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ABSTRACT 

Objectives Effective allometry research relies on appropriate size variables; however, 
two of the largest obstacles in subadult (ontogenetic) allometry research is small sample 
sizes and unknown dimensions. This study overcomes a barrier of ontogenetic 
allometry research by proposing alternative size variables that do not require additional 
calculations for use in subadult allometry research and retain general patterns among 
long bones when stature is used for size..   

Materials and Methods Diaphyseal measurements, stature, and age were collected 
from computed tomography (CT) and full-body radiographic images for a sample of 
subadults between birth and 13 years from the United States (U.S., n = 308) and South 
Africa (Z.A., n = 25). Nineteen alternative size variables were evaluated using reduced-
major-axis regression to identify the closest one-to-one relationship to stature. The 
applicability across samples was then evaluated using the selected alternative size 
variables. 

Results Radius midshaft breadth (RMSB), femur midshaft breadth (FMSB), and the 
geometric mean of midshaft breadths (GM midshaft) yielded the closest isometric 
relationships to stature. Allometric relationships among long bones are maintained when 
using stature, FMSB, and GM midshaft as size variables for both the U.S. and Z.A. 
samples.  

Discussion A large, modern dataset facilitated an investigation into alternative size 
variables that can be used for single-bone ontogenetic allometry. Generalizability of the 
model suggests FMSB and GM midshaft are persistent across populations. This 
methodology identifies alternative size variables appropriate for other allometry 
research and offers a robust approach even when historically relied upon size variables 
are unknown.  
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1 INTRODUCTION 

 Allometry is the study of biological change in relation to size and produces 
proportional (size independent) measures suitable for comparison within and among 
groups under study (Bonner & Horn, 2000; Brown & West, 2000; Gayon, 2000; 
Huxley, 1932; Stevens, 2009). Allometry research is generally partitioned into one or 
more sub-categories (Gould, 1966; Klingenberg & Zimmermann, 1992): (a) static, which 
often involves group comparisons among the same age or life history stage; (b) 
evolutionary, which investigates change over time; and (c) ontogenetic, which evaluates 
the change in proportions through growth and development. In biological anthropology, 
skeletal limb allometry is used to explore questions of hominin evolution (e.g. 
Holliday, 1997; Holliday & Franciscus, 2009; Little, 2020), secular change (e.g. Jantz & 
Devlin, 2016; Jantz & Meadows Jantz, 2017; Meadows & Jantz, 1995), human variation 
(e.g. Auerbach, 2012; Livshits et al., 2002; Seguchi et al., 2017; Tilkens et al., 2007), 
and growth and development (e.g. Bareggi et al., 1996; Frelat & Mitteroecker, 2011; 
Temple et al., 2011; Waxenbaum et al., 2019). Huxley's (1932) allometry equation is 
used across disciplines, and in all three sub-categories, to explore bivariate 
relationships between the feature of interest (y) and a size variable (x): 

𝑦 𝑏𝑥  (1)

1.1 Size Variables 

The most common size variables across allometry research are body mass 
(Holliday & Franciscus, 2009; Ruff, 1991, 2002; Watkins & German, 1992; Yim et 
al., 2021) and a length measure, such as stature (Bogin & Baker, 2012; 
Buschang, 1982; Holliday, 1999; Meadows & Jantz, 1995). Unless working with a 
documented skeletal collection, which is not possible for paleoanthropologists and less 
common for bioarchaeologists, size variables are often calculated using linear 
regression methods (Elliott, Kurki, Weston, & Collard, 2016; Konigsberg et al., 1998; 
Lacoste Jeanson et al., 2017; Lundy, 1985), which may introduce sources of error 
because of incompatible reference samples or wide confidence intervals (Moore & 
Ross, 2012; Pelin & Duyar, 2003; Schaffer, 2016). 

The geometric mean of measures under investigation (e.g. long bone lengths) 
has also been used as a size variable and does not require a linear regression 
calculation (Jungers et al., 1995; Sylvester et al., 2008; Temple et al., 2008). Yet, it has 
been shown that the geometric mean can produce a size variable dependent on the 
measures of interest and can also generate allometry coefficients that are difficult to 
interpret biologically (Auerbach & Sylvester, 2011; Coleman, 2008). For example, if an 
individual has a proportionally short femur, the geometric mean will be smaller than it 
should be, potentially inflating the calculation of positive and negative allometric 
relationships. Further, it is difficult to understand what a one-unit change in the 
geometric mean means in relation to changes in the length of a long bone; the 
geometric mean is not a tangible biological dimension.  
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1.2 Ontogenetic Allometry 

Ontogenetic allometry ideally uses longitudinal data for explorations of individual-
level heterogeneity (e.g. Bareggi et al., 1996; Cheverud, 1982; Jungers & Fleagle, 1980; 
Pélabon et al., 2013). Due to sampling constraints, cross-sectional data covering 
multiple stages of growth and development may be used to approximate ontogenetic 
allometry patterns, sometimes referred to as indirect ontogenetic allometry (Brown & 
Vavrek, 2015; Gould, 1966; Klingenberg, 1998; Pélabon et al., 2013). Indirect 
ontogenetic allometry is commonly used for investigations of extant species (e.g. Brown 
& Vavrek, 2015; Goodwin et al., 2006; Padian & Horner, 2011) because of limitations in 
sample availability and is the framework used for the present study. This study aims to 
address the persistent problems in selecting an appropriate size variable for ontogenetic 
allometry research. Methods for estimating subadult body mass and stature are not 
accurate and therefore do not lead to valid results if incorporated into allometry research 
(Cowgill, 2018; Langley, 2017; Robbins et al., 2010; Yim et al., 2021). As an alternative, 
many subadult allometry studies investigating bivariate relationships continue to use the 
brachial or crural index (e.g. Bleuze et al., 2014; Cowgill, 2018; Frelat & Mitteroecker, 
2011; Temple et al., 2011), in which the size variable is the proximal element. This 
region-specific method makes it difficult to interpret individual-level patterns of 
ontogenetic allometry. In addition, region-specific size variables make it difficult to 
observe the ontogeny of individual elements that make up these indices, which is 
important for linking ontogenetic allometry research to other aspects of biological 
anthropology, such as evolution and adult human variation. The present study proposes 
an alternative size variable for modern ontogenetic allometry investigations to overcome 
the current limitations of undocumented skeletal collections by demonstrating an 
analytical approach that is robust even when historically relied upon size variables are 
unknown. 

 

2 MATERIALS AND METHODS 

2.1 Samples 

 Two samples were used in the current study; one was used to identify alternative 
size variables and the other was used as an external test for inter-country applicability 
of the proposed alternative size variable. Diaphyseal data collected from computed 
tomography (CT) images of 308 subadults aged between birth and 13 years from the 
Subadult Virtual Anthropology Database (SVAD) (Figure 1) (Stull & Corron, 2021a, 
2021b, 2022; Stull, Garvin, & Klales, 2020). These images were generated at the 
University of New Mexico Health Sciences Center, Office of the Medical Investigator 
and are part of the New Mexico Decedent Image Database (Berry & Edgar, 2021; Edgar 
et al., 2020) and are used to represent subadults from the United States (U.S.). 
Diaphyseal data from an additional sample of 25 subadults also aged between birth and 
13 years-old and curated in the SVAD were used as the external test of the inter-country 
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applicability of the proposed alternative size variables identified with the U.S. sample. 
These data were originally collected from Lodox Statscan images (full-body 
radiographs) generated from the Red Cross War Memorial Children's Hospital in Cape 
Town, South Africa (Z.A.) (Stull et al., 2014). Age at death and stature were also 
recorded for both samples. Stature for the U.S. sample is represented as cadaveric 
stature at the time of intake at the medical examiner's office, whereas Z.A. stature was 
taken directly from full-body radiographs and include soft tissue for closer approximation 
to cadaveric stature (Stull, 2013). Both samples consist of pooled sex, as reliable 
methods of estimating sex from subadult remains have yet to be established (Cardoso 
& Saunders, 2008; Klales & Burns, 2017; Stull, Cirillo, et al., 2020; Stull & 
Godde, 2013).  

 

Figure 1. Sample age distributions by country 
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The U.S. and Z.A. have substantially different population histories (Mendes 
Fialho, 2017), ecogeographic locations (Cui et al., 2021), and socioeconomic structures 
(Assari & Moghani Lankarani, 2015; Moghani Lankarani et al., 2017), which make them 
good candidates for generalization of the proposed alternative size variable. Admittedly, 
the authors recognize the sampling biases in age and the lack of country-level diversity 
captured in the two samples. The U.S. sample is more representative of local population 
demographics in Albuquerque, New Mexico, than the entire country. Similarly, the Z.A. 
sample is more representative of local demographics of Cape Town than the entire 
country. While diversity and appropriate representation of larger countries/populations is 
normally considered paramount, in this situation, the identified size variables ideally 
should be – need to be – independent of extrinsic and intrinsic population-level and age-
level characteristics. Therefore, while population and sampling biases exist, they should 
not impact the methodology. 

2.2 Methodology 

All computational analyses were conducted in R (R Core Team, 2021) and 
RStudio® (RStudio Team, 2020). The US sample was split into 10-folds (k = 10) for 
model development using the caret package in R (Kuhn, 2020). Each individual had a 
potential of 15 measurements collected from the medical images (i.e. CT or full-body 
radiographs), including both breadths and lengths (see Stull et al., 2014 for 
visualizations) (Table 1). All breadth measurements were evaluated as a potential 
alternative size variable (Table 2). Lengths were not included as potential alternatives 
because Auerbach and Sylvester (2011) previously showed the biologically confounding 
results of using the geometric mean of long bone lengths in allometric research. In 
contrast, the use of the geometric mean of long bone breadths as a size variable has 
not yet been tested to the knowledge of the authors. Exploring breadth measures also 
prevents biologically difficult interpretations of allometry coefficients created by using 
the same measures for both the numerator and denominator (e.g. FDL/FDL will always 
equal 1). 
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Table 1. Measurement definitions and abbreviations for each dimension, as published by Stull 
et al. (2014) and Stull and Corron (2021a). See original publication for visualizations and 
commentary/advice 

 

 

Table 2. Alternative size variables tested in the present analysis 

 

 

Because the US sample consists of all complete cases (all 15 potential measurements 
available), the authors tested the use of the geometric mean using different 
combinations of breadth measurements (Table 2): all breadths (“All”), proximal breadths 
(“Proximal”), midshaft breadths (“Midshaft”), distal breadths (“Distal”), femur breadths 
(“Femur”), tibia breadths (“Tibia”), humerus breadths (“Humerus”), and radius breadths 
(“Radius”). The geometric mean (GM) is calculated as the nth root of the product of all i 
variables (Equation (2)): 
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GM 𝑥 𝑥 ⋯ 𝑥  (2)

 

In total, 19 alternative size variables consisting of breadths and geometric mean 
calculations, were tested. All measures were subsequently transformed into natural-log 
space, as recommended by Huxley (1932) to transform the power-law equation 
(Equation (1)) to a linear equation (Equation 3): 

ln 𝑦 𝛼 ln 𝑥 ln 𝑏  (3)

  

Mardia (1970) and Henze and Zirkler (1990) tests and the visualization of a 
multivariate Chi-square quantile–quantile (“Q-Q") plot (Rani Das & Rahmatullah 
Imon, 2016; Stine, 2017) were used to evaluate multivariate normality using the MVN 
package (Kormaz et al., 2014). Correlation coefficients were calculated using Kendall's 
tau, which does not assume a normal data distribution, between stature and all potential 
size variables to identify the best alternative.  

Reduced-major-axis (RMA) regression was used for model construction, 
meaning that alternative size variables (y) were regressed on stature (x) (Equation (4), 
as an example). RMA is a common regression method used in biological anthropology 
because it assumes equal levels of error for both x and y (Aiello, 1992; Sjøvold, 1990), 
and is most appropriately used when the variables are significantly correlated and there 
is a large sample size (Smith, 2009). RMA models were generated using the lmodel2 
package (Legendre, 2018). 

ln ℎ𝑢𝑚𝑒𝑟𝑢𝑠 𝑑𝑖𝑠𝑡𝑎𝑙 𝑏𝑟𝑒𝑎𝑑𝑡ℎ 𝛼 ln 𝑠𝑡𝑎𝑡𝑢𝑟𝑒 ln 𝑏  (4)

  

All models were first built using the US training sample. Slope (α, “allometry 
coefficient”) and intercept (b) corresponding to each RMA equation were stored for 
subsequent analyses. After all models were generated, the slopes of all potential 
alternative size variables were evaluated to see which was closest to one, representing 
a one-to-one scaling relationship between the size variable and stature. The selected 
alternative size variable was then applied to the U.S. and Z.A. test samples for model 
evaluation.  

 To test the biological validity of the proposed alternative size variable, diaphyseal 
lengths of the humerus, radius, femur, and tibia were regressed against stature, the 
selected alternative size variables, and GM of diaphyseal lengths as size variables. The 
allometric relationship between long bone lengths was visualized to explore whether the 
same pattern was observed using subadult measures, thus providing evidence that the 
selected alternative size variables are appropriate for allometry research (Auerbach & 
Sylvester, 2011).  
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3 RESULTS 

 Results of the Mardia and Henze–Zirkler tests (p < 0.05 for both) and Q–Q plot 
visualization indicated significant deviation from multivariate normality (Figure 2). 
Therefore, nonparametric statistical tests and modeling techniques were chosen for the 
subsequent analyses. Kendall's tau correlations between stature and alternative size 
variables yielded correlation values ranging between 0.80 and 0.87 (Table 3).  

 

Figure 2. Chi-square Q–Q plot to visualize multivariate normality. The solid black line 
represents multivariate normality, and the deviation of the pattern of filled circles indicates non-
normality of the U.S. data 
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Table 3. Allometry coefficients (α) and correlations (r) generated from the respective RMA 
models ranked by allometry coefficient distance to 1.00 

 

 

 

Allometry coefficients from each linear regression model are also summarized in 
Table 3. General trends do not indicate that geometric mean measures outperform 
single breadth measurements. Using RMA, RMSB presented with the closest (to the 
ten-thousandth decimal) one-to-one linear relationship with stature in natural-log space, 
followed by FMSB and the GM of all midshaft breadths (“GM midshaft breadths” in 
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Table 3, Figure 3). The Kendall's tau correlation between stature and the alternative 
size variables are 0.80, 0.84, and 0.84, respectively. Note how the size variables with 
the slope closest to one do not necessarily have the strongest correlation with stature in 
natural-log space (Table 3).  

Figure 3. Bivariate relationship between stature (x) and alternative size variables (y) in log-
normal space. The solid green line represents isometry. Note the magnitude and directionality of 
the black, nonsolid line crossing the isometry line 

 

When comparing the allometry coefficient relationships among long bone 
diaphyseal lengths using the US sample, all three alternative size variables present with 
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the similar magnitudes of inter-long bone relationships (Figure 4a) and the GM of 
diaphyseal lengths shows negative allometry of the upper limb. When applied to the 
Z.A. sample, FMSB and the GM of midshaft breadths demonstrate the closest inter-long 
bone relationship to stature and RMSB and GM of diaphyseal lengths show negative 
allometry of the upper limb (Figure 4b).  

 

Figure 4. Inter-long bone allometric relationships. The solid gray line across slope = 1.0 
represents isometry 

Figure 5 provides a comparison between the allometric relationships of long 
bones for an adult sample from Auerbach and Sylvester (2011) and subadults from the 
present study. Allometric relationships from the present study depict greater positive 
allometry for the proximal elements compared to the distal elements as well a distinct 
separation between the allometry coefficients of the upper and lower limbs, with the 
lower limbs showing overall greater positive allometry compared to the upper limbs. 
This allometric relationship of long bones is not in conjunction with those reported by 
Auerbach and Sylvester (2011), which depict greater positive allometry of the distal 
elements compared to the proximal elements and overlap of the allometry coefficients 
between the upper and lower limbs. 
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Figure 5. Allometry coefficient relationships between long bone diaphyseal lengths from 
averaged coefficients from Auerbach and Sylvester (2011) on the left and the current study on 
the right. The solid gray line across slope = 1.0 represents isometry 

 

4 DISCUSSION 

Results of this study demonstrate FMSB and the GM of midshaft breadths as the 
best alternative size variables to stature for subadult allometry research across two 
geographically diverse samples. The main criteria used in this study to deem a size 
variable suitable for ontogenetic allometry research include (1) having the closest one-
to-one bivariate relationship to stature to approximate isometric relationships with 
stature that therefore, (2) produces similar allometric relationships between long bones 
when using stature as the size variable, and (3) is applicable to more than a single 
sample population. These three criteria will be explored in detail below.  

4.1 (Almost) Isometric 

Results of this study demonstrate that FMSB and GM midshaft breadths are the 
best alternative size variables to stature for subadult allometry research across two 
geographically diverse samples. Choosing an appropriate size variable is important to 
identify deviations from isometry (Fox et al., 2021; Jungers et al., 1995; Jungers & 
German, 1981), as all positive or negative allometric relationships are inferred based on 
departures from a slope of one for stature in logarithmic space and represent a 
biological change in relation to size. Thus, the methodology of this research focused 
more on finding the closest isometric relationship between alternative size variables and 
stature instead of relying on correlation. As is demonstrated in Table 3, no correlations 
between stature and potential alternative size variables fall below 0.80. There are 
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imperceptible differences in allometric relationship among the three proposed 
alternative size variables RMSB, FMSB, and GM midshaft breadths with stature 
(Figure 3). In contrast, GM diaphyseal length has a strong positive allometric 
relationship with stature (coefficient = 1.36, Figure 3), which further suggests against 
using GM diaphyseal length as an alternative size variable when stature is unavailable 
for both adult and subadult studies.  

4.2 Allometric Relationships 

Allometry coefficients of the humerus, radius, femur, and tibia were plotted using 
stature, FMSB, RMSB, GM of midshaft breadth, and GM of diaphyseal length 
(Figure 4). Note that while the general pattern between long bones is also demonstrated 
by GM diaphyseal length, the same instance of negative allometry for some elements 
that Auerbach and Sylvester (2011) demonstrated (see Figure 5) is reproduced when 
using a subadult sample.  

The allometry coefficients for males and females reported by Auerbach and 
Sylvester (2011) were averaged and plotted against the coefficients generated by the 
current study using stature and GM of diaphyseal length as the size variables 
(Figure 5). The general pattern of allometry coefficients for long bones in this study 
presents with proximal elements as more positively allometric than their distal 
counterparts. This observation is the opposite of what was reported in Auerbach and 
Sylvester (2011), though this may be due to a comparison between a static and 
ontogenetic allometry approach. Further, this observation deviates from findings by 
Buschang (1982) that showed the tibia to be more positively allometric than the femur in 
subadults aged between 2 months and 11 years. These differences in allometric 
patterning of long bones demonstrates the importance of identifying alternative size 
variables suitable for ontogenetic (i.e. growth and development) allometry research, as 
we may now begin to explore the underlying causes of fluctuating intralimb (i.e. brachial 
and crural) proportions reported by previous subadult allometry studies (Bleuze et 
al., 2014; Cowgill, 2018; Frelat & Mitteroecker, 2011; Temple et al., 2011) over the 
entire human growth period. 

4.3 Cross-sample Application 

 The final criterion for choosing an appropriate alternative size variable to stature 
in ontogenetic allometry research was the applicability of the size variable to other 
samples. Figure 4b demonstrates that FMSB and GM midshaft breadths, when used as 
a size variable, produce the most-similar inter-long bone allometric relationships to that 
of stature. Greater distance of the allometry coefficients from the stature coefficients 
observed in the Z.A. sample (Figure 4b) may be either be because of population 
differences or differences in the sample distribution of ages. While this sampling bias 
should still be considered, the persistence of FMSB and GM of midshaft breadths 
having the closest relationship to stature further demonstrates the generalizability of 
FMSB to samples from other countries. The multi-sample applicability of FMSB and GM 
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midshaft breadths demonstrated in this study allows for the direct comparison of 
ontogenetic allometry coefficients and trajectories among the U.S. and Z.A. samples. 
Such comparisons may then be used to evaluate periods of similarity and differences in 
growth and development among populations and provide evidence for potential effects 
of intrinsic and extrinsic factors on human variation.  

 

5 CONCLUSION 

 Skeletal allometry research has one obstacle that has persisted through time and 
impacts all types of allometry research: using stature to quantify body size. First, stature 
is not commonly available in skeletal remains or accurately estimated, and second, the 
geometric mean of the long bone lengths has been commonly used instead of stature in 
static allometry research, producing allometric relationships that may be misleading or 
hard to interpret (e.g. negative allometry of the upper limb). Subadult allometry research 
has been primarily limited to brachial and crural indices because of small sample size 
and unknown stature. However, these indices cannot provide the detailed, long bone-
specific information needed to understand certain processes of growth and 
development, such as the establishment of allometric relationships and/or maturation of 
body proportions. Questions regarding periods of developmental plasticity and/or 
canalization of long bone growth may be pursued, and the differential effects of 
maturation events, such as the pubertal growth spurt on the relative growth of long 
bones, may also be explored. The present study provides an alternative size variable to 
further research in subadult allometry to allow for a deeper interpretation of the 
development and relationship of intralimb (i.e. brachial and crural) proportions found in 
the previous subadult allometry studies (Bleuze et al., 2014; Cowgill, 2018; Frelat & 
Mitteroecker, 2011; Temple et al., 2011). 

The current study utilizes a newly developed, freely available database (SVAD) 
to explore alternative size variables and determine that FMSB and GM midshaft 
breadths yield the closest one-to-one relationship with stature. This novel research has 
broad impacts in paleoanthropology, bioarchaeology, and research involving modern 
human variation by providing a valid skeletal measure to use, rather than estimating 
stature, in human skeletal allometry research. Additional areas of inquiry into the 
potential biomechanical and/or evolutionary constraints on the relative development of 
long bones can also be investigated using alternative size variables. Body mass was 
not used in this study as it is even less accurately reported and less accurately 
estimated than stature in subadults. Because stature and body mass do not scale 
isometrically (Bogin, 2005), future investigations should be pursued to understand the 
differences in allometry inferences generated by both size variables. Future research is 
needed to explore these questions, and the present methodology could be conducted 
on a large adult sample with known stature to establish alternative size variables for use 
in adult skeletal allometry research. Importantly, the current study demonstrates that 
these alternative size variables are not population or geographically dependent and 
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should be universally applicable. However, an additional validation study using larger 
test samples and diverse samples would be beneficial. Such steps may help better 
clarify questions of secular change and the evolution of body proportions. 
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