of average reliability across the MST, approximately 24% of the edges in the MST had a reliability 

above 90%. Interestingly, not all of these edges were formed between highly correlated stocks (with some 

edges formed between shares that had correlations as low as 0.15). It is also noteworthy that higher correlations 
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did not always imply a higher reliability of an edge in the MST. There were seven pairs of stocks (or 10% of 

all edges in the MST) that exhibited a correlation above 0.3 but had an edge reliability that was less than 80%. 

 

One can also use the bootstrapping technique to measure the reliability of each share’s importance in the MST. 

For each bootstrap sample the MST was created, and the hybrid centrality metrics were calculated. We then 

assessed the stability of each stock’s importance in the MST by calculating the standard error of their hybrid 

centrality metrics across all the bootstrap samples. This is shown in Figure 4.10. Note that lower values of the 

hybrid centrality metric indicate more central and important shares. 

 

 

Figure 4.12 Long-Term MST: Centrality vs Bootstrap Variability 

 

Stocks on the bottom-left of the chart (AGL, BHG, AMS, and CFR), are important shares with good centrality 

metrics, and their centrality metrics are also highly reliable (i.e. they do not fluctuate significantly as the data 

changes). Shares on the bottom-right of the chart (TSG, RDF, HYP, ABG, and NED), are important shares 

with good centrality metrics, but their centrality metrics are also less reliable, with the importance of these 

shares varying significantly across the bootstrap samples. One can again see that TSG fell into the category of 

highly central, but less reliable shares. 

 

4.2.6 Dynamic MSTs 

We now proceed to the analysis in which we examined the topology of the dynamic MSTs through time. In 

Figure 4.13 we report the Normalised Tree Lengths (NTLs) for the dynamic MSTs that were calculated at each 
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point in time. The most noteworthy point of this figure is that the MST tended to shrink during market crashes 

(such as the financial crisis in 2008 and the COVID-19 crash in 2020). This implied that the behaviour of shares 

became more similar over these periods (with the distance between shares shrinking). This was intuitive, as the 

distance metric that was used for the analysis was an inverse of the correlation coefficient, and it is well 

established that correlations tend to rise in market crashes. However, it is worthwhile noting that the shrinking 

of the MST during market crashes was not due to a general market effect, as we have removed the market mode 

from the data prior to performing any analysis. It was due to an increasing similarity of stocks that was 

independent of a general market effect. 

 

 

Figure 4.13 Dynamic MSTs: Normalised Tree Length 

 

In the prior section, we calculated the hybrid centrality metrics for the long-term, static, MST, and we saw that 

TSG, RDF, AGL, BHG, HYP, SOL, ABG, CFR, NED, and AMS featured in the list of the top ten of the most 

important (or central) stocks in the MST. However, subsequent analysis from a liquidity and reliability point 

of view did cast some doubt over the role of some stocks, and in particular TSG. A dynamic analysis was used 

to shed further light on this contradiction by determining which stocks were ranked consistently well in terms 

of hybrid centrality on the dynamic MSTs. For each of the dynamic MSTs, we calculated the hybrid centrality 

of each stock and then ranked them from best to worst. We then ranked the stocks according to the amount of 

time each one of them spent as one of the top five most central stocks. These results are shown in Table 4.2, 

with TSG included at the bottom of the table for comparative purposes. 
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Table 4.2 Dynamic MSTs: Consistency in Hybrid Centrality  

Share ICB Super-sector % Time in 
Top 5 

AGL Basic Materials 69.5% 

BHG Basic Materials 64.8% 

AMS Basic Materials 23.9% 

OMU Financials 21.1% 

TFG Consumer Discretionary 18.3% 

ARI Basic Materials 17.4% 

ANG Basic Materials 17.4% 

BTI Consumer Staples 16.9% 

CFR Consumer Discretionary 16.9% 

IMP Basic Materials 15.0% 

ANH Consumer Staples 15.0% 

TSG Consumer Discretionary 4.69% 
 

 

From Table 4.2 one can see that AGL and BHG were consistently ranked highly in terms of their centrality 

(having respectively spent 69% and 65% of the time as one of the five most central stocks). This was reassuring 

as AGL and BHG are shares that have a large market capitalisation on the JSE and are often deemed to be 

important. Shares from the Basic Materials sector dominated the list, as well as Consumer stocks (TFG, BTI, 

CFR, and ANH). In contrast to these stocks, TSG spent less than 5% of its time amongst the five most central 

stocks, when considering the dynamic MSTs. This once again highlighted that the influence of TSG on the 

long-term MST may be overstated.  

 

It is interesting that the ranking of the top three stocks from Table 4.2 (AGL, BHG, and AMS), supported the 

results from the bootstrap reliability estimates that we saw in Figure 4.12. 

 

Lastly, Figure 4.14 shows which ICB industries were ranked as number one (the chart on the top) and number 

two (the chart on the bottom) in terms of the average hybrid centrality of the shares within them. Note that for 

this analysis, Energy was combined with Basic Materials, as there was only one stock (EXX) within the Energy 

industry. Examining Figure 4.14 one can see the dominance of the Basic Materials sector (in grey) in terms of 

importance/centrality. However, there were periods when Real Estate (light blue) was the most central industry, 

as well as Financials (in yellow). Financial stocks were very central after the financial crisis in 2008, being 

ranked first or second over the bull market from 2009 to 2011 which was driven by monetary easing from 

central banks. 
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Figure 4.14 Dynamic MSTs: Top Two Most Central Industries 

 

4.3 Analytic Results for the PMFG 

This section contains the results of the application of the PMFG to the South African stock market, on both a 

long-term basis, as well as from a dynamic point of view. As discussed in Section 2.12.4, to our knowledge 

this is the first time this technique has been applied to the South African stock market. 

 

4.3.1 Long-Term PMFG: Sector Overlay 

Figure 4.15 depicts the long-term PMFG for South African stocks based on the correlation matrix. The visual 

nature of the PMFG was enhanced by overlaying the ICB super-sector classification of each share.  

 

Note that for the sake of brevity, we did not repeat the currency exposure overlay, and the liquidity overlay, 

that was done for the MST. However, we did use the results from those MSTs (Figure 4.6 and Figure 4.7) to 

assist in labelling how shares have grouped together on the PMFG. 
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Figure 4.15 Long-Term PMFG: Super-sector Overlay 

 

It was noteworthy to see that the grouping of shares on the PMFG was similar to that of the MST. However, 

given that the MST is a subgraph of the PMFG, one would not have expected large differences between the 

two methods. There was still a large amount of grouping by ICB sector on the PMFG, but the Rand Hedge 

group, as well as the low liquidity group, also featured. 

 

The connectivity of shares as compared to MST was richer (by design), allowing shares such as WHL, FSR, 

AMS to form part of multiple cliques, as compared to the MST which tended to have a winner takes all outcome 

(i.e. only a few shares featured in multiple connections). The downside of this richer dataset was that the PMFG 

was visually “noisier” due to the additional links. Fortunately, the PMFG is accompanied by the DBHT, which 

assists in clustering similar stocks together in a fully unsupervised manner. The long-term DBHT is analysed 

in greater detail in Section 4.4. 
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4.3.2 Long-Term PMFG: Hybrid Centrality Overlay 

In Figure 4.16 we depict the PMFG with an overlay of the hybrid centrality metric of Pozzi, Di Matteo and 

Aste (2013). This metric we used to obtain a better understanding of the importance of the shares on the PMFG. 

 

 
Figure 4.16 Long-Term PMFG: Hybrid Centrality Overlay 

 

TSG again ranked highly in terms of centrality/importance (with the largest vertex). OMU, NED, AGL, BHG, 

SOL, ABG, FSR, SLM, and AMS also featured in the top ten stocks when ranked by the hybrid centrality 

metric. One can see the values of the subcomponents of the hybrid centrality metric in Figure 4.17. NED was 

located more centrally in the PMFG (as compared to the PMFG), with good rankings for betweenness, 

eccentricity, and closeness centrality, but had fewer connections (with lower rankings for degree centrality, 

and eigenvector centrality). AGL demonstrated the opposite behaviour, being well-connected with many 

connections (and therefore had good rankings in terms of degree, and eigenvector centrality), but poorer ranks 

in terms of betweenness, eccentricity, and closeness centrality. 
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Figure 4.17 Long-Term PMFG: Centrality Metrics for Best Ranked Stocks by Hybrid Centrality 

 

4.3.3 Long-Term PMFG: Measuring Reliability 

Using the bootstrapping procedure described in Figure 3.4 we determined the average reliability factor of each 

vertex in the PMFG (as was done for the MST in Section 4.2.5). This average reliability factor was then overlaid 

onto the PMFG by varying the size of each vertex in accordance with this metric (with smaller vertices 

indicating shares that were part of less reliable edges). The vertices of the top third of the most reliable shares 

were shaded in the light blue colour. These results can be seen in Figure 4.18. 

 

One can see that certain groups of shares (and industries) tended to have better reliability as compared to others 

(these can be seen as groups of shares with larger vertices). For example, the Mining, Consumer-related, and 

Real Estate sectors tended to have higher reliability. Similar to the MST, TSG had a lower reliability than its 

centrality metrics would have indicated. NED also fell into this category with good centrality metrics, but lower 

reliability scores. 
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Figure 4.18 Long-Term PMFG: Average Edge Reliability Overlay 

 

Continuing with the reliability analysis, in Figure 4.19 we plotted the correlation associated with each edge in 

PMFG against its bootstrap reliability.  
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Figure 4.19 Long-Term PMFG: Bootstrap Edge Reliability vs Correlation 

 

In terms of average reliability across the PMFG, approximately 32% of the edges in the PMFG had a reliability 

score above 90%. This was higher as compared to a value of 24% for the MST. Furthermore, there were only 

three pairs of stocks (or 1% of all edges in the PMFG) that exhibited a correlation above 0.3, but had an edge 

reliability that was less than 80% (as compared to the 10% of the edges in the MST). This implied that for the 

PMFG there was a stronger link between the level of the correlation between two shares and the reliability of 

the edge between them (as compared to the MST).  These results suggested that the structure of the PMFG is 

more robust as compared to the MST. 

 

The results of using the bootstrapping technique to evaluate the reliability of the centrality metrics for the 

PMFG are shown in Figure 4.20. Similar to the MST, the following shares, AGL, BHG, AMS, and CFR, 

seemed to be important shares with good centrality metrics, and they stayed reliably central in the PMFG across 

all of the bootstrap samples. TSG and NED fell into the category of highly central, but less reliable shares (on 

the bottom-right). 
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Figure 4.20 Long-Term PMFG: Centrality vs Bootstrap Variability 

 

4.3.4 Dynamic PMFGs 

We now report on the results of the dynamic analysis in which we analysed the topology of the PMFG through 

time. We begin by portraying the NTLs of the dynamic MSTs and PMFGs in Figure 4.21. Note that the NTL 

for the PMFG will generally be higher than that of the MST. This trait is due to the design of the MST which 

is constructed to have a globally minimum total distance, while this is not a requirement for the PMFG.  

 

There was a strong correlation between the movement of the NTLs of the dynamic MSTs (which is shown in 

the dark blue line), and the NTLs of the dynamic PMFGs (shown in light blue). Similar to the MST the PMFG 

tended to shrink during market crashes such as the financial crisis in 2008 and the COVID-19 crash in 2020. 

This highlighted a strong correlation in the overall topology of the MST and PMFG. 
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Figure 4.21 Dynamic PMFGs: Normalised Tree Length 

 

In Table 4.3 we show which stocks were the most consistently ranked as the five most central stocks at each 

point in time, as calculated from the dynamic PMFGs. We have once again included TSG at the bottom of the 

table for comparative purposes. 

 

Table 4.3 Dynamic PMFGs: Consistency in Hybrid Centrality 

Share ICB Super-sector % Time in 
Top 5 

AGL Basic Materials 75.1% 

BHG Basic Materials 60.6% 

AMS Basic Materials 32.9% 

CFR Consumer Discretionary 25.4% 

ANH Consumer Staples 19.2% 

IMP Basic Materials 16.9% 

GFI Basic Materials 16.4% 

OMU Financials 15.5% 

SOL Basic Materials 15.5% 

ARI Basic Materials 14.1% 

TSG Consumer Discretionary 0.9% 
 

 

 

The standout shares from Table 4.3 were once again AGL, BHG, and AMS (as seen for the dynamic MSTs in 

Table 4.2). In contrast to these stocks, TSG spent less than 1% of its time amongst the five most central stocks 

when considering these dynamic PMFGs. This once again highlighted that the influence of TSG on the long-

term PMFG may have been overstated. 
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Finally, Figure 4.22 shows which ICB industries were ranked in the top two in terms of the average hybrid 

centrality of the shares within each industry. The Energy industry was again combined with Basic Materials, 

as there was only one stock in that industry.  

 

The results were similar to those of the MST, and one can again see the dominance of the Basic Materials 

sector in terms of centrality in the PMFG, with periods when Real Estate or Financial stocks were the most 

central.  

 

 

Figure 4.22 Dynamic PMFGs: Top Two Most Central Industries 

 

4.4 Analytic Results for the DBHT 

This section contains the results of the application of the DBHT to the South African stock market, on both a 

long-term basis, as well as from a dynamic point of view. We show the long-term dendrogram of the DBHT, 

followed by an analysis in which we determined the amount of economic information that was extracted by 

the DBHT. We also compared the DBHT to other hierarchical clustering methods, and then used a 

bootstrapping technique to assess the robustness of the estimated number of clusters that emerged from the 

long-term DBHT. 

 

In the dynamic setting, we determined if a changing market environment had an impact on the estimated 

number of clusters, as well as on the quantity of economic information that was extracted using the DBHT. 
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4.4.1 Long-Term DBHT: Sector Overlay 

Figure 4.23 depicts the dendrogram of the DBHT for South African stocks that was based on the long-term 

correlation matrix. Each stock had its associated ICB industry, as well as its cluster number attached to each 

label. The varying colours of the lines in the dendrogram were used to highlight the various clusters that were 

automatically extracted. 

 

The DBHT extracted six clusters from the long-term PMFG. Note that the emergence of these clusters was 

fully unsupervised and as such, it was contingent upon us to interpret them. Given that we have seen that the 

shares on the MST and PMFG tended to group together in accordance with their economic sectors, we turned 

to the ICB classifications as a starting point to assist us in labelling the clusters. In Figure 4.24 we show the 

overlap between stocks in the six clusters and the ICB industry classifications, while Figure 4.25 depicts the 

overlap between stocks in the six clusters and the ICB super-sector classification. 

 

Figure 4.26 depicts a Sankey chart showing the flow of the allocation of shares from the six clusters (in the 

middle of the chart) to the ICB industry classification (on the left), and from the six clusters (in the middle) to 

the ICB super-sector classification (on the right).  
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Figure 4.23 Long-Term DBHT: Dendrogram - Six Clusters Highlighted 
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Figure 4.24 Long-Term DBHT: ICB Industry Overlap with Clusters 

 

 

 

Figure 4.25 Long-Term DBHT: ICB Super-sector Overlap with Clusters 
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Figure 4.26 Long-Term DBHT: Sankey chart - ICB classification vs Clusters 

 

Having analysed  Figure 4.24, Figure 4.25, and Figure 4.26 one can see that Cluster 1 consisted of stocks from 

the Basic Materials industry, and in particular stocks from the Gold Mining, and Platinum Mining sectors, 

while Cluster 5 contained stocks from the Consumer Discretionary/Retail sector. Cluster 6 typically contained 

stocks from the Consumer Staples industry. Cluster 3 seemed to be a mix of shares from the Consumer 

Discretionary and Real Estate industries, however, there was also a strong overlap with the low liquidity effect 

that was outlined in Section 4.2.3. Cluster 4 certainly had a strong Financial influence with shares from both 

the Banks and Insurance super-sectors featuring strongly, but it also contained shares from the Health Care 

sector. And finally, although Cluster 2 contained shares from a multitude of industries and sectors, there did 

seem to be some overlap between this cluster and the Rand Hedge effect that was discussed in Section 4.2.2. 

 

Overall, this led to the following broad labelling of the six clusters: 

• Cluster 1 – Mining  

• Cluster 2 – Rand Hedge 

• Cluster 3 – Consumer Discretionary and Real Estate (Low Liquidity) 

• Cluster 4 – Financials and Health Care 

• Cluster 5 - Consumer Discretionary/Retail 

• Cluster 6 - Consumer Staples 

 

In Figure 4.27 we overlayed the clusters from the DBHT onto the long-term PMFG, by varying the colour of 

each vertex contingent upon which cluster it belonged to. As expected, the clusters consisted of shares that 
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were grouped close together on the PMFG. The DBHT method automatically chooses the points on the PMFG 

at which to separate the shares. 

 

 

Figure 4.27 Long-Term PMFG: DBHT Cluster Overlay 

 

4.4.2 Long-Term DBHT: Quantifying the Extracted Economic Information 

As discussed in Section 3.2.8, one can quantify the overall amount of economic information that is extracted 

from any clustering technique using the Adjusted Rand Index (ARI). For this dissertation, this was done by 

assuming that one of the partitions came from the DBHT clusters, while the second partition came from the 

various ICB classifications. In Figure 4.28 we used the ARI to determine the overlap between each cluster and 

a specific ICB classification (such as the industry, super-sector, or sector level classification), as we varied the 

number of clusters that were extracted from the DBHT clustering. By varying the number of clusters (from two 

to twenty) we were also able to determine if the optimal number of clusters that emerged unsupervised from 
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the DBHT, extracted the maximum amount of economic information. Note that the optimal number of clusters 

that was extracted automatically from the DBHT (six) is shown by the vertical red line on the chart. 

 

 
Figure 4.28 Long-Term DBHT: ARI vs ICB classifications 

 

One can see that the DBHT overlapped the ICB classification by 20% to 30% (at the peak of the ARI) 

depending on the classification that was used. The most overlap came from the ICB industry level 

classification, which consists of ten categories. It was comforting to see that ARI had a peak (for the industry 

level ICB classification) near the optimal number of clusters. These results were marginally lower than 

Musmeci, Aste and Matteo (2015) who found a maximum ARI of 40% for stocks on the NYSE. However, that 

analysis consisted of a significantly larger universe of approximately 340 stocks. 

 

It should be noted though, that using the ARI, in conjunction with a qualitative classification scheme such as 

the ICB, as a metric to benchmark the amount of economic information extracted from a specific clustering 

technique, does have some shortcomings. Firstly, it is reliant on the accuracy of the qualitative classification 

partitioning, but secondly, a company’s classification can remain the same for a prolonged period of time even 

if the business model of a company changes. Furthermore, if market participants have a view of a stock that is 

different to the qualitative classification scheme, they may trade that stock differently as compared to other 

stocks in the same category. This would lead to a clustering for that stock that is different from the qualitative 

classification, especially if the clustering was performed using a correlation-based distance metric that was 

calculated from price changes (given that share price movements reflect the views that market participants have 

of a share). In the South African stock market, the so-called Rand Hedge stocks (which were discussed in 

Section 4.2.2), which are shares that react positively to a weakening in the South African Rand, are a group of 

shares that fall into this category. These shares come from a diverse set of ICB industries and sectors, but a 

larger proportion of the movements in their share price can be explained by movements in the currency, as 

compared to their respective industry/sector (although this can vary over time). The group of less liquid shares 
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(that was discussed in Section 4.2.3) also falls into this category, but there was also strong sectoral overlap for 

that group of shares. 

 

These shortcomings highlight the difficulty in determining the accuracy of a clustering or network filtering 

technique. Often domain/industry knowledge is required to assess whether or not the outcomes from such 

techniques are sensible. With these caveats in mind, in the following section, we compared the clustering 

outcomes of the DBHT technique against the other popular linkage methods that were described in Section 

2.11.4, and in particular, in Table 2.11.  

 

4.4.3 Long-Term DBHT: A Comparison to Alternative Linkage Methods 

We specifically focused on the SLCA, ALCA, and Ward’s linkages, and compared these methods to the DBHT 

using the ARI. Similar to Figure 4.28, we calculated the ARI as the number of clusters was varied from two up 

to twenty. The optimal number of clusters that was extracted from the DBHT (six) is again shown by the 

vertical red line on the chart. Figure 4.29 depicts the ARI calculated against the ICB sector level classification, 

while Figure 4.30 depicts the ARI calculated against the higher ICB industry level classification. 

 

 
Figure 4.29 Long-Term DBHT vs Alternatives: ARI with ICB sectors 

 

From Figure 4.29, it seemed that the DBHT best represented ICB sectors for a smaller number of clusters (i.e. 

less than eight). However, as the number of clusters increased, the ARI for Ward’s linkage and the ALCA 

increased significantly. The SLCA (which is the method associated with the MST) led to clusters that had a 

low overlap with the ICB sectors. 
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Figure 4.30 Long-Term DBHT vs Alternatives: ARI with ICB Industries 

 

If ones considers the ARI, which was calculated using the ICB industry classification in Figure 4.30, both 

Ward’s linkage and the ALCA methods outperformed the DBHT. It was interesting that Ward’s method 

achieved its peak at the same number of clusters that was extracted from the DBHT (six). The SLCA once 

again performed poorly. 

 

The above results once again re-iterated the stance that it is difficult to compare various clustering techniques 

using the ARI against a pre-specified industry classification benchmark. Ward’s linkage, ALCA, and the 

DBHT all seemed to perform well depending on the setting. However, the DBHT does have the advantage of 

having the network (PMFG) representation and its associated network metrics that can provide valuable 

information, as well as the fact that the number of clusters is determined in a fully unsupervised manner 

(whereas one must use a separate cluster validation technique for the other linkage methods). 

 

4.4.4 Long-Term DBHT: How Sensitive is the “Number of Clusters” to 
Noise? 

As we saw in Section 4.2.5 and Section 4.3.3, one can use a bootstrapping technique to assess the reliability of 

the structure of the filtered networks (the MST and PMFG). One can use a similar methodology to assess the 

robustness of the number of clusters that emerged from the long-term DBHT. For each bootstrap sample, the 

DBHT was estimated, and the number of clusters was extracted. Figure 4.31 depicts the frequency distribution 

of the number of clusters across the bootstrap samples. One can see that 6 clusters was most often extracted 

from the DBHT (27.2%), followed by 5 clusters (24.2%) and then 7 clusters (19.6%).   
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Figure 4.31 Long-Term DBHT: Bootstrap Distribution of the Number of Clusters  

 

Table 4.4 contains sample statistics of the number of clusters, from across the 10 000 bootstrap samples. The 

average number of clusters was 5.87, while the median was 6. The 5th and 95th percentiles were 4, and 8, 

respectively. 

 

These statistics indicated that the six clusters that was obtained using the original data set was relatively robust. 

However, there were instances of bootstrap samples that resulted in as little as 2 clusters, and some with as 

many as 11 clusters. A reasonable range for the number of clusters was between 4 and 8. 

 

Table 4.4 Long-Term DBHT: Bootstrap Statistics of the Number of Clusters 

Number of Clusters 

Average 5.87 

Median 6 

5th Percentile 4 

95th Percentile 8 
 

 

 

 

We now turn our attention to the results of the dynamic analysis of the DBHT. We focused particularly on the 

impact of the changing market environment on the number of clusters that emerged from the DBHT, as well 

as the ability of the DBHT to extract economic information (as measured by the ARI) during these various 

environments. 
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4.4.5 Dynamic DBHTs: Did the Number of Clusters Vary Over Time? 

Figure 4.32 shows how the number of clusters has varied over time, while the frequency distribution of the 

dynamic number of clusters is shown in Figure 4.33. As one can see from Figure 4.33, four and five clusters 

were most frequently extracted from the dynamic DBHTs. These numbers are highlighted as blue dots in Figure 

4.32 to emphasise this point. 

 

 
Figure 4.32 Dynamic DBHTs: Number of Clusters 

 

 

 
Figure 4.33 Dynamic DBHTs: Distribution of the Number of Clusters 
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The number of clusters did seem to be dependent upon market moving events. For example, in the bull market 

phase leading up to the 2008 Global Financial Crisis (GFC), the number of clusters was typically four or less, 

followed by an increase to a value of five. In the post GFC phase, the number of clusters then dropped to below 

five as central banks introduced quantitative easing, which resulted in a general recovery (and therefore higher 

correlations) across market segments. Another example occurred in 2018 when the USA-China trade wars 

resulted in poor performance across the board leading to the number of clusters dropping to four. Similarly, in 

2020, as COVID-19 lockdowns began impacting negatively on economies and stock markets fell, followed by 

sharp recoveries as governments and central banks rolled out packages to assist ailing economies, the number 

of clusters dropped to three before rising again. 

 

The question of whether the number of clusters structurally changed over time is a difficult one to answer, 

given the noisy nature of Figure 4.32. To help identify any trends in the number of clusters we applied a 52-

week moving average to the data. This can be seen by the dark blue line in Figure 4.34. This chart did seem to 

suggest that the number of clusters has gradually trended upwards over time. In the period prior to 2010, there 

were several occasions when the number of clusters was less than four. However, since 2010, two, or three 

clusters were seldom extracted from the dynamic DBHTs. In the period from 2010 to 2016, the number of 

clusters seemed to remain near a value of five, but in the 2016 to 2020 period, it had increased to a values 

between six to eight. As of June 2022, the number of clusters had settled at a value of six. We commented 

briefly on the current output of the DBHT in Section 4.5. 

 

 
Figure 4.34 Dynamic DBHTs: Number of Clusters (smoothed) 
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4.4.6 Dynamic DBHTs: Does the Market Environment Impact the Ability of 
the DBHT to Extract Economic information? 

Given that the number of clusters that was extracted from the DBHT varied dynamically over time, one may 

posit that the ability of the DBHT to extract economic information had also evolved over time. This was 

measured by dynamically calculating the ARI against the various ICB classification levels for the dynamic 

DBHTs. A 52-week moving average was also applied to the ARI to remove the impact of noise and highlight 

any trends in the data. These results are shown in Figure 4.35. 

 

 
Figure 4.35 Dynamic DBHTs:  ARI (smoothed) vs ICB classifications 

 

Up to 2018, the ARI fluctuated between a value of approximately 10% to 20%. It then fell across the board 

leading up to the COVID-19 crash of 2020 and has increased since then. The ARI for the ICB industry level 

reached its highest value (close to 30%), as of June 2022. 

 

4.5 Comparing the Current and Long-Term PMFG/DBHT 

For the final piece of analysis, we compared the structure of the long-term PMFG and DBHT to the current 

one (estimated using the latest three years of data, and an exponentially weighted correlation matrix). As shown 

in Figure 4.32, the current DBHT extracted six clusters from the data. Figure 4.36 depicts the current PMFG, 

with the six clusters overlaid onto the chart by varying the colours of vertices. The size of each vertex represents 

the hybrid centrality of the corresponding share. Interestingly, some shares which had shown good hybrid 

centrality over the long-term (such as TSG, OMU, and SOL) were showed less importance in the latest DBHT, 

while FSR, AGL, ABG, and AMS still exhibited strong centrality characteristics in the latest DBHT. Resource 

0%

10%

20%

30%

40%

M
ar

-0
6

M
ar

-0
8

M
ar

-1
0

M
ar

-1
2

M
ar

-1
4

M
ar

-1
6

M
ar

-1
8

M
ar

-2
0

M
ar

-2
2

AR
I (

1-
Yr

 M
ov

in
g 

Av
er

ag
e)

Dynamic DBHT: ARI for Various ICB Classifications 

Sector Super-sector Industry

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 Chapter 4 Results 

Department Of Mathematics and Applied Mathematics 
University of Pretoria 

101 

stocks such as AGL, EXX, and ACL, and Financial stocks such as FSR, ABG, SBK, DSY, and SLM all ranked 

highly in terms of centrality on the current PMFG.  

 

 
Figure 4.36 Current PMFG (Jun19 – Jun22): DBHT and Hybrid Centrality Overlay 

 

Figure 4.37 uses a Sankey chart to show the differences between the clusters from the long-term DBHT (on 

the left) as compared to the current DBHT (in the middle). The clusters from the current DBHT were then 

compared to the ICB industries (on the right). 

 

From Figure 4.37, one of the main differences that was identified between the long-term clustering and the 

short-term clusters was that Cluster 2, which consisted of the Rand Hedge shares had broken up into other 

clusters (i.e. into Clusters 2, 3, 4, and 6 in the current DBHT). Similarly, Cluster 3 (Consumer Discretionary, 

Real Estate, and Low Liquidity) had broken up into Clusters 4 and 6. These effects can occur when the market’s 

perception of shares changes over time and investors begin to trade them in a different manner. In the case of 

the Rand Hedge shares, perhaps market participants had more recently been trading the shares in line with their 

economic sector. As can be seen in Figure 4.38, some of the shares that showed a large exposure to a weakening 

Rand over the long-term (such as INP, SAP, MEI, SOL, OMU, and SPG), had seen this relationship diminish, 
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and even reverse in some cases (i.e. they showed more Rand Play tendencies than Rand Hedge), in the current 

time period. The theory that the economic sector of the shares was playing a larger role in how shares more 

recently co-moved was also confirmed by the ARI data that was shown for the dynamic DBHTs in Figure 4.35. 

In this chart one can see that the ARI had increased in recent times, indicating a greater overlap between the 

results of the DBHT and the ICB sector classifications. 

 

These results highlighted that the way that market participants viewed shares has changed over time, even 

though the business models of these companies did not materially change. This was especially true for clusters 

that formed outside of the economic sectors of the shares. For these shares, there were periods when the market 

viewed them in one light, and in other market environments, they were viewed differently. 

 

 
Figure 4.37 Sankey: Long-Term DBHT vs Current DBHT 
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Figure 4.38 Examining the Changes in the Exposure to the Rand Dollar Exchange Rate 
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Chapter 5 Discussion and Future Research  

5.1 Discussion 

In this dissertation, we followed the track of engineers, mathematicians, and physicists, who pioneered the field 

of econophysics by applying methods from physics to model financial markets. These researchers favoured the 

idea that financial markets are a complex adaptive system, consisting of entities that behave and interact in a 

diverse manner, leading to non-linear, emergent behaviour of the system. In the last twenty years, there has 

been an increasing focus on modelling complex adaptive systems using network theory. Correlation-based 

networks, where stocks are represented as entities in the network, and the relationships amongst the stocks are 

based on the strength of the co-movements of the stocks, have been widely studied. Researchers have shown 

how network filtering tools, such as the MST and PMFG, have been useful to prune noise in these networks, 

thereby allowing important macroscopic and mesoscopic structures to emerge. 

 

We have applied these techniques to analyse the complex interactions amongst stocks in the South African 

stock market. In particular, we have used MSTs and PMFGs to filter correlation-based networks of share price 

returns. In keeping with our research aim, we plotted the long-term MST and saw an emergent structure in 

which shares from similar ICB sectors tended to cluster together. These results agreed with other international 

studies. However, the so-called Rand Hedge shares, and shares which exhibited low liquidity, tended to 

override the sector effect and clustered together. We also applied calculated various centrality metrics for the 

MST and saw that AGL and BHG were deemed to be important shares on the MST. Counterintuitively, TSG, 

which is a share that has a small market capitalisation and trades significantly less as compared to the larger 

shares, was ranked first in terms of the hybrid centrality metric. However, when we assessed the reliability of 

the MST we saw that edges emanating from TSG tended to be less robust, confirming our suspicion that TSG’s 

importance was overstated. From a dynamic perspective, the MST seem to shrink during market crashes, while 

the Basic Materials sector was typically the most central sector over time.  

 

We then focused on the PMFG, which is a network filter that relaxes some of the constraints of the MST, 

thereby allowing more information that is embedded in the correlation matrix to filter through. While this 

method did provide a more informative filter, it also resulted in a visually noisier graph. Bootstrapping analysis 
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suggested that the structure of the PMFG was more robust as compared to the MST, while the dynamic analysis 

showed similar results as compared to the MST. 

 

One of the main benefits of the PMFG is that it is accompanied by a hierarchical clustering algorithm called 

the DBHT. This method has the benefit of being fully unsupervised in that it does not require the user to decide 

on the number of clusters that the data should be split into, i.e. the number of clusters is an automatic outcome 

of the DBHT. Over the long-term, the DBHT divided the stocks on the JSE into six clusters: Cluster 1 – Mining; 

Cluster 2 – Rand Hedge; Cluster 3 – Consumer Discretionary and Real Estate (Low Liquidity); Cluster 4 – 

Financials and Health Care; Cluster 5 - Consumer Discretionary/Retail; and Cluster 6 - Consumer Staples. 

Bootstrapping techniques that were applied to the long-term dataset confirmed that the six clusters obtained 

from the DBHT was relatively robust. 

 

We also determined the amount of economic information that emerged from the DBHT using the ARI. It was 

encouraging to see that the ARI for the DBHT was maximised at the number of clusters extracted from the 

DBHT. When comparing the DBHT to other popular linkage methods, the DBHT best represented the ICB 

sectors at the optimal number of clusters (six), but other methods had a higher ARI if the data was split into 

more clusters. All of the linkage methods (except for SLCA) seemed to perform well depending on the setting. 

These results re-iterated the stance that it is difficult to compare various clustering techniques by using the ARI 

to compare the clusters against a pre-specified industry classification benchmark. This is because clustering 

techniques that are based on price data, can produce clusters which may not exist in the ICB classification (the 

Rand Hedge and Low Liquidity clusters are examples of this). However, the DBHT does have the advantage 

of having the network (PMFG) representation and its associated network metrics that can provide valuable 

information, as well as the fact that the number of clusters is determined in a fully unsupervised manner. 

 

The dynamic analysis of the DBHTs provided noteworthy insights into the changing nature of the South 

African stock market. The number of clusters seemed to change during market moving events, with the average 

number of clusters trending upward over time. Interestingly, the amount of economic information being 

extracted by the DBHT had increased in recent years. 

 

The structure of the current PMFG and DBHT (as of June 2022) showed a relatively changed structure as 

compared to the long-term data. Although six clusters emerged as optimal, which was similar to six clusters 

for the long-term DBHT, the composition of the clusters had changed. In particular, the long-term Rand Hedge 

cluster split into clusters that aligned more closely with the economic sectors of the stocks.  
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5.2 Future Research 

It should be noted that the PMFG does have some limitations. The main limitation is that it is computationally 

costly to construct (as one needs to check that the planarity condition is satisfied at each step of the construction) 

and it cannot be applied to large data sets. Therefore, for large correlation matrices, or other big data exercises, 

it becomes impractical to use the PMFG. To address this issue Massara, Di Matteo and Aste (2015) introduced 

the Triangulated Maximally Filtered Graph (TMFG) which is generally faster to construct. The TMFG can 

also be updated in an online manner, i.e. as new data becomes available. This is important for data that is 

constantly arriving or being updated frequently (such as the prices of stocks that are being updated on a daily 

or even an intraday basis). The technique can also be parallelised to speed up the implementation further. 

Given the recent introduction of TMFGs in 2015, their application to financial markets has been limited. Table 

5.1 contains a summary of academic papers that utilise the TMFG as opposed to the PMFG. 

 

Table 5.1 Studies of TMFGs Applied to Financial Markets 

Setting Reference 

Stocks: New York Stock 

Exchange (NYSE) 
Massara, Di Matteo and Aste (2015) 

Stocks: NYSE, Italy, Germany, 

and Israel 
Turiel, Barucca and Aste (2020) 

Stocks: China Xu et al. (2022) 

Cryptocurrencies 
Briola and Aste (2022)  

 Katsiampa, Yarovaya and Zięba (2022) 

 

From a general modelling point of view, even though we made carefully considered decisions based on a 

mixture of practitioner experience and academic literature, it was clear that these choices had a material impact 

on the outcome of the analysis. This confirmed the view of Marti et al. (2015). Specifically, the period that was 

considered for the analysis had a material impact, with some companies switching clusters even though they 

did not change their business models. This may be due to the market participants viewing them from one 

perspective during certain regimes and then treating them differently during others. The Rand Hedge shares 

were a prime example of this, being traded as a group when investors were looking to express a view on the 

currency and being traded along with other stocks within their respective sectors at other times. It is difficult 

to model these types of shares using traditional methods of clustering. This is because the methods create hard 

partitions, in which a stock is either in a cluster or out, i.e. it can only form part of one cluster. This works well 

for shares that are dominated by a single factor (e.g. gold mining shares which are predominantly driven by the 
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movement in the underlying gold price). On the other hand, soft clustering techniques such as Fuzzy C-Means 

(introduced by Dunn, 1973) may be more appropriate for shares that show more of a dual nature (such as the 

Rand Hedge shares). Gopi (2009) and Gopi (2012a) applied this technique to the South African stock market 

with interesting results. 

 

In this dissertation, the only feature that was used to model the relationships amongst shares was the co-

movement of share prices. Given that share price returns are subject to noise, and even though one can apply 

noise reduction techniques, it is difficult to quantify the amount of noise that will be removed and the amount 

that will remain. Therefore, using alternate data sources, or other techniques may prove to be useful. Winton 

(2018) clustered stocks based on the similarity of the text in the annual reports of companies, while Fodor, 

Jorgensen and Stowe (2021) clustered stocks based on data from the financial statements of companies. 

Networks based on these features may provide a complementary viewpoint to the traditional return-based 

correlation networks. An interesting approach may be to apply to a multiplex network to combine networks 

based on various types of features (such as those mentioned here). These types of networks were introduced in 

a financial market setting by Musmeci et al. (2016). The authors used a multiplex PMFG to analyse various 

dependency measures such as linear, non-linear, tail, and partial correlations. These networks were then 

combined, and the interaction of the various layers of the networks revealed insights that would not have been 

observed from the analysis of each network in isolation. 

 

Finally, recent developments have seen the application of machine learning techniques to networks of financial 

networks. One such development is the use of algorithms that take the topological features of the networks 

themselves (such as the centrality metrics, clusters etc.) and uses them to predict the structure of the market in 

the future (see Castilho et al., 2021). Other developments have seen the use of techniques such as Node2Vec 

(Grover and Leskovec, 2016) to compress the network into a lower dimensional continuous space, called an 

embedding. Sarmah et al. (2022), state that these embeddings can be used to model the network in an intuitive 

manner, as well as for a variety of tasks such as building stock recommender systems, performing analogical 

inferences, etc. We believe that the use of networks and graphs together with modern machine learning 

techniques may provide a useful avenue for future research. 
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Appendix A Universe of Stocks 

A1 Full List of Shares and ICB Classifications 

Table A-1 contains the full list of the 136 stocks that we considered for the analysis, along with the JSE share 

code, company names, and the various ICB classifications. 

 

Table A-1 Full List of Universe of Stocks in ALSI (Jun22) and ICB Classifications 

JSE Share 
Code 

Company Name ICB Industry 
ICB Super- 

sector 
ICB Sector ICB Subsector 

ABG Absa Group Ltd Financials Banks Banks Banks 

ACL 
ArcelorMittal South 

Africa Ltd 
Basic Materials Basic Resources 

Industrial Metals and 

Mining 
Iron and Steel 

ADH Advtech Ltd 
Consumer 

Discretionary 

Consumer 

Products and 

Services 

Consumer Services Education Services 

AEL Altron Ltd Technology Technology 
Software and Computer 

Services 
Computer Services 

AFE AECI Ltd Basic Materials Chemicals Chemicals Chemicals: Diversified 

AFH 
Alexander Forbes 

Group Holding 
Financials 

Financial 

Services 

Investment Banking 

and Brokerage Services 

Asset Managers and 

Custodians 

AFT Afrimat Ltd Industrials 
Construction and 

Materials 

Construction and 

Materials 

Building Materials: 

Other 

AGL 
Anglo American 

PLC 
Basic Materials Basic Resources 

Industrial Metals and 

Mining 
General Mining 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 Appendix A Universe of Stocks 

Department Of Mathematics and Applied Mathematics 
University of Pretoria 

121 

JSE Share 
Code 

Company Name ICB Industry 
ICB Super- 

sector 
ICB Sector ICB Subsector 

AIL 
African Rainbow 

Capital Invest 
Financials 

Financial 

Services 
Closed End Investments Closed End Investments 

AIP 
Adcock Ingram 

Holdings Ltd 
Health Care Health Care 

Pharmaceuticals and 

Biotechnology 
Pharmaceuticals 

AMS 
Anglo American 

Platinum Ltd 
Basic Materials Basic Resources 

Precious Metals and 

Mining 

Platinum and Precious 

Metals 

ANG 
AngloGold Ashanti 

Ltd 
Basic Materials Basic Resources 

Precious Metals and 

Mining 
Gold Mining 

ANH 
Anheuser-Busch 

InBev SA/NV 

Consumer 

Staples 

Food, Beverage 

and Tobacco 
Beverages Brewers 

APN 
Aspen Pharmacare 

Holdings Ltd 
Health Care Health Care 

Pharmaceuticals and 

Biotechnology 
Pharmaceuticals 

ARI 
African Rainbow 

Minerals Ltd 
Basic Materials Basic Resources 

Industrial Metals and 

Mining 
General Mining 

ARL Astral Foods Ltd 
Consumer 

Staples 

Food, Beverage 

and Tobacco 
Food Producers 

Farming, Fishing, 

Ranching and 

Plantations 

ATT Attacq Ltd Real Estate Real Estate 
Real Estate Investment 

Trusts 
Diversified REITs 

AVI AVI Ltd 
Consumer 

Staples 

Food, Beverage 

and Tobacco 
Food Producers Food Products 

BAT Brait PLC Financials 
Financial 

Services 

Investment Banking 

and Brokerage Services 

Diversified Financial 

Services 

BAW Barloworld Ltd Industrials 
Industrial Goods 

and Services 
General Industrials Diversified Industrials 

BHG BHP Group Ltd Basic Materials Basic Resources 
Industrial Metals and 

Mining 
General Mining 

BID Bid Corp Ltd 
Consumer 

Staples 

Personal Care, 

Drug and 

Grocery Stores 

Personal Care, Drug 

and Grocery Stores 

Food Retailers and 

Wholesalers 

BLU 
Blue Label Telecoms 

Ltd 
Telecoms Telecoms 

Telecoms Service 

Providers 
Telecoms Services 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



A1 Full List of Shares and ICB Classifications 

Department Of Mathematics and Applied Mathematics 
University of Pretoria  

122 

JSE Share 
Code 

Company Name ICB Industry 
ICB Super- 

sector 
ICB Sector ICB Subsector 

BTI 
British American 

Tobacco PLC 

Consumer 

Staples 

Food, Beverage 

and Tobacco 
Tobacco Tobacco 

BVT 
Bidvest Group 

Ltd/The 
Industrials 

Industrial Goods 

and Services 
General Industrials Diversified Industrials 

BYI 
Bytes Technology 

Group PLC 
Technology Technology 

Software and Computer 

Services 
Software 

CCO 
Capital & Counties 

Properties 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Diversified REITs 

CFR 
Cie Financiere 

Richemont SA 

Consumer 

Discretionary 

Consumer 

Products and 

Services 

Personal Goods Luxury Items 

CLH 
City Lodge Hotels 

Ltd 

Consumer 

Discretionary 

Travel and 

Leisure 
Travel and Leisure Hotels and Motels 

CLS Clicks Group Ltd 
Consumer 

Staples 

Personal Care, 

Drug and 

Grocery Stores 

Personal Care, Drug 

and Grocery Stores 
Drug Retailers 

CML 
Coronation Fund 

Managers Ltd 
Financials 

Financial 

Services 

Investment Banking 

and Brokerage Services 

Asset Managers and 

Custodians 

COH Curro Holdings Ltd 
Consumer 

Discretionary 

Consumer 

Products and 

Services 

Consumer Services Education Services 

CPI 
Capitec Bank 

Holdings Ltd 
Financials Banks Banks Banks 

CSB Cashbuild Ltd 
Consumer 

Discretionary 
Retail Retailers 

Home Improvement 

Retailers 

DCP 
Dis-Chem 

Pharmacies Ltd 

Consumer 

Staples 

Personal Care, 

Drug and 

Grocery Stores 

Personal Care, Drug 

and Grocery Stores 
Drug Retailers 

DGH 
Distell Group 

Holdings Ltd 

Consumer 

Staples 

Food, Beverage 

and Tobacco 
Beverages Distillers and Vintners 

DRD DRDGOLD Ltd Basic Materials Basic Resources 
Precious Metals and 

Mining 
Gold Mining 
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JSE Share 
Code 

Company Name ICB Industry 
ICB Super- 

sector 
ICB Sector ICB Subsector 

DSY Discovery Ltd Financials Insurance Life Insurance Life Insurance 

DTC DataTec Ltd Technology Technology 
Software and Computer 

Services 
Computer Services 

EMI 
Emira Property Fund 

Ltd 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Diversified REITs 

EQU 
Equites Property 

Fund Ltd 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Industrial REITs 

EXX 
Exxaro Resources 

Ltd 
Energy Energy Oil Gas and Coal Coal 

FBR Famous Brands Ltd 
Consumer 

Discretionary 

Travel and 

Leisure 
Travel and Leisure Restaurants and Bars 

FFA Fortress REIT Ltd Real Estate Real Estate 
Real Estate Investment 

Trusts 
Diversified REITs 

FFB Fortress REIT Ltd Real Estate Real Estate 
Real Estate Investment 

Trusts 
Diversified REITs 

FSR FirstRand Ltd Financials Banks Banks Banks 

FTB Fairvest Ltd Real Estate Real Estate 
Real Estate Investment 

Trusts 
Diversified REITs 

GFI Gold Fields Ltd Basic Materials Basic Resources 
Precious Metals and 

Mining 
Gold Mining 

GLN Glencore PLC Basic Materials Basic Resources 
Industrial Metals and 

Mining 
General Mining 

GND Grindrod Ltd Industrials 
Industrial Goods 

and Services 

Industrial 

Transportation 
Transportation Services 

GRT 
Growthpoint 

Properties Ltd 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Diversified REITs 

HAR 
Harmony Gold 

Mining Co Ltd 
Basic Materials Basic Resources 

Precious Metals and 

Mining 
Gold Mining 

HCI 

Hosken 

Consolidated 

Investment 

Financials 
Financial 

Services 

Investment Banking 

and Brokerage Services 

Diversified Financial 

Services 
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JSE Share 
Code 

Company Name ICB Industry 
ICB Super- 

sector 
ICB Sector ICB Subsector 

HDC 
Hudaco Industries 

Ltd 
Industrials 

Industrial Goods 

and Services 

Industrial Support 

Services 
Industrial Suppliers 

HMN Hammerson PLC Real Estate Real Estate 
Real Estate Investment 

Trusts 
Retail REITs 

HYP 
Hyprop Investments 

Ltd 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Retail REITs 

IAP 
Irongate Property 

Fund I 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Office REITs 

IMP 
Impala Platinum 

Holdings Ltd 
Basic Materials Basic Resources 

Precious Metals and 

Mining 

Platinum and Precious 

Metals 

INP Investec PLC Financials Banks Banks Banks 

IPF 
Investec Property 

Fund Ltd 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Diversified REITs 

ITE Italtile Ltd 
Consumer 

Discretionary 
Retail Retailers 

Home Improvement 

Retailers 

JSE JSE Ltd Financials 
Financial 

Services 

Investment Banking 

and Brokerage Services 
Investment Services 

KAP 
KAP Industrial 

Holdings Ltd 
Industrials 

Industrial Goods 

and Services 
General Industrials Diversified Industrials 

KIO Kumba Iron Ore Ltd Basic Materials Basic Resources 
Industrial Metals and 

Mining 
Iron and Steel 

KRO Karooooo Ltd Technology Technology 
Software and Computer 

Services 
Software 

KST PSG Konsult Ltd Financials 
Financial 

Services 

Investment Banking 

and Brokerage Services 

Diversified Financial 

Services 

L2D 
Liberty Two Degrees 

Ltd 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Retail REITs 

L4L Long4Life Ltd 
Consumer 

Discretionary 

Consumer 

Products and 

Services 

Leisure Goods Recreational Products 
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JSE Share 
Code 

Company Name ICB Industry 
ICB Super- 

sector 
ICB Sector ICB Subsector 

LBR Libstar Holdings Ltd 
Consumer 

Staples 

Food, Beverage 

and Tobacco 
Food Producers Food Products 

LHC 
Life Healthcare 

Group Holdings 
Health Care Health Care Health Care Providers Health Care Facilities 

LTE 
Lighthouse 

Properties plc 
Real Estate Real Estate 

Real Estate Investment 

and Services 

Real Estate Holding 

and Development 

MCG MultiChoice Group Telecoms Telecoms 
Telecoms Service 

Providers 

Cable Television 

Services 

MEI 
Mediclinic 

International PLC 
Health Care Health Care Health Care Providers Health Care Facilities 

MKR 
Montauk 

Renewables Inc 
Energy Energy Alternative Energy Alternative Fuels 

MLI Industrials REIT Ltd Real Estate Real Estate 
Real Estate Investment 

Trusts 
Industrial REITs 

MNP Mondi PLC Industrials 
Industrial Goods 

and Services 
General Industrials 

Containers and 

Packaging 

MRP Mr Price Group Ltd 
Consumer 

Discretionary 
Retail Retailers Apparel Retailers 

MSM 
Massmart Holdings 

Ltd 

Consumer 

Discretionary 
Retail Retailers Diversified Retailers 

MSP MAS P.L.C. Real Estate Real Estate 
Real Estate Investment 

and Services 

Real Estate Holding 

and Development 

MTA 
Metair Investments 

Ltd 

Consumer 

Discretionary 

Automobiles and 

Parts 
Automobiles and Parts Auto Parts 

MTH Motus Holdings Ltd 
Consumer 

Discretionary 
Retail Retailers Specialty Retailers 

MTM 

Momentum 

Metropolitan 

Holdings 

Financials Insurance Life Insurance Life Insurance 

MTN MTN Group Ltd Telecoms Telecoms 
Telecoms Service 

Providers 
Telecoms Services 
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JSE Share 
Code 

Company Name ICB Industry 
ICB Super- 

sector 
ICB Sector ICB Subsector 

MUR 
Murray & Roberts 

Holdings Ltd 
Industrials 

Construction and 

Materials 

Construction and 

Materials 

Engineering and 

Contracting Services 

N91 Ninety One PLC Financials 
Financial 

Services 

Investment Banking 

and Brokerage Services 

Asset Managers and 

Custodians 

NED Nedbank Group Ltd Financials Banks Banks Banks 

NPH 
Northam Platinum 

Holdings Ltd 
Basic Materials Basic Resources 

Precious Metals and 

Mining 

Platinum and Precious 

Metals 

NPN Naspers Ltd Technology Technology 
Software and Computer 

Services 

Consumer Digital 

Services 

NRP NEPI Rockcastle NV Real Estate Real Estate 
Real Estate Investment 

and Services 

Real Estate Holding 

and Development 

NTC Netcare Ltd Health Care Health Care Health Care Providers Health Care Facilities 

OCE Oceana Group Ltd 
Consumer 

Staples 

Food, Beverage 

and Tobacco 
Food Producers 

Farming, Fishing, 

Ranching and 

Plantations 

OMN Omnia Holdings Ltd Basic Materials Chemicals Chemicals Chemicals: Diversified 

OMU Old Mutual Ltd Financials Insurance Life Insurance Life Insurance 

PAN 
Pan African 

Resources PLC 
Basic Materials Basic Resources 

Precious Metals and 

Mining 
Gold Mining 

PIK 
Pick n Pay Stores 

Ltd 

Consumer 

Staples 

Personal Care, 

Drug and 

Grocery Stores 

Personal Care, Drug 

and Grocery Stores 

Food Retailers and 

Wholesalers 

PPC PPC Ltd Industrials 
Construction and 

Materials 

Construction and 

Materials 
Cement 

PPH Pepkor Holdings Ltd 
Consumer 

Discretionary 
Retail Retailers Diversified Retailers 

PSG PSG Group Ltd Financials 
Financial 

Services 

Investment Banking 

and Brokerage Services 

Diversified Financial 

Services 

QLT Quilter PLC Financials 
Financial 

Services 

Investment Banking 

and Brokerage Services 

Asset Managers and 

Custodians 
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JSE Share 
Code 

Company Name ICB Industry 
ICB Super- 

sector 
ICB Sector ICB Subsector 

RBP 
Royal Bafokeng 

Platinum Ltd 
Basic Materials Basic Resources 

Precious Metals and 

Mining 

Platinum and Precious 

Metals 

RBX Raubex Group Ltd Industrials 
Construction and 

Materials 

Construction and 

Materials 
Construction 

RDF 
Redefine Properties 

Ltd 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Diversified REITs 

REM Remgro Ltd Financials 
Financial 

Services 

Investment Banking 

and Brokerage Services 

Diversified Financial 

Services 

RES Resilient REIT Ltd Real Estate Real Estate 
Real Estate Investment 

Trusts 
Retail REITs 

RFG RFG Holdings Ltd 
Consumer 

Staples 

Food, Beverage 

and Tobacco 
Food Producers Food Products 

RLO Reunert Ltd Industrials 
Industrial Goods 

and Services 

Electronic and 

Electrical Equipment 
Electrical Components 

RMI 
Rand Merchant 

Investment Holdi 
Financials 

Financial 

Services 

Investment Banking 

and Brokerage Services 

Diversified Financial 

Services 

SAC 
SA Corporate Real 

Estate Ltd 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Diversified REITs 

SAP Sappi Ltd Basic Materials Basic Resources Industrial Materials Paper 

SBK 
Standard Bank 

Group Ltd 
Financials Banks Banks Banks 

SHP 
Shoprite Holdings 

Ltd 

Consumer 

Staples 

Personal Care, 

Drug and 

Grocery Stores 

Personal Care, Drug 

and Grocery Stores 

Food Retailers and 

Wholesalers 

SLM Sanlam Ltd Financials Insurance Life Insurance Life Insurance 

SNH 
Steinhoff 

International Holdin 

Consumer 

Discretionary 
Retail Retailers Diversified Retailers 

SNT Santam Ltd Financials Insurance Non-life Insurance 
Property and Casualty 

Insurance 

SOL Sasol Ltd Basic Materials Chemicals Chemicals Chemicals: Diversified 
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JSE Share 
Code 

Company Name ICB Industry 
ICB Super- 

sector 
ICB Sector ICB Subsector 

SPG 
Super Group 

Ltd/South Africa 
Industrials 

Industrial Goods 

and Services 

Industrial 

Transportation 
Transportation Services 

SPP 
SPAR Group 

Ltd/The 

Consumer 

Staples 

Personal Care, 

Drug and 

Grocery Stores 

Personal Care, Drug 

and Grocery Stores 

Food Retailers and 

Wholesalers 

SRE 
Sirius Real Estate 

Ltd 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Office REITs 

SSS 
Stor-Age Property 

REIT Ltd 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Storage REITs 

SSW 
Sibanye Stillwater 

Ltd 
Basic Materials Basic Resources 

Precious Metals and 

Mining 

Platinum and Precious 

Metals 

SUI 
Sun International 

Ltd/South Af 

Consumer 

Discretionary 

Travel and 

Leisure 
Travel and Leisure Casinos and Gambling 

TBS Tiger Brands Ltd 
Consumer 

Staples 

Food, Beverage 

and Tobacco 
Food Producers Food Products 

TCP 
Transaction Capital 

Ltd 
Financials 

Financial 

Services 

Finance and Credit 

Services 
Consumer Lending 

TFG 
Foschini Group 

Ltd/The 

Consumer 

Discretionary 
Retail Retailers Apparel Retailers 

TGA 
Thungela Resources 

Ltd 
Energy Energy Oil Gas and Coal Coal 

TGO Southern Sun Ltd 
Consumer 

Discretionary 

Travel and 

Leisure 
Travel and Leisure Hotels and Motels 

THA Tharisa PLC Basic Materials Basic Resources 
Industrial Metals and 

Mining 
General Mining 

TKG Telkom SA SOC Ltd Telecoms Telecoms 
Telecoms Service 

Providers 
Telecoms Services 

TRU 
Truworths 

International Ltd 

Consumer 

Discretionary 
Retail Retailers Apparel Retailers 

TSG 
Tsogo Sun Gaming 

Ltd 

Consumer 

Discretionary 

Travel and 

Leisure 
Travel and Leisure Casinos and Gambling 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 Appendix A Universe of Stocks 

Department Of Mathematics and Applied Mathematics 
University of Pretoria 

129 

JSE Share 
Code 

Company Name ICB Industry 
ICB Super- 

sector 
ICB Sector ICB Subsector 

TXT 
Textainer Group 

Holdings Ltd 
Industrials 

Industrial Goods 

and Services 

Industrial 

Transportation 
Transportation Services 

VKE 
Vukile Property 

Fund Ltd 
Real Estate Real Estate 

Real Estate Investment 

Trusts 
Retail REITs 

VOD Vodacom Group Ltd Telecoms Telecoms 
Telecoms Service 

Providers 
Telecoms Services 

WBO 
Wilson Bayly 

Holmes-Ovcon Ltd 
Industrials 

Construction and 

Materials 

Construction and 

Materials 

Engineering and 

Contracting Services 

WHL 
Woolworths 

Holdings Ltd/South 

Consumer 

Discretionary 
Retail Retailers Diversified Retailers 

ZED 
Zeder Investments 

Ltd 
Financials 

Financial 

Services 

Investment Banking 

and Brokerage Services 

Asset Managers and 

Custodians 

 

 

A2 Exclusion Process and Final List of Shares 

Table A-2 shows the stocks that were excluded due to insufficient history and those that were excluded due to 

liquidity concerns, leaving us with the final list of 72 stocks in the final column of the table. 

 

Table A-2 Screening of Stocks to Final List 

ALSI Stocks Company Name Sufficient 
History 

Trading 
Liquidity 

Final Universe 
of Stocks 

ABG Absa Group Ltd ✔ ✔ ✔ 

ACL ArcelorMittal South Africa Ltd ✔ ✔ ✔ 

ADH Advtech Ltd ✔ ✔ ✔ 

AEL Altron Ltd ✔ ✖  

AFE AECI Ltd ✔ ✔ ✔ 

AFH Alexander Forbes Group Holding ✖   

AFT Afrimat Ltd ✖   
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ALSI Stocks Company Name Sufficient 
History 

Trading 
Liquidity 

Final Universe 
of Stocks 

AGL Anglo American PLC ✔ ✔ ✔ 

AIL African Rainbow Capital Invest ✖   

AIP Adcock Ingram Holdings Ltd ✖   

AMS Anglo American Platinum Ltd ✔ ✔ ✔ 

ANG AngloGold Ashanti Ltd ✔ ✔ ✔ 

ANH Anheuser-Busch InBev SA/NV ✔ ✔ ✔ 

APN Aspen Pharmacare Holdings Ltd ✔ ✔ ✔ 

ARI African Rainbow Minerals Ltd ✔ ✔ ✔ 

ARL Astral Foods Ltd ✔ ✔ ✔ 

ATT Attacq Ltd ✖   

AVI AVI Ltd ✔ ✔ ✔ 

BAT Brait PLC ✔ ✔ ✔ 

BAW Barloworld Ltd ✔ ✔ ✔ 

BHG BHP Group Ltd ✔ ✔ ✔ 

BID Bid Corp Ltd ✖   

BLU Blue Label Telecoms Ltd ✖   

BTI British American Tobacco PLC ✔ ✔ ✔ 

BVT Bidvest Group Ltd/The ✔ ✔ ✔ 

BYI Bytes Technology Group PLC ✖   

CCO Capital & Counties Properties ✖   

CFR Cie Financiere Richemont SA ✔ ✔ ✔ 

CLH City Lodge Hotels Ltd ✔ ✔ ✔ 

CLS Clicks Group Ltd ✔ ✔ ✔ 

CML Coronation Fund Managers Ltd ✖   

COH Curro Holdings Ltd ✖   

CPI Capitec Bank Holdings Ltd ✔ ✔ ✔ 

CSB Cashbuild Ltd ✔ ✔ ✔ 
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ALSI Stocks Company Name Sufficient 
History 

Trading 
Liquidity 

Final Universe 
of Stocks 

DCP Dis-Chem Pharmacies Ltd ✖   

DGH Distell Group Holdings Ltd ✔ ✖  

DRD DRDGOLD Ltd ✔ ✔ ✔ 

DSY Discovery Ltd ✔ ✔ ✔ 

DTC DataTec Ltd ✔ ✔ ✔ 

EMI Emira Property Fund Ltd ✖   

EQU Equites Property Fund Ltd ✖   

EXX Exxaro Resources Ltd ✔ ✔ ✔ 

FBR Famous Brands Ltd ✔ ✔ ✔ 

FFA Fortress REIT Ltd ✖   

FFB Fortress REIT Ltd ✖   

FSR FirstRand Ltd ✔ ✔ ✔ 

FTB Fairvest Ltd ✖   

GFI Gold Fields Ltd ✔ ✔ ✔ 

GLN Glencore PLC ✖   

GND Grindrod Ltd ✔ ✔ ✔ 

GRT Growthpoint Properties Ltd ✔ ✔ ✔ 

HAR Harmony Gold Mining Co Ltd ✔ ✔ ✔ 

HCI Hosken Consolidated Investment ✖   

HDC Hudaco Industries Ltd ✔ ✔ ✔ 

HMN Hammerson PLC ✖   

HYP Hyprop Investments Ltd ✔ ✔ ✔ 

IAP Irongate Property Fund I ✖   

IMP Impala Platinum Holdings Ltd ✔ ✔ ✔ 

INP Investec PLC ✔ ✔ ✔ 

IPF Investec Property Fund Ltd ✖   

ITE Italtile Ltd ✔ ✖  
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ALSI Stocks Company Name Sufficient 
History 

Trading 
Liquidity 

Final Universe 
of Stocks 

JSE JSE Ltd ✖   

KAP KAP Industrial Holdings Ltd ✔ ✖  

KIO Kumba Iron Ore Ltd ✖   

KRO Karooooo Ltd ✖   

KST PSG Konsult Ltd ✖   

L2D Liberty Two Degrees Ltd ✖   

L4L Long4Life Ltd ✖   

LBR Libstar Holdings Ltd ✖   

LHC Life Healthcare Group Holdings ✖   

LTE Lighthouse Properties plc ✖   

MCG MultiChoice Group ✖   

MEI Mediclinic International PLC ✔ ✔ ✔ 

MKR Montauk Renewables Inc ✖   

MLI Industrials REIT Ltd ✖   

MNP Mondi PLC ✖   

MRP Mr Price Group Ltd ✔ ✔ ✔ 

MSM Massmart Holdings Ltd ✔ ✔ ✔ 

MSP MAS P.L.C. ✖   

MTA Metair Investments Ltd ✔ ✖  

MTH Motus Holdings Ltd ✖   

MTM Momentum Metropolitan Holdings ✔ ✔ ✔ 

MTN MTN Group Ltd ✔ ✔ ✔ 

MUR Murray & Roberts Holdings Ltd ✔ ✔ ✔ 

N91 Ninety One PLC ✖   

NED Nedbank Group Ltd ✔ ✔ ✔ 

NPH Northam Platinum Holdings Ltd ✔ ✔ ✔ 

NPN Naspers Ltd ✔ ✔ ✔ 
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ALSI Stocks Company Name Sufficient 
History 

Trading 
Liquidity 

Final Universe 
of Stocks 

NRP NEPI Rockcastle NV ✖   

NTC Netcare Ltd ✔ ✔ ✔ 

OCE Oceana Group Ltd ✔ ✖  

OMN Omnia Holdings Ltd ✔ ✔ ✔ 

OMU Old Mutual Ltd ✔ ✔ ✔ 

PAN Pan African Resources PLC ✖   

PIK Pick n Pay Stores Ltd ✔ ✔ ✔ 

PPC PPC Ltd ✔ ✔ ✔ 

PPH Pepkor Holdings Ltd ✖   

PSG PSG Group Ltd ✔ ✔ ✔ 

QLT Quilter PLC ✖   

RBP Royal Bafokeng Platinum Ltd ✖   

RBX Raubex Group Ltd ✖   

RDF Redefine Properties Ltd ✔ ✔ ✔ 

REM Remgro Ltd ✔ ✔ ✔ 

RES Resilient REIT Ltd ✔ ✔ ✔ 

RFG RFG Holdings Ltd ✖   

RLO Reunert Ltd ✔ ✔ ✔ 

RMI Rand Merchant Investment Holdi ✖   

SAC SA Corporate Real Estate Ltd ✔ ✔ ✔ 

SAP Sappi Ltd ✔ ✔ ✔ 

SBK Standard Bank Group Ltd ✔ ✔ ✔ 

SHP Shoprite Holdings Ltd ✔ ✔ ✔ 

SLM Sanlam Ltd ✔ ✔ ✔ 

SNH Steinhoff International Holdin ✔ ✔ ✔ 

SNT Santam Ltd ✔ ✔ ✔ 

SOL Sasol Ltd ✔ ✔ ✔ 
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ALSI Stocks Company Name Sufficient 
History 

Trading 
Liquidity 

Final Universe 
of Stocks 

SPG Super Group Ltd/South Africa ✔ ✔ ✔ 

SPP SPAR Group Ltd/The ✖   

SRE Sirius Real Estate Ltd ✖   

SSS Stor-Age Property REIT Ltd ✖   

SSW Sibanye Stillwater Ltd ✖   

SUI Sun International Ltd/South Af ✔ ✔ ✔ 

TBS Tiger Brands Ltd ✔ ✔ ✔ 

TCP Transaction Capital Ltd ✖   

TFG Foschini Group Ltd/The ✔ ✔ ✔ 

TGA Thungela Resources Ltd ✖   

TGO Southern Sun Ltd ✖   

THA Tharisa PLC ✖   

TKG Telkom SA SOC Ltd ✔ ✔ ✔ 

TRU Truworths International Ltd ✔ ✔ ✔ 

TSG Tsogo Sun Gaming Ltd ✔ ✔ ✔ 

TXT Textainer Group Holdings Ltd ✖   

VKE Vukile Property Fund Ltd ✖   

VOD Vodacom Group Ltd ✖   

WBO Wilson Bayly Holmes-Ovcon Ltd ✔ ✔ ✔ 

WHL Woolworths Holdings Ltd/South ✔ ✔ ✔ 

ZED Zeder Investments Ltd ✖   
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Appendix B Source Code  

This section contains tables with short descriptions of the MATLAB functions and scripts that were used to 

conduct the analysis. The scripts were used to set up the input variables, and to call the relevant functions for 

each piece of analysis. 

 

Samples of the actual code can be found at https://github.com/YashinG/Network_Filtering_Matlab. 

B1 MATLAB Functions 

Table B-1 List of General MATLAB Functions 

Function Description 

preProcessRets.m  
Performs the pre-processing tasks of standardising 

the returns and removing the market mode. 

EWMA_Wts.m 

Calculates the exponential weights for a given 

number of observations and a given exponential 

decay factor. 

covMatWtd.m 
Calculates a weighted covariance matrix, i.e. each 

observation can have a different weight. 

QIS_Wtd.m 

Calculates a covariance matrix using the QIS 

method of Ledoit and Wolf to reduce the impact of 

noise. This function has been adapted to cater for 

weighted observations. 

correlToDistMetric.m 
Converts a correlation matrix to a distance matrix 

using Equation (3). 

networkMetrics.m 

Calculates the various metrics that describe the 

topology of a network, e.g. centrality metrics, 

normalised tree length etc. 
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Table B-2 List of MATLAB Functions to Analyse Correlation Matrices 

Function Description 

correlationAnalysis.m 
Determines the distribution of cross correlations in 

the correlation matrix over a static period. 

correlationAnalysis_Dynamic.m 
Determines the distribution of cross correlations in 

the covariance matrix dynamically through time. 

 

 

Table B-3 List of MATLAB Functions to Run the Network Filters 

Function Description 

getFilteredNetwork.m 
Filters the correlation matrix using either the MST 

or the PMFG methods over a static period. 

getFilteredNetwork_Dynamic.m 
A function to run the network filters dynamically 

through time. 

 

 

Table B-4 List of MATLAB Functions to Run the Cluster Analysis 

Function Description 

DBHTs.m 

Performs DBHT clustering. This function was 

adapted to allow the creation of a DBHT from a 

PMFG or TMFG.  

getClusters.m 
Get the hierarchical clustering for various linkages, 

including the DBHT method over a static period. 

getClusters_Dynamic.m 

Get the hierarchical clustering for various linkages, 

including the DBHT method, dynamically through 

time. 

 

 

Table B-5 List of MATLAB Functions to Run the Bootstrap Reliability Analysis 

Function Description 

bootstrapDBHT.m 
Use bootstrap resampling to assess the reliability of 

the number of clusters that results from the DBHT. 

bootstrapNetwork.m 
Use bootstrap resampling to assess the reliability of 

edges in a network and network metrics. 
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B2 MATLAB Scripts 

Table B-6 List of MATLAB Scripts That Were Used to Run the Analysis 

Script Description 

scr_RunBootstrapDBHT.m 
A script to run the bootstrap reliability analysis of 

the number of clusters that results from the DBHT. 

scr_RunBootstrapNetwork.m 

A script to assess the reliability of the edges in a 

network and the reliability of the network metrics 

using bootstrap resampling. 

scr_RunClustering.m 
A script to determine the hierarchical clusters over 

a static period. 

scr_RunClustering_Dynamic.m 
A script to determine the hierarchical clusters 

dynamically through time. 

scr_RunCorrelAnalysis.m 

A script to determine the distribution of cross 

correlations in the correlation matrix over a static 

period, as well as dynamically. 

scr_RunCurrent.m A script to run the latest network filter and DBHT. 

scr_RunNetworkFilter.m A script to run a network filter over a static period. 

scr_RunNetworkFilter_Dynamic.m 
A script to run a network filter dynamically through 

time. 
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Below is an example of the script that was used to create the static PMFG (i.e. the scr_RunNetworkFilter.m). 
% Script to run MST or PMFG and plot in MATLAB 
 

% Add paths to relevant folders 
addpath('../Functions'); 
addpath('../External Functions/PMFG') 
addpath('../External Functions/matlab_bgl-4.0.1/matlab_bgl') 
 

% Load data 
load('../Data/Data.mat') 
 

% Data inputs 
stInputs.data.inReturns = stStockRets.rets; 

stInputs.data.inNames   = stStockRets.aNames; 

stInputs.data.inDates   = stStockRets.mlDates; 

stInputs.data.pajekLabels = stStockRets.pajekStrData; 

 

% Pre-processing inputs 
stInputs.preProp.blnStdize     = 1; 

stInputs.preProp.blnRemMktMode = 1; 

stInputs.preProp.EWMA_Alpha    = 0; % {0, 0.005} 
 

% Network inputs 
stInputs.network.distanceMethod = 'QIS_correlDistMetric';  % {'QIS_correlDistMetric','correlDistMetric'} 
stInputs.network.filter          = 'PMFG';  % {'MST','PMFG'} 
stInputs.network.blnPlot         = 1; 

 

% Get EWMA weights 
stInputs.data.timeWts = EWMA_Wts(size(stInputs.data.inReturns,1), stInputs.preProp.EWMA_Alpha); 

 

% Run filter 
% stOut = getFilteredNetwork(inReturns, inTimeWts, inNames, inNetworkFilter, ... 
%    inBlnStdize, inBlnRemMktMode, inDistMethod, inPlotID) 
clear stOutNetworkFilter 
 

stOutNetworkFilter = getFilteredNetwork(stInputs.data.inReturns, stInputs.data.timeWts,... 

    stInputs.data.inNames, stInputs.network.filter, stInputs.preProp.blnStdize,... 

    stInputs.preProp.blnRemMktMode, stInputs.network.distanceMethod, stInputs.network.blnPlot); 

 

stOutNetworkFilter.dateStamp = datestr(clock,'_yyyymmdd_HHMMSS'); 
 

% Store results and generate pajek file 
stOutNetworkFilter.edgeData = table2array(graph(stOutNetworkFilter.filteredNetwork_D).Edges); 

 

stOutNetworkFilter.filename = [stOutNetworkFilter.dateStamp,' ', stInputs.network.filter ,' Method_', ... 
    stInputs.network.distanceMethod,' ModesRem_' ,num2str(stInputs.preProp.blnRemMktMode),' EWMA_' ,... 
    num2str(stInputs.preProp.EWMA_Alpha)]; 

 

% Create pajek .net file 
adj2pajek2(stOutNetworkFilter.edgeData, stInputs.data.pajekLabels, stOutNetworkFilter.filename, 0); 

 

% Store results in labelled variable 
eval(['stOut_',stInputs.network.filter,'_', stInputs.network.distanceMethod,'= stOutNetworkFilter;']); 
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