British Journal of **Sports Medicine**

Association between the level of partial foot amputation and gait: a scoping review with implications for the minimum impairment criteria for wheelchair tennis

Journal:	British Journal of Sports Medicine
Manuscript ID	bjsports-2022-105650.R3
Article Type:	Review
Date Submitted by the Author:	n/a
Complete List of Authors:	de Oliveira, Fábio; Université Laval, Faculty of Medicine; Centre interdisciplinaire de recherche en réadaptation et intégration sociale Williamson, Samuel; English Institute of Sport Ardern, Clare; The University of British Columbia, Department of Famili Practice; La Trobe University, Sport and Exercise Medicine Research Centre Fagher, Kristina; Lund University, Department of Health Sciences Heron, Neil; Queen's University Belfast, Center for Public Health; Keele University, Department of General Practice Janse van Rensburg, Dina; University of Pretoria, Section Sports Medicine & Sport Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Science, University of Pretoria, Pretoria, Gauteng, South Africa Jansen, Marleen; University of Groningen, Centre for Human Movement Sciences Kolman, Nikki; University Medical Centre Groningen, Center for Human Movement Sciences; Knowledge Centre for Sport & Physical Activity, O'Connor, Sean; Queen's University Belfast, Centre for Public Health Saueressig, Tobias; Physio Meets Science GmbH Schoonmade, Linda; University of Amsterdam, Medical Library Thornton, Jane; University of Western Ontario Schulich School of Medicine and Dentistry, Public Health and Family Medicine; Webborn, Nick; University of Brighton, Pluim, Babette; University of Pretoria, Faculty of Health Sciences
Keywords:	Athletic Performance, Disabled Persons, Gait analysis, Sports medicine, Walking

SCHOLARONE[™] Manuscripts

Association between the level of partial foot amputation and gait: a scoping review with implications for the minimum impairment criteria for wheelchair tennis

Fábio C. L. de Oliveira,^{1,2} Samuel Williamson,³ Clare L. Ardern,^{4,5} Kristina Fagher,⁶ Neil Heron,^{7,8} Dina C. Janse van Rensburg,^{9,10} Marleen G. T. Jansen,^{11,12} Nikki S. Kolman,^{13,14} Seán R. O'Connor,¹⁵ Tobias Saueressig,¹⁶ Linda Schoonmade,¹⁷ Jane S. Thornton,^{18,19} Nick Webborn,^{20,21,22} Babette M. Pluim^{23,24,25}

¹Center for Interdisciplinary Research in Rehabilitation and Social Integration, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.

²Research Unit in Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal.

³English Institute of Sport, London, UK.

⁴Department of Family Practice, University of British Columbia, Vancouver, Canada.

⁵Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Australia.

⁶Rehabilitation Medicine Research Group, Department of Health Sciences, Lund University.

⁷Center for Public Health, Queen's University Belfast, Belfast, UK.

⁸Department of General Practice, Keele University, Staffordshire, UK.

⁹Section Sports Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.

¹⁰Medical Board member, World Netball, Manchester, UK.

¹¹Toptennis Department, Royal Netherlands Lawn Tennis Association (KNLTB), Amstelveen, The Netherlands.

¹²Centre for Human Movement Sciences, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands.

¹³Knowledge Centre for Sport & Physical Activity, Utrecht, The Netherlands.

¹⁴School of Psychology, Queen's University Belfast, UK.

¹⁵Physio Meets Science GmbH, Leimen, Germany.

¹⁶Medical Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

¹⁷Department of Family Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.

¹⁸Department of Epidemiology & Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.

¹⁹IPC Medical Committee, Bonn, Germany.

²⁰Centre for Sport and Exercise Science and Medicine (SESAME), School of Health and Sport Sciences, University of Brighton, Brighton, UK.

²¹School of Sport, Exercise and Health Sciences, Loughborough University.

²³Amsterdam Collaboration on Health & Safety in Sports (ACHSS), AMC/VUmc IOC Research Center of Excellence, Amsterdam, The Netherlands.

²⁴Medical Department, Royal Netherlands Lawn Tennis Association (KNLTB), Amstelveen, The Netherlands.

Corresponding author

Fábio Carlos Lucas de Oliveira, PT, PhD Address: 525 boulevard Wilfrid-Hamel, G1M2S8, Quebec City, QC, Canada Telephone: +1 (418) 803-9315 Email: <u>fabio-carlos.lucas-de-oliveira.1@ulaval.ca</u>

Word count: 250 words (abstract) | 5.761 words (manuscript)

Authors affiliations

- Fabio Carlos Lucas de Oliveira. Center for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS-CN, Université Laval, Quebec City, Quebec, Canada. Research Unit in Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal. <u>fabiocarlos.lucas-de-oliveira.1@ulaval.ca</u>
- 2. Samuel Williamson. English Institute of Sport, London, UK. samuel.williamson@eis2win.co.uk
- 3. Clare L. Ardern. Department of Family Practice, University of British Columbia, Vancouver, Canada. Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Australia. <u>clare.ardern@ubc.ca</u>
- 4. Kristina Fagher. Rehabilitation Medicine Research Group, Department of Health Sciences, Lund University. kristina.fagher@med.lu.se
- Neil Heron. Center for Public Health, Queen's University Belfast, Belfast, UK. Department of General Practice, Keele University, Staffordshire, UK. <u>N.Heron@qub.ac.uk</u>
- Dina Christa Janse van Rensburg. Section Sports Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa. Medical Board member, World Netball, Manchester, UK. <u>Christa.JanseVanRensburg@up.ac.za</u>
- Marleen G. T. Jansen. Toptennis Department, Royal Netherlands Lawn Tennis Association (KNLTB), Amstelveen, The Netherlands. Centre for Human Movement Sciences, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands. <u>M.Jansen@knltb.nl</u>
- Nikki S. Kolman. Centre for Human Movement Sciences, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands. Knowledge Centre for Sport & Physical Activity, Ede, The Netherlands. <u>n.s.kolman@umcg.nl</u>
- 9. Seán R. O'Connor. School of Psychology, Queen's University Belfast, UK. s.oconnor@qub.ac.uk
- 10. Tobias Saueressig, Physio Meets Science GmbH, Leimen; Germany. t.saueressig@physiomeetsscience.com
- 11. Linda J. Schoonmade. Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. l.schoonmade@vu.nl
- Jane S. Thornton. Department of Family Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada. Department of Epidemiology & Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada. jane.s.thornton@gmail.com
- Nick Webborn. IPC Medical Committee, Bonn, Germany. Centre for Sport and Exercise Science and Medicine (SESAME), School of Health and Sport Sciences, University of Brighton, Brighton, UK. School of Sport, Exercise and Health Sciences, Loughborough University. <u>nickwebborn@sportswise.org.uk</u>
- Babette M. Pluim. Section Sports Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa. Amsterdam Collaboration on Health & Safety in Sports (ACHSS), AMC/VUmc IOC Research Center of Excellence, Amsterdam, The Netherlands. Medical Department, Royal Netherlands Lawn Tennis Association (KNLTB), Amstelveen, The Netherlands. <u>b.pluim@knltb.nl</u>

1 ASSOCIATION BETWEEN LEVEL OF PARTIAL FOOT AMPUTATION AND GAIT: A SCOPING

2 REVIEW WITH IMPLICATIONS FOR THE MINIMUM IMPAIRMENT CRITERIA FOR

3 WHEELCHAIR TENNIS

4

5 ABSTRACT

6

Objective: This scoping review examines how different levels and types of partial foot amputation
 affect gait and explores how these findings may affect the minimal impairment criteria for wheelchair
 tennis.

10

Methods: Four databases (PubMed, Embase, CINAHL, and SPORTDiscus) were systematically searched in February 2021 for terms related to partial foot amputation and ambulation. The search was updated in February 2022. All study designs investigating gait-related outcomes in individuals with partial foot amputation were included and independently screened by two reviewers based on Arksey and O'Malley's methodological framework and reported according to the PRISMA-ScR.

16

Results: Twenty-nine publications with data from 252 participants with partial foot amputation in 25 studies were analysed. Toe amputations were associated with minor gait abnormalities, and great toe amputations caused loss of push-off in a forward and lateral direction. Metatarsophalangeal amputations were associated with loss of stability and decreased gait speed. Ray amputations were associated with decreased gait speed and reduced lower extremity range of motion (ROM). Transmetatarsal amputations and more proximal amputations were associated with abnormal gait, substantial loss of power generation across the ankle and impaired mobility.

24

Conclusions: Partial foot amputation was associated with various gait changes, depending on the type of amputation. Different levels and types of foot amputation are likely to affect tennis performance. We recommend including first ray, transmetatarsal, Chopart and Lisfranc amputations in the minimum impairment criteria, excluding toe amputations (digits two to five), and we are unsure whether to in-or exclude great toe, ray (two to five), and metatarsophalangeal amputations.

30

31 Keywords: amputee, disability, gait, Para sport, classification, partial foot amputation

- 32
- 33 Word count: 250 words
- 34
- 35

36	What is already known on this topic
37	 Partial foot amputation is associated with gait pattern impairments, including
38	spatiotemporal, kinetic, and kinematic gait characteristics, ground reaction force, and centre
39	of pressure excursion.
40	Athletes with a partial foot amputation are eligible for Para archery, Para athletics, Para
41	badminton, Para cycling, Para rowing, Para swimming, Para table tennis, Para taekwondo,
42	sitting volleyball, and wheelchair tennis. Athletes with partial foot amputation are excluded
43	from the remaining 18 Paralympic sports.
44	
45	
46	What this study adds
47	This review provides a consolidated overview of the gait pattern impairments associated with
48	different levels and types of partial foot amputation.
49	
50	
51	How this study might affect research, practice or policy
52	Results of the review indicate how different levels and types of foot amputation are likely to affect
53	tennis performance and may be used as supporting evidence for determining minimum impairment
54	criteria for wheelchair tennis.
55	
56	
57	
58	
59	
60	

https://mc.manuscriptcentral.com/bjsm

ASSOCIATION BETWEEN THE LEVEL OF PARTIAL FOOT AMPUTATION AND GAIT: A SCOPING REVIEW WITH IMPLICATIONS FOR THE MINIMUM IMPAIRMENT CRITERIA FOR WHEELCHAIR TENNIS

64

65 INTRODUCTION

Lower extremity amputation can negatively impact the quality of life[1,2] and is associated with higher morbidity and mortality.[3,4] People with limb amputations benefit from participating in regular physical activity and sports and should be encouraged to live a physically active life.[5] However, barriers to participating in physical activity and sports include functional limitations and comorbidities.[1,6]

71 Para sports aim to promote sports for people with disabilities. Non-disabled sports are modified to create a more inclusive and level playing field for people with different disabilities. No specific 72 73 classification acts as an exclusionary criterion at the recreational level for most adapted sports programs. However, to be eligible to compete in Para sports at International Competitions under the 74 jurisdiction of an International Sports Federation, an athlete with an impairment needs to undergo 75 76 an athlete evaluation to be classified. During this athlete evaluation, it will be determined whether 77 the impairment (in this case, amputation) meets the minimum impairment criteria of that sport, which 78 is the minimum level of impairment required to participate in the sport.[7] For example, among the 79 28 Paralympic sports, only 10 have an eligible classification for persons with partial foot amputation: 80 Para archery, Para athletics, Para badminton, Para cycling, Para rowing, Para swimming, Para table 81 tennis, Para taekwondo, sitting volleyball, and wheelchair tennis (Table 1).[8] The other 18 sports require either a more proximal level of lower limb amputation or a different impairment (e.g. Para 82 judo requires a visual impairment) to be eligible to participate. 83

- 84
- 85

*** Insert Table 1 about here ***

86

87 This scoping review focuses on minimum impairment criteria in the Para sport of wheelchair tennis. 88 Wheelchair tennis is a popular Para sport version of non-disabled tennis, and people with a partial 89 foot amputation are eligible to compete. In 2021, the minimum impairment criteria for lower limb deficiency in wheelchair tennis were defined as "complete unilateral amputation of half the length of 90 91 the foot (i.e., measured on the non-amputated foot from the tip of the great toe to the posterior aspect 92 of the calcaneus) or equivalent minimum congenital limb deficiency".[9] These minimum impairment 93 criteria were adopted from Para athletics, and whether they were set at the correct level as an entry 94 criterion for participating in wheelchair tennis has never been examined. Therefore, the International 95 Tennis Federation (ITF) tasked an Expert Group to review the minimum impairment criteria for the 96 Open Class of wheelchair tennis.

97 When developing evidence-based classification systems, the International Paralympic Committee

98 (IPC) recommended that sports and researchers:[10]

- 1) specify the sport (class) and the eligible impairment types;
- 100 2) develop valid measures of impairment;
- 101 3) develop standardised and valid sport-specific measures of performance;
- 4) assess the strength of associations between the measures of impairment andperformance; and
- 104 5) develop minimum impairment criteria and class profiles for the sport.
- 105

Following the IPC research steps, the ITF Expert Group aimed to assess the strength of the 106 association between different levels of partial foot amputation and non-disabled tennis performance. 107 108 Ideally, one would review all studies of tennis players with partial foot amputation playing standing 109 tennis and determine the association between amputation type and mobility on the tennis court. However, such studies were not available, but studies of the association between the types of partial 110 foot amputation and walking gait were. Gait is the outcome parameter most likely to affect mobility 111 on the tennis court. It was hypothesised that the more proximal and more extensive the amputation, 112 113 the more substantial the functional limitation and, hence, the motivation to undertake this review. Scoping reviews are ideal for determining the scope of the body of literature on a given topic, 114 115 determining knowledge gaps, and providing an overview of the subject matter. Because of the scant 116 literature on partial foot amputation and gait, a scoping review is more appropriate for this topic than 117 a systematic review.[11] Therefore, this scoping review aimed to describe how different levels and 118 types of partial foot amputation affect gait with a view to applying the findings to inform the 119 development of minimal impairment criteria for wheelchair tennis.

120

121

122 METHODS

This scoping review was based on the 6-step methodological framework developed for scoping reviews.[12,13] The searching and selection processes followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for scoping reviews (PRISMA-ScR) and aligned with the scoping review methodological framework.[13] The protocol of this scoping review was previously registered at the Open Science Framework Registry (https://osf.io/8gh9y) and published.[14]

129

130 Literature search and study selection

A comprehensive search strategy in PubMed, Embase, CINAHL and SPORTDiscus (via Ebsco) from inception to February 1st 2021, was developed by one reviewer (FO) in collaboration with a medical librarian (LS). Database searches were then carried out by two reviewers (BP, MJ). Search terms included controlled terms (MeSH in PubMed and Emtree in Embase, CINAHL Headings in CINAHL, and thesaurus terms in SportDiscus) and free-text terms. An updated search was carried out on February 19th 2022, which did not provide additional records. The following terms (including synonyms and closely related words) were used as index terms or free-text words: 'amputation' and 'forefoot' or 'midfoot' and 'gait'. These terms were determined using the PICOS (Population, Interest/Exposure, Comparison, Outcome, and Study design) approach. The search was performed without date, geographical location, gender, sex, or language restrictions. The search strategies for

all databases are available in Supplementary file S1.

142 Before screening the search results, duplicate articles were identified and removed using Endnote 143 X19.2 (Clarivate, USA). The search yield was imported into Rayyan QCRI[15] and two independent reviewers (FO, SW) screened the titles and abstracts for potentially eligible studies. Where there 144 was any disagreement over inclusion, a consensus was reached through discussion with a third 145 146 reviewer (BP). Full-text versions were downloaded for all articles that appeared to meet the study inclusion criteria based on their titles and abstracts and reviewed to confirm eligibility. The reference 147 lists of the selected studies were manually screened to identify additional relevant articles that may 148 149 have been missed in the primary searches.

150

151 Inclusion and exclusion criteria

Included studies must have reported or analysed data from gait-related outcomes in individuals who underwent a partial foot amputation. The inclusion/exclusion criteria used to determine the eligibility of the included articles are available in Supplementary file S2. Reasons for exclusion are reported in the PRISMA flowchart in Figure 1.[16]

156

157 Data extraction and synthesis

Data synthesis was performed qualitatively and quantitatively for all analysed outcomes to build a 158 solid theoretical framework of the types of amputation associated with substantial abnormalities in 159 160 gait parameters. A meta-analysis was not planned due to incomplete reporting of outcomes (i.e., means, measures of spread, sample size) and clinical and methodological diversity in the 161 evidence.[17] Therefore, we decided to use a structured reporting of effects[18] and calculated the 162 mean difference (MD) with 95% confidence intervals (CI) between patients with an amputation and 163 164 the corresponding control group. We quantitatively analysed the variables gait speed in meters per 165 second (m/s), step length in centimetres (cm), cadence in steps per minute (steps/min), stance time in seconds (s), peak plantar pressure in kilopascal (kPa), and ankle power in watts per kilogram 166 167 (W/kg) and per kilogram-meter (W/kg-m). The 95% CIs were calculated assuming a t-distribution. The results were reported from the distal to proximal level of amputation. 168

The following data were extracted from the included articles: first author, year of publication, country involved, study design, aims of the study, study population (type of amputation, reason for amputation), mean age, control group, sample size, and sex. For study design, we followed the definitions of a case-control and cross-sectional study, as proposed by Dillon et al.[19] If the same patients were included in two or more publications, these publications were considered as one study for this review. 175 The following data related to the outcome measures were extracted from the articles: assessment

176 methods, gait-related outcomes without a prosthesis (spatiotemporal parameters, centre of pressure

177 (CoP), ground reaction force (GRF), kinetics, kinematics), comparison, key findings related to the

178 outcomes of interest, study limitations, and conclusions.

In the case of a study providing only a median, interquartile range, and/or range, we transformed the values with an online tool that applied the quantile estimation method of McGrath et al.[20] Where data was presented in a figure only, GetData Graph Digitizer[21] was used to extract the values by measuring the length of the axes in pixels followed by the length of the relevant data of interest.[22] Results are presented in summary tables, and quantitative results are displayed with forest plots. The results are reported from distal to proximal level of amputation.

185

186 Methodological Quality Assessment

Two independent reviewers (FO, BP) assessed the methodological quality of all included studies 187 using the Joanna Briggs Institute checklist for case reports (two studies) and analytical cross-188 sectional studies.[23,24] The checklist for case reports consisted of eight items, including questions 189 on the demographic characteristics, the patient's history, clinical condition, diagnostic tests, 190 intervention, post-intervention clinical condition, adverse events and take-away lessons 191 192 (Supplementary file S3). The checklist for analytical cross-sectional studies also consisted of eight 193 items, including questions on study inclusion criteria, participants and setting, exposure, the 194 condition, confounding factors (two items), validity and reliability of the measurement technique, and 195 statistical analysis (Supplementary file S4). Each question was rated as 'yes', 'no', 'unclear', or 'not applicable'. The reviewers discussed differences until they reached a consensus. The quality 196 assessment outcome was not used to determine study inclusion or perform sub-group analysis 197 based on methodological quality or risk of bias and was performed post-hoc. 198

Levels of evidence and grades of recommendation for the minimum impairment criteria were rated according to the Oxford Centre of Evidence-Based Medicine (OCEBM).[25]

- 201
- 202

203 **RESULTS**

204 Study selection

A total of 1083 articles were retrieved from the electronic databases. Four additional articles were identified from the reference lists of the included studies. After removing 423 duplicates and screening the titles and abstracts of the 664 remaining records, 35 studies were selected for full-text analysis. Six additional studies were excluded, and the reasons for exclusion are presented in a flowchart (Figure 1). Three research groups included the same patients in two,[26,27] two,[28,29] and three[30-32] different publications. Therefore, 29 publications of 25 studies met the inclusion criteria for this scoping review.

213	*** Insert Figure 1 about here ***
214	
215	Characteristics of the included studies
216	The characteristics of the included studies are presented in Table 2. Most study designs were either
217	cross-sectional (n=14) or case-control (n=6), with two case reports[33,34] and three pre-post
218	studies.[35-37]
219	
220	*** Insert Table 2 about here ***
221	
222	Participants
223	The included studies comprised 448 participants, 257 of whom had a partial foot amputation, and
224	191 were controls or had a more proximal amputation. The mean number of participants with partial
225	foot amputation per study was 10 (range from 1 to 30). Most studies included adults (n=23), and two
226	included children.[36,38] The mean age of the adult participants with partial foot amputation ranged
227	from 26 to 75.5 years, and 77.5% were male. Four studies did not report age,[34,37,39,40] and
228	seven studies did not report sex.[19,30,32,36,39-43]
229	
230	Methodological quality assessment
231	Quality assessment of the included studies is presented in Supplementary files S3 and S4. The
232	assessment methods were not clearly described in one of the two case studies, but all other items
233	in both studies scored a 'yes'. Most of the 27 analytical cross-sectional studies assessed clearly
234	described the criteria for inclusion (item 1; 22/27, 81%), the study subjects and setting (item 2; 25/27,
235	93%), and measured the outcomes in a valid and reliable way (item 7; 22/27, 81%). All analytical
236	cross-sectional studies measured the exposure validly and reliably (item 3; 27/27, 100%) and used
237	objective and standard criteria for measuring the condition (item 4; 27/27, 100%). Only 15 out of 27
238	(56%) studies adequately identified the confounding variables (item 5), and only 7/27 (26%) reported
239	the strategies used to manage them (item 6). Most studies (15/21, 71%) used appropriate statistical
240	analyses (item 8); in 6 cases, this item was not applicable.
241	
242	Amputation levels and types
243	Amputation types included were the great toe (n=6), other toes (n=3), metatarsophalangeal (MTP)
244	ioint (n=2), ray (n=3), transmetatarsal (TMT) (n=14), Lisfranc (n=2), and Chopart (n=3) (Figure 2),

joint (n=2), ray (n=3), transmetatarsal (TMT) (n=14), Lisfranc (n=2), and Chopart (n=3) (Figure 2). Three studies[30-32,36,44] analysed a mixed group of partial foot amputees. Kanade et al.[44] included participants with great toe, other toes, ray, and TMT amputation but did not report them separately. Therefore, this publication is not discussed in the various subsections addressing the association between gait and different foot amputation types. Dillon & Barker[30-32] and Greene & Cary[36] reported gait-related outcomes specific to amputation types, and those data are discussed.

25	1

252

*** Insert Figure 2 about here ***

253 **Reasons for amputation**

Reasons for amputation included diabetes (n=10), [26-29, 39, 41, 44-49] finger or thumb reconstruction (n=5), [33, 37, 38, 40, 50] trauma (n=4), [30-32, 51-53] peripheral vascular disease (n=3), [39, 42, 43] tumour (n=1), [54] rheumatoid arthritis (n=1), [35] congenital and childhood-acquired amputation (n=1), [36] and frostbite (n=1). [34]

258

259 Gait-related outcomes

The complete list of outcomes, key findings of the included studies and descriptive synthesis of the 260 261 results are presented in Table 3 and Supplementary file S5. The most often studied gait-related outcome measure was gait speed, examined in 15 studies included in this review.[26-29,32,34,36-262 38,42,44-46,48,50,52,53] Other outcome measures addressed in the studies included cadence 263 (n=9),[32,37,38,42,45,46,50,52,53] step length (n=8),[28,34,37,40,45,50,52,53] single and/or double 264 limb stance times (n=5),[32,34,37,45,53] stride length (n=6),[32,37,38,42,46,52] step width 265 (n=2),[37,45] CoP (n=6),[30-33,38,43,50,51] peak plantar pressure (n=6),[26,28,44,47-49,51] ankle 266 power (n=5), [28,31,46,52,53] walking distance (n=1), [35] and ambulatory function (n=1), [39] 267

- 268
- 269

*** Insert Table 3 about here ***

270

271 Gait speed

The mean difference in gait speed between individuals with an amputation, and the corresponding 272 control groups, are presented as a forest plot in Supplementary file S6. Data of some studies are 273 missing because they lacked a control group[29,36,38,50] or reported percentages only.[32,42] Two 274 studies[34,52] compared individuals with amputations walking barefoot to walking with footwear, 275 prosthesis, or both. Two studies[26,28,48] compared diabetic patients with non-diabetic controls. 276 The remainder of the studies used appropriate control groups: diabetic patients for amputees with 277 278 diabetes,[44,45] non-amputees with peripheral vascular diseases for amputees with peripheral 279 vascular diseases, [42] and non-diabetic persons for non-diabetic amputees due to trauma. [32,53] 280

281

282 Cadence, ankle power, step length, stance time, and peak plantar pressure

283 Mean differences in cadence, ankle power, step length, stance time, and peak plantar pressures 284 between the affected and non-affected foot or between the group of patients with an amputation and 285 a control group are presented as forest plots in Supplementary files S7 to S12.

- 286
- 287

288 Great toe amputation

The association between great toe amputation and gait was addressed in five publications.[37,40,49-51] The sample size ranged from four to 12 patients per study. Duration of follow-up ranged from 6 months to 10 years. Outcome measures were spatiotemporal parameters, joint ROM, CoP excursion, and plantar pressures during gait.

Amputation of the great toe was related to morphological abnormalities of the foot, including varus drift (8°) of the second metatarsal, retraction of the sesamoids, a decrease in the height of the medial longitudinal arc, and descent of the first metatarsal head.[40] Great toe amputation was associated with instability on the medial side of the foot, with the line of progression of the CoP more laterally and a decrease in forward progression.[37,50,51] Gait speed was only minimally affected, but forward and lateral push-off was reduced.[37,40]

299

300 **Toe amputation (digits two to five)**

Toe amputation other than the great toe was addressed in three publications: one concerning the second toe,[38] one concerning one or more amputated toes,[46] and one concerning the second, third, and fourth toes.[33] Sample size ranged from one to 11. Amputation of the second toe may lead to claw foot, hallux valgus, and a narrower foot and postural instability during single-leg stance with eyes closed, with gait kinematics remaining within normal values in two studies.[33,38] Burnfield et al.[46] reported significantly reduced gait parameters (gait speed, cadence and stride length) in seven patients with toe amputations secondary to diabetes compared to healthy controls.

308

309 Ray amputation

The effect of ray amputation on gait was addressed in three publications.[36,45,54] Aprile et al.[45] 310 311 compared six patients with ray amputation and type 2 diabetes to six patients with type 2 diabetes without amputation and six healthy subjects. The patients with diabetes and ray amputation walked 312 slower and with more hip flexion. In addition, they had greater variability in lower extremity ROM and 313 314 less ROM for the ankle, knee and hip compared to the patients with diabetes without amputation and 315 the healthy controls. The authors concluded that the abnormal gait biomechanics might be caused 316 by the severity of diabetes and the lack of a push-off phase from the great toe. Ramseier et al.[54] studied foot function in four patients after ray resection for a malignant tumour, with a follow-up 317 318 between 21 months and 8 years. Foot function analysed with pedobarography was nearly normal, 319 with a slightly laterally displaced CoP. Greene and Cary[36] included children with ray amputation in 320 their study but did not report on this group separately, making it difficult to review their results.

321

322 Metatarsophalangeal amputation

The gait of people with MTP amputation was analysed in two studies: one case report[34] and one study with different variables in the same patient group described in three different publications.[30-325 32] Forczek et al.[34] reported on a 30-year-old alpinist, 1.5 years after bilateral MTP amputation due to frostbite injury. Analysis of spatiotemporal parameters showed that the patient had a slower gait speed, shorter steps, and decreased step frequency when walking barefoot than when wearing shoes. The authors concluded that this was related to reduced stability and lower confidence due to partial toe amputation when walking barefoot, as footwear provided more stable conditions.

- Dillon et al.[30-32] studied seven amputees with mixed amputation levels (one MTP, one TMT, three Lisfranc, and two Chopart) and compared their gait to the mean gait parameters and 95% CI of seven[32] and eight[30] healthy controls.
- People with bilateral MTP amputation had a peak ankle power similar to that reported at the lower end of the 95% CI of the control sample. This was in sharp contrast to the patients in whom the metatarsal heads were amputated, as the generation of work across the ankle of the amputated limb was virtually negligible.[30] The CoP progressed relatively normally along the length of the operated foot during the initial part of the stance phase.[31] However, after loading, the CoP did not move as far distally along the foot length as usually observed in people without amputation. The GRF peak was consistent, and the magnitude was comparable to the lower limits of the control population.[32]
- 341

342 **Transmetatarsal amputation**

- In people with TMT amputation, the metatarsal heads are amputated, resulting in the absence of the forefoot and a shortened foot and reduced foot lever. TMT amputation was addressed in 13 studies.[26-32,35,36,39,41-43,46-48,53] The sample size ranged from 5 to 27 patients with TMT amputation, and the follow-up duration ranged from 6 months to 13.7 years. Outcome measures addressed in these studies were spatiotemporal parameters, GRF, CoP excursion, plantar pressures during gait, ROM, and power generation. It is unclear whether the five patients from the two studies by Pinzur et al.[42,43] were the same because their ages were reported in only one study.
- In patients with TMT amputation, power generation across the ankle joint was virtually negligible (0.72 W/kg; compared to the normal cohort: 95% CI [2.56 to 5.06 W/kg]), regardless of the residual foot length.[30] According to the authors, this was due to the diminished ankle moment coupled with joint angular velocity reductions.
- This diminished ankle moment was also found by Garbalosa et al.,[47] with the authors reporting that feet with TMT amputation have a significantly decreased heel and increased forefoot peak plantar pressure compared to the intact foot. A considerably decreased maximum dynamic dorsiflexion ROM (70% vs 90%) and a similar static ROM were measured in the ankles of the amputated feet compared to the ankles of the intact feet.
- In TMT amputees, reductions in work across the affected ankles were compensated for by increased power generation at the hip joint.[30] They appeared to rely more heavily on advancing their leg using the hip flexor muscles rather than the plantar flexor muscles, which had a shortened lever arm.[27] Hip extension strength was highly correlated with gait speed, functional reach, and physical performance score.[29]

Dillon et al.[31] showed that the CoP did not continue to progress distally along the length of the residuum but remained well behind the distal end throughout most of the stance phase until double limb support. Wearing a prosthesis can improve the situation somewhat but does not resolve it. Tang et al.[53] found that ankle moments in the terminal stance of TMT amputation when walking barefoot was only 45% relative to the control group. This improved to 62% when wearing a prosthesis. Ankle power generation in the pre-swing phase was only 28% compared to the control group, improving to 31% after wearing the TMT amputation prosthesis.

People with a TMT amputation walk slower and generate lower plantar flexor ankle moments and power than age-matched controls.[26,27,48] In these studies, persons with diabetes and TMT amputation were compared to healthy controls. There have been no studies comparing healthy people with a TMT amputation to a healthy population without amputation or studies comparing people with diabetes with and without TMT amputation.

376

377 Lisfranc and Chopart amputation

Chopart amputation was addressed in three studies, one with four Chopart amputee patients[52] and two mixed with other amputation types,[30-32,36] resulting in a total of 11 patients with a Chopart amputation. Lisfranc amputation was reported in two studies, both mixed with other amputation levels, with a total of six patients with a Lisfranc amputation.

382 Greene and Cary[36] studied children with traumatic or congenital amputation and showed that 383 patients with an MT, ray or TMT amputation had superior results over those with a Syme amputation. 384 Patients with a Lisfranc or Chopart amputation had better overall function than those with a Syme 385 amputation but needed to make greater adjustments to their gait. Patients with a Chopart amputation 386 and equinus contracture had inferior results compared to patients with a Syme amputation.

Burger et al.[52] reported on four patients who underwent Chopart amputation due to trauma (mean age 42.3 \pm 17.2 years) and had a reduced gait speed (0.89 \pm 0.19 m/s) compared to the norm (~1.40 m/s for age 60-65 years).[55] Gait speed improved when wearing a silicone prosthesis (1.18 \pm 0.2 m/s) and when wearing footwear with a standard (0.99 \pm 0.22 m/s) or silicone prosthesis (1.16 \pm 0.24 m/s), but it was never normalised.

Dillon and Barker[32] showed that in patients with Chopart amputation, power generation across the ankle was negligible, comparable to patients with TMT amputation. The hip joints were the primary source of power generation. The use of a clamshell prosthesis restored their effective foot length and normalised many aspects of their gait but did not restore ankle power generation.

396 397

398 DISCUSSION

This scoping review described how different levels of partial foot amputation affect gait. The main findings were that partial foot amputations were associated with various gait changes, depending on the type of amputation. Toe amputations were associated with minor gait abnormalities, and great toe amputations caused loss of push-off in a forward and lateral direction. Metatarsophalangeal amputations were associated with loss of stability and decreased gait speed. Ray amputations were associated with decreased gait speed and reduced lower extremity range of motion (ROM). Transmetatarsal amputations and more proximal amputations were associated with abnormal gait, substantial loss of power generation across the ankle and impaired mobility. These findings are discussed below from distal to proximal level of amputation.

408

409 Gait-related outcomes

As shown in the forest plots, great toe, TMT, Lisfranc and Chopart amputations were associated with 410 411 significant loss of gait speed, but some studies lacked a proper control group. Cadence and stance times were measured in only a few small studies, and 95% CI could not be calculated, making it 412 difficult to draw firm conclusions. The other studies showed no significant difference. The forest plot 413 of peak plantar pressure and step length showed a wide 95% CI, which also precludes drawing valid 414 conclusions. Step length was significantly reduced in patients with first ray amputation compared to 415 a proper control group, but this study examined only six patients. The forest plots showed that ankle 416 power was significantly reduced in TMT patients. 417

418

419 **Great toe amputation**

420 Toe amputation is the most common lower extremity amputation. In 2017, the incidence ranged from 421 78 per 100 000 males (43 per 100 000 females) in Australia to 31.3 per 100 000 males (20.1 per 100 422 000 females) in the Netherlands.[56] Based on this scoping review of the literature, amputation of the great toe did not lead to significant changes in gait, including gait speed, cadence, step length, 423 step width, or the single and double limb stance times of each foot. However, great toe amputation 424 can lead to medial instability of the foot, as shown by a decrease in the height of the medial 425 longitudinal arch, a descent of the first metatarsal head, and sesamoid retraction, due to loss of the 426 windlass mechanism of the plantar aponeurosis.[50] It is also associated with loss of weight-bearing 427 of the great toe and lateralisation of the CoP under the second and third metatarsal and varus drift 428 429 in the second metatarsal joint. Thus, great toe amputation was associated with loss of power on 430 pushing off and lateral movements.[40]

431

432 Ray amputation

Ray amputation involves excision of the toe and part of the metatarsal. Aprile et al.[45] found abnormal gait biomechanics in patients with type 2 diabetes and ray amputation compared to patients with type 2 diabetes and no amputation or healthy subjects. Ray amputations were associated with a lower gait speed, a higher degree of hip flexion, greater variability in lower extremity ROM, and less ankle, knee, and hip ROM. The abnormal gait biomechanics may be caused by the severity of diabetes and the lack of a push-off phase from the great toe. In addition, neuropathy affects 50% of patients with diabetes and amputation, but only 1 in 6 patients with diabetes. Aprile et al.[45] concluded that these findings suggest that the abnormal gait performance may be due to

the missing first ray and more severe neuropathic pain.

Harlow et al.[57] reported on a collegiate athlete with second ray amputation due to heterotopic ossification in the first web space. A year later, a right great toe cheilectomy was performed. Four years later, she was unable to return to competitive soccer, but could participate in exercise walking

and low-impact athletic activities.

Few studies have reported on ray amputation and gait, making it difficult to draw firm conclusions.

However, based on the current evidence, it is likely that ray amputation, particularly first rayamputation, has a significant effect on lower extremity function during gait.

449

450 Metatarsophalangeal amputation

451 MTP amputation or disarticulation is an amputation of the toes that leaves the metatarsal heads in 452 place. This amputation is not very common because surgeons generally prefer to perform a partial 453 toe amputation or to include the metatarsal head in order to have enough skin tissue to cover the 454 amputation stump. We found only two studies with this amputation, and each only included one 455 patient. Unlike TMT amputation, after MTP amputation, power generation across the ankle stayed 456 within the lower end of the 95% CI of the control sample.[30]

457

458 **Transmetatarsal amputation**

459 Amputation proximal to the metatarsophalangeal joints, including the metatarsal heads, is associated with a substantial reduction in power generation across the ankle, which is compensated 460 by increased power generation across the hip joints and significantly reduced CoP excursions. A 461 TMT amputation is associated with reduced ankle plantar flexor moments, with peak plantar flexor 462 463 moments two-thirds of those measured in the control group.[28,32,53] The inability to generate enough power across the ankle was caused by a reduction in the capacity of the calf muscles to 464 plantarflex the ankles and generate the necessary ankle torque to move the amputated foot. Limited 465 466 distal progression of the CoP and a shorter foot lever of the amputated limb appear to contribute to the altered moments and power profiles in TMT amputation.[19,32] 467

The CoP remained proximal to the distal end of the amputated foot until after the contralateral heel contact with the ground. When there is double support, the CoP moves to the distal end of the amputated foot, and then the centre of mass shifts to the intact limb. In this situation, the lever arm of the GRF is longer, and the extent of the vertical GRF decreases so that the plantar flexion moment diminishes.[32]

Increased power generation across both hip joints provides the additional work necessary to move

the body forward and compensate for reduced power generation across the affected ankle. The

increase in work across the intact hip joint during early stance provides the forward impulse for the

pelvis, and the increased power generation across the amputated side during early stance helps to

477 move the body forward from the rear.[19]

Page 17

Substantial reductions in gait speed and stride length were reported in several studies of patients with TMT amputations.[26-28,48] In all of these studies, the patients with TMT amputation had diabetes and were compared to healthy participants without diabetes or amputation. No studies compared the gait speed of patients with TMT amputation without diabetes to healthy controls without amputation, making it difficult to separate the effect of amputation from the effect of diabetes.

483

484 Lisfranc and Chopart amputation

Lisfranc and Chopart amputations are associated with a similar loss of power generation across the ankle due to the TMT amputation, with the accompanying abnormalities in gait parameters. Therefore, individuals with these proximal partial foot amputations may experience a substantial loss of function in their lower extremities, and their mobility will be significantly affected.

489

490 **Potential implications for minimum impairment criteria in wheelchair tennis**

This scoping review provides a consolidated overview of the gait pattern impairments associated 491 with different levels of partial foot amputation. Descriptions of gait pattern impairments will guide the 492 development of minimum impairment criteria for lower limb deficiency in the sport of wheelchair 493 494 tennis. After great toe amputation, players may be disadvantaged when participating in standing 495 tennis against non-disabled athletes, as the game requires frequent direction changes, sideways 496 movements and forceful pushing off. On average, tennis players hit five strokes per rally[58,59] and 497 change directions five times, [60] amounting to approximately 400 changes of direction in a best-of-498 3-set match.[61] More than 70% of movements in tennis are sideways; on average, a player covers 2 m per lateral movement.[62] In addition, the great toe is needed for the push-off during serving.[63] 499 Ray amputations are associated with abnormal gait biomechanics and reduced gait speed. People 500 with first ray amputations lack the push-off phase from the great toe. It is likely that ray amputation, 501 particularly first ray amputation, will affect sprinting, jumping, turning, and mobility performance in 502 tennis. TMT amputation is associated with substantial functional limitations of the lower extremities 503 504 due to the loss of power generation across the ankle. Due to loss of power generation, the athlete 505 may have reduced acceleration and deceleration, reducing their level of mobility in sport. Tennis 506 requires frequent acceleration and deceleration over an extended period. Tennis matches (best-of-3-sets) last around one hour and a half.[64,65] Players cover 8 to 10 m per point and 550 to 700 m 507 per set,[66,67] with a peak running speed of 20 km/h in elite male and 17 km/h in elite female 508 509 players.[59,68-70] During a best-of-3-set tennis match, an elite tennis player accelerates more than 510 150 times with an acceleration speed of over 3 m/s².[71] It is unlikely that a player with a TMT 511 amputation could produce the power necessary to match these physical demands. Mobility will likely 512 be less affected in people with an MTP amputation than in people with a TMT amputation, but it is 513 difficult to draw firm conclusions regarding the effect on mobility performance in sports based on the limited data. We expect that the effect of Lisfranc and Chopart amputations on tennis mobility is 514

515 similar to that of a TMT amputation, but further studies in healthy individuals with these types of 516 amputations are needed.

517

518 **Recommendations**

519 Minimum impairment criteria state the minimum level of impairment required to participate in the 520 sport (i.e., wheelchair tennis). Factors that need to be considered in order to develop minimum 521 impairment criteria are the extent to which the impairment (i.e., amputation) affects the ability of the 522 player to execute the specific tasks and activities fundamental to non-disabled tennis, and the strength of the evidence.[72-74] Fundamental activities of non-disabled tennis include accelerations, 523 524 decelerations, changes of direction, lateral movements, running and jumping. The minimum impairment criteria should be conservative enough to protect the integrity of the Para sport 525 wheelchair tennis, but not so conservative that it excludes people with significant disadvantages in 526 tennis. Based on the results of this scoping review, we recommend excluding toe amputations and 527 including 1st ray, transmetatarsal, Chopart and Lisfranc amputations in the minimum impairment 528 criteria for wheelchair tennis (Table 4). It is unclear whether great toe, ray and metatarsophalangeal 529 amputations should be in- or excluded. This should be discussed further in an expert group and more 530 531 research is recommended.

532

533 Strengths and limitations

534 The strengths of this scoping review are the systematic search and guantitative and gualitative data 535 synthesis of all analysed outcomes, providing a comprehensive overview of the literature on partial foot amputation and gait. We identified 25 studies evaluating gait-related outcomes in patients who 536 had undergone different types of partial foot amputation, allowing us to describe how different levels 537 of partial foot amputation affect gait. However, 17 out of 25 studies were published more than 20 538 years ago, and the most recent study was published in 2018. This may have impacted the findings 539 because surgical techniques may have improved over the years, surgical indications may have 540 541 changed, and technology has advanced.

542 Our review was also limited by the small and heterogeneous populations in most studies. Amputee 543 cohorts were diverse, including follow-up periods since amputation, amputation level, and 544 involvement of the contralateral limb. Few studies drew comparisons between participants with 545 amputation and a suitably matched control group. Eleven out of 25 studies included participants with 546 amputation due to diabetes, and in nine out of 25 studies, the mean age of the participants was 58 547 years or older, making it difficult to extrapolate the findings to the athletic population.

548

549

550 CONCLUSIONS

551 Partial foot amputations were associated with various gait changes, depending on the type of 552 amputation. Different levels and types of foot amputation are likely to affect tennis performance and should be considered when determining minimum impairment criteria for wheelchair tennis. We recommend studying gait and sporting performance in a large cohort of healthy, younger patients with similar partial foot amputation types and an adequately matched control group. However, since partial foot amputations in younger populations are relatively rare, and the most common causes are trauma, tumours and congenital anomalies, it may be difficult to get sufficiently large study groups with similar amputation types. Therefore, this would require multicenter studies.

561

562

563

564

566 Acknowledgements

567 All authors thank the International Tennis Federation and the Royal Dutch Lawn Tennis Association 568 (KNLTB) for supporting this research. We thank Dr Mohd Sameer Qureshi, MBBS, DNB 569 Orthopaedics, for creating the illustrations.

570

571 **Contributors**

572 FO, SW, CA and BP contributed to the conception and study design. LS contributed to the search 573 strategy. FO, SW and BP conducted the data extraction, analysis and interpretation. TS performed 574 the statistical analysis. FO, NH, CJR, SW and BP drafted the manuscript. All authors contributed to 575 the manuscript with critical reviews and approved the final version of this paper.

576

577 **Declaration of conflicting interests**

578 CA is Editor-in-Chief for JOSPT and JST is Editor for BJSM. FO, SW, KF, NH, CJR, MGTJ, NK, SO,

579 TS, LS, and NW declared no conflicts of interest. At the time of writing, BMP was a classification 580 consultant for the ITF, tasked to review the ITF minimum impairment criteria, and Chair of the ITF

- 581 Classification Working Group.
- 582

583 Trial registration

584The protocol of this scoping review was previously registered at the Open Science Framework585Registry () and published.

586

587 ORCID IDs

588

589 Data sharing statement

590 Additional data from patients included in this study will not be available.

591

- 593
- 594
- 595

596	REF	FERENCES
597	1.	Davie-Smith F, Coulter E, Kennon B, Wyke S, Paul L. Factors influencing quality of life
598		following lower limb amputation for peripheral arterial occlusive disease: A systematic review
599		of the literature. Prosthet Orthot Int 2017;41:537-47
600	2.	Quigley M, Dillon MP. Quality of life in persons with partial foot or transtibial amputation: A
601		systematic review. Prosthet Orthot Int 2016;40:18-30.
602	3.	Robbins CB, Vreeman DJ, Sothmann MS, Wilson SL, Oldridge NB. A review of the long-term
603		health outcomes associated with war-related amputation. <i>Mil Med</i> 2009; 174 :588-92.
604	4.	Stern JR, Wong CK, Yerovinkina M, et al. A Meta-analysis of Long-term Mortality and
605		Associated Risk Factors following Lower Extremity Amputation. Ann Vasc Surg 2017;42:322-
606		7.
607	5.	Bragaru M, Dekker R, Geertzen JHB, Dijkstra PU. Amputees and sports: a systematic review.
608		Sports Med 2011; 41 :721-40.
609	6.	Jaarsma EA, Dijkstra PU, Geertzen JH, Dekker R. Barriers to and facilitators of sports
610		participation for people with physical disabilities: a systematic review. Scand J Med Sci Sports
611		2014; 24 :871-81.
612	7.	International Paralympic Committee. International Standard for Athlete Evaluation, 2016.
613		Available:https://www.paralympic.org/sites/default/files/document/161007092547338_Sec+ii+c
614		hapter+1_3_2_subchapter+2_International+Standard+for+Athlete+Evaluation.pdf [Accessed
615		31 Oct 2022].
616	8.	Paralympic Australia. Paralympic Sports, 2022. Available: https://www.paralympic.org.au/play-
617		para-sport/ [Accessed 24 Jun 2022].
618	9.	International Tennis Federation (ITF). Wheelchair Tennis Classification Rules, 2020. Available:
619		https://www.itftennis.com/media/7289/itf-wheelchair-tennis-classification-rules-updated-
620		<u>15may2020.pdf</u> [Accessed 21 Jan 2022].
621	10.	Mann DL, Tweedy SM, Jackson RC, Vanlandewijck YC. Classifying the evidence for evidence-
622		based classification in Paralympic Sport. J Sport Sci 2021;39 (sup1):1-6.
623	11.	Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or
624		scoping review? Guidance for authors when choosing between a systematic or scoping review
625		approach. BMC Med Res Methodol 2018;18:143.
626	12.	Arksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res
627		Methodol 2005;8:19-32.
628	13.	Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. Implement
629		<i>Sci.</i> 2010; 5 :69.
630	14.	de Oliveira FCL, Williamson S, Ardern CL, et al. Associations between partial foot amputation
631		level, gait parameters, and minimum impairment criteria in para-sport: A research study
632		protocol. Sports Med Health Sci 2021; 4 :70-3.

- 633 15. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for
 634 systematic reviews. *Syst Rev* 2016;**5**:210.
- 16. Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR):
 Checklist and Explanation. *Ann Intern Med* 2018;**169**:467-73.
- McKenzie JE, Brennan SE. Chapter 12: Synthesising and presenting findings using other
 methods. Section 12.1: Why a meta-analysis of effect estimates may not be possible. In:
- Higgins J, Thomas J, Chandler J, et al., eds. Cochrane Handbook for Systematic Reviews of
 Interventions. London: The Cochrane Collaboration, 2022.
- 18. McKenzie JE, Brennan SE. Chapter 12: Synthesising and presenting findings using other
 methods. Section 12.2: Statistical synthesis when meta-analysis of effect estimates is not
 possible. In: Higgins J, Thomas J, Chandler J, et al., eds. Cochrane Handbook for Systematic
 Reviews of Interventions. London: The Cochrane Collaboration, 2022.
- 19. Dillon MP, Fatone S, Hodge MC. Biomechanics of ambulation after partial foot amputation: a
 systematic literature review. *J Prosthet Orthot* 2007;**19**:2-61.
- 647 20. McGrath S, Zhao X, Steele R, Thombs BD, Benedetti A, Collaboration DESD. Estimating the
 648 sample mean and standard deviation from commonly reported quantiles in meta-analysis. *Stat*649 *Methods Med Res* 2020; **29**:2520-37.
- 650 21. GetData Graph Digitizer, 2013. Available: <u>http://getdata-graph-digitizer.com/index.php</u>
 651 [Accessed 19 Jun 2022].
- Vucic K, Jelicic Kadic A, Puljak L. Survey of Cochrane protocols found methods for data
 extraction from figures not mentioned or unclear. *J Clin Epidemiol.* 2015;68:1161-4.
- 23. Joanna Briggs Institute. Critical appraisal tools, 2022. Available: <u>https://jbi.global/critical-</u>
 appraisal-tools [Acessed 16 Jun 2022].
- Moola S, Munn Z, Tufanaru C, et al. Chapter 7: Systematic reviews of etiology and risk. In:
 Aromataris E, Munn Z, eds. *Joanna Briggs Institute Reviewer's Manual*. Adelaide: The Joanna
 Briggs Institute, 2017. Available: https://jbi.global/critical-appraisal-tools.
- 25. Centre for Evidence-Based Medicine (CEBM). OCEBM Level of evidence, 2021. Aailable:
 https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence [Accessed
 28 Oct 2022].
- Mueller MJ, Salsich GB, Strube MJ. Functional limitations in patients with diabetes and
 transmetatarsal amputations. *Phys Ther* 1997;**77**:937-43.
- Mueller MJ, Strube MJ, Allen BT. Therapeutic footwear can reduce plantar pressures in
 patients with diabetes and transmetatarsal amputation. *Diabetes Care* 1997;**20**:637-41.
- Mueller MJ, Salsich GB, Bastian AJ. Differences in the gait characteristics of people with
 diabetes and transmetatarsal amputation compared with age-matched controls. *Gait Posture*1998;**7**:200-6.
- Salsich GB, Mueller MJ. Relationships between measures of function, strength and walking
 speed in patients with diabetes and transmetatarsal amputation. *Clin Rehabil* 1997;**11**:60-7.

671	30.	Dillon MP, Barker TM. Preservation of residual foot length in partial foot amputation: a
672		biomechanical analysis. <i>Foot Ankle Int</i> 2006; 27 :110-6.
673	31.	Dillon MP, Barker TM. Can partial foot prostheses effectively restore foot length? Prosthet
674		Orthot Int 2006; 30 :17-23.
675	32.	Dillon MP, Barker TM. Comparison of gait of persons with partial foot amputation wearing
676		prosthesis to matched control group: observational study. J Rehabil Res Dev 2008;45:1317-
677		34.
678	33.	Chen HC, Tang YB, Wei FC, Noordhoff MS. Finger reconstruction with triple toe transfer from
679		the same foot for a patient with a special job and previous foot trauma. Ann Plast Surg
680		1991; 27 :272-7.
681	34.	Forczek W, Ruchlewicz T, Gawęda A. Kinematic gait analysis of a young man after
682		amputation of the toes. Biomedical Human Kinetics 2014;6:40-6.
683	35.	Andersen JA, Klåborg KE. Forefoot amputation in rheumatoid arthritis. Acta Orthop Scand
684		1987; 58 :394-7.
685	36.	Greene WB, Cary JM. Partial foot amputations in children. A comparison of the several types
686		with the Syme amputation. <i>J Bone Joint Surg Am</i> 1982; 64 :438-43.
687	37.	Lipton HA, May JW, Jr., Simon SR. Preoperative and postoperative gait analyses of patients
688		undergoing great toe-to-thumb transfer. <i>J Hand Surg Am</i> 1987; 12 :66-9.
689	38.	Beyaert C, Henry S, Dautel G, et al. Effect on balance and gait secondary to removal of the
690		second toe for digital reconstruction: 5-year follow-up. <i>J Pediatr Orthop</i> 2003; 23 :60-4.
691	39.	Czerniecki JM, Turner AP, Williams RM, Hakimi KN, Norvell DC. Mobility changes in
692		individuals with dysvascular amputation from the presurgical period to 12 months
693		postamputation. Arch Phys Med Rehabil 2012;93:1766-73.
694	40.	Poppen NK, Mann RA, O'Konski M, Buncke HJ. Amputation of the great toe. Foot Ankle
695		1981; 1 :333-7.
696	41.	Friedmann LW, Padula PA, Weiss JM, Root B, Polchaninoff M, Shapiro D. Studies on the
697		survival of transmetatarsal amputation stumps. Vasc Surg 1989;23:34-42.
698	42.	Pinzur MS, Gold J, Schwartz D, Gross N. Energy demands for walking in dysvascular
699		amputees as related to the level of amputation. Orthopedics 1992; 15 :1033-36.
700	43.	Pinzur MS, Wolf B, Havey RM. Walking pattern of midfoot and ankle disarticulation amputees.
701		Foot Ankle Int 1997; 18 :635-8.
702	44.	Kanade RV, van Deursen RW, Harding K, Price P. Walking performance in people with
703		diabetic neuropathy: benefits and threats. <i>Diabetologia</i> 2006;49:1747-54.
704	45.	Aprile I, Galli M, Pitocco D, et al. Does first ray amputation in diabetic patients influence gait
705		and quality of life? <i>J Foot Ankle Surg.</i> 2018; 57 :44-51.
706	46.	Burnfield JM, Boyd LA, Rao S, Mulroy SJ, Perry J. The effect of partial foot amputation on
707		sound limb loading force during barefoot walking. <i>Gait Posture</i> 1998; 7 :178-9.

- 47. Garbalosa JC, Cavanagh PR, Wu G, et al. Foot function in diabetic patients after partial
 amputation. *Foot Ankle Int* 1996;**17**:43-8.
- 48. Kelly V, Mueller M, Sinacore D. Timing of peak plantar pressure during the stance phase of
- walking. A study of patients with diabetes mellitus and transmetatarsal amputation. *J Am Podiatr Med Assoc* 2000;**90**:18-23.
- 49. Lavery LA, Lavery DC, Quebedeax-Farnham TL. Increased foot pressures after great toe
 amputation in diabetes. *Diabetes Care.* 1995;**18**:1460-2.
- 50. Mann RA, Poppen NK, O'Konski M. Amputation of the great toe. A clinical and biomechanical
 study. *Clin Orthop Rel Res* 1988;**226**:192-205.
- 51. Ademoğlu Y, Ada S, Kaplan I. Should the amputations of the great toe be replanted? *Foot Ankle Int* 2000;**21**:673-9.
- 52. Burger H, Erzar D, Maver T, Olensek A, Cikajlo I, Matjacić Z. Biomechanics of walking with
 silicone prosthesis after midtarsal (Chopart) disarticulation. *Clin Biomech* 2009;**24**:510-6.
- 53. Tang SF, Chen CP, Chen MJ, Chen WP, Leong CP, Chu NK. Transmetatarsal amputation
 prosthesis with carbon-fiber plate: enhanced gait function. *Am J Phys Med Rehabil*2004;83:124-30.
- 54. Ramseier LE, Jacob HA, Exner GU. Foot function after ray resection for malignant tumors of
 the phalanges and metatarsals. *Foot Ankle Int* 2004;**25**:53-8.
- 55. Kasovic M, Stefan L, Stefan A. Normative data for gait speed and height norm speed in ≥ 60year-old men and women. *Clin Interv Aging* 2021;**16**:225-30.
- 56. Hughes W, Goodall R, Salciccioli JD, Marshall DC, Davies AH, Shalhoub J. Editor's choice Trends in lower extremity amputation incidence in European Union 15+ countries 1990-2017. *Eur J Vasc Endovasc Surg* 2020;**60**:602-12.
- 57. Harlow E, Khambete P, Ina J, Miskovsky S. Use of a second ray amputation for foot salvage in
 a collegiate athlete with proteus syndrome. *Int J Foot Ankle* 2021;**5**:1-5.
- 58. Carboch J, Plachá K. Development of rally pace and other match characteristics in women's
 matches in the Australian Open 2017. *J Phys Educ Sport* 2018;**18**:1079-83.
- 59. Carboch J, Siman J, Sklenarik M, Blau M. Match characteristics and rally pace of male tennis
 matches in three Grand Slam tournaments. *Phys Act Rev* 2019;**7**:49-56.
- 60. Kovalchik SA, Reid M. Comparing Matchplay Characteristics and Physical Demands of Junior
 and Professional Tennis Athletes in the Era of Big Data. *J Sports Sci Med* 2017;**16**:489-97.
- 61. Giles B, Kovalchik S, Reid M. A machine learning approach for automatic detection and
- classification of changes of direction from player tracking data in professional tennis. *J Sports Sci* 2020;**38**:106-13.
- 62. Pereira TJ, Nakamura FY, de Jesus MT, et al. Analysis of the distances covered and technical
- actions performed by professional tennis players during official matches. *J Sports Sci*2017;**35**:361-8.

745	63. Girard O, Eicher F, Micallef JP, Millet G. Plantar pressures in the tennis serve. J Sports Sci
746	2010; 28 :873-80.
747	64. Lisi F, Grigoletto M. Modeling and simulating durations of men's professional tennis matches
748	by resampling match features. J Sports Anal 2021; 7 :57-75.
749	65. Sánchez-Pay A, Ortega-Soto JA, Sánchez-Alcaraz BJ. Notational analysis in female Grand
750	Slam tennis competitions. <i>Kinesiology</i> 2021; 53 :154-61.
751	66. Cui Y, Gómez M, Gonçalves B, Sampaio J. Performance profiles of professional female tennis
752	players in grand slams. <i>PLoS One.</i> 2018; 13 :e0200591.
753	67. Cui Y, Zhao Y, Liu H, Gomez MA, Wei R, Liu Y. Effect of a seeding system on competitive
754	performance of elite players during major tennis tournaments. <i>Front Psychol</i> 2020; 11 :1294.
755	68. Filipcic A, Leskosek B, Crespo M, Filipcic T. Matchplay characteristics and performance
756	indicators of male junior and entry professional tennis players. Int J Sports Sci Coaching
757	2021; 16 :768-76.
758	69. Reid M, Morgan S, Whiteside D. Matchplay characteristics of Grand Slam tennis: implications
759	for training and conditioning. J Sports Sci 2016; 34 :1791-8.
760	70. Whiteside D, Bane MK, Reid M. Differentiating top-ranked male tennis players from lower-
761	ranked players using Hawk-Eye data: An investigation of the 2012-2014 Australian Open
762	tournaments. In: 33 rd International Society of Biomechanics in Sports Conference. Poitiers,
763	France; 2015.
764	71. Whiteside D, Reid M. External match workloads during the first week of Australian Open tennis
765	a man atilian lat I Quanta Rhy vial Ranfa ma 2017: 40:750.00
100	competition. Int J Sports Physiol Perform 2017;12:756-63.
766	 72. International Paralympic Committee. International Paralympic Committee Athlete Classification
766	72. International Paralympic Committee. International Paralympic Committee Athlete Classification
766 767	72. International Paralympic Committee. International Paralympic Committee Athlete Classification Code, 2015. Available:
766 767 768	72. International Paralympic Committee. International Paralympic Committee Athlete Classification Code, 2015. Available: <u>https://www.paralympic.org/sites/default/files/document/151218123255973_2015_12_17+Clas</u>
766 767 768 769	 72. International Paralympic Committee. International Paralympic Committee Athlete Classification Code, 2015. Available: https://www.paralympic.org/sites/default/files/document/151218123255973_2015_12_17+Classification+Code_FINAL.pdf [Accessed 17 Feb 2022].
766 767 768 769 770	 72. International Paralympic Committee. International Paralympic Committee Athlete Classification Code, 2015. Available: <u>https://www.paralympic.org/sites/default/files/document/151218123255973_2015_12_17+Classification+Code_FINAL.pdf</u> [Accessed 17 Feb 2022]. 73. Tweedy SM, Beckman EM, Connick MJ. Paralympic classification: conceptual basis, current
766 767 768 769 770 771	 72. International Paralympic Committee. International Paralympic Committee Athlete Classification Code, 2015. Available: <u>https://www.paralympic.org/sites/default/files/document/151218123255973_2015_12_17+Classification+Code_FINAL.pdf</u> [Accessed 17 Feb 2022]. 73. Tweedy SM, Beckman EM, Connick MJ. Paralympic classification: conceptual basis, current methods, and research update. <i>PM R</i> 2014;6(8 Suppl):S11-17.
766 767 768 769 770 771 772	 72. International Paralympic Committee. International Paralympic Committee Athlete Classification Code, 2015. Available: <u>https://www.paralympic.org/sites/default/files/document/151218123255973_2015_12_17+Classification+Code_FINAL.pdf</u> [Accessed 17 Feb 2022]. 73. Tweedy SM, Beckman EM, Connick MJ. Paralympic classification: conceptual basis, current methods, and research update. <i>PM R</i> 2014;6(8 Suppl):S11-17. 74. Tweedy SM, Vanlandewijck YC. International Paralympic Committee position stand
766 767 768 769 770 771 772 773	 72. International Paralympic Committee. International Paralympic Committee Athlete Classification Code, 2015. Available: https://www.paralympic.org/sites/default/files/document/151218123255973_2015_12_17+Classification+Code_FINAL.pdf [Accessed 17 Feb 2022]. 73. Tweedy SM, Beckman EM, Connick MJ. Paralympic classification: conceptual basis, current methods, and research update. <i>PM R</i> 2014;6(8 Suppl):S11-17. 74. Tweedy SM, Vanlandewijck YC. International Paralympic Committee position stand background and scientific principles of classification in Paralympic sport. <i>Br J Sports Med</i>
766 767 768 769 770 771 772 773 774	 72. International Paralympic Committee. International Paralympic Committee Athlete Classification Code, 2015. Available: https://www.paralympic.org/sites/default/files/document/151218123255973_2015_12_17+Classification+Code_FINAL.pdf [Accessed 17 Feb 2022]. 73. Tweedy SM, Beckman EM, Connick MJ. Paralympic classification: conceptual basis, current methods, and research update. <i>PM R</i> 2014;6(8 Suppl):S11-17. 74. Tweedy SM, Vanlandewijck YC. International Paralympic Committee position stand background and scientific principles of classification in Paralympic sport. <i>Br J Sports Med</i>
766 767 768 769 770 771 772 773 774 775	 72. International Paralympic Committee. International Paralympic Committee Athlete Classification Code, 2015. Available: https://www.paralympic.org/sites/default/files/document/151218123255973_2015_12_17+Classification+Code_FINAL.pdf [Accessed 17 Feb 2022]. 73. Tweedy SM, Beckman EM, Connick MJ. Paralympic classification: conceptual basis, current methods, and research update. <i>PM R</i> 2014;6(8 Suppl):S11-17. 74. Tweedy SM, Vanlandewijck YC. International Paralympic Committee position stand background and scientific principles of classification in Paralympic sport. <i>Br J Sports Med</i>
766 767 768 769 770 771 772 773 774 775 776	 72. International Paralympic Committee. International Paralympic Committee Athlete Classification Code, 2015. Available: https://www.paralympic.org/sites/default/files/document/151218123255973_2015_12_17+Classification+Code_FINAL.pdf [Accessed 17 Feb 2022]. 73. Tweedy SM, Beckman EM, Connick MJ. Paralympic classification: conceptual basis, current methods, and research update. <i>PM R</i> 2014;6(8 Suppl):S11-17. 74. Tweedy SM, Vanlandewijck YC. International Paralympic Committee position stand background and scientific principles of classification in Paralympic sport. <i>Br J Sports Med</i>
766 767 768 769 770 771 772 773 774 775 776 776 777	 72. International Paralympic Committee. International Paralympic Committee Athlete Classification Code, 2015. Available: https://www.paralympic.org/sites/default/files/document/151218123255973_2015_12_17+Classification+Code_FINAL.pdf [Accessed 17 Feb 2022]. 73. Tweedy SM, Beckman EM, Connick MJ. Paralympic classification: conceptual basis, current methods, and research update. <i>PM R</i> 2014;6(8 Suppl):S11-17. 74. Tweedy SM, Vanlandewijck YC. International Paralympic Committee position stand background and scientific principles of classification in Paralympic sport. <i>Br J Sports Med</i>
766 767 768 769 770 771 772 773 774 775 776 776 777 778	 72. International Paralympic Committee. International Paralympic Committee Athlete Classification Code, 2015. Available: https://www.paralympic.org/sites/default/files/document/151218123255973_2015_12_17+Classification+Code_FINAL.pdf [Accessed 17 Feb 2022]. 73. Tweedy SM, Beckman EM, Connick MJ. Paralympic classification: conceptual basis, current methods, and research update. <i>PM R</i> 2014;6(8 Suppl):S11-17. 74. Tweedy SM, Vanlandewijck YC. International Paralympic Committee position stand background and scientific principles of classification in Paralympic sport. <i>Br J Sports Med</i>

781	List of Figures
782	
783	Figure 1. Flowchart of the article selection process conducted according to PRISMA-ScR (Preferred
784	Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews).
785	
786	Figure 2. Partial foot amputation types. The exact level of the amputation may vary slightly. A)
787	Lateral view. B) Superior view.
788	
789	
790	

791	List of Tables
792	
793	Table 1. Minimum Impairment Criteria for the Eligible Impairment Limb Deficiency (lower limb only)
794	for the 28 Paralympic Sports.
795	
796	Table 2. Characteristics of the included studies.
797	
798	Table 3. Assessment methods and outcome measures used in the included studies.
799	
800	Table 4. Proposed recommendations for the Minimum Impairment Criteria for limb deficiency for wheelchair
801	tennis according to amputation type.
802	
803	
804	
805	

806	List of Supplementary Files
807	
808	Supplementary files S1. The search strategies for all databases.
809	
810	Supplementary file S2. Criteria for inclusion/exclusion of studies.
811	
812	Supplementary file S3. Joanna Briggs Institute (JBI) checklist score of the case reports included
813	in this review (n=2).
814	
815	Supplementary file S4. Joanna Briggs Institute (JBI) checklist score of the analytical cross-
816	sectional studies included in this review (n=27).
817	
818	Supplementary file S5. Summary of the key findings from the included studies.
819	
820	Supplementary file S6. Forest plot of the mean difference in gait speed between patients with a
821	partial foot amputation and the corresponding control group.
822	
823	Supplementary file S7. Forest plot of the mean difference in cadence between patients with a
824	partial foot amputation and the corresponding control group.
825	
826	Supplementary file S8. Forest plot of the mean difference in ankle power (W/kg) between patients
827	with a partial foot amputation and the corresponding control group.
828	
829	Supplementary file S9. Forest plot of the mean difference in ankle power (W/kg-m) between
830	patients with a partial foot amputation and the corresponding control group.
831	
832	Supplementary file S10. Forest plot of the mean difference in step length between patients with a
833	partial foot amputation and the corresponding control group.
834	
835	Supplementary file S11. Forest plot of the mean difference in stance time between patients with a
836	partial foot amputation and the corresponding control group.
837	
838	Supplementary file S12. Forest plot of the mean difference in plantar pressure between patients
839	with a partial foot amputation and the corresponding control group.
840	

841

842

TABLES

Table 1. Minimum Impairment Criteria for the Eligible Impairment Limb Deficiency (lower limb only)

 for the 28 Paralympic Sports[8,9]

Sport	Minimum Impairment Criteria
Boccia:	Significant limb loss/deficiency of all four limbs; half of the lower limb
	amputated above the knee.
Football Five-a-Side:	Limb deficiency is not an Eligible Impairment.
Goal ball:	Limb deficiency is not an Eligible Impairment.
Para Alpine skiing:	Loss of one foot through the ankle.
Para Archery:	Loss of half one foot.
Para Athletics:	More than $\frac{1}{2}$ loss of one foot or more than $\frac{3}{4}$ loss on both feet.
Para Badminton:	More than 1/2 loss of one foot or shortened leg of similar length.
Para Biathlon:	Loss of one leg above the ankle or shortened leg of similar length.
Para Canoe:	Loss of one leg below the knee or shortened leg of the same length.
Para Cross-Country Skiing:	Loss of one leg above the ankle or shortened leg of similar length.
Para Cycling:	More than 1/2 loss of one foot.
Para Equestrian:	Loss of one foot through the ankle or shortened leg of similar length.
Para Ice Hockey:	Loss of one leg through the ankle or shortened limb of similar length.
Para Judo:	Limb deficiency is not an Eligible Impairment.
Para Powerlifting:	Amputation through at least one ankle joint or a leg deficiency from
	birth at the same level.
Para Rowing:	Loss of half of one foot.
Para Shooting:	Complete loss of one foot or shortened leg of comparable length.
Para Snowboard:	Loss of one leg above the ankle or shortened leg of similar length.
Para Swimming:	More than $\frac{1}{2}$ loss of one foot or more than $\frac{3}{4}$ loss on both feet.
Para Table Tennis:	Loss of at least 1/3 of a foot.
Para Taekwondo:	Loss of big toe or all of the toes of the foot.
Para Triathlon:	Complete loss of one foot or shortened leg of similar length.
Sitting Volleyball:	Loss of $\frac{1}{2}$ length of one foot.
Wheelchair Basketball:	Loss of at least the big toe on one foot.
Wheelchair Curling:	Complete absence of one leg or loss of both legs above the ankle.
Wheelchair Fencing:	Loss of one foot or shortened limb of similar length.
Wheelchair Rugby:	Limb loss in both legs AND at least one arm/hand.
Wheelchair Tennis (2021):	Complete unilateral amputation of half the length of the foot.

843

844

846 **Table 2.** Characteristics of the included studies.

Author	Country	Study Design	Aim(s)	Sample size	Experimental group	Control group	Age in years (Mean ± SD)	Gender (Male: N (%))
		y	Amputation	Level: Toe	e/Great Toe			
Ademoglu et al 2000	Turkey	Case- control	Present outcomes (including clinical and biomechanical markers) after replantation surgery of great toe.	9	Failed replantation of great toe following trauma	Successful replantation of the great toe	25.3±14.9	8 (89)
Beyaert et al 2003	France	Cross- sectional	Determine effects at 5 years of second toe-to-hand transfer on foot morphology and function in children.	11	Toe amputation for digital reconstruction to treat congenital hand malformation	NA	6.5 to 12.5	7 (63.6)
Chen et al 1991	Taiwan	Case report	Describe a triple toe transfer as a unit with vascular supply.	1	Triple toe amputation for finger reconstruction	NA	26	1 (100)
Lavery et al 1995	United States	Cross- sectional	Compare under foot pressure with contralateral foot after great toe and first metatarsal amputation.	11	Great toe (+ partial 1st MTA) due to diabetes	NA	65.1 (39-79)*	7 (63.6)
Lipton et al 1987	United States	Pre-post study	Evaluate gait factors during walking cycle before and after great toe amputation.	12	Great toe amputation for thumb reconstruction	NA	29.3	10 (83.3)
Mann et al 1988	United States	Cross- sectional	Evaluate clinical and biomechanical effects of great toe amputation.	10	Great toe amputation for thumb reconstruction	NA	NR	9 (90)
Poppen et al 1981	United States	Cross- sectional	Establish effect on gait of great toe amputation.	4	Great toe amputation for thumb reconstruction	NA	NR	NR
	Olales	300101101	Amputation Level	Metatarso				
Forczek et al 2014	Poland	Case report	Investigate gait kinematics after bilateral partial amputation of toes.	1	Bilateral MTP to treat frostbite	NA	30	1 (100)
01 01 20 14			Amputation Lev	el: Transm	etatarsal ITMT1			. ()
Andersen et al 1987	Denmark	Pre-post study	Report the results of transmetatarsal amputation.	5	TMA to treat rheumatoid arthritis	NA	54.4±5.9	NR
Czerniecki et al 2012	United States	Pre-post study	Describe changes in: [i] function due to limb disability prior to surgery, [ii] premorbid function to 12 months, and [iii] identify associations between presurgical risk factors and change in ambulation.	87	TMA due to peripheral artery diseases or diabetes	NA	62.3±8.9	NR
Friedmann et al 1987	United States	Cross- sectional	Evaluate indications for surgical, and post-surgical management of partial foot loss.	9	TMA due to diabetes, trauma, frostbite or burn	NA	NR	NR
Garbalosa et al 1996	United States	Cross- sectional	Examine effects of TMA on plantar pressure and ankle joint kinematics.	10	TMA due to diabetes	NA	58.3±17.2	8 (80)
Kelly et al 2000	United States	Cross- sectional	Determine point during gait cycle at which peak forefoot plantat pressures occur.	24	TMA due to diabetes	Healthy subjects	60.3±10.3	6 (50)
Mueller et al 1997a	United States	Cross- sectional	Determine effect of footwear, shoe inserts and ankle foot orthoses on peak plantar pressures of amputated and non-amputated feet of patients with diabetes.	30	TMA due to diabetes	NA	61.7±11.3	20 (66.7)
Mueller et al 1997b	United States	Cross- sectional	Compare function of persons with diabetes and TMA with matched controls.	30	TMA due to diabetes	Healthy subjects	62.4±9.3	18 (60)
Mueller et al 1998	United States	Cross- sectional	Compare gait characteristics of people with diabetes and TMA to matched controls.	30	TMA due to diabetes	Healthy subjects	62.4±9.3	18 (60)
Pinzur et al 1992	United States	Cross- sectional	Evaluate the metabolic demand for walking in those with amputation following peripheral vascular disease.	25	Midfoot amputation due to peripheral vascular disease	Syme, below, through and above knee amputation and peripheral vascular disease	NR	NR

Pinzur et al 1997	United States	Case- control	Establish ground reaction force and dynamic center of pressure data for those with midfoot and Syme amputation.	11	Midfoot amputation due to peripheral vascular disease	Syme and peripheral vascular disease	63	NR
Salsich et al 1997	United States	Cross- sectional	Determine correlations between strength and functional measures, in people with diabetes and TMA.	30	TMA due to diabetes	NA	61.7±11.3	20 (66.7)
Tang et al 2004	Taiwan	Case- control	Determine correlations between strength and functional measures and intercorrelation between functional measures in people with diabetes and TMA.	17	TMA due to trauma	Healthy subjects	42.3±4.9	17 (100)
			Amputati	on Level:				
Burger et al 2009	Slovenia	Cross- sectional	Establish gait biomechanics (barefoot; silicone prosthesis with/without footwear; footwear with conventional prosthesis).	4	Amputation due to trauma	NA	42.3±17.2	4 (100)
				ation Lev	el: Ray			
Aprile et al 2018	Italy	Case- control	Investigate differences in gait between persons with diabetes and first ray amputation, persons with diabetes without amputation, and healthy subjects.	18	Ray amputation due to diabetes	Diabetes without amputation, healthy subjects	70.4±6.9**	12 (66.7)
Ramseier et al 2004	Switzerland	Cross- sectional	Discuss clinical reasoning in deciding, planning, and carrying out local tumor resection and reconstruction.	4	Toe and ray amputation to treat malignant tumor	NA	30±28	2 (50)
			Amputat					
Burnfield et al 1998	United States	Cross- sectional	Determine impact of two partial foot amputation levels on limb loading force of non-affected limb during gait.	21	Toe amputation or TMA due to diabetes	Healthy subjects	NR	15 (71.4)
Dillon et al 2006a	Australia	Case- control	[i] Examine if preserving foot length should be a primary objective to maintain normal function, [ii] Establish biomechanical data to aid selection of amputation level.	16	MPT(1), TMT(1), Lisfranc(4), Chopart(2) amputation due to trauma or gangrene	Healthy subjects	41.5±24.4	NR
Dillon et al 2006b	Australia	Case- control	Evaluate the biomechanical effects of a partial foot prostheses in normalising gait pattern.	16	MPT(1), TMT(1), Lisfranc(4), Chopart(2) amputation due to trauma or gangrene	Healthy subjects	42.1±15.9	NR
Dillon et al 2008a	Australia	Case- control	Describe the gait patterns of a range of partial foot amputees to aid understanding of the mechanical adaptations to partial foot amputation and prosthetic fitting.	7	MTP(1), TMT(1), Lisfranc(3), Chopart(2) amputation due to trauma or gangrene	Healthy subjects	40.1±14.9	NR
Greene et al 1982	United States	Cross- sectional	Review gait and function of patients with congenital and childhood-acquired partial foot amputation and Syme amputation.	14	Ray, TMT, Midtarsal, Lisfranc, Chopart, and Syme's amputation either congenital or acquired in childhood	NA	16.3	10 (71.4)
Kanade et al 2006	United Kingdom	Case- control	Investigate walking capacity, performance and impact on the plantar tissues across four groups with diabetic neuropathy.	84	TMT(5), Ray(4), Hallux(5), all five toes(1), first two toes (1) amputation due to diabetes	Diabetic neuropathy / diabetic foot ulcer / trans-tibial amputation	62.3±7.6	74 (88)

* Only range reported. ** SD not reported for all groups. NA: Not Applicable; NR: Not Reported; SD: Standard Deviation; MTA: Metatarsal amputation; MTP: Metatarsophalangeal; TMA: Transmetatarsal Amputation; TMT: Transmetatarsal.

851 **Table 3.** Assessment methods and outcome measures used in the included studies.

Author	Assessment Methods	Outcome measures
	Amputation Level: T	oe/Great Toe
Ademoglu et al 2000	Physical Examination, Standard Weightbearing Dorsoplantar and Lateral X-Ray, Pedography Measurement Platform	Plantar Callus Formation, Joint ROM, Navicular Index, Cuboid Index, Height of First Metatarsal Head, Intermetatarsal Angles, Sesamoid Migration, Peak Plantar Pressure, Regional Plantar Pressure, Regional Pressure Ratios, CoP Excursion
Beyaert et al 2003	Physical Examination, Podoscope Assessment, Anteroposterior and Lateral X-Rays, Postural Balance via Force Platform, 3D Gait Analysis	Gait Speed, Cadence, Stride Length, Single Stance Duration of Gait Cycle, Plantar Imprint, Toe Position, Forefoot Deformation, Alignments, Balance Time, CoP Displacement, Angular Joint Movements,
Chen et al 1991	Postural Balance via Force Platform	CoP Excursion
Lavery et al 1995	In-Shoe Pressure Measurement System	Peak Plantar Pressure
Lipton et al 1987	Physical Examination, Gait Analysis using High Speed Cameras, Electromyography	Gait Speed, Cadence, Stride Length, Step Length, Single and Double Limb Stance Times, Step Width
Mann et al 1988	Physical Examination, Harris Mat Print, Anteroposterior and Lateral X- Rays and Photographs, Gait Analysis using Force Plates and High Speed Cameras	Gait Speed, Cadence, Step Length, Percent of Stance and Swing Phase, Heel- Rise Time, Plantar Callus Formation, ROM, Shoe Wear, Motion of the Pelvis, Hip, Knee, and Ankle; CoP
Poppen et al 1981	Physical Examination, X-Rays, Harris Mat, Gait Analysis	Plantar Callus Formation, ROM, Navicular Index, Cuboid Index, Pressure Distribution, Shoe Wear, Stance Phase, Heel Rise, Step Length
	Amputation Level: Metatars	
Forczek et al 2014	3D Gait Analysis using a Motion Analysis System	Gait Speed, Step Frequency, Single and Double Leg Support, Step Length, Step Time, Angular Motion in of Lower Limb Joints.
	Amputation Level: Trans	metatarsal [TMT]
Andersen et al 1987	Physical Examination, Visual Observation	Walking Distance, Ability to Wear Shoes
Czerniecki et al 2012	Locomotor Capability Index-5	Ambulatory Function
Friedmann et al 1987	Questionnaire, Physical Examination, Gait Analysis, Electrodynograph (force data collector)	Duration of Gait Phases, Plantar Pressure
Garbalosa et al 1996	3D Gait Analysis via Cameras; Force Platform data	Peak Plantar Pressure, Regional Plantar Pressure, Static and Dynamic ROM Motion of the Ankle
Kelly et al 2000	In-Shoe Pressure Measurement System, 6.8m Walkway	Gait Velocity, Peak Plantar Pressure, Peak Force, Area in contact at Peak Plantar Pressure
Mueller et al 1997a	6.8m Walkway; In-Shoe Pressure Measurement System	Gait Speed, Peak Plantar Pressure
Mueller et al 1997b	Functional Reach Test, Physical Performance Test (PPT), Sickness Impact Profile (SIP)	Gait Speed, Reaching Distance, PPT: writing a sentence, simulated eating, lifting a book to put on a shelf, putting on and removing a jacket, picking up a penny from the floor, turning 360 degrees, walking 15.2 m (50 ft), and climbing a single flight of stairs (12 steps), SIP: emotional behaviour, mobility, body care and movement, ambulation, recreation and pastimes, social behaviour, and home management

Mueller et al 1998	3D Gait Analysis using a motion analysis system; Force Platform	Gait Speed, Step Length, Peak Plantarflexion Angle, Peak Ankle, Hip & Knee Moments and Power, Onset of Hip Flexion Moment, Hip & Knee ROM Excursior
Pinzur et al 1992	25m Walkway, Douglas Air Bag, Gas Chromatography, Telemetry EKG,	Gait speed (self-selected and maximum), Stride Length, Cadence, VO ₂ max, relative and functional energy cost
Pinzur et al 1997	Force Data using In-Shoe Pressure Measurement System	Ground Reaction Force, CoP Excursion
Salsich et al 1997	15.2 m Walkway and Stopwatch, Hand Held Dynamometry, Functional Reach Test, Physical Performance Test, Sickness Impact Profile,	Gait Speed, Lower Extremity Strength, Reaching Distance, PPT: writing a sentence, simulated eating, lifting a book to put on a shelf, putting on and removing a jacket, picking up a penny from the floor, turning 360 degrees, walking 15.2 m (50 ft), and climbing a single flight of stairs (12 steps), SIP: emotional behaviour, mobility, body care and movement, ambulation, recreation and pastimes, social behaviour, and home management,
Tang et al 2004	10m Walkway, 3D Gait Analysis using a Motion Analysis System, Force Platform	Gait Speed, Step Length, Cadence, Single- and Double-Leg Support Time, Ankle Joint Moments and Powers, Gait Symmetry
	Amputation Level:	
Burger et al 2009	10M Walkway, 3D Gait Analysis using Motion Analysis System, Force Plates	Gait Speed, Step Length, Stride Length, Cadence, Joint Angles, Joint Moments, Joint Power
	Amputation Lev	
Aprile et al 2018	3D Gait Analysis using a Stereophotogrammetric System, Short-Form 36-item Health Survey Score, North American Spine Society Questionnaire, Neuropathic Pain Symptom Inventory, Numeric Rating Scale, ID-Pain	Gait Speed, Step Length, Step Width, Cadence, Stance, Percentage of Duration of Swing Phase, Percentage of Duration of Double Leg Support, Joint ROM during Gait, Quality of Life, Pain Score
Ramseier et al 2004	Gait Analysis using a Pedobarograph	Plantar Pressure Distribution
	Amputation Leve	
Burnfield et al 1998	10 m Walkway, Force Platform, Dynamometrey	Gait Speed, Cadence, Stride Length, Peak Ground Reaction Force, Plantar Flexion Torque
Dillon et al 2006a	3D Gait Analysis using a Motion Analysis System; Force Platform	Ankle Power and Moment, Hip Power, Work across the Ankle
Dillon et al 2006b	3D Gait Analysis using a Motion Analysis System; Force Platform	CoP Excursion, Ground Reaction Force
Dillon et al 2008	3D Gait Analysis using a Motion Analysis System, Goniometry, Force Platform, Manual Muscle Testing	Gait Speed, Cadence, Stride Length, Duration of Swing and Stance Phase, Single and Double Leg Support, Joint ROM, Muscle Strength, Ground Reaction Force, CoP Excursion, Joint Moments and Power, Angular Velocity
Greene et al 1982	7.62 m Walkway, Physical Examination, Goniometry, Manual Muscle Testing, Weightbearing Lateral X-ray, Gait Analysis and Functional Activity via Visual Observation	Gait speed, Gait Mechanics
Kanade et al 2006	Heart Rate Monitor, Step Activity Monitor, Force Data using In-Shoe Pressure Measurement System	Gait Speed, Walking Capacity via Total Heart Beat Index, Daily Strides, Peak Plantar Pressure

Amputation type	Recommendation	Level of Evidence	Grade of recommendation	Rationale
Toe amputation(s) (excluding great toe)	Exclude	5	D	It is unlikely that running speed and acceleration/deceleration will be highly affected, but more research is needed
Great toe amputation	Exclude	5	D	Loss of power on pushing off, lateral movements, and serving. More research is needed on the extent that fundamental tennis activities are affected.
Ray amputation (excluding 1 st ray)	Unclear	5	D	Acceleration/deceleration and running speed may be affected. More research is needed.*
1 st Ray amputation	Include	5	D	Loss of power on pushing off, lateral movements, and serving. Acceleration/deceleration and running speed may be reduced.
Metatarsophalangeal amputation	Unclear	5	D	Minor limitations on acceleration/deceleration. More research is needed.**
Transmetatarsal amputation	Include	4	С	Major limitations on acceleration/deceleration.
Lisfranc amputation	Include	5	D	Major limitations on acceleration/deceleration.
Chopart amputation	Include	5	D	Major limitations on acceleration/deceleration.

Table 4. Proposed recommendations for the Minimum Impairment Criteria for limb deficiency for wheelchair tennis according to amputation type.

*Based on three patients. **Based on two patients.

858 Grade of recommendation for the minimum impairment criteria rated according to the Centre of Evidence-Based Medicine (CEBM):[25]

A = Consistent level 1 studies. B = Consistent level 2 or 3 studies or extrapolations from level 1 studies. C = Level 4 studies or extrapolations from level 2 or 3

860 studies. D = Level 5 evidence or troublingly inconsistent or inconclusive studies at any level.

- 861
- 862
- 863
- ~~ 4
- 864
- 865

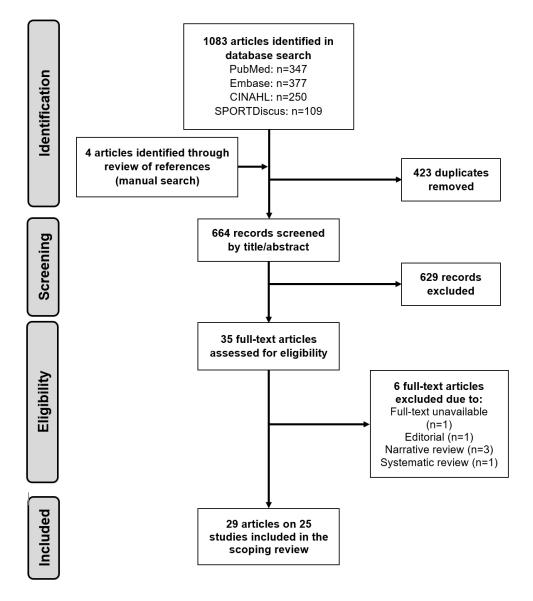


Figure 1. Flowchart of the article selection process conducted according to PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews).

101x116mm (300 x 300 DPI)

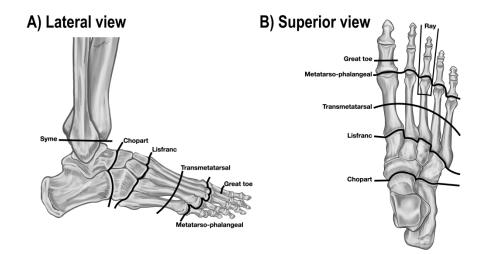


Figure 2. Partial foot amputation types. The exact level of the amputation may vary slightly. A) Lateral view. B) Superior view.

494x254mm (300 x 300 DPI)

Supplementary file S1. The search strategies for all databases. 811

812

PubMed History and Search Details February 19th 2022 813

Search	PubMed Query – February 19 th 2022	Results
#4	#1 AND #2 AND #3	347
#3	"Physical Functional Performance"[Mesh] OR "Gait"[Mesh] OR "Gait Analysis"[Mesh] OR "gait*"[tiab] OR biomechanics[tiab] OR "functional performance"[tiab] OR "functional test*"[tiab] OR ((motion[tiab] OR movement[tiab] OR moving[tiab] OR locomotion[tiab] OR walk*[tiab] OR ambulati*[tiab]) AND analys*[tiab])	244,579
#2	"Forefoot, Human"[Mesh] OR "Foot Joints"[Mesh] OR "forefoot"[tiab] OR "midfoot"[tiab] OR "toe"[tiab] OR "toes"[tiab] OR "hallux"[tiab] OR "metatars*"[tiab] OR "intertars*"[tiab] OR "midtars*"[tiab] OR "transtars*"[tiab] OR "intermetatars*"[tiab] OR "transmetatars*"[tiab] OR "tarsometatars*"[tiab] OR "foot joint*"[tiab] OR "tarsal joint*"[tiab] OR "ray"[tiab] OR "lisfranc"[tiab] OR "chopart*"[tiab]	460,320
#1	"Amputation"[Mesh] OR "amputat*"[tiab] OR "disarticulat*"[tiab]	54,449

814 815

Embase.com History and Search Details February 19th 2022

Search	Embase.com Query – February 19 th 2022	Results
#5	#4 NOT ('conference abstract'/it OR 'conference review'/it)	377
#4	#1 AND #2 AND #3	449
#3	'physical performance'/exp OR 'gait analysis system'/exp OR 'biomechanics'/exp OR 'gait'/exp OR ('gait' OR 'biomechanics' OR 'functional performance' OR 'functional test*' OR (('motion' OR 'movement' OR 'moving' OR 'locomotion' OR 'walk*' OR 'ambulati*') AND 'analys*')):ti,ab,kw	514,315
#2	'forefoot'/exp OR 'midfoot'/exp OR 'toe'/exp OR 'foot joint'/exp OR ('forefoot' OR 'midfoot' OR 'toe' OR 'toes' OR 'hallux' OR 'metatars*' OR 'intertars*' OR 'midtars*' OR 'transtars*' OR 'intermetatars*' OR 'transmetatars*' OR 'tarsometatars*' OR 'foot joint*' OR 'tarsal joint*' OR 'ray' OR 'lisfranc' OR 'chopart*'):ti,ab,kw	522,978
#1	'amputation'/exp OR (amputat* OR disarticulat*):ti,ab,kw	78,474

816 817

Cinahl (Ebsco) History and Search Details February 19th 2022 818

Search	Cinahl (Ebsco) Query – February 19 th 2022	Results
S5	S4 AND Limit to: Academic Journals	250
S4	S1 AND S2 AND S3	298
S3	MH ("Psychomotor Performance" OR "Physical Performance" OR "Gait+" OR "Gait Analysis" OR "Biomechanics+") OR TI (gait OR biomechanics OR "functional performance" OR "functional test*" OR ((motion OR movement OR moving OR locomotion OR walk* OR ambulati*) AND analys*)) OR AB(gait OR biomechanics OR "functional performance" OR "functional test*" OR ((motion OR movement OR moving OR locomotion OR walk* OR ambulati*) AND analys*))	153,629
S2	MH ("Foot" OR "Toes" OR "Toe Joint+" OR "Tarsal Joint+") OR TI (forefoot OR midfoot OR toe OR toes OR hallux OR metatars* OR intertars* OR midtars* OR transtars* OR intermetatars* OR transmetatars* OR tarsometatars* OR "foot joint*" OR "tarsal joint*" OR ray OR lisfranc OR chopart*) OR AB (forefoot OR midfoot OR toe OR toes OR hallux OR metatars* OR intertars* OR midtars* OR transmetatars* OR transmetatars* OR midfoot OR toe OR toes OR hallux OR metatars* OR intertars* OR midfoot OR toe OR toes OR hallux OR metatars* OR intertars* OR midfoot OR toe OR toes OR hallux OR metatars* OR intertars* OR midfact OR toe OR toes OR hallux OR metatars* OR intertars* OR midfact OR midfact OR toes OR hallux OR metatars* OR intertars* OR midfacts* OR transmetatars* OR transmetatars* OR transmetatars* OR transmetatars* OR transmetatars* OR "foot joint*" OR "tarsal joint*" OR ray OR lisfranc OR chopart*)	54,404

Search	Cinahl (Ebsco) Query – February 19 th 2022	Results
S1	MH "Amputation+" OR TI (amputat* OR disarticulat*) OR AB (amputat* OR disarticulat*)	16,129

819 820

821 SportDiscus (Ebsco) History and Search Details February 19th 2022

Search	SportDiscus (Ebsco) Query – February 19 th 2022	Results
S4	S1 AND S2 AND S3	109
S3	DE ("PERFORMANCE" OR "BIOMECHANICS" OR "BIOMECHANICS in sports" OR "SEGMENTAL analysis technique (Biomechanics)") OR TI (gait OR biomechanics OR "functional performance" OR "functional test*" OR ((motion OR movement OR moving OR locomotion OR walk* OR ambulati*) AND analys*)) OR AB (gait OR biomechanics OR "functional performance" OR "functional test*" OR ((motion OR movement OR moving OR locomotion OR walk* OR ambulati*) AND analys*)) OR KW (gait OR biomechanics OR "functional performance" OR "functional test*" OR ((motion OR movement OR moving OR locomotion OR walk* OR ambulati*) AND analys*)) OR KW (gait OR biomechanics OR "functional performance" OR "functional test*" OR ((motion OR movement OR moving OR locomotion OR walk* OR ambulati*) AND analys*))	81,418
S2	DE ("FOOT" OR "TOES" OR "METATARSUS" OR "TARSOMETATARSUS" OR "TARSAL joint" OR "TOE joint" OR "LISFRANC joint") OR TI (forefoot OR midfoot OR toe OR toes OR hallux OR metatars* OR intertars* OR midtars* OR transtars* OR intermetatars* OR transmetatars* OR tarsometatars* OR "foot joint*" OR "tarsal joint*" OR ray OR lisfranc OR chopart*) OR AB (forefoot OR midfoot OR toe OR toes OR hallux OR metatars* OR intertars* OR midtars* OR transtars* OR intermetatars* OR transmetatars* OR tarsometatars* OR "foot joint*" OR "tarsal joint*" OR ray OR lisfranc OR chopart*) OR KW (forefoot OR midfoot OR toe OR toes OR hallux OR metatars* OR intertars* OR midtars* OR transtars* OR intermetatars* OR transmetatars* OR tarsometatars* OR intertars* OR midtars* OR transtars* OR intermetatars* OR transmetatars* OR tarsometatars* OR "foot joint*" OR "tarsal joint*" OR ray OR lisfranc OR toes OR hallux OR metatars* OR "foot joint*" OR "tarsal joint*" OR ray OR lisfranc OR transmetatars* OR tarsometatars* OR "foot joint*" OR "tarsal joint*" OR ray OR lisfranc OR chopart*)	22,878
S1	TI (amputat* OR disarticulat*) OR AB (amputat* OR disarticulat*) OR KW (amputat* OR disarticulat*)	3,610

822

823

824

826 **Supplementary file S2.** Criteria for inclusion/exclusion of studies after the full-text screening.

Inclusion criteria Exclusion criteria Exclusion criteria

	inclusion criteria	Exclusion criteria
Population	Individuals (aged ≤16 years and >16 years), who underwent a PFA.	Cadaveric, animals, non-human studies
Types of PFA	Partial foot amputation: - (great) toe - metatarsophalangeal - ray amputation - transmetatarsal - tarsometatarsal (Lisfranc) - transtarsal (Chopart)	Level of amputation more proximal than transtarsal (e.g., Pirigoff, Boyd, and Symes) Use of mobility aids such as: - crutches - walking stick - cane - Nordic walking poles
Outcomes	 gait/walking speed cadence stride length step length step width stance step duration peak GRF center of pressure excursion 	- stair climbing - self-care
Study design	 peer-reviewed original articles quantitative, qualitative, mixed, and multimethod design dissertation or thesis grey literature 	Books, chart reviews, opinion papers, news and magazine articles, study protocols, narrative and systematic reviews, meta-analyses, editorials, annals of congresses, conference proceedings, presentations, posters,
Study availability	Full-text available	

828

829

Supplementary file S3. Joanna Briggs Institute (JBI) checklist score of the case reports included 831 in this review (n=2).

832

Author	Item number and corresponding score								Vee	NLa		Not
Author	1	2	3	4	5	6	7	8	Yes	No	Unclear	Applicable
Chen et al. (2007)	Y	Y	Y	Ν	Y	Y	Y	Υ	7	1	0	0
Forczek et al. (2000)	Y	Y	Y	Y	Y	Y	Y	Y	8	0	0	0
Number of studies applying the item	2	2	2	1	2	2	2	2				
							Ν	/lean	7.5			
								SD	0.7			

Y = Yes; N = No; U = Unclear; NA = Not Applicable. Questions from the JBI Checklist: 1. Were patient's demographic characteristics clearly described? 2. Was the patient's history clearly described and presented as a timeline? 3. Was the current clinical condition of the patient on presentation described in detail? 4. Were diagnostics tests or assessment methods and the results clearly described? 5. Was the intervention(s) or treatment procedure(s) clearly described? 6. Was the post-intervention clinical condition clearly described? 7. Were adverse events (harms) or unanticipated events (harms) event events identified and described? 8. Does the case report provide take-away lessons?

833

834

836 Supplementary file S4. Joanna Briggs Institute (JBI) checklist score of the analytical cross-

sectional studies included in this review (n=27).

		numl			rresp	ondi	ng so	core	Yes	No	Unclear	Not
Author	1	2	3	4	5	6	7	8				applicable
	Α	mputa	ation	Level	: Toe	/ Gr	eat to	е				
Ademoglu et al. (2000)	Y	Y	Y	Y	Ν	Ν	U	Ν	4	3	1	0
Beyaert et al. (2003)	Y	Y	Y	Y	Y	Ν	Y	Y	7	1	0	0
Lavery et al. (1995)	Y	Y	Y	Y	Y	Y	Y	Y	8	0	0	0
Lipton et al. (1987)	Y	Y	Y	Y	Y	Ν	Y	Ν	6	2	0	0
Mann et al. (1988)	Ν	Y	Y	Y	Ν	Ν	Y	U	4	3	1	0
Poppen et al. (1981)	Ν	Ν	Y	Y	Ν	Ν	Ν	NA	2	5	0	1
	Ar	nputat	tion L	evel:	Tran	sme	tatars	sal				
Andersen et al (1987)	Y	Y	Y	Y	Y	Ν	Ν	NA	5	2	0	1
Czerniecki et al. (2012)	Y	Y	Y	Y	Y	Y	Y	Y	8	0	0	0
Friedmann et al. (1987)	Y	Ν	Y	Y	Y	Ν	Y	NA	5	2	0	1
Garbalosa et al. (1996)	Ν	Y	Y	Y	Ν	Ν	Y	Y	5	3	0	0
Kelly et al. (2000)	Y	Y	Y	Y	Y	Ν	Y	Y	7	1	0	0
Mueller et al. (1997a)	Y	Y	Y	Y	Ν	Ν	Y	Y	6	2	0	0
Mueller et al. (1997b)	Y	Y	Y	Y	Ν	Ν	Y	Y	6	2	0	0
Mueller et al. (1998)	Y	Y	Y	Y	Y	Ν	Y	Y	7	1	0	0
Pinzur et al. (1992)	Ν	Y	Y	Y	Y	Y	Y	U	6	1	1	0
Pinzur et al. (1997)	Ν	Y	Y	Y	Y	Y	Y	NA	6	1	0	1
Salsich et al. (1997)	Y	Y	Y	Y	Y	Ν	Y	Y	7	1	0	0
Tang et al. (2004)	Y	Y	Y	Y	Y	Ν	Ν	Y	6	2	0	0
		Amp	outati	on Le	evel:	Chop	art					
Burger et al. (2009)	Y	Y	Y	Y	Ν	N	Y	y	6	2	0	0
- , ,		A	mputa	ation	Leve	I: Ra	v					
Aprile et al. (2018)	Y	Y	Y	Y	Y	Y	Ŷ	Y	8	0	0	0
Ramseier et al. (2004)	Y	Y	Y	Y	Ν	Ν	Y	NA	5	2	0	1
× 7		Am	puta									
Burnfield et al. (1998)	Y	Y	Y	Y	N	N	Y	Y	6	2	0	0
Dillon et al. (2006a)	Y	Y	Y	Y	N	N	Y	U	5	2	1	0
Dillon et al. (2006b)	Y	Y	Y	Y	N	N	Y	U	5	2	1	0
Dillon et al. (2008a)	Y	Y	Y	Y	Y	Y	Y	Y	8	0	0	0
Greene and Cary (1982)	Y	Y	Ŷ	Ŷ	N	N	N	NA	4	3	0	1
Kanade et al. (2006)	Ŷ	Ŷ	Y	Y	Y	Y	Y	Y	8	0	0	0
Number of studies applying the item	22	25	27	27	15	7	22	15	-	-	·	-
							Ν	Лean SD	6.00 1.67	1.50 1.22	0.33 0.52	0.17 0.41

Y = Yes; N = No; U = Unclear; NA = Not Applicable.

Questions from the JBI Checklist: 1. Were the criteria for inclusion in the sample clearly defined? 2a. Were the study subjects and setting described in detail? 3. Was the exposure measured in a valid and reliable way? 4. Were objective, standard criteria used for measurement of the condition? 5. Were confounding factors identified? 6. Were strategies to deal with confounding factors stated? 7. Were the outcomes measured in a valid and reliable way? 8. Was appropriate statistical analysis used?

Supplementary file S5. Summary of key findings from the included studies.

Author	Level of amputation	Comparison	Key findings	Study limitations	Conclusions
Amputation Leve	el: Toe/Great Toe				
Ademoglu et al 2000	Great toe	Successful replanted toe vs. failed replantation	↓ MTP and IP ROM in replanted toes. No significant difference in navicular index, cuboid index, height of first MT head, interMT angles, sesamoid migration. ↑ loading of 2 nd -5 th MT heads and laterally displaced CoP.	Small sample size. Only one female participant. Limited explanation of statistical analysis.	Amputation of great toe does not appear to effect gait compared to replantation, but changes pressure distribution in foot.
Beyaert et al 2003	Second toe	Operated vs. non- operated contralateral foot	↓ balance duration and ↑ rate of CoP displacement and sway in standing. ↑ gait speed and cadence. Normal kinematics, stride length and single-stance time.	Only includes participants under 13 years. No detail on treatment in first 5 years post- surgery. Both feet operated on in 8/15 so no comparisons with non-operated foot.	Removal of second toe ↓ balance but has no apparent effect on gait.
Chen et al 1991	Second, third and fourth toe	Operated vs non- operated contralateral foot	No significant difference in weightbearing and walking.	Single case study, no quantitative data, measurement device not described, non- operated foot damaged by trauma.	Despite removal of three toes and original transverse arch collapse, ability to walk/run, walk upstairs and stand on one foot remain.
Lavery et al 1995	Great toe (and partial first MT)	Operated vs. non- operated contralateral foot	Peak pressure ↑ under MT heads and 2 nd -5 th toes. ↑ peak pressure under contralateral heel.	Comparison with contralateral foot only. Diabetic participants only.	Pressure distribution changes ↑ complications including ulceration risk.
Lipton et al 1987	Great toe	Pre-operative vs. post- amputation gait	↓ velocity post-amputation, due to ↓ stride length/cadence. ↓ step length of non- operated foot. Average velocity, cadence, step length of the operated foot, and single/double limb stance times, and step width did not significantly change. No change in EMG activity post-surgery.	High number of male participants. Wide range in time since surgery.	Gait changes following great toe replantation were mild.
Mann et al 1988	Great toe	Operated vs. non- operated contralateral foot	↑ pressure under 3 rd MT head on operated side and ↓ velocity of movement of CoP (↑ loading). CoP progression noted beneath 3 rd MT head on operated side, instead of medially and distally towards first web space.	High number of male participants. Gait analysis performed in only 7/10 participants, EMG in 3/10.	Hallux removal at MTP joint causes medial instability due to loss of windlass mechanism, ↑ pressure at MT heads and ↓ gait speed.
Poppen et al 1981	Great toe	Operated vs. non- operated contralateral foot	Second MT joint in 8° varus. ↑ dorsiflexion of 2 nd MTP joint. ↓ Navicular and cuboid index. ↑ pressure under 2 nd /3 rd MT heads. No change in gait pattern.	Small sample size. Large range in time since amputation. No detail on gait analysis techniques.	Pressure distribution changes (2 nd and 3 rd MT heads) but gait unchanged with unilateral great toe amputation.

Forczek et al	MTP (bilateral)	Barefoot walking vs shod	Walking velocity ↑ during shod walking	Single case study. Bilateral	Changes in gait from forefoot
2014	(******)	walking	than barefoot. Step frequency/length ↓ during gait without shoes. Single/double support and step time similar. Larger ROM used during shod walking.	amputation, precluding comparison with non-operated foot.	amputation are ↓ when walking shod compared to barefoot. Walking shod utilises larger ROM.
Amputation Leve	el: Transmetatarsal	гтмт	ROW used during shod waiking.		ROM.
Andersen et al 1987	ТМТ	Pre-post surgery	Walking distance improved after surgery in 4 out of 5 patients; they achieved almost normal heel-toe gait. None complained of imbalance.	Sex not reported, small study. No objective gait analysis. 3 out of 5 bilateral amputations, precluding comparison with non-operated foot.	TMT amputation to reduce pair and improve walking distance recommended in patients with deformed feet due to RA.
Czerniecki et al 2012	ТМТ	Pre-post surgery	Ambulation improved after surgery but did not return to premorbid levels. Little difference in ambulation outcome between TT and TMT amputees.	Sex not reported, final numbers with partial amputation that finished study not reported.	Importance of salvaging the TMT amputation level to preserve ambulation questioned in situations where revascularisation is required to enable healing.
Friedmann et al 1987	ТМТ	Operated vs. non- operated contralateral foot	Single-stance duration ↓ on amputated and non-amputated foot, compared with non-amputated reference. ↓ heelstrike to forefoot contact, ↑ midstance and ↓ propulsive phase in amputated feet, with ↑ contralateral swing phase. ↑ pressure in MT heads compared to non-amputated feet.	Low response rate and few participants fully assessed. No age data. Absolute pressure levels not included. No SD or Cls. Persons with diabetes compared to healthy population, no controls.	TMA leads to lateral, forefoot and midfoot instability and compromised propulsion through the amputated foot.
Garbalosa et al 1996	ТМТ	Operated vs. non- operated contralateral foot	↑ peak mean plantar pressure, ↓ heel and ↑ forefoot peak plantar pressure in the amputated feet Significantly ↑ maximum dynamic dorsiflexion (90% vs 70%) and similar static ankle ROM in intact feet.	No control group. Heterogeneity in the relative lengths of the residual MTs did not allow any further insight into the issue of the optimal contour of the residual MTs.	↓ heel and ↑ forefoot peak plantar pressure in TMA feet due to lack of dynamic dorsiflexion ROM causing heel to not be fully loaded ("functional equinus").
Kelly et al 2000	ТМТ	Participants with TMA vs controls	Persons with diabetes and TMA walked more slowly than controls. Peak Plantar Pressure and timing were similar. Peak force occurred earlier on amputated side and gait speed significantly J. No difference in peak force between groups.	Diabetes may be a confounding factor. Large range of time since amputation. Different walking speeds ↓ ability to compare peak plantar pressures.	Participants with TMA walk more slowly than non- amputated participants and may explain similar peak pressures between groups.
Mueller et al 1997a	ТМТ	Comparison between five different footwear combinations	Experimental footwear combinations produced ↓ peak plantar pressure on amputated foot compared with regular shoe with toe-filler. No differences in peak plantar pressure between experimental footwear conditions found.	No control group used. Only forefoot measurements were gathered. Large range of time since last amputation (2-132 months).	Therapeutic footwear ↓peak plantar pressure compared to normal shoes. Total contact area of footwear with foot appears important for ↓ peak plantar pressure.

			Long shoe with rigid rocker bottom sole, and both short shoe combinations produced faster walking speeds than normal shoes with toe filler.		
Mueller et al 1997b	ТМТ	Participants with TMA vs controls	↓ functional reach scores, and Physical Performance Test scores versus controls (walking with a turn, picking up a penny and climbing stairs). Participants with amputation walked at 68% speed of controls.	Presence of diabetes itself may be a confounding factor. High presence of neuropathy in amputation group.	Participants with TMA showed deficits in functional tasks versus controls, due to shortened foot length or co- morbidities.
Mueller et al 1998	ТМТ	Participants with TMA vs control participants	 ↓ plantar flexion ROM, peak plantar flexor moment, and peak plantar flexor power in the late stance phase after amputation. Hip flexor moment initiated earlier in stance phase and slower gait speeds and step lengths noted compared to controls. 	Presence of diabetes may be a confounding factor. High presence of neuropathy in amputation group. Only assessed sagittal plane movement.	Participants with diabetes and TMA had ↓ contribution to gait from plantar flexors and hip compensation may be used to advance the leg.
Pinzur et al 1992	Midfoot(5), Syme(5), BKA(5), TKA(5), AKA(5)	Midfoot amputation vs. Syme amputation vs. BKA vs. TKA vs AKA vs. diabetic participants without amputation	Walking speed, stride length and cadence ↓ with more proximal amputation. Metabolic cost of walking ↑ with more proximal amputation and at ↑ energy demand than non-amputated controls.	No testing for statistical significance of results, or significance of difference between groups.	Walking capacity related to level of amputation, therefore preservation of limb via more distal amputation levels may lead to better function.
Pinzur et al 1997	Midfoot(5), Syme(6)	Midfoot amputation vs. participants with Syme amputation	Syme amputation linked to initial loading through centre of prosthetic heel, progressing along midline of prosthetic foot. GRF corresponded with push off. Midfoot amputation had similar early CoP distribution to healthy participants and initial floor contact at lateral border of heel, with CoP moving to midline before progressing distally, then moving medially to area under the residual first MT.	No numerical data given. Presence of diabetes and severe peripheral vascular disease may be confounding factors. Does not report control subject data.	Pressure data may explain ↑ energy cost of walking with midfoot amputation due to shortened lever versus rigid complete prosthetic foot. Level of walking and function should be considered when selecting amputation level.
Salsich et al 1997	ТМТ	None	Hip extension strength correlated with walking speed and physical performance scores. Functional reach correlated with hip extension, flexion and abduction. Physical test scores correlated with hip flexion, knee flexion and extension and ankle dorsiflexion. Walking speed correlated with hip flexion, abduction, knee flexion and extension and ankle dorsiflexion.	Does not detail testing position for strength testing. No controls, therefore unable to say if correlations are different in amputated population.	Hip extension strength is important in controlling gait speed as well as other functional tasks after TMA. There is a correlation with lower limb muscle strength and gait speed / function.
Tang et al 2004	ТМТ	(1) Participants with amputation vs control	Participants with amputation did not differ from controls in walking velocity and step	Only males included. Adequate control group (healthy	TMA significantly ↓ plantar flexion power during gait. Use

		participants; (2) amputated foot vs non- amputated foot; (3) barefoot vs walking with shoe vs walking with prosthesis	length. Walking barefoot ↓ ankle ROM compared with walking with footwear or prosthesis. Better gait symmetry was achieved with prosthesis than when barefoot. Ankle power ↓ versus controls, and lower when barefoot than shod.	participants with traumatic amputation vs healthy controls)	of footwear can improve this but reductions may still exist and be more pronounced during high demand activities.
Amputation Leve					
Burger et al 2009	Chopart	Barefoot vs. silicone prosthesis vs. footwear with conventional prosthesis vs. footwear with silicone prosthesis	Use of a silicone prosthesis ↑ step length of amputated foot and gait velocity when compared to barefoot walking. Cadence and step length of the intact foot were ↑ but not significantly. Use of silicone prosthesis when wearing footwear ↑ all parameters compared to conventional foot prostheses. Silicone prosthesis ↑ ankle ROM, hip ab/adduction ankle moment and ankle power compared to barefoot walking.	Small sample size. No control group for comparison of results to normal data.	Use of a silicone prosthesis ↑ gait speed, step length, ankle range and ankle power as well as other parameters compared to barefoot walking or conventional prosthesis.
Amputation Leve					
Aprile et al 2018	First Ray	Participants with diabetes and amputation vs. participants with diabetes and no amputation vs. healthy controls	Amputated participants with diabetes showed ↓ quality of life, ↓ ROM, ↑ pain scores versus diabetic participants, greater variability in, and shorter step length, larger step width, and slower walking speeds than non-amputated participants with diabetes or healthy participants.	Small sample size per group.	First ray amputation leads to negative changes in gait parameters compared to healthy subjects and those wit diabetes without amputation.
Ramseier et al 2004	Ray	Operated vs. non- operated foot of participants	All participants show almost normal gait, with the centre of pressure shifting laterally in the foot in two of the four cases.	Small sample size. Wide age range in participants. Lack of justification as to how 'normal gait' was defined.	Ray resection causes mild changes to pressure distribution during gait, but functionally has little effect on gait.
Amputation Leve					
Burnfield et al 1998	Toe, TMT	Participants with toe amputation vs. participants with TMA vs. healthy participants	Participants with TMA showed ↑ peak load forces for non-amputated foot, and ↓ isometric plantar flexion torque for amputated foot. Participants with toe amputation had no differences in peak load force or isometric plantar flexion torque. Both amputated groups had ↓ walking velocities, cadence and stride length compared to healthy control.	Data not provided as absolute values but as percentages. Presence of diabetes could be a confounding factor when control group consisted of healthy subjects without diabetes.	Forefoot rocker preservation may ↓ limb loading and ↓ risk of skin breakdown.
Dillon et al 2006a	MTP(1), TMT(1), Lisfranc(4), Chopart(2)	Participants with partial foot amputation vs. healthy participants	In participants with MT head amputation, power generation was negligible in affected limbs. This was compensated for	High variability in terms of amputation level and small sample size. Wide variance in	Amputation that preserves the MT heads does not affect power generation at ankle

Page 46	5
---------	---

			by ↑ hip force generation. Participants with preserved MT heads did not demonstrate differences in power at ankle compared to non-amputated controls.	years since amputation. Gait of evaluated while wearing prosthetic replacement. Type of prosthetic may be confounding factor.	compared to non-amputated gait. With MT heads amputated, power generation at ankle was negligible regardless of foot length.
Dillon et al 2006b	MTP(1), TMT(1), Lisfranc (4), Chopart (2)	Participants with partial foot amputation vs. healthy participants	In participants with MTP, TMT and Lisfranc amputation, CoP progressed in intact foot at initial swing phase. After loading, CoP did not progress distally. In TMT and Lisfranc amputated feet, GRF did not continue along length of foot but at distal end through stance phase. Chopart amputation allowed progression of CoP similar to intact foot.	Variable amputation levels and small sample size. Wide variance in years since amputation. Gait evaluated while wearing prosthetic replacement. Type of prosthetic may be confounding factor.	Participants with TMA and Lisfranc amputation are unable to effectively utilise forefoot prosthetics to restore normal gait parameters.
Dillon et al 2008	MTP(1), TMT(1), Lisfranc (3), Chopart (2)	Partial foot amputation vs. healthy participants	Significant ↓ in walking velocity observed in subjects with amputation (TMT and Chopart). No change noted in gait cycle duration compared to controls. With MTP amputation there was delay in progression of CoP following midstance, and ↓peak ankle moments during late stance.	Variable amputation level. Small sample size. Variance in years since amputation. Number of controls not provided. Gait evaluated while wearing their prosthetic replacement. Type of prosthetic may be confounding factor.	TMT/ Lisfranc amputation and toe fillers/slipper sockets linked to inability to progress CoP beyond end of residuum commensurate with peak GRF or generate ankle power. Despite effective forefoot length, with Chopart amputation and clamshell devices power generation negligible at ankle.
Greene et al 1982	Ray, TMT, midtarsal, Lisfranc, Chopart, Syme	Ray or TMA vs. participants with Lisfranc, midtarsal & Chopart amputations vs. participants with Chopart amputations with equinus contracture vs. participants with Syme amputation	Syme amputations linked to ↑ function and mild gait alterations at pelvis and knee. TMT or ray amputations had ↑ function with prolonged knee extension at heel off and ↑ knee flexion at toe off. Lisfranc, midtarsal or Chopart amputations demonstrated acceptable gait mechanics but ↓ co-ordination and gait smoothness. Chopart amputation with equinus contracture had ↓ functional activity, and gait speed compared to other groups.	No control group. One participant with Lisfranc amputation in group 1 not group 2. No analysis. Gait analysis via subjective methods.	Conversion to Syme may benefit patients with Chopart amputation with equinus contracture but is unlikely to benefit those without equinus contracture or more distal amputation.
Kanade et al 2006	First two toes(1), all five toes(1), great toe(5), ray(1), TMT(5)	Diabetic neuropathy and no ulcer vs. participants with diabetic foot ulcer vs. participants with diabetes and partial foot amputation vs. participants with diabetes	Total HBI as an indicator of energy expenditure showed an ↑ across groups from participants with diabetes but without ulcer, to trans-tibial amputation. Daily strides and gait velocity ↓ suggesting lower activity levels. Participants with partial foot amputation showed ↑ plantar pressure than	Cross-sectional design rather than longitudinal study. Groups were matched; however, the distribution of type 1 and type 2 diabetes does not appear matched.	Measures of energy expenditure, daily activity, walking speed and peak pressure show less desirable outcomes as participants with diabetes progress from neuropathy alone, through ulceration, partial foot

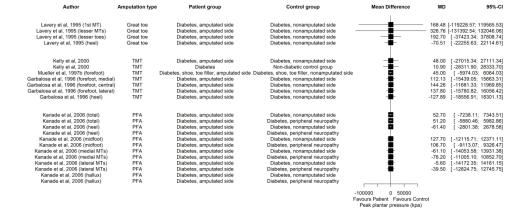
and trans-tibial	participants with neuropathy and active	amputation and trans-tibial
amputation	ulceration.	amputation.

AKA: Above Knee Amputation; BKA: Below knee Amputation; CIs: Confidence Intervals; CoP: Centre of pressure; EMG: Electromyography; GRF: Ground Reaction Force; HBI: Heart Beat Index; IP: Interphalangeal; MT: Metatarsal; MTP: Metatarsophalangeal; RA: Rheumatoid Arthritis; ROM: Range of Motion; SD: Standard Deviation; TKA: Through Knee Amputation; TMA: Transmetatarsal amputation; TMT: Transmetatarsal; TT: Transtibial.

Author	Amputation type	Patient group	Control group	Mean Difference	MD 95%-Cl
Lipton et al, 1987 Mann et al, 1988	Great toe Great toe	Healthy, post-surgery (percentages only) Healthy, post-surgery	Pre-surgery (percentages only) No control group		
Beyaert et al, 2003	Second toe	Healthy children, post-surgery	No control group		
Forczek et al, 2000	Great toe, several other toes	Frostbite, post-surgery, barefoot	With shoes		-0.17
Burnfield, et al, 1998	Toe	Diabetes (percentages only)	Age-matched controls (percentages only)		
Aprile et al, 2018 Aprile et al, 2018	1st ray 1st ray	Diabetes Diabetes	Diabetes Healthy controls		-0.28 [-0.53; -0.03] -0.34 [-0.61; -0.07]
Greene & Cary, 1982	1st ray / MTP	Healthy children	No control group		
Dillon & Barker, 2008	MTP	Gangrene	Age, height-, weight- and sex-matched controls		-0.01
Kelly et al, 2000	TMT	Diabetes	Non-diabetic control group		-0.41 [-0.46; -0.36]
Salsich et al, 1987	TMT	Diabetes	No control group	-	-0.41 [-0.40, -0.00]
Mueller et al, 1997a & 1998	TMT	Diabetes	Age-matched controls		-0.40 [-0.43; -0.37]
Tang et al, 2004 (barefoot)	TMT	Trauma	Age, height, and weight-matched controls	+	-0.31 [-0.35; -0.27]
Tang et al, 2004 (with shoe)	TMT	Trauma	Age, height, and weight-matched controls	•	-0.40 [-0.44; -0.36]
Burnfield, et al, 1998 Dillon & Barker, 2008	TMT	Diabetes Trauma	Age-matched controls Age, height-, weight- and sex-matched controls		-0.19
Dilion & Barker, 2006	T M T	Trauma	Age, neight-, weight- and sex-matched controls		-0.19
Pinzur et al, 1992 (self-selected speed)		Peripheral vascular disease (PVD)	Aged-matched controls with PVD		-0.02
Pinzur et al, 1992 (max speed)	Midfoot	Peripheral vascular disease (PVD)	Aged-matched controls with PVD	'	-0.19
		_			
Dillon & Barker, 2008 Dillon & Barker, 2008	Lisfranc Lisfranc	Trauma Trauma	Age, height-, weight- and sex-matched controls Age, height-, weight- and sex-matched controls		-0.02 -0.09
Dillon & Barker, 2008	Lisfranc	Trauma	Age, height-, weight- and sex-matched controls Age, height-, weight- and sex-matched controls		-0.02
Dillori di Darkor, 2000	Lianding	riadina	Age, neight-, weight- and sex-matched controls		-0.02
Greene & Cary, 1982	LisFranc/Chopart	Healthy children	No control group		
Greene & Cary, 1982	Chopart	Healthy children	No control group		
Burger et al, 2009	Chopart	Trauma	Barefoot, with silicone prosthesis	-	-0.29 [-0.35; -0.23]
Burger et al, 2009	Chopart	Trauma	Wearing footwear with conventional prosthesis		-0.10 [-0.17; -0.03]
Burger et al, 2009	Chopart	Trauma	Wearing footwear with silicone prosthesis		-0.27 [-0.35; -0.19]
Dillon & Barker, 2008	Chopart	Gangrene	Age, height-, weight- and sex-matched controls		-0.12
Dillon & Barker, 2008	Chopart	Trauma	Age, height-, weight- and sex-matched controls		-0.19
Kanade et al, 2006	PFA	Diabetes	Diabetes, peripheral neuropathy		-0.20 [-0.23; -0.17]
				0.6 -0.4 -0.2 0 0.2 0.4 Slower Faster Gait speed (m/s)	0.6

Author	Amputation type	Patient group	Control group	Mean Difference	MD 95%-CI
Lipton et al, 1987 Mann et al, 1988	Great toe Great toe	Healthy, post-surgery (percentages only) Healthy, post-surgery, amputated side	Pre-surgery (percentages only) Healthy, post-surgery, non-amputated side		
Beyaert et al, 2003	Second toe	Healthy children, post-surgery	No control group		
Burnfield, et al, 1998	Тое	Diabetes (percentages only)	Age-matched controls (percentages only)		
Aprile et al, 2018 Aprile et al, 2018	1st ray 1st ray	Diabetes Diabetes	Diabetes Healthy controls		-5.73 -3.61
Dillon & Barker, 2008	MTP	Gangrene	Age, height-, weight- and sex-matched controls		-1.90
Dillon & Barker, 2008 Tang et al, 2004 (barefoot) Tang et al, 2004 (with shoe)	TMT TMT TMT	Trauma Trauma Trauma	Age, height-, weight- and sex-matched controls Age, height, and weight-matched controls Age, height, and weight-matched controls		-4.90
Dillon & Barker, 2008 Dillon & Barker, 2008 Dillon & Barker, 2008	Lisfranc Lisfranc Lisfranc	Trauma Trauma Trauma	Age, height-, weight- and sex-matched controls Age, height-, weight- and sex-matched controls Age, height-, weight- and sex-matched controls		-1.90 0.40 3.90
Dillon & Barker, 2008 Dillon & Barker, 2008 Burger et al, 2009 Burger et al, 2009 Burger et al, 2009 Burger et al, 2009	Chopart Chopart Chopart Chopart Chopart Chopart	Gangrene Trauma Trauma Trauma Trauma Trauma	Age, height-, weight- and sex-matched controls Age, height-, weight- and sex-matched controls Barefoot, with silicone prosthesis Barefoot, with silicone prosthesis Wearing footwear with onventional prosthesis Wearing footwear with silicone prosthesis		-2.00 -8.46 0.70 [-102.44; 103.84] 0.20 [-267.70; 268.10] 0.70 [-102.67; 104.07] - 0.00 [-285.26; 285.26]
Pinzur et al, 1992 (self-selected speed) Pinzur et al, 1992 (max speed)	Midfoot Midfoot	Peripheral vascular disease (PVD) Peripheral vascular disease (PVD)	Aged-matched controls with PVD Aged-matched controls with PVD	-200 -100 0 100 200 Slower Faster Cadence (steps/minute)	

Author	Amputation type	Patient group	Control group	Mean Difference	MD	95%-CI
Mueller et al, 1998	TMT	Diabetes	Age-matched controls	-	-1.32	[-1.43; -1.21]
Burger et al, 2009 Burger et al, 2009 Burger et al, 2009	Chopart Chopart Chopart	Trauma - Barefoot Trauma - Barefoot Trauma - Barefoot	Barefoot, silicone prosthesis Footwear, conventional prosthesis Footwear, silicone prosthesis	-1 -0.5 0 0.5 1 Favours Patient Favours Cor Ankle power (W/kg)	-0.06 -0.53	[-0.50; -0.42] [-0.07; -0.05] [-0.63; -0.43]


1076x861mm (118 x 118 DPI)

1076x861mm (118 x 118 DPI)

Author	Amputation type	Patient group	Control group	Mean Difference	MD 95%-CI
Lipton et al, 1987 Mann et al, 1988 Poppen et al, 1981	Great toe Great toe Great toe	Healthy, post-surgery (percentages only) Amputated foot Amputated foot	Pre-surgery (percentages only) Nonamputated foot Nonamputated foot		1.00
Forczek et al, 2000	Great toe, several other toes	Frostbite, post-surgery, barefoot	Forstbite, post-surgery, with shoes		-9.00
Aprile et al, 2018 Aprile et al, 2018	1st ray 1st ray	Diabetes Diabetes	Diabetes Healthy controls	2	-0.38 [-0.64; -0.12] -0.50 [-0.77; -0.23]
Mueller et al, 1998 Tang et al, 2004 (barefoot) Tang et al, 2004 (with shoe) Tang et al, 2004 (with prosthesis)	TMT TMT TMT TMT	Diabetes Trauma Trauma Trauma	Age-matched controls Age, height, and weight-matched controls Age, height, and weight-matched controls Age, height, and weight-matched controls		-14.00 [-86.07; 58.07] 3.00 [-80.23; 86.23] 11.00 [-67.49; 89.49] -5.00 [-176.41; 166.41]
Burger et al, 2009 Burger et al, 2009 Burger et al, 2009 Burger et al, 2009	Chopart Chopart Chopart Chopart	Trauma Trauma Trauma Trauma	Barefoot, with silicone prosthesis Barefoot, with silicone prosthesis Wearing footwear with conventional prosthesis Wearing footwear with silicone prosthesis		3.00 [-134.11; 140.11] 11.00 [-113.57; 135.57] 10.00 [-141.32; 161.32] 10.00 [-71.93; 91.93]
			F	-150 -50 0 50 100 150 avours Patients Favours Contr Step length (m)	

Author	nor Amputation type Patient group		Control group	Mean Difference	MD 95%-CI
Lipton et al, 1987 Mann et al, 1988 Poppen et al, 198	Great toe Great toe Great toe	Healthy, post-surgery (percentages only) Healthy, post-surgery Healthy, post-surgery	Pre-surgery (percentages only) No control group No control group		
Beyaert et al, 2003	Second toe	Healthy children, post-surgery (percentages only)	No control group		
Aprile et al, 2018 Aprile et al, 2018	1st ray 1st ray	Diabetes (percentages only) Diabetes (percentages only)	Diabetes (percentages only) Healthy controls (percentages only)		
Dillon & Barker, 2008	MTP	Gangrene	Age, height-, weight- and sex-matched controls		0.00
Friedmann et al, 1989 Dillon & Barker, 2008	TMT TMT	Diabetes (percentages only) Trauma	No control group Age, height-, weight- and sex-matched controls		0.03
Dillon & Barker, 2008 Dillon & Barker, 2008 Dillon & Barker, 2008	Lisfranc Lisfranc Lisfranc	Trauma Trauma Trauma	Age, height-, weight- and sex-matched controls Age, height-, weight- and sex-matched controls Age, height-, weight- and sex-matched controls	* *	-0.02 0.02 -0.01
Dillon & Barker, 2008 Dillon & Barker, 2008	Chopart Chopart	Gangrene Trauma	Age, height-, weight- and sex-matched controls Age, height-, weight- and sex-matched controls	-0.4 -0.2 0 0.2 0.4 Favours Patient Favours Con	
				Stance time (s)	101

