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Abstract

The tenth Ebola outbreak in the Democratic Republic of Congo (DRC) that occurred

from 2018-2020 was exacerbated by long-lasting conflicts and war in the region. We

propose a deterministic model to investigate the impact of such disruptive events on

the transmission dynamics of the Ebola Virus Disease (EVD). It is an extension of the

classical Susceptible-Infectious-Recovered (SIR) model, enriched by an additional class

of contaminated environment to account for indirect transmission as well as two classes

of hospitalized individuals and patients who escape from the healthcare facility due to

violence and attacks perpetrated by armed groups, rebels, etc. The model is formulated

using two patches, namely Patch 1 consisting of the three affected eastern provinces in

DRC and Patch 2, a war- and conflict-free area consisting of the go-to neighbouring

provinces for escaped patients. We introduce two key parameters, the escaping rate from

hospitals and the destruction of hospitals, in terms of which the effect of war and conflicts

is measured. The model is fitted and parametrized using the cumulative mortality data

from the region. The basic reproduction number R0 is computed and found to have a

complex expression due to the high nonlinearity of the model. By using, not a Lyapunov

function, but a decomposition theorem in Castillo-Chavez et al. (2002), it is shown that

the disease-free equilibrium is globally asymptotically stable when R0 < 1 and unstable

when R0 > 1. A nonstandard finite difference scheme which replicates the dynamics

of the continuous model is designed. In particular, a discrete counterpart of the above-

mentioned theorem on the global asymptotic stability of the disease-free equilibrium is

investigated. Numerical experiments are presented to support the theoretical results.
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When R0 > 1, the numerical simulations suggest that there exists for the full model a

unique globally asymptotically stable interior endemic equilibrium point, while it is shown

theoretically and computationally that the model possesses at least a one Patch 1 and

a one Patch 2 boundary equilibria (i.e., Patch 2 and Patch 1 disease-free equilibrium)

points, which are locally asymptotically stable. Some recommendations to tackle Ebola

in a conflict zone are stated.

Keywords: Ebola Virus Disease, conflict dynamics, Patch model, Basic reproduction num-

ber, Stability, Nonstandard finite difference method

AMS Subject Classification: 34A34, 37N25, 65L12, 65L99, 92B05, 92D30

1 Introduction

Ebola Virus Disease (EVD), formerly known as Ebola Haemorrhagic Fever (EHF), was first

identified in 1976 with two simultaneous outbreaks in Sudan and Zaire, now the Democratic

Republic of Congo (DRC) (WHO 2014). The latter occurred in the village of Yambuku near

the Ebola River, from which the disease takes its name. Since then, there has been a recurrence

of 29 outbreaks in the tropical regions of the Sub-Saharan Africa (CDC 2021). The DRC alone

counts for more than 10 outbreaks, and in this work, we will come back often to this country.

EVD is a major public health disaster and threat to both Sub-Saharan Africa countries with

wide-spread transmission and other countries in the world affected during the epidemic. This is

to the extent that, on two occasions (i.e. 8 August 2014 and 17 July 2019) in a relatively short

period of time, the World Health Organization (WHO) declared a Public Health Emergency

of International Concern (PHEIC) for the Ebola virus disease outbreaks in West Africa (2014-

2016) and in DRC (2018-2020), respectively (WHO 2019a, CDC 2019). The impact these

largest Ebola outbreaks had on the world, and particularly West Africa, is significant. A total

of 28,616 cases of EVD and 11,310 deaths were reported in Guinea, Liberia, and Sierra Leone.

There were an additional 36 cases and 15 deaths that occurred when the outbreak spread

outside of these three countries (CDC 2019). The DRC recorded 3481 cases and 2299 deaths

(WHO 2020a).

The recurrence of Ebola outbreaks is a cause for concern. A number of studies have been

undertaken to this effect. For instance, the work (Berge et al. 2017c) addresses the following

research question, which paved the way to indirect transmission: ‘can the consumption of

contaminated bush meat, the funeral practices, and the environmental contamination explain

the recurrence and persistence of EVD outbreaks in Africa?’ Naturally, the authors coupled

the question with the well-known direct transmission route, which involves contact with: (1)

blood or body fluid (including but not limited to urine, saliva, sweat, feces, vomit, breast milk,

and semen); (2) objects (e.g. clothes, bedding) that have been contaminated with body fluid.

While the traditional beliefs and customs of Africans can be a source of problems (Agusto

et al. 2015), there are fundamental challenges that have contributed to the prolonged repetition
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of EVD outbreaks and unsuccessful fight against the epidemic. The findings in the paper (Buseh

et al. 2015) are critical in several respects including the two main ones below. Firstly, ‘the

Ebola epidemic in West Africa has drawn attention to global health inequalities, in particular,

the inadequacies of health care systems in sub-Saharan African countries for appropriately

managing and containing infectious diseases.’ Secondly, ‘there exist sociopolitical and economic

conditions that created the environment for the Ebola epidemic to occur’. In this regard, it is

important to note that ‘structurally, all the countries that were at the epicenter of Ebola in

West Africa emerged from civil conflicts with dysfunctional and fragile health systems.’ These

findings are echoed in the articles (Kraemer et al. 2020, Maxmen 2019, Wells et al. 2019) that

are devoted to the 2018-2020 EVD in DRC.

Actually, what happened during the latter outbreak better demonstrates that conflicts and

political events precede the surge of Ebola cases. The eastern region of DRC has been con-

fronting chronic conflict and war for money and power gains. In this region, the presidential

and general elections were suspended in December 2018. Protesters angry with the postpone-

ment burnt tires and ransacked on the Ebola Treatment Center (ETC) in Beni on 27 December

2018, causing 21 (suspected and confirmed) patients to flee (BBC News 2018, Wells et al. 2019).

More generally, the instability created by this political decision forced one million people to

be displaced in the region and to embrace cramped living conditions that are conducive to the

transmission of Ebola and to increases in numbers of cases (Tumutegyereize 2019). Indeed, as

stated in the comparative study (McPake et al. 2015) concerning Northern Uganda (sharing

a border with DRC) and Sierra Leone (in West Africa), ‘those whose normal subsistence is

undermined, for example, because their homestead is made insecure and those who are active

conflict participants, appear to be at increased risk of being infected.’ From the same reference

(McPake et al. 2015), it is concluded that ‘conflict and its aftermath are among the factors

that increase the opportunity for Ebola virus to transmit from a forest animal to a human by

disrupting livelihoods and living arrangements.’

The 2018-2020 EVD in DRC was the first outbreak to occur in a tumultuous eastern region;

it was the first one in an active conflict and war zone (Maxmen 2019, Tumutegyereize 2019).

Unprecedented challenges were associated with this outbreak. These included:

• The spread of the disease in areas with cross-border population flow. For instance, the

Ugandan Ministry of Health and WHO confirmed three and one cross-border cases on 11

June 2019 and 29 August 2019, respectively (Médecins Sans Frontières 2021a).

• The repeated attacks of Ebola Treatment Centers (ETCs), and escape of patients from the

hospitals. In North Kivu and Ituri provinces, violence was perpetuated by more than 100

armed groups who were fighting for resources. A total number of 174 healthcare workers

were attacked in 2019 (Tumutegyereize 2019). On 24 February 2019, ETCs were burnt

in Katwa and Butembo; healthcare workers staff were evacuated, while four patients fled

into the forest (Maxmen 2019, Wells et al. 2019).
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Region/ Outbreak Hospital beds Total Total

Country period (Physicians) cases deaths

of outbreak per 1000 people

Active conflict Eastern

DRC 2018-2020 0.8 (0.1) 3481 2299

Pre-conflict West Africa

Guinea 2014-2016 0.3 (0.1) 3814 2544

Liberia 2014-2016 0.8 (0.0) 10678 4810

Sierra Leone 2014-2016 0.4 (0.0) 14124 3956

Subtotal cases and deaths 28616 11310

Widespread transmission

Italy 2014-2016 3.1 (4) 1 0

Mali 2014-2016 0.1 (0.1) 8 6

Nigeria 2014-2016 0.5 (0.4) 20 8

Senegal 2014-2016 0.3 (0.1) 1 0

Spain 2014-2016 3 (3.9) 1 0

Uganda 2018-2020 0.5 (0.2) 4 4

United Kingdom 2014-2016 2.5 (2.8) 1 0

United States 2014-2016 2.9 (2.6) 4 1

Subtotal cases and deaths 40 19

Total cases and deaths 2014-2016 28652 11325

2018-2020 3485 2303

Table 1: The largest and severe Ebola outbreaks in the context of conflict affected regions

• The lack of access to affected communities by healthcare workers (Kasereka et al. 2019,

Maxmen 2018).

• The increase in numbers of cases among healthcare workers e.g. 5% (168 cases) of the

total confirmed cases on 31 December 2019 (WHO 2020b).

• The increase in numbers of cases and affected areas. It is seen from the map (right)

in Figure 1 that the 2018-2020 Ebola outbreak was observed first in August 2018 in

Mabalako (yellow) before spreading in several areas (brown) in North Kivu, South Kivu

and Ituri provinces. The map also provides information on study location (purple) and

other Ebola virus outbreaks (orange) in the DRC to date (Goldstein et al. 2020). The

following additional observations are of great importance in our study. Together, the three

affected provinces counted about 23 million inhabitants and occupied 74 thousand square

kilometers, which represented 25% and 3% of the corresponding figures of the DRC (left

map) (DRC Ministry 2021). Hence the population density per square kilometer is 310

for the region versus 38.2 for the whole country (World Bank 2019c). This discrepancy is

in contrast with the fact that there were only 11 Ebola Treatment Centres and 25 Ebola

Transit Centres across the region; see External Situation Report 78 (2019) (WHO 2019b).
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This explains in the map (right) the location of the villages and the Rubare Health Center

in Rutshuru Health Zone in North Kivu province where febrile study participants traveled

from and were treated prior to Ebola Virus Disease outbreak in Eastern DRC that began

in 2018 (Goldstein et al. 2020).

• The war zone complicating the roll-out of Ebola vaccine, and other control and manage-

ment strategies such as isolation and contact tracing (Maxmen 2019, Wells et al. 2019).

For a quick reflection on the impact of conflict and war, we have included Table 1 that displays

some information on countries affected by the EVD. Most of the statistics is taken from (World

Bank 2019b, 2017, CDC 2019). With the respective numbers of hospital beds and physicians

per 1, 000 people varying between 0.1-0.8 and 0.0-0.4 (Africa) versus 2.5-3.1 and 2.6-4 (Europe

and US), the table illustrates that healthcare systems in sub-Saharan African countries are

comparatively very weak. Adding to this the fact that healthcare facilities were often attacked

and destroyed, (Kraemer et al. 2020, Maxmen 2019, Wells et al. 2019, Tumutegyereize 2019),

makes it challenging to control and manage the spread of the EVD. That Liberia and Sierra

Leone have 0.0 physicians per 1, 000 people accounts for the civil wars that brought all the

health systems down in these countries (Kruk et al. 2010, Omondi & Sheriff 2010).

Figure 1: DRC provinces map (left) and 2018-2020 EVD distribution map (Goldstein et al.

2020) (right)

Last but not least! It is instructive to look at Table 1 and Figure 1 in conjunction with

Figure 2 extracted from the annual report of the DRC Ministry of Health (DRC Ministry 2021).

This figure illustrates that the highest number of cases (2842), deaths (1783) and fatality rate

(62.74%) occurred in the year 2019 when the conflict/war in the region was at its peak. Note

that there were no Ebola outbreaks in 2016, which is a zero by zero situation as
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indicated in the figure. On the contrary, a short Ebola outbreak arose in 2017,

with 8 reported cases out of which 3 died (which corresponds to a fatality of about

38% as indicated in Figure 2); see External Situation Report 22 (WHO 2017).

Figure 2: Evolution of cases, deaths and fatality rate for EVD in DRC from 2016 to 2020

(DRC Ministry 2021)

The purpose of this work is to study the impact of conflict and war on the transmission

dynamics, and the control and eradication of the Ebola virus disease. Given that the North-

Eastern of the Democratic Republic of the Congo is in a chronic state of conflict and experiences,

till now, EVD outbreaks (the latest was declared in North Kivu on 7 February 2021 (Médecins

Sans Frontières 2021c)), the study will mostly focus on the 2018-2020 epidemic, which, as

mentioned earlier, is the largest ever recorded in DRC and the first of its kind to happen in the

tumultuous and active conflict provinces of North Kivu and Ituri (See the maps in Figure 1).

Though the research question under consideration is highly relevant, there is limited un-

derstanding of what ramifications conflict events have on disease transmission and control in

region plagued by civil unrest, violence and war (Wells et al. 2019). Here is an indication on a

couple of investigations that have been carried out to this effect.

The authors in (Kraemer et al. 2020) characterized the association between variables doc-

umenting broad conflict levels and EVD transmission. It was observed that the incidence of

conflict per capita was correlated with the incidence of EVD per capita at the health zone level

only for the entire outbreak (Pearson’s ρ = 0.33, 95% CI 0.05 − 0.57). This restriction, in

part, is a result of inaccessibility of the areas as healthcare workers will not be able to provide

the required vaccines, thermometers and key tools for limiting EVD transmission, (Kasereka

et al. 2019, Maxmen 2018). For the model developed in (Wells et al. 2019) to assess the impact

of conflict on the epidemic in eastern DRC, it was observed that the effective reproduction

number increased significantly above unity with attacks on healthcare workers.

In the animal kingdom, fruit bats are believed to be the normal carrier, able to spread the
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virus without being affected by it (WHO 2014). In conflict ravaged areas, the communities

resort to bush meat and forest based livelihoods. Furthermore, the consumption of bats,

hunted meat and fruits from the forest is the norm. There is little to no subsistence farming

as crops may be destroyed deliberately. Taking into account this new way for people to feed

themselves, the work (Berge et al. 2017c) enriched the existing literature by incorporating

indirect transmission through the contaminated environment.

There has been some progress in the use of vaccines (e.g. rVsV-ZEBOV-GP Ebola vaccine

and Ad26.ZEBOV/MVA-BN-Filo vaccine) to combat the spread of EVD in DRC (WHO 2020c).

In (Berge et al. 2018a), the authors broadened the work of (Berge et al. 2017c) and presented

a deterministic model that incorporates the vaccinated compartment and the awareness of the

population and behavioural changes. Their findings suggest that EVD can be controlled and

eradicated subject to compliance with the protection measures including the vaccines. However,

these efforts have often been compromised, in part, due to the ongoing war and general social

resistance, which tends to support the notion of EVD potentially being used as a bio terrorism

agent (Kasereka et al. 2019, Maxmen 2018, Richardson et al. 2010).

In the present work, the ability of the healthcare facility/system to accommodate infected

individuals, and the escape of the latter from the facility/system are the two factors we use to as-

sess how the presence of war and political instability in EVD endemic regions have exacerbated

the spread of the disease. We construct a SIR-type deterministic model, with contaminated

environment class, in which the two parameters are suitably incorporated. Escaped individuals

are guided by fear and they are cautious to hide at safe places. To account for this, our model

consists of two patches, one of which is less affected by the burden of EVD, war, violence, etc.

One of the key points of the work is the expression of both the force of infection and the basic

reproduction number in which the said parameters of escaping and destroying of healthcare

facility are carefully captured. On this basis, we carry out a rigorous analysis of the model,

which shows how the two key parameters should vary for the basic reproduction number to be

less or larger than the unity so that the disease dies out or not. From the computational point

of view, we use the revisited methodology in (Anguelov et al. 2020, Mickens 2020) to construct a

nonstandard finite difference (NSFD) scheme that is dynamically consistent with the continuous

model. In particular, after establishing a discrete analogue of a result in (Castillo-Chavez et al.

2002) regarding the global asymptotic stability of the disease-free equilibrium, we apply it to

show that our NSFD scheme preserves this property. We highlight that case studies such as the

current work, have implications for the type of investments needed to enable effective response

to Ebola, and other zoonotic diseases in general, in conflict affected settings.

The rest of the paper is structured as follows. In the next section, we state the main

assumptions and use them to formulate the mathematical model. We estimate the parameters

and fit the model to the data of the DRC 2018-2020 EVD in Section 3. Section 4 is devoted to

three important aspects. Starting with the biological well-posedness of the model, we compute

the basic reproduction number and establish the associated stability results, including the case

7



of the endemic equilibrium, which is more involved for a patch model like the one investigated

here. The NSFD scheme is presented in Section 5 together with numerical simulations which

support the theory. Concluding remarks as well as possible extensions of this work are discussed

in Section 6.

2 Model formulation

In the absence of conflict and war, the transmission dynamics of the Ebola Virus Disease (EVD)

is generally modelled in Kermack-McKendrick’s framework of Susceptible-Infectious-Recovered

(SIR), where the exposed class is omitted for simplicity (Berge et al. 2018a, 2017c), though

considered in other studies (Agusto et al. 2015, Tsanou et al. 2017b). Thus, we assume homo-

geneous mixing, and recovery induced permanent natural immunity against future infections.

In the current study that deals with the EVD in a war region with limited, but targeted,

healthcare facility, we have to factor patients fleeing from the facility for their safety. To this

end, we consider a two-patch SIR model. In Patch 1, we use an extension of the SIR model

relabeled as S1I1R1, and modified by the incorporation of the H and L classes to account for

hospitalized/isolated and escaped (from hospitals) individuals, respectively. Hence, the total

population a time t, N1(t), is divided into five mutually-exclusive compartments so that

N1 = S1 + I1 +R1 +H + L. (1)

It should be noted that disease epidemiological models with treatment or hospital compart-

ments are abundantly used in the literature. In this study, the H class consists of patients in

all the Ebola Treatment Centres and the Ebola Transit Centres in the affected region/Patch 1.

However, the incorporation of the L class, a special feature of this study, is to the authors

best knowledge new. Given the severity of the EVD, the movements of patients escaping from

hospitals must be carefully managed. Typically, these are wanted individuals: once patients

escape, an aggressive contact tracing and call to the community are made to find them (we

will come back to this in a moment).

Patch 2 is precisely the go-to area for escaped patients because it is assumed that there

is neither EVD healthcare facility there, nor other resources that can attract armed groups.

Hence, Patch 2 includes the forest (environment). We consider there, the classical S2I2R2

model with

N2 = S2 + I2 +R2, (2)

for the total population N2(t) at time t. The total population N(t) at time t ≥ 0 in the two

patches satisfies

N = N1 +N2. (3)

Due to the nature of the EVD, deceased individuals significantly contribute to the spread of

the virus, see for example (Berge et al. 2018a), and the literature therein. Thus, we add to each
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patch the deceased class, Di, for i = 1, 2. Finally, we consider the contaminated environment

classes, P1 and P2, corresponding to the two patches. Each Pi (i = 1, 2) is the concentration

of the virus in the environment due to shedding by the deceased and infectious individuals in

patch i. Though it is possible for the two patches to have a common source of environmental

contamination (Shuai & Van den Driessche 2015), we use two sources, which is biologically

more reasonable.

Susceptible individuals contract infection either directly by contact with infectious, escaped

and deceased individuals, or indirectly through the contaminated environment. Therefore, the

force of infections for the patches are given by

λ1 = β1

(
I1 + εL

N1

+ ε1D1

)
+ β3P1, (4)

and

λ2 = β2

(
I2 + ενL

N2 + νL
+ ε2D2

)
+ β3P2, (5)

where β1, β2 and β3 (for the environment) are the associated contact rates, while ε1, ε2 and

ε (for the escape class) are the modification parameters. Note that we use the mass action

principle for the deceased individuals and environment variables as in (Berge et al. 2017c,

2018a) and some other works in the literature ; but the standard incidence is implemented for

the Ii & L classes on the understanding that, for the cross infection from Patch 1 to Patch 2,

the effective and updated total population in Patch 2 is used as in for instance (Bichara &

Iggidr 2018, Iggidr et al. 2012).

In each patch, the susceptible class Si increases by a constant recruitment Λi, and decreases

at the rates λi and µ, where µ is the natural death rate for each human class. Thus the evolution

in time of susceptible individuals is modeled by the differential equation

dSi
dt

= Λi − (λi + µ)Si.

Individuals who have contracted EVD are hospitalised and classified under the epidemio-

logical class H at the rate α1(1 − τ), where τ is the (dimensionless) parameter of destruction

of healthcare facility. However, due to the perceived risk associated with staying in hospitals,

individuals escape these facilities at the rate ξ and move into the epidemiological class L. Some

Individuals in L class go back into hospital at the rate ϕ, some moved into I1 class in patch

one at the rate f and some escape into class I2 in patch two with rate ν. With the above and

taking into account the natural death of all humans at the rate µ, the differential equation for

the escape class is readily found to be

dL

dt
= ξH − (f + ϕ+ ν + µ+ δ)L,

where δ, the disease-induced death rate, is assumed to be the same for hospitalized individuals

not only for simplicity but especially because there is as such no confirmed and effective med-

ication against EVD. Though there seems to be no direct benefit to hospitalized individuals
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in terms of disease-induced death, there is non negligible gain at the community level because

hospitals, as isolation centres, prevent patients from spreading the disease. Hence, the focus in

what follows is on patients who escape the hospitals.

In each patch, there are two contributions to the increase of the Ii infectious class. These

are the new infectious from the Si class at the rate λi and the escape individuals in L class

that move back to the I1 class and the I2 class at the rates f and ν, respectively. However,

there are four contributions to the decrease of the Ii class. The first contribution is that of

individuals in the I1 and I2 classes hospitalized at the rates α1(1 − τ) and α2, respectively.

Then follow the recovery individuals at the rate γi (γ3 for hospitalized individuals), and the

natural and disease-induced deaths at the rates µ and δ, respectively. These comments lead to

the following differential equations for the infectious classes:
dI1

dt
=λ1S1 + fL− (α1(1− τ) + γ1 + µ+ δ) I1,

dI2

dt
=λ2S2 + νL− (α2 + γ2 + µ+ δ) I2.

From all the above comments, the following differential equations for the hospitalized and

recovered classes are also obtained in a straight forward manner:

dH

dt
=α1(1− τ)I1 + α2I2 + ϕL− (ξ + γ3 + µ+ δ)H

dR1

dt
=γ1I1 + γ3H − µR1

dR2

dt
=γ2I2 − µR2.

As noted earlier, patients who escape from hospitals are wanted. Once found, their readmission

to the hospitals is prioritized. It is also a priority to manage individuals infected by escaped

patients. They are placed in one of the hospitals, which is always possible because all the 36

Ebola Treatment and Transit Centres across the affected region cannot be destroyed at the

same time. In other words, the parameter τ does not reach the value 1 in practice. Hence,

unlike the coefficient α1, the hospitalization rates, ϕ and α2 are not multiplied by 1− τ in the

above differential equation model of the H variable.

At this stage, it is important to stress again that the recruitment in each sub-population

is through the susceptible class, while migration between the two sub-populations is only by

infected individuals escaping from the healthcare facilities. Furthermore, it is clear that the

two patches are coupled via the residence time 1/ν.

Recording all death individuals from the Ii, H, and L evolution equations, we obtain the

following differential equations for the deceased classes:
dD1

dt
=(µ+ δ)(I1 +H + L)− bD1

dD2

dt
=(µ+ δ)I2 − bD2,
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where b−1 is the mean caring duration of EVD deceased individuals.

Apart from H, all classes I1, I2, D1, D2 and L with infection shed the virus in the environ-

ment, P1 (Patch 1) and P2 (Patch 2), at the rates {η2k+1}0≤k≤2 and {η2k}1≤k≤2, respectively.

The decay rate of the virus in both patches are the same, θ. Thus, the differential equations

for P1 and P2 classes are 
dP1

dt
=η1I1 + η3D1 + η5L− θP1,

dP2

dt
=η2I2 + η4D2 − θP2.

The flow diagram for the transmission dynamics of EVD is depicted in Figure 3 and

descriptions of state variables and parameters used in the model are given on Table 2. In

S1 I1 D1I1

S2 I2 D2

R2

R1

H L

P1

P2

λ1 δ + µ

γ1

α1(1− τ)

γ3

δ + µ f
δ + µ

ξ

ϕ

λ2 δ + µ

γ2
α2

ν

η5

η3

η4

η1

Λ1

µ b

µ

Λ2

µ b

µ

θ

θ

η2

Figure 3: Schematic diagram of the two-patch model of EVD transmission.

summary, we obtain the following system of nonlinear ordinary differential equations for the

transmission dynamics of the Ebola Virus Disease:
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dS1

dt
=Λ1 − (λ1 + µ)S1

dI1

dt
=λ1S1 + fL− k1I1,

dH

dt
=α1(1− τ)I1 + α2I2 + ϕL− k2H,

dL

dt
=ξH − k3L,

dR1

dt
=γ1I1 + γ3H − µR1,

dD1

dt
=k4(I1 +H + L)− bD1,

dP1

dt
=η1I1 + η3D1 + η5L− θP1,

(6)



dS2

dt
=Λ2 − (λ2 + µ)S2,

dI2

dt
=λ2S2 + νL− k5I2,

dR2

dt
=γ2I2 − µR2,

dD2

dt
=k4I2 − bD2,

dP2

dt
=η2I2 + η4D2 − θP2,

(7)

where the constants ki are defined as follows:

k1 = α1(1− τ) + γ1 + k4, k2 = ξ + γ3 + k4, k3 = f + ϕ+ ν + k4, and k5 = α2 + γ2 + k4, (8)

with k4 = µ + δ. The system (6)-(7) is appended with the following non-negative initial

conditions for the dependent variables and the total population and sub-population: for i =

1, 2,

(Si(0), Ii(0), H(0), L(0), Ri(0), Di(0), Pi(0)) = (Si0, I
i
0, H0, L0, R

i
0, D

i
0, P

i
0); N(0) = N0;

Ni(0) = N i
0.

Remark 2.1. The importance of the parameter τ in the model (6)-(7) needs to be highlighted,

though some focused comments were made earlier. In the normal case, τ = 0, where there

is no war, violence, attacks, etc., the hospitals are fully operational to admit EVD patients.

The extreme case or the limit, τ = 1, is not reached in practice because it corresponds to the

unlikely scenario where all the Ebola treatment and transit centres in the affected region are

destroyed. This unlikely scenario (τ = 1) also implies that the hospitalized class, H, and the

escape class, L, become zero, reducing the model to a simplified Patch 1 model. The situation

when 0 < τ < 1, is the most realistic one and it corresponds to the hospitals being partially

operational (see also Remark 4.2). This will be illustrated in the numerical simulations section.
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Variable Description

S1(S2) Class of susceptible individuals in the first (second) patch

I1(I2) Class of infected individuals in the first (second) patch

H Class of infected individuals who are hospitalised in the first patch

L Class of infected individuals escaped from hospital

R1(R2) Class of recovered individuals in the first (second) patch

D1(D2) Class of deceased individuals in the firs (second) patch

P1(P2) Class of Ebola virus contaminated environment in Patch 1 (Patch 2)

Parameter Description

Λ1(Λ2) Recruitment rate of susceptible individuals in the first (second) patch

γ1(γ2) Rate of recovery for I1(I2) class

γ3 Rate of recovery for H class

µ Natural death rate

δ Ebola induced death rate

α1(α2) Rate of individuals to be hospitalised in patch one from patch one (two)

1/b Mean caring duration of Ebola deceased human individuals

β1(β2) Contact rate for first (second) patch

β3 Contact rate for ebola virus contaminated environment

ε1, ε2 Modification parameters

η1, η3, η5 Shedding rates of I1, D1 and L classes to the P1 class, respectively

η2, η4 Shedding rates of I2 and D2 classes to the P2 class, respectively

θ Decay rate of Ebola virus in the environment

ξ Rate of escaping from hospital/healthcare facility

f Rate of escaped individuals from L moving into I1 class

ϕ Rate of escaped individuals from L moving back into H class

ν Fraction of individuals in class L moving into the second patch

ε Modification parameter for νL individuals in patch two

τ Parameter of destruction of healthcare facility in a war zone

Table 2: Description of parameters of the model (6)-(7).
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3 Estimation of parameters and model fitting

From the DRC provinces map and the EVD distribution map in Figure 1, we assume that

Patch 1 consists of Ituri, North Kivu and South Kivu provinces, while Patch 2 is formed by

their neighbouring provinces of Haut Uele, Tshopo and Maniema where there were no EVD.

In 2019, the total population of Patch 1 was estimated at 23, 151, 520 including 6, 075, 486

(Ituri Province), 9, 211, 041 (North Kivu Province) and 7, 864, 993 (South Kivu), as per the

report (DRC Ministry 2021). The same source reports that the total population of Patch 2 was

8, 603, 545 (2, 168, 709 for Haut Uele Province, 2, 830, 392 for Maniema Province and 3, 604, 444

for Tshopo Province). Since the population growth rate by birth in DRC is estimated at 40.639

per 1000 people (World Bank 2019a), we estimate the recruitment of susceptible individuals

per day in Patch 1 at Λ1 = (40.639× 23, 151, 520)/(1000× 365) = 2578. Likewise, for Patch 2,

we have the estimate Λ2 = 978. The natural mortality in DRC being estimated at 9.292 deaths

per 1000 inhabitants in 2019, the annual natural death rate is 0.92892% and thus we have the

estimate µ = 0.00003 per day.

Under the African culture, it normally takes 1 - 7 days for the burial or cremation of

deceased individuals. This gives an estimate for b in the range [0.14, 1] per day. Our baseline

value is assumed to be 0.8

The parameter 1/α1(1/α2) denotes the average time from symptom to onset to hospital

admission. Here, we assume this to be [4.71, 7.32] days as given in (Wells et al. 2019). That is

α1(α2) ranges between 0.137− 0.212 per day. The time to death from symptom onset of Ebola

disease ranges between 7.25 to 13.5 days (Siewe et al. 2020), i.e., δ ranges between 0.074−0.138

per day. The case fatality of Ebola varies between 20% to 90%, see for example (Siewe et al.

2020). Using estimates from (Siewe et al. 2020), we take the time to recovery from Ebola to

be 3.10 to 7.84 days, i.e., γ1(γ2) ranges between 0.13− 0.32 per day.

We now come to the difficult task of estimating the parameters that are related to the

impact of war and conflict. From the appendix and supplementary information provided in

(Wells et al. 2019), we have constructed the expanded Table 3, which gathers the number of

disruptive events for the period of twelve months, i.e., from 1 September 2018 to 31 August

2019. We classify the disruptive events into two categories. The first category consists of Events

that Incapacitate the Healthcare System (EIHS), namely “ville morte” [dead/ghost city] day,

attacks of healthcare workers (HCW), attacks of ETC, and healthcare workers protests. The

second category, OTHERS, consists of all other events including mainly the escape of patients

from hospitals. Note that July and August 2019, the disruptive events of which are described in

(Reliefweb 2019), were not included in (Wells et al. 2019). Since we could not find any reports

giving the breakdown per month of disruptive events for the rest of the year 2019, we limited

the table to August 2019, though a summary of these sad events as well as the numbers of

cases and deaths for the entire period are provided in references (Reliefweb 2021) and (WHO

2019c), respectively.
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Description Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

18 18 18 18 19 19 19 19 19 19 19 19

Event

Ville morte 1 1 0 0 0 0 0 0 0 3 0 0

Attack HCW 0 2 0 0 2 3 1 1 2 3 3 2

HCW protest 0 0 1 0 0 1 1 1 0 0 0 0

Attack ETC 0 0 0 5 0 5 4 2 6 2 1 2

Others 0 0 0 0 0 1 0 3 0 0 0 1

Sub-total 1 3 1 5 2 10 6 7 8 8 4 5

Total 60

Impact

Cases 150 216 300 585 699 872 1016 1353 1920 2239 2671 2976

Deaths 100 139 186 356 433 548 634 880 1281 1510 1790 1990

Table 3: Disruptive events in the most affected health zones and impact on the number of

deaths from the pool of total cases

The numbers of cases and deaths retained on the table are taken from WHO external

situations reports, (WHO 2019c); they correspond to those of the date or the closest date in

the month when the disruptive event occurred. For example, the external situation report

no. 21 (2018) reports 585 cases and 356 deaths on 27 December 2018, which, for the last four

months of the year 2018, turns out to be the date when both the peak of the disease was reached

and ETCs were seriously attacked (BBC News 2018, Wells et al. 2019). We emphasize the link

between the incidence of conflict and observed cases by calculating the Pearson’s correlation

coefficient, ρ, between “cases” and Total EIHS. Here we have ρ = 0.43, which suggests a very

strong linear correlation between the two data sets. In so doing, we can visualize the impact

of the disruptive events to compromise the ability of the healthcare system to control and

manage the EVD. The table reveals indeed that the more the attacks of ETCs, the highest are

the numbers of new cases and deaths; the situation becomes worse in the presence of additional

disruptive events (see Dec18 and Feb19 columns, respectively).

For further assessment of the impact of war/conflict on the control of the EVD, it seems

reasonable to include on Table 3 a row tabulating the number of patients admitted to ETCs

per month. We could unfortunately not get this information. Nevertheless, the narratives of

a couple of days when ETCs were attacked are illustrative of the trauma created on admitted

patients, and the number of those who left the healthcare facility. For instance, the attack on

27 December 2018 of Médecins Sans Frontières’ [Doctors Without Borders’] transit center in

Beni resulted in 9 of the 28 patients to spontaneously leave the center (see article, video and

flyer in (Médecins Sans Frontières 2021b)).

Despite the comments and the attempt made in the previous two paragraphs, the question

of formulating precisely the correlation between disruptive events and the number of cases and
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deaths is not easy! Based on the data on Table 3 and using the acronyms EIHS and OTHERS

defined above, we propose here a relatively simple method to estimate the key parameters τ

and ξ that capture the impact of the war/conflict in our model. We introduce the following

formula:

τ | month := q
(Total EIHS)|month

(Total Events)|month
and ξ| month :=

(Total OTHERS)|month
(Total Events)|month

where q is the probability for a disruptive event to incapacitate the healthcare system. We

then take the baseline values of τ and ξ to be the averages of τ |month and ξ|month, i.e.

τ =

∑
τ |month

12
= 0.313 and ξ =

∑
ξ|month

12
= 0.061 (9)

by using the data on the Table 3 and assuming that q = 1/3, based on our rough counting

from (Wells et al. 2019) of closures and suspensions of activities of healthcare facility. Fur-

thermore, we assume that the parameters τ and ξ vary in the intervals [0,max{τ |month}] and

[0,max{ξ|month}], respectively, i.e.

τ ∈ [0, 0.33] and ξ ∈ [0, 0.43]. (10)

From the explanation given above on the counting of data on Table 3, it should be noted that

the notation τ | month and ξ| month actually refers to one day in the month.

For the parameters ϕ, ν and f that determine the fate of patients that escape from the

healthcare facility, and in view of Eqs (9)-(10), we take

ϕ = ν = f =
ξ

3
= 0.02, (11)

as corresponding baseline values, while the range of these parameters is as follows:

ϕ, ν, f ∈ [0, 0.143]. (12)

Finally, we estimate the range of the shedding parameters ηi (i = 1, · · · , 5), the contact rates

βi (i = 1, · · · , 3), and the modification parameters εi (i = 1, 2) and ε. This will essentially be

done by fitting our model to the reported deaths as explained below. It is well known that the

Ebola virus can survive for several days in the environment. This is the case for the Zaire-type

Ebola virus that survived 14 days at 4◦C on glass, plastic and surfaces (Bibby et al. 2015).

Furthermore, 0.1 − 1% of Ebola virus remained active for up to 50 days at 4◦C, as reported

in (Piercy et al. 2010). In view of this fact, and taking into account some necessary fitting,

we assume that the five parameters ηi vary in the much smaller interval [1 × 10−9, 1 × 10−5].

However, their estimated baseline values as well as those of the three parameters βi and ε, ε1, ε2

are fitted using the reported number of deaths on Table 3. This is motivated by the following

facts:
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Figure 4: Model fitting to the cumulative number of reported deaths from Table 3.

1. The overall disruptive events took place in the three provinces that form Patch 1. There-

fore, it is reasonable to fit the involved parameters β1, β3, ε1, ε, η1, η3, η5, ε1 and deduce

the corresponding parameters for Patch 2.

2. Biologically/epidemically, there is no reason for infected individuals and Ebola-deceased

individuals from the two patches to shed the virus differently in the environment. Con-

sequently, we assume that η2 = η1 and η4 = η3 for Patch 2.

3. Similarly to the previous item, there is no biological/epidemiological evidence for the

modification parameter ε1 in Patch 1 to be different from its analogue ε2 in Patch 1.

Therefore, we assume that ε1 = ε2 during the curve fitting process.

4. Patch 1 being the most affected region by disruptive events, it is reasonable to assume

that individual daily contact behavior in Patch 1 is drastically restricted in contrast to

the situation in Patch 2 where the normal African tradition prevails. Therefore, once

Patch 1 contact rate β1 is fitted, we assume Patch 2 contact rate is larger i.e. β2 = mβ1,

with m > 1 to be fitted.

5. For the environment, it is observed that the parameter β3 is sensitive, see (Berge et al.

2018a). Therefore, by differentiating the environmental infection from Patch 1 and Patch

2, we assume the range of β3 is [1× 10−5, 1× 10−4].

6. Finally, we assume that the initial susceptible sub-population in the two patches cor-

respond to their respective total populations while initially in Patch 1, there are 900
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infected individuals, 5 hospitalised and 5 escapees. In Patch 2, we assume that there are

5 infected individuals (corresponding to those who escaped the hospitals in Patch 1).

For convenience, all calculated, estimated and fitted values of the parameters are gathered

on Table 4, and will be used later for all numerical simulations.

The parameter fitting process was based on a nonlinear least squares algorithm implemented

by using “fminsearchbnd” function in MatLab. The advantage of using “fminsearchbnd” instead

of “fminsearch” is that the latter enables us to keep the fitted parameters in their estimated

ranges. It consisted in minimizing the sum of the squares of the difference between the predic-

tions of the cumulative deaths in the full model and the reported cumulative deaths available

on Table 3 for a 12-month period ranging from September 2018 to August 2019. Figure 4

shows a good fit of the full model to the cumulative number of reported deaths given in Table

3.

Parameter Range Baseline value Source

Λ1(Λ2) 2578 (978) Calculated based on (DRC Ministry 2021, World Bank 2019a)

γ1(γ2) [0.13,0.32] 0.3 Calculated based on (Siewe et al. 2020)

γ2 [0.13,0.32] 0.2002 Fitted

γ3 [0.06,0.12] 0.1 Assumed

µ 0.00003 Calculated based on (DRC Ministry 2021, World Bank 2019a)

δ [0.074,0.138] 0.1 (Siewe et al. 2020)

α1 [0.137,0.485] 0.2(0.2) Calculated based on (Wells et al. 2019)

α2 [0.137,0.485] 0.15 Fitted

b [0.14, 1] 0.8 Calculated as per African burial culture

θ [0.0155, 0.030] 0.03 (Bibby et al. 2015)

ξ [0, 0.43] 0.061 Estimated from Eqs (9)-(10) and Table 3

f , ϕ, ν [0, 0.143] 0.02 Estimated from Eqs (11)-(12) and Table 3

τ [0, 0.33] 0.313 Estimated from Eqs (9)-(10) and Table 3

β1 [1× 10−3, 1.7× 10−2] 1.680×10−2 Fitted

β2 [1× 10−3, 1.5× 10−2] 1.489×10−2 Fitted (β2 = mβ1, with m = 1.363)

β3 [1× 10−4, 3.2× 10−3] 3.173×10−3 Fitted

ε1 4.824× 10−6 Fitted

ε2 4.824× 10−6 Fitted

η1 [1× 10−9, 1× 10−5] 2.721× 10−9 Fitted

η2 [1× 10−9, 1× 10−5] 2.721× 10−9 Fitted

η3 [1× 10−11, 1× 10−5] 7.938× 10−11 Fitted

η4 [1× 10−11, 1× 10−5] 7.938× 10−11 Fitted

η5 [1× 10−11, 1× 10−5] 9.856× 10−11 Fitted

ε 0.002892 Fitted

Table 4: Calculated, estimated, fitted and baseline parameter values for the model. Their

description is provided in Table 2.
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4 Quantitative and qualitative analysis

We start this section with the well-posedness of the proposed model.

Theorem 4.1. The EVD model (6)-(7) is a dynamical system on the biologically feasible region

Ω defined by

Ω =
{

(S1, I1, H, L,R1, D1, P1, S2, I2, R2, D2, P2) ∈ R12
+ : 0 ≤ N ≤ Λ

µ
, 0 ≤ D ≤ K

b
and 0 ≤ P ≤ Π

θ

}
where Λ = Λ1 + Λ2, D = D1 +D2, P = P1 + P2, K = (δ + µ)Λ/µ and Π = (η1 + η2 + η5)Λ

µ
+

(η3 + η4)K/b. Furthermore, the region Ω is attracting with respect to the system (6)-(7) with

initial conditions in R12
+ .

Proof: We want to show that for non-negative initial data, the system (6)-(7) possesses at all

time t ≥ 0, a unique non-negative solution which lies in the region Ω. The proof will follow

two steps.

The positive cone R12
+ is invariant for the system (6)-(7) by using the tangent condition or

barrier theorem for each hyper-plane of the boundary ∂R12
+ (Busenberg & Cooke 2012, Walter

2012).

In a second step, we show that any solution of the model system (6)-(7) satisfies some

a priori estimates. By adding the equations in (6)-(7) related to the classes of individuals

involved in the defining equations (1)-(3), we obtain the conservation law

dN

dt
= Λ− µN − δ(H + L+ I1 + I2), (13)

from which it follows that

dN

dt
≤ Λ− µN. (14)

Applying Gronwall inequality to (14) leads to

N(t) ≤ Λ

µ
+

(
N0 −

Λ

µ

)
exp(−µt). (15)

From (15) , we have

0 ≤ N(t) ≤ Λ

µ
for 0 ≤ N0 ≤

Λ

µ
. (16)

Likewise, with K defined above, applying Gronwall inequality to the sum of two deceased

classes in (6)-(7) yields

D(t) ≤ K

b
+ (D0 −

K

b
) exp(−bt). (17)

from which we infer that, for any time t ≥ 0,

0 ≤ D(t) ≤ K

b
whenever 0 ≤ D0 ≤

K

b
. (18)
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Finally, the sum of the last two equations of (6)-(7) gives

dP

dt
= η1I1 + η3D1 + η5L+ η2I2 + η4D2 − θP ≤ Π− θP. (19)

Once again, Gronwall inequality applied to (19) with P (0) = P0, leads to

0 ≤ P (t) ≤ Π

θ
+

(
P0 −

Π

θ

)
exp(−θt), (20)

so that

0 ≤ P (t) ≤ Π

θ

for all t > 0, whenever 0 ≤ P0 ≤
Π

θ
.

When a solution of the system starts outside Ω, with N0 > Λ/µ or D0 > K/b or P0 >

Π/θ, it follows from (15), (17) and (20) that lim sup
t→∞

N(t) ≤ Λ/µ, lim sup
t→∞

D(t) ≤ K/b and

lim sup
t→∞

P (t) ≤ Π/θ. Hence, the region Ω is attracting.

Combining the above two steps and using Theorem 2.1.5 in (Stuart & Humphries 1998),

we conclude that (6)-(7) defines a dynamical system on Ω. This completes the proof. �

Next, we investigate the stability of the disease-free equilibrium (DFE) of the model. To

determine the DFE, we set the right-hand side of system (6)-(7) equal to zero:

Λ1 − (λ1 + µ)S1 = 0,

λ1S1 + fL− k1I1 = 0,

α1(1− τ)I1 + α2I2 + ϕL− k2H = 0,

ξH − k3L = 0,

γ1I1 + γ3H − µR1 = 0,

k4(I1 +H + L)− bD1 = 0,

η1I1 + η3D1 + η5L− θP1 = 0,

Λ2 − (λ2 + µ)S2 = 0,

λ2S2 + νL− k5I2 = 0,

γ2I2 − µR2 = 0,

k4I2 − bD2 = 0,

η2I2 + η4D2 − θP2 = 0,

(21)

It is readily seen that system (21) has a unique DFE, which is given by

E0 = (S1, I1, H, L,R1, D1, P1, S2, I2, R2, D2, P2) =

(
Λ1

µ
, 0, 0, 0, 0, 0, 0,

Λ2

µ
, 0, 0, 0, 0

)
. (22)

The basic reproduction number, R0, defined as the average number of secondary cases

produced by one infectious individual during his/her entire infectious period in a completely
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susceptible population (Van den Driessche & Watmough 2008), is an important threshold

quantity for the stability analysis of the model. This number is determined by using the next

generation matrix method developed in (Diekmann & Heesterbeek 2000, Van den Driessche &

Watmough 2008), with extensions to some models such as those involving free living pathogens

in the environment (Bani-Yaghoub et al. 2012, Shuai et al. 2013).

Using the abbreviation X = (I1, H, L,D1, P1, I2, D2, P2) for the dependent variables with

infections, we have the vector functions

F(X) =



λ1S1

0

0

0

0

λ2S2

0

0


and V(X) =



−fL+ k1I1

−α1(1− τ)I1 − α2I2 − ϕL+ k2H

−ξH + k3L

−k4(I1 +H + L) + bD1

−η1I1 − η3D1 − η5L+ θP1

−νL+ k5I2

−k4I2 + bD2

−η2I2 − η4D2 + θP2


that represent the rate of appearance of new infections and the rate of transfer of individuals

among the infective classes, respectively. The constants ki, i = 1, . . . , 5 are defined in (8). The

next generation matrix is given by

K = JFJ
−1
V , (23)

where

JF =



β1 0 β1ε β1
ε1Λ1

µ
β3

Λ1

µ
0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 β2εν 0 0 β2 β2
ε2Λ2

µ
β3

Λ2

µ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


and

JV =



k1 0 −f 0 0 0 0 0

−α1(1− τ) k2 −ϕ 0 0 −α2 0 0

0 −ξ k3 0 0 0 0 0

−k4 −k4 −k4 b 0 0 0 0

−η1 0 −η5 −η3 θ 0 0 0

0 0 −ν 0 0 k5 0 0

0 0 0 0 0 −k4 b 0

0 0 0 0 0 −η2 −η4 θ


.
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are the Jacobian matrices of F and V at E0, respectively. Mathematically, R0 is equal to ρ(K),

the spectral radius of the matrix in (23). As seen below, the computation of the matrix K is

quite involved due to the strong non-linearity of the model. Indeed:

J−1
V =



Q1

Q0

fk5ξ
Q0

fk2k5
Q0

0 0 fξ α2

Q0
0 0

α1(1−τ)k5k3
Q0

k5k3k1
Q0

Q2

Q0
0 0 α2k3k1

Q0
0 0

(1−τ)k5ξ α1

Q0

k1k5ξ
Q0

k2k1k5
Q0

0 0 ξ α2k1
Q0

0 0

Q3

bQ0

Q4

bQ0

Q5

bQ0
b−1 0 Q6

bQ0
0 0

Q7

bθ Q0

Q8

bθ Q0

Q9

bθ Q0

η3
bθ

θ−1 Q10

bθ Q0
0 0

ν ξ α1(1−τ)
Q0

ν k1ξ
Q0

ν k2k1
Q0

0 0 Q11

Q0
0 0

k4ν ξ α1(1−τ)
bQ0

k4ν k1ξ
bQ0

k4ν k2k1
bQ0

0 0 k4Q12

bQ0
b−1 0

Q13ν ξ α1(1−τ)
bθ Q0

Q13ν k1ξ
bθ Q0

Q13ν k2k1
bθ Q0

0 0 Q14Q13

bθ Q0

η4
bθ

θ−1



,

where

Q0 = k5k3k2k1 − k5ξ ϕ k1 − k5ξ α1(1− τ)f − ν k1ξ α2,

Q1 = −k5ξ ϕ− ξ α2ν + k5k3k2,

Q2 = ϕk1k5 + k5α1f(1− τ) + ν k1α2,

Q3 = ((1− τ)k5ξ α1 + α1(1− τ)k5k3 − k5ξ ϕ− ξ α2ν + k5k3k2) k4,

Q4 = k5k4 (k3k1 + ξ k1 + fξ) ,

Q5 = (k5α1f(1− τ) + fk2k5 + k2k1k5 + ϕk1k5 + ν k1α2) k4,

Q6 = k4α2 (k3k1 + ξ k1 + fξ) ,

Q7 = (1− τ)k5α1 (ξ bη5 + ξ η3k4 + η3k4k3)− (ξ ϕ k5 + ξ α2ν − k3k2k5) (η1b+ η3k4) ,

Q8 = k5 (ξ bη5k1 + ξ η1bf + η3k4k3k1 + ξ η3k4k1 + ξ η3k4f) ,

Q9 = α1η3k4k5f(1− τ) + fk2bη1k5 + fη3k4k2k5 + η3k4ϕk1k5 + η3k4k2k1k5 + k2bη5k1k5 + η3k4ν k1α2,

Q10 = α2 (ξ bη5k1 + ξ bη1f + η3k4k3k1 + η3k4ξ k1 + η3k4ξ f) ,

Q11 = k3k2k1 − ξ ϕ k1 − ξ α1(1− τ)f,

Q12 = k3k2k1 − ξ ϕ k1 − ξ α1(1− τ)f,

Q13 = η2b+ η4k4,

Q14 = k3k2k1 − ξ ϕ k1 − ξ α1(1− τ)f.
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Then

JFJ
−1
V =



k11 Q15 Q16 Q17 Q18 k12 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

k21 Q19 Q20 0 0 k22 Q21 Q22

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



,

with

k11 =
β1Q1

Q0

+
β1ε(1− τ) ξ α1k5

Q0

+
β1ε1Λ1Q3

µ bQ0

+
β3Λ1Q7

µ bθ Q0

,

k12 =
β1fξ α2

Q0

+
β1ε ξ α2k1

Q0

+
β1ε1Λ1Q6

µ bQ0

+
β3Λ1Q10

µ bθ Q0

,

k21 =
ν ξ α1(1− τ)

Q0

(
β2ε k5 + β2 +

β2ε2Λ2k4

µ b
+
β3Λ2Q13

µ bθ

)
,

k22 =
β2ε ν ξ α2k1

Q0

+
β2Q11

Q0

+
β2ε2Λ2k4Q12

µ bQ0

+
β3Λ2Q14Q13

µ bθ Q0

Q15 =
β1fk5ξ

Q0

+
β1ε k1k5ξ

Q0

+
β1ε1Λ1Q4

µ bQ0

+
β3Λ1Q8

µ bθ Q0

,

Q16 =
β1fk2k5

Q0

+
β1ε k2k1k5

Q0

+
β1ε1Λ1Q5

µ bQ0

+
β3Λ1Q9

µ bθ Q0

,

Q17 =
β1ε1Λ1

µ b
+
β3Λ1η3

µ bθ
,

Q18 =
β3Λ1

µ θ
,

Q19 =
β2ε ν k1k5ξ

Q0

+
β2ν k1ξ

Q0

+
β2ε2Λ2k4ν k1ξ

µ bQ0

+
β3Λ2Q13ν k1ξ

µ bθ Q0

,

Q20 =
β2ε ν k2k1k5

Q0

+
β2ν k2k1

Q0

+
β2ε2Λ2k4ν k2k1

µ bQ0

+
β3Λ2Q13ν k2k1

µ bθ Q0

,

Q21 =
β2ε2Λ2

µ b
+
β3Λ2η4

µ bθ
,

Q22 =
β3Λ2

µ θ
.

The potential non-vanishing eigenvalues of JFJ
−1
V are those of the 2× 2 matrix

K =

(
k11 k12

k21 k22

)
.

Therefore, the basic reproduction number is given by the spectral radius of K as follows:

R0 =
k11 + k22 +

√
(k11 − k22)2 + 4 k12k21

2
.
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With this formula of R0, and using the baseline values of the parameters in Table 4 we obtain,

R0 = 2.95, which, in view of conflicts and war, is slightly higher than other reported values

(Legrand et al. 2007, Berge et al. 2017c). In the numerical simulations’ section, other estima-

tions of R0 will be obtained by varying the parameters within the ranges provided in Table

4.

Remark 4.2. A follow-up to Remark 2.1 is in order with regard to the hospital destruction

parameter τ and the associated movement parameters ν, f and ϕ due to patient escape at the

rate ξ. If τ = 1 and ν = 0 such that there is no transmission of the EVD in Patch 2 coming

from Patch 1, then R0 reduces to the basic reproduction for Patch 1 sub-model. However, if

0 ≤ τ < 1 and ν > 0 so that the two patches are coupled, then infectious individuals from

Patch 2 will be admitted in hospital in Patch 1 at the rate α2. We emphasize that the rate is

indeed α2 and not α2(1−τ) because escaped patients and those infected by them are priority and

urgent cases for admission in the operational ETCs. Note that the case when ν > 0 makes the

disease more severe in the sense that, as function of ν, the basic reproduction number satisfies

the relation R0(ν) > R0(0), since it can be shown that k22(ν) > k22(0).

The stability result stated below follows from Theorem 2 in (Van den Driessche & Wat-

mough 2002).

Theorem 4.3. The Disease-free equilibrium point E0 of the model (6)-(7) is locally asymptot-

ically stable (LAS) if R0 < 1 and unstable whenever R0 > 1.

The threshold theory contained in Theorem 4.3 can be paraphrased in the following epidemi-

ological terms: a small influx of EVD infectious into a community of susceptible individuals will

not generate large EVD outbreaks unless the number of susceptibles is above a certain critical

values; in other words, the EVD eventually dies out when the basic reproduction number is

less than unity. To ensure that the EVD elimination is independent of the initial sizes of the

dependent variables, we have the next result that improves Theorem 4.3.

Theorem 4.4. The disease-free equilibrium E0 of the model (6)-(7) is globally asymptotically

stable (GAS) whenever R0 < 1.

Proof: We use a theorem on page 246 in (Castillo-Chavez et al. 2002), which we state in a

relatively self-contained manner given our intention to extend it to discrete dynamical systems

in the next section. To this end, we re-write the system (6)-(7) in the framework of the said

theorem as follows:

dX

dt
= F (X, Y ), (24)

dY

dt
= G(X, Y ) with G(X, 0) = 0. (25)

Here, X = (S1, R1, S2, R2) ∈ R4
+ and Y = (I1, H, L,D1, P1, I2, D2, P2) ∈ R8

+ denote the de-

pendent variables of uninfected and infected individuals, respectively; the right hand sides
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are

F (X, Y ) =


Λ1 − (λ1 + µ)S1

γ1I1 + γ3H − µR1

Λ2 − (λ2 + µ)S2

γ2I2 − µR2

 and G(X, Y ) =



λ1S1 + fL− k1I1

α1(1− τ)I1 + α2I2 + ϕL− k2H

ξH − k3L

k4(I1 +H + L)− bD1

η1I1 + η3D1 + η5L− θP1

λ2S2 + νL− k5I2

k4I2 − bD2

η2I2 + η4D2 − θP2,


According to theorem in (Castillo-Chavez et al. 2002), the disease-free equilibrium in (22) in

this setting can be written as

E0 ≡ (X∗, 0) =

(
Λ1

µ
, 0,

Λ2

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
is globally asymptotically stable for R0 < 1 provided that the following conditions are satisfied

for (X, Y ) ∈ Ω:

(H1) For the sub-system
dX

dt
= F (X, 0), the equilibrium point, X∗ =

(
Λ1

µ
, 0, Λ2

µ
, 0
)

, is globally

asymptotically stable.

(H2) The right-hand side of Eq (25) admits the decomposition

G(X, Y ) = AY − G̃(X, Y )

where G̃(X, Y ) ≥ 0 and A, the Jacobian matrix of G(X, Y ) with respect to Y at E0, is

an Metzler matrix (the off diagonal elements of A are nonnegative).

With F (X, 0) = (Λ1− µS1,−µR1,Λ2− µS2,−µR2)T , the condition (H1) is clearly satisfied for

this decoupled linear system. As per the condition (H2), we observe that the Jacobian matrix

given by

A =



β1 − k1 0 β1ε+ f β1
ε1Λ1

µ
β3

Λ1

µ
0 0 0

α1(1− τ) −k2 ϕ 0 0 α2 0 0

0 ξ −k3 0 0 0 0 0

k4 k4 k4 −b 0 0 0 0

η1 0 η5 η3 −θ 0 0 0

0 0 β2εν + ν 0 0 β2 − k5 β2
ε2Λ2

µ
β3

Λ2

µ

0 0 0 0 0 k4 −b 0

0 0 0 0 0 η2 η4 −θ
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is clearly an Metzler-matrix. Finally, for (X, Y ) ∈ Ω, the required decomposition is realized

with

G̃(X, Y ) =



−λ1S1 + β1I1 + β1εL+ β1
ε1Λ1

µ
D1 + β3

Λ1

µ
P1

0

0

0

0

−λ2S2 + β2ενL+ β2I2 + β2
ε2Λ2

µ
D2 + β3

Λ2

µ
P2

0

0

0



=



β1

(
1− S1

N1

)
(I1 + εL) +

(
Λ1

µ
− S1

)
(β1ε1D1 + β3P1)

0

0

0

0

β2

(
1− S2

N2+νL

)
(I2 + ενL) +

(
Λ2

µ
− S2

)
(β2ε2D2 + β3P2)

0

0

0


≥ 0,

where the expressions of the forces of infection λi in (4) and (5) and the definition of the region

Ω were used in the previous two relations. This completes the proof of Theorem 4.4. �

Remark 4.5. The method used to prove Theorem 4.4 does not lead to a conclusion for the

stability of E0 when R0 = 1. Typically, this is investigated by constructing a Lyapunov function

and applying the LaSalle’s Invariance Principle (La Salle 1976). In the current situation, the

expression of the basic reproduction number R0 is complicated and highly nonlinear with respect

to its coefficients, which makes it difficult to use it directly. To avoid such difficulty, specifically

in the context of patch-models, it is standard to use an alternative threshold quantity (see, for

instance (Tsanou et al. 2017a)). For the case under consideration, one can use the quantity

T0 :=
k11 + k22 + k12k21

1 + k11k22

, which has the following properties:

If k11 + k22 ≥ 2, then R0 > 1. If k11 + k22 < 2, then R0 ≤ (≥)1⇐⇒ T0 ≤ (≥)1.

The above relation between the thresholds R0 and T0 is illustrated on Figure 5 where they

are plotted against the parameter ν that accounts for the worst scenario on the movement

of patients who escape from hospitals, namely moving to Patch 2 where there are no control

measures. When the two thresholds are less than one, T0 always dominates R0 so that it is
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better to use R0 for the control of the disease in this case. However, the use of T0 could be

appropriate when both R0 and T0 are greater than one, since R0 > T0. Anyway, despite the

introduction of the threshold quantity T0, the proof of the GAS of E0 for R0 = 1 remains a

difficult question, which is not the focus of this work.
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Figure 5: Comparison of threshold quantities R0 and T0. The parameters are chosen based on

baseline values in Table 4 with the following adjustments: β1 = 6.150×10−3, β2 = 1.994×10−3,

and β3 = 1.161× 10−3.

Having studied the disease-free equilibrium E0 of the model (6)-(7), we now investigate its

potential endemic equilibria (EE), i.e. solutions of the algebraic system (21) with at least some

positive infected classes, which are denoted

E∗ = (S∗1 , I
∗
1 , H

∗, L∗, R∗1, D
∗
1, P

∗
1 , S

∗
2 , I
∗
2 , R

∗
2, D

∗
2, P

∗
2 ). (26)

We start with an interior EE whereby all the infective coordinates I∗1 , H∗, L∗, D∗1, P ∗1 , I∗2 , D∗2

and P ∗2 are positive. Then after further simplifications in the defining relation (21), we obtain

S∗1 =
Λ1

λ∗1 + µ
, I∗1 =

1

k1

(
Λ1λ

∗
1

λ∗1 + µ
+ fL∗

)
, H∗ =

k3

ξ
L∗, R∗1 =

γ1

µk1

Λ1λ
∗
1

(λ∗1 + µ)
+ x1L

∗,

D∗1 =
k4Λ1λ

∗
1

bk1(λ∗1 + µ)
+ x2L

∗, P ∗1 =
x3λ

∗
1

λ∗1 + µ
+

1

θ

(
η1f

k1

+ η3x2 + η5

)
L∗,

S∗2 =
Λ2

λ∗2 + µ
, I∗2 =

1

k5

(
Λ2λ

∗
2

λ∗2 + µ
+ νL∗

)
, R∗2 =

γ2

µk5

(
Λ2λ

∗
2

λ∗2 + µ
+ νL∗

)
,

D∗2 =
k4

bk5

(
Λ2λ

∗
2

λ∗2 + µ
+ νL∗

)
, P ∗2 =

x4λ
∗
2

λ∗2 + µ
+

1

θ

(
η2ν

k5

+
η4k4ν

bk5

)
L∗,

(27)

where λ∗1 ≡ λ∗1(E∗) and λ∗2 ≡ λ∗2(E∗) denote the forces of infection in (4) and (5) evaluated at

E∗, while

x1 =
1

µ

(
f +

γ3k3

ξ

)
, x2 =

k4

b

(
f

k1

+
k3

ξ
+ 1

)
,

x3 =
Λ1

θ

(
η1

k1

+
η3k4

bk1

)
and x4 =

Λ2

θ

(
η2

k5

+
η4k4

bk5

)
.
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Given the strong nonlinearity of the model already mentioned in Remark 4.5 and displayed

now in (27) as well as in the complex expressions of λ∗1(E∗) and λ∗2(E∗), it is clear that es-

tablishing the existence of interior equilibria is a challenging task. Therefore, we will address

this question later on numerical simulations. In the meantime, it is worthy to investigate the

existence of boundary endemic equilibria as explained below.

We assume that ν > 0 so that the patches are coupled. We look for a Patch 1 boundary

equilibrium or Patch 2 disease-free equilibrium in the sense that I2 = D2 = P2 = 0, but all the

coordinates I1, D1 and P1 are positive in E∗. With the requirement I∗2 = 0, it follows from the

implicit expression, (27), of a solution of the system (21) that λ∗2 = 0 and L∗ = 0. Hence, we

obtain a boundary equilibrium

E∗ = (S∗1 , I
∗
1 , H

∗, L∗, R∗1, D
∗
1, P

∗
1 , S

∗
2 , I
∗
2 , R

∗
2, D

∗
2, P

∗
2 )

=

(
Λ1

λ∗1 + µ
,
λ∗1S

∗
1

k1

, 0, 0,
γ1I
∗
1

µ
,
(µ+ δ)I∗1

b
,
η1I
∗
1 + η3D

∗
1

θ
,
Λ2

µ
, 0, 0, 0, 0

)
. (28)

In a similar manner, there is a Patch 2 boundary equilibrium or Patch 1 disease-free equilibrium

given by

E∗ = (S∗1 , I
∗
1 , H

∗, L∗, R∗1, D
∗
1, P

∗
1 , S

∗
2 , I
∗
2 , R

∗
2, D

∗
2, P

∗
2 )

=

(
Λ1

µ
, 0, 0, 0, 0, 0, 0,

Λ2

λ∗2 + µ
,

Λ2λ
∗
2

k5(λ∗2 + µ)
,

γ2Λ2λ
∗
2

µk5(λ∗2 + µ)
,

k4Λ2λ
∗
2

bk5(λ∗2 + µ)
,
x4λ

∗
2

λ∗2 + µ

)
. (29)

We have the following result:

Theorem 4.6. Under the condition ν > 0, the model (6)-(7) has at least one Patch 1 boundary

equilibrium and Patch 2 boundary equilibrium, which are given by (28) and (29) and are locally

asymptotically stable whenever R0 > 1 is close to 1.

Proof: We give the proof for the Patch 1 boundary equilibrium, the situation being similar for

the other boundary equilibrium. By combining Eq. (28) with λ∗1 ≡ λ∗1(E∗) given in Eq. (4),

and by doing some algebraic manipulations, we obtain the following third degree polynomial

in λ∗1:

λ∗1
(
K2(λ∗1)2 +K1λ

∗
1 +K0

)
= 0. (30)

Here

K2 = b(γ1 + µ+ δ)(µ+ γ1),

K1 = µ(γ1 + µ+ δ)2b+ x6(µ+ γ1)− µ(γ1 + µ+ δ)bβ1,

K0 = (x6 − bβ1)µ(γ1 + µ+ δ),

= bµ2(γ1 + µ+ δ)2 (1−R0) ,

where x6 = µb(γ1 + µ+ δ)− β1ε1k4Λ1 − b(γ1 + µ+ δ)β3x3. The previous relation that involves

R0 in its reduced form below, due to the Patch 2 disease-free equilibrium, is obtained after
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further simplification:

R0 =
β1

k1

(
1 +

ε1Λ1k4

µb

)
+
β3Λ1k3

µθk1k5

(
η1 +

η3k4

b

)
.

Clearly, λ∗1 = 0 gives the disease-free equilibrium E0 in Eq. (22), with P1 = P2 = 0. We

therefore consider the quadratic polynomial,

K2(λ∗1)2 +K1λ
∗
1 +K0 = 0, (31)

whose possible sign changes of coefficients depend on K1 and K0 given that K2 > 0. This is

summarized in the following table.

No. Sign of K1 Sign of K0 Number of possible root(s)

1 + + No root

2 + - one root

3 - - one root

Table 5: Existence of Patch 1 boundary equilibrium

When R0 > 1, it follows from the table (no 2 or 3) and Descarte’s rule of signs that there

exists a unique EE. The local asymptotic stability of this endemic equilibrium for R0 > 1 close

to 1 is guaranteed by the Center Manifold Theorem in (Castillo-Chavez & Song 2004). (Note

that the scenario no. 1 in the table corresponds to the case when R0 < 1 and is in agreement

with Theorem 4.4, which implies that there is no EE). This completes the proof. �

5 Nonstandard finite difference scheme

The nonstandard finite difference (NSFD) method was initiated more than three decades ago

by Mickens. Paraphrasing him from his latest book (Mickens 2020), the NSFD method is

becoming an established field whose the concept of dynamic consistency and associated tech-

niques are increasingly and quickly accepted for the construction of reliable numerical schemes

for differential equations. In this section, we construct a NSFD scheme that replicates the

dynamics of the EVD model (6)-(7).

Let

Zk =
(
Sk1 , I

k
1 , H

k, Lk, Rk
1 , D

k
1 , P

k
1 , S

k
2 , I

k
2 , R

k
2 , D

k
2 , P

k
2

)T
denote an approximation of

Z(tk) = (S1(tk), I1(tk), H(tk), L(tk), R1(tk), D1(tk), P1(tk), S2(tk), I2(tk), R2(tk), D2(tk), P2(tk))
T

at the time tk = k4t, k ∈ N, where h = 4t > 0 is the step size. Following the methodology

in (Anguelov & Lubuma 2001, Anguelov et al. 2014, Mickens 1994), as revisited in (Anguelov
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et al. 2020, Mickens 2020) for some infectious disease models, we propose the following NSFD

scheme: 

Sk+1
1 − Sk1

φ
= Λ1 − (λk1 + µ)Sk+1

1 ,

Ik+1
1 − Ik1

φ
= λk1S

k+1
1 + fLk − k1I

k+1
1 ,

Hk+1 −Hk

φ
= α1(1− τ)Ik+1

1 + α2I
k
2 + ϕLk − k2H

k+1,

Lk+1 − Lk

φ
= ξHk+1 − k3L

k+1,

Rk+1
1 −Rk1
φ

= γ1I
k+1
1 + γ3H

k+1 − µRk+1
1 ,

Dk+1
1 −Dk

1

φ
= k4(Ik+1

1 +Hk+1 + Lk+1)− bDk+1
1 ,

P k+1
1 − P k1

φ
= η1I

k
1 + η3D

k
1 + η5L

k − θP k+1
1 .

(32)



Sk+1
2 − Sk2

φ
= Λ2 − (λk2 + µ)Sk+1

2 ,

Ik+1
2 − Ik2

φ
= λk2S

k+1
2 + νLk+1 − k5I

k+1
2 ,

Rk+1
2 −Rk2
φ

= γ2I
k+1
2 − µRk+1

2 ,

Dk+1
2 −Dk

2

φ
= k4I

k+1
2 − bDk+1

2 ,

P k+1
2 − P k2

φ
= η2I

k
2 + η4D

k
2 − θP k+1

2 .

(33)

In (32)-(33), the denominator function φ = φ(h) that satisfies the relation φ(h) = h + O(h2) is

defined by

φ = φ(h) =
1− e−qh

q
(34)

where the number q > 0 is large enough so that it captures the qualitative feature of the model (6)-(7).

Typically, as explained in (Anguelov et al. 2020), one can take

q ≥ (µ+ α1 + α2 + γ1 + γ2 + γ3 + δ + ξ + f + ϕ+ ν + b+ θ). (35)

Note that some of the parameters could be excluded from (35), e.g., the rate b of deceased human

individuals who are not directly buried because this number is supposed to be less than or equal

to the disease-induced death rate δ that is included in the expression. But, we have included all

the parameters to simplify the presentation. Furthermore, other qualitative parameters such as the

eigenvalues of underlying Jacobian matrices will be added in the right-hand of Eq. (35). The forces of

infection are discretized as follows to re-inforce Mickens’ rule on nonlocal approximation of nonlinear

terms:

λk1 = β1

(
Ik1 + εLk

Nk
1

+ ε1D
k
1

)
+ β3P

k
1 and λk2 = β2

(
Ik2 + ενLk

Nk
2 + νLk

+ ε2D
k
2

)
+ β3P

k
2 (36)
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where Nk = Nk
1 +Nk

2 , Nk
1 = Sk1 + Ik1 +Hk + Lk +Rk1 and Nk

2 = Sk2 + Ik2 +Rk2 .

Remark 5.1. Occasionally, we will use the simplest explicit NSFD scheme, namely the nonstandard

forward Euler scheme defined by considering all the discretizations in the right-hand sides of (32)-(32)

to be local at the time tk; see, for instance, (Anguelov & Lubuma 2001, Mickens 1994).

The NSFD scheme (32)-(33) is equivalent to the formulation (37)-(38) below in the Gauss-Seidel

order, which is suitable for computational purpose.



Sk+1
1 =

Λ1φ+ Sk1
1 + (λk1 + µ)φ

, Ik+1
1 =

(
λk1S

k+1
1 + fLk

)
φ+ Ik1

1 + k1φ

Hk+1 =

(
α1(1− τ)Ik+1

1 + α2I
k
2 + ϕLk

)
φ+Hk

1 + k2φ
, Lk+1 =

ξHk+1φ+ Lk

1 + k3φ
,

Rk+1
1 =

(
γ1I

k+1
1 + γ3H

k+1
)
φ+RK1

1 + µφ
Dk+1

1 =
k4

(
Ik+1

1 +Hk+1 + Lk+1
)
φ+Dk

1

1 + bφ
,

P k+1
1 =

(
η1I

k
1 + η3D

k
1 + η5L

k
)
φ+ P k1

1 + θφ
(37)



Sk+1
2 =

Λ2φ+ Sk2
1 + (λk2 + µ)φ

, Ik+1
2 =

(
λk2S

k+1
2 + νLk

)
φ+ Ik2

1 + k5φ
,

Rk+1
2 =

γ2I
k+1
2 φ+Rk2
1 + µφ

, Dk+1
2 =

k4I
k+1
2 φ+Dk

2

1 + bφ
,

P k+1
2 =

(
η2I

k
2 + η4D

k
2

)
φ+ P k2

1 + θφ
.

(38)

By implementing the discrete analogue of the reasoning in the proof of Theorem 4.1, as done in

(Anguelov et al. 2020), we obtain the following result:

Theorem 5.2. The NSFD scheme (32)-(33) or (37)-(38) is dynamically consistent with respect to

Theorem 4.1 in the sense that this scheme is a discrete dynamical system on the same biologically

feasible region Ω, which is equally attracting.

It is clear that as discrete dynamical systems, the NSFD scheme (32)-(33) or (37)-(38) as well

as the nonstandard Euler scheme mentioned in Remark 5.1 have the unique disease-free fixed (DFF)

point,

DFF ≡ E0 =

(
Λ1

µ
, 0, 0, 0, 0, 0, 0,

Λ2

µ
, 0, 0, 0, 0

)
, (39)

which turns out to be the unique disease-free equilibrium (DFE) point in (22) of the continuous model

(6)-(7). In order to study the stability of the DFF point, we state a theorem, which is a discrete

analogue of the result used in the proof of Theorem 4.4 to prove the global asymptotic stability of

the DFE point of the system (6)-(7) re-written in the form (24)-(25).
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Theorem 5.3. Let us consider a discrete dynamical system on Ω ⊂ Rm+ × Rn+ of the formX
k+1 = Fh(Xk, Y k),

Y k+1 = Gh(Xk, Y k), Gh(Xk, 0) = 0.
(40)

We assume that the system has a unique fixed-point Z∗ = (X∗, 0), X∗ > 0, which is stable. We

further assume that

(D1) For the sub-system Xk+1 = Fh(Xk, 0), the fixed-point point X∗ is globally asymptotically stable;

(D2) The right-hand side of the second equation of the discrete dynamical system on Ω, (40), admits

the decomposition

Gh(Xk, Y k) = AhY
k − G̃h(Xk, Y k),

where G̃h(Xk, Y k) ≥ 0 and Ah is a Metzler matrix with spectral radius, ρ(Ah) < 1.

Then, the fixed-point (X∗, 0) is globally asymptotically stable on Ω.

Proof: Let {(Xk, Y k)}k be the sequence in Ω generated by (40) from an arbitrary initial guess

(X0, Y 0) ∈ Ω. By mathematical induction, the second equation in (40) and Condition (D2) lead to

0 ≤ Y k ≤ (Ah)kY 0. (41)

Since ρ(Ah) < 1, the sequence of matrices {Akh}k converges to the zero matrix, and thus Y k → 0 as

k →∞. Combining this with Condition (D1), it follows that the fixed-point (X∗, 0) is attractive and,

thus, globally asymptotically stable because it was assumed to be stable.

Theorem 5.4. The disease-free fixed point (39) of the nonstandard Euler scheme referred to in

Remark 5.1 is globally asymptotically stable whenever R0 < 1, and q is suitably chosen.

Proof: By a suitable choice of the parameter q in (34)-(35), it can be shown, as done elsewhere (e.g.

(Anguelov et al. 2020, 2014)), that the nonstandard Euler scheme is elementary stable. In particular,

when R0 < 1, the disease-free equilibrium point (DFE), E0, is the unique fixed-point of the discrete

dynamical system and it is locally asymptotically stable.

Next, we use the notation Xk = (Sk1 , R
k
1 , S

k
2 , R

k
2) and Y k = (Ik1 , H

k, Lk, Dk
1 , P

k
1 , I

k
2 , D

k
2 , P

k
2 ) for

the respective uninfected and infected classes, and we apply Theorem 5.3. The nonstandard Euler

scheme can be written in the form (40), with vector functions Fh ≡ Fh(Xk, Y k) : R4 × R4 → R4 and

Gh ≡ Gh(Xk, Y k) : R8×R8 → R8 given as follows in terms of the functions F and G in the continuous

model (24)-(25):

Fh(Xk, Y k) = Xk + φF (Xk, Y k) and Gh(Xk, Y k) = Y k + φG(Xk, Y k), with Gh(Xk, 0) = 0. (42)

It is readily seen that the sub-system referred to in Condition (D1) of Theorem 5.3 is the following

system of four first order difference equations:

Xk+1 = Fh(Xk, 0) =


φΛ1 + Sk1 (1− φµ)

0

φΛ2 + Sk2 (1− φµ)

0

 =



φΛ1

k∑
j=0

(1− φµ)j + (1− φµ)k+1S01

0

φΛ2

k∑
j=0

(1− φµ)j + (1− φµ)k+1S02

0


.
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Consequently, the sequence {Xk}k converges to the fixed-point X∗ =

(
Λ1

µ
, 0,

Λ2

µ
, 0

)
as k → ∞.

Hence, X∗ is globally asymptotically stable, as needed from Condition (D1).

Regarding Condition (D2), we observe that the function Gh in (42) admits the required decom-

position with G̃h(Xk, Y k) = φG̃(Xk, Y k) ≥ 0 and Ah = I + φA where G̃ and A are the same vector

function and Metzler matrix that were used in Condition (H2) in the proof of Theorem 4.4 for the

continuous model. Given this relation between the discrete and the continuous matrices, any eigen-

value λh of Ah corresponds to an eigenvalue λ of A through the relation λh = 1 + φλ. When R0 < 1,

we have <λ = −|<λ| < 0, so that |λh|2 = 1−2φ|<λ|+φ2|λ|2. Thus |λh| < 1 whenever φ < 2|<λ|/|λ|2,

which leads to the requirement q ≥ |λ|2|/2|<λ|, ∀λ, for the spectral radius of Ah to be less than 1.

Hence the sequence {Y k}k converges to 0. Thus the DFF, E0, is globally asymptotically stable. This

completes the proof of the theorem. �

Remark 5.5. In terms of the first equation of the structure (40), the NSFD scheme (32)-(33) or

(37)-(38), can be written as

Xk+1 = Fh ≡



Λ1φ+Sk
1

1+(λk
1+µ)φ

1
1+µφ

{(
γ1 + α1γ3(1−τ)

1+k2φ

)
1

1+k1φ

[(
λk
1 (Λ1φ+Sk

1 )

1+(λk
1+µ)φ

+ fLk
)
φ+ Ik1

]
+

γ3((α2I
k
2 +ϕLk)φ+Hk)φ

1+k2φ
+Rk1

}
Λ2φ+Sk

2

1+(λk
2+µ)φ

1
1+µφ

{
γ2

1+k5φ

[(
λk
2 (Λ2φ+Sk

2 )

1+(λk
2+µ)φ

+ νLk
)
φ+ Ik2

]
φ+Rk2

}


.
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Hence, the fixed-point X∗ =

(
Λ1

µ
, 0,

Λ2

µ
, 0

)
is, as needed from Condition (D2), globally asymptotically stable

for the following sub-system:

Xk+1 = Fh(Xk, 0) =



Λ1φ+ Sk1
1 + µφ

0

Λ2φ+ Sk2
1 + µφ

0


=



Λ1

µ
+

(
S01 −

Λ1

µ

)(
1

1 + µφ

)k
0

Λ2

µ
+

(
S02 −

Λ2

µ

)(
1

1 + µφ

)k
0


.

33



For the second equation in (40), we obtain

7Y k+1 = Gh ≡



1

1 + k1φ

(
(T k1 + fLk)φ+ Ik1

)
1

1 + k2φ

{[
α1(1− τ)

1 + k1φ

(
(T k1 + fLk)φ+ Ik1

)
+ α2I

k
2 + ϕLk

]
φ+Hk

}
1

1 + k3φ

{
ξ

1 + k2φ

{[
α1(1−τ)
1+k1φ

(
(T k1 + fLk)φ+ Ik1

)
+ α2I

k
2 + ϕLk

]
φ+Hk

}
φ+ Lk

}
µ+ δ

1 + µφ

{[(
(T k1 + fLk)φ+ Ik1

)
+ T3I

k
2 + T4L

k + T5H
k
]
φ+Dk

1

}
1

1 + θφ

[
(η1I

k
1 + η3D

k
1 + η5L

k)φ+ P k1
]

1

1 + k5φ

(
(Zk + νLk)φ+ Ik2

)
1

1 + bφ

[
k4

1 + k5φ

[
(Zk + νLk)φ+ Ik2

)
φ+Dk

2

]
1

1 + θφ

[
(η2I

k
2 + η4D

k
2 )φ+ P k2

]
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where

T k1 =
λk1(Λ1φ+ Sk1 )

1 + (λk1 + µ)φ
, T2 = 1 +

(
1 +

ξφ

1 + k3φ

)
α1(1− τ)φ

1 + k2φ
, T3 =

α2φ

1 + k2φ

(
1 +

φξ

1 + k3φ

)
,

T4 =
ϕφ

1 + k2φ

(
1 +

φξ

1 + k3φ

)
, T5 =

1

1 + k2φ

(
1 +

φξ

1 + k3φ

)
, Zk =

λk2(Λ2φ+ Sk2 )

1 + (λk2 + µ)φ
.

The structure of the vector function Gh in (44) is so complex that we could not derive a decomposition

of the type needed in Condition (D2). However, the factor M , with

M = max
{

(1 + k1φ)−1, (1 + k2φ)−1, (1 + k3φ)−1, (1 + k5φ)−1, µ(1 + µφ)−1, δ(1 + µφ)−1,

(1 + bφ)−1, (1 + θφ)−1
}

< 1,

which appears in the expression of Gh suggests that the sequence {Y k}k tends to zero. We will provide

in the next section numerical simulations, which show that this is the case and that the fixed-point

(X∗, 0) is GAS.

6 Numerical simulations

In this section, we present numerical results for the full model (6)-(7) using the nonstandard finite

difference scheme (37)-(38). Unless stated differently under the figure caption, the parameters are

chosen based on baseline values in Table 4. We begin by illustrating the global stability of the disease-

free equilibrium as stated in Theorem 4.4 for the continuous problem, and supported by Theorem 5.4

for the corresponding nonstandard forward Euler scheme defined in Remark 5.1. In this case, with

R0 < 1, Figure 6 shows that all trajectories converge to the disease-free equilibrium. Furthermore,

for the general NSFD scheme (37)-(38), Figure 7 supports the global asymptotic stability of the

disease-free equilibrium that was anticipated in Remark 5.5. Related to this, is also Figure 8 that

demonstrates that the sequence, {Y k}k, in (44) of infected classes converges to zero.
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The existence of at least one stable endemic equilibrium is emphasised in Figure 9 where we

show the existence of supercritical bifurcation with respect to the basic reproduction number R0.

Furthermore, by considering several initial conditions for R0 > 1, Figure 10 suggests that there exists

a unique endemic equilibrium, which is globally asymptotically stable. Furthermore, in support of

Theorem 4.6, we illustrate the existence of at least one Patch 1 or Patch 2 boundary equilibrium in

Figure 11.
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(a) (b)

Figure 6: Global asymptotic stability of the disease-free fixed point of the Nonstandard forward

Euler scheme for R0 = 0.8846 < 1. The parameters were chosen based on baseline values with

β1 = 5.041× 10−3, β2 = 1.340× 10−3, β3 = 9.518× 10−4, and both axes are ×106.
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Figure 7: Global stability of the disease-free equilibrium for R0 = 0.8846 < 1. The parameters

were chosen based on baseline values with β1 = 5.041 × 10−3, β2 = 1.340 × 10−3, β3 =

9.518× 10−4, and both axes are ×106.
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Figure 8: Illustration for the sequence of infected class, in this case I1, defined in (44) converging

to zero for different initial values.
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Figure 9: Supercritical bifurcation with respect to R0. The simulations were obtained by

varying the contact rate β2 with all other parameters fixed at baseline values.
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Figure 10: Asymptotic stability of the endemic equilibrium with R0 = 2.95 > 1, and both

axes are ×106. At the endemic equilibrium point, corresponding to the open circle, we have

I∗1 = 3254, D∗1 = 738, I∗2 = 257 and D∗2 = 32.
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Figure 11: Illustration of Theorem 4.6 on the existence and stability of the Patch 1 (a) or Patch

2 (b) boundary equilibrium with R0 = 2.95. The parameters were chosen based on baseline

values.

Now, we come to the main focus of the work, namely the contribution of conflict/war in the

transmission of EVD. We consider the severity of the epidemic and the asymptotic properties of

the model with respect to conflict/war related parameters. This is assessed through simulations in

Figures 12-19. First of all, Figure 12 shows the bifurcation behavior of the reproduction number

R0 in the space (ξ, ν): one sees that, irrespective of the values of the other model parameters,

having a sufficiently high number of individuals escaping the healthcare facilities, denoted by 1/ξ,

(viz. ξ < 0.2), will impede the control of Ebola when disruptive events occur, because R0 remains

above unity. Similarly, the contour plot of R0 in the space (ϕ, τ) in Figure 13 suggests that, if all

other parameters are kept as estimated/fitted in the model, except ϕ and τ (which can vary in their

respective ranges), regardless the magnitude of destruction of healthcare facilities τ , one needs a high

rate of movement of escaped individuals back into healthcare facilities (i.e., ϕ > 0.65) for Ebola to be

controlled. In Figure 14, we assess the effect of escaping individuals on the total number of infections

in the population for each patch. As more individuals escape into Patch 2 from Patch 1, denoted

by 1/ν, we see a decrease at endemic level in the total number of infections in the two populations

(Figure 14(a)), i.e., R0 increases beyond unit (Figure 12). This is supported in the Figure 14(b)

where we vary the parameter ξ in the range [0, 0.60] with reference to parameter range in Table 4.

The parameter τ , indicating the destruction of healthcare facilities, is one of the key measures of

the impact of the conflict/war. From the flow chart in Figure 3 and the model (6)-(7), we assume that

the parameters τ and α2 are involved in the production of outflow from the I1 and I2 compartments

such that the sums γ1 + α1(1 − τ) + δ + µ and γ2 + α2 + δ + µ are constants. While keeping the

parameters γ1, γ2 and µ constant, we let the parameters τ and δ or α2 and δ vary. As τ → 1 and

α2 → 0, the death rate δ increases. Note also that the basic reproduction number R0 ≡ R0(τ) is

inversely proportional to τ . We see in Figure 15 that as the destruction parameter increases so that

R0 decreases, the number of infected individuals in each patch increases and the number of patients in

hospital, though decreasing, reach an endemic level. Note that a similar endemic state was observed

in Figure 14(a) regarding increased values of the parameter ν. The dramatic impact of the destruction
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Figure 12: Contour with respect to R0 in the space (ξ, ν) for the model (6)-(7).
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Figure 13: Contour with respect to R0 in the space (ϕ, τ) for the model (6)-(7).
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(a) Bifurcation with respect to ν. (b) Bifurcation with respect to ξ

Figure 14: Bifurcation diagram for the model (6)-(7) assessing the effect of the rate of escaping

individuals moving into Patch 2, ν, and the rate of escaping from healthcare facilities, ξ.
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Figure 15: Bifurcation diagram for the model (6)-(7) assessing the effect of the parameter of

the destruction of healthcare facilities, τ , and the associated basic reproduction number, R0,

for b = 0.6.

of healthcare facilities is further observed on two fronts. First, this negatively affects the behavior of

people with respect to the burial of the dead and contamination of the environment. This is illustrated

in Figure 16(a) for reduced values of the burial parameter b. This also is illustrated in Figure 16(b)

and Figure 19(b) where η1, η2 and η5 are increased. Secondly, the number of deaths is high as seen

in Figure 17. This is consistent with the real data presented in Table 3.
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(a) b = 0.1. (b) η1 = η2 = 2.721× 10−4.

Figure 16: Bifurcation diagram for the model (6)-(7) assessing the effect of the parameter of

the destruction of healthcare facilities, τ .

It is generally the case that as the number of infected individuals increases, more people are sent

into the health facilities for proper care. In particular, for this setup where there are no health facilities

taking EVD patients in Patch 2, any identified EVD patients are sent back to Patch 1 at the rate α2.

Thus, the total number of infections decrease as α2 → 0, see Figure 19(a).
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Figure 17: Contour with respect to the number of the dead for the model (6)-(7).
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Figure 18: Bifurcation diagram for the model (6)-(7) assessing the effect of the rate of movement

of escaped individuals back into healthcare facilities, ϕ.
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Figure 19: Bifurcation with respect to α2 and η5 to assess the effect of escaping individuals being

send back to Patch 1 from Patch 2, and the effect of escaped individuals on the contamination

of the environment, respectively.
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7 Conclusion

Any outbreak of the Ebola Virus Disease (EVD) in Africa is on its own a major public health disaster

and threat, given the associated huge numbers of deaths and the high risk of wide spread transmission

to other continents (CDC 2019, WHO 2019a). Recently, the burden has been exacerbated by the

presence of war, conflict and violence in affected regions, specifically during the tenth or 2018-2020

Ebola outbreak in the eastern region of the Democratic Republic of Congo (DRC) (WHO 2020a),

which is the motivation and focus of this work. The war and attacks by armed groups have jeopardized

interventions such as the following that made it possible to effectively and rapidly contain the previous

outbreaks: role of legions of disease-fighters, educational campaign, self-protection measures, contact

tracing, refrain from contaminated bush meat, vaccination, safe burial, etc. (Kupferschmidt 2019,

Anguelov et al. 2020, Berge et al. 2017c, 2018a). In this unprecedented context of active conflict and

war zone, we have investigated their impact on the transmission dynamics of the EVD.

The tenth Ebola outbreak arose precisely in a tumultuous eastern region of the DRC formed by the

provinces of Ituri, North-Kivu and South-Kivu. Healthcare infrastructure and personnel constituted

one of the main targets of the armed groups. This forced patients to escape from the Ebola Treatment

Centers (ETCs) and to flee to the bush or neighboring provinces (referred to as Patch 2), which are war

and Ebola free. In view of this setting, we constructed a two patch SIR-model. In Patch 1, consisting

of the three affected provinces, we considered an extension of the classical SIR-model modified by the

addition of one contaminated environment class as well as two classes of hospitalized individuals and

escapees from hospitals.

Our findings are summarized as follows:

1. We carefully identified and incorporated into the model the key parameters that measure the

impact of the war. These are τ , the parameter of destruction of Ebola ETCs and ξ, the rate

at which patients escape from the ETCs. Furthermore, we expressed the damages caused by

escaped patients in terms of two additional parameters, namely the rate ν of moving to Patch 2

and the rate η5 of shedding the virus in the environment and bush.

2. We computed R0, the basic reproduction number, and established that the disease-free equi-

librium (DFE) is globally asymptotically stable (GAS) whenever R0 < 1, while it becomes

unstable when R0 > 1. In the latter case, we showed that the model possesses at least one

Patch 1 and one Patch 2 boundary equilibria that are locally asymptotically stable (LAS).

In particular, we investigated how varying the parameters τ , ξ, ν and η5 that are embedded

in the complex expression of R0 can contribute to reduce it below 1, or to achieve the rela-

tion R0 > 1, a scenario that could significantly increase the number of infectious individuals,

including exporting the virus to Patch 2 and contaminating the environment.

3. Based on the recently revisited methodology in (Anguelov et al. 2020, Mickens 2020) we con-

structed a nonstandard finite difference (NSFD) scheme, which is dynamically consistent with

respect to all the qualitative properties of the continuous model discussed in this work. In par-

ticular, we established a discrete counterpart of a decomposition result in (Castillo-Chavez et al.

2002) and used it to show that, as a discrete dynamical system, our NSFD scheme preserves
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the GAS property of the DFE when R0 < 1.

4. In this work, there has been a great deal of real data obtained from various scientific, press and

institutional sources (e.g. (CDC 2021, 2019, Reliefweb 2021, Wells et al. 2019, WHO 2020a,

2019c)). This enabled us to perform sound statistical data analytics that led to satisfactory

parameter estimations, model-fitting and numerical simulations. In this regard, the simulations

of our NSFD scheme reliably illustrated war and conflict resulting damages in terms of increased

numbers of infections, as stated in items (1) and (2) above.

In (Tumutegyereize 2019), the author makes three preventive recommendations based on the

experience of the West Africa Ebola outbreak from 2014-2016. These are:

• To provide clear information about Ebola and how it spreads as a strategy to downplay rumours,

fuel tension and division that nurture mistrust within the community;

• To include the affected community in the planning solutions or interventions, thereby making

the voices of impacted individuals heard;

• To continue supporting the Ebola affected community after the end of the outbreak.

However, since tackling Ebola in a conflict zone has proved to be difficult, complex and dangerous,

one must also acknowledge that it is not easy to prevent violence with these recommendations alone,

specifically in the case of an asymmetric war like in DRC where the enemy is not known. Hence, we

highly recommend the following additional recommendations that enable an optimal control of the

key parameters that measure the impact of war and conflict:

• Effort should be made to trace escapees and to control their movements by redirecting them to

the hospitals and to the infectious class;

• Government should invest in constructing healthcare facility, particularly in regions surrounding

the epicenters of the Ebola disease.

• Government should take its responsibility to protect and secure healthcare facility and person-

nel. Each healthcare complex should have security services, as it is the case for most public

infrastructure of strategic importance in the country.

• The relevance of these recommendations is supported by our numerical simulations, which

showed for instance a reduction in the total number of infections for either of the following

strategies: increasing the parameter, α2, of return from Patch 2 to Patch 1 (Figure 19(a)),

reducing the destruction parameter, τ , of the hospitals (Figure 16) or increasing the rate, ϕ, of

moving back escapees to hospitals (Figure 18).

Finally, when R0 > 1, our numerical simulations suggest the existence of a unique interior endemic

equilibrium point, which is GAS (Figure 10). The formal proof of this fact forms an integral part of

our planned future research. To this end, we intend to investigate the uniform strong persistence of

this disease following the approach in (Dhirasakdanon et al. 2007). It is also our plan to investigate

more complex, but realistic, models in which the challenging scenario of war and conflict is combined
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with cost effective control measures such as vaccination, self-protection measures, safe burial, etc.

(Berge et al. 2017c, 2018a), as well as the Ebanga drug against Ebola, which the United States Food

Drug Administration-FDA recently approved (France24 2021).
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