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1. Introduction and Preliminaries

Let (X, d) be a complete metric space. A point x in X is called a fixed point of a
mapping T : X → X if d(x, Tx) = 0.

Banach contraction principle [1] states that a selfmapping T on a complete metric
space X has a unique fixed point in X provided that there exists α ∈ (0, 1) such that

d(Tx, Ty) ≤ αd(x, y),

is satisfied for all x, y ∈ X.
Several authors have extended and generalized this principle in various directions.

Recently, Branciari [2] defined a generalized metric space, where the axiom of triangular
inequality in the definition of ordinary metric space was replaced with so called rectangular
inequality by choosing four points instead of three points. He also proved a fixed point
result in such spaces.
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Definition 1.1. [2] Let (X, d) be a nonempty set. A mapping d : X × X → [0,∞) is
said to be a generalized metric on X if for any x, y ∈ X, u, v ∈ X \ {x, y} , the following
conditions hold:

(1) d(x, y) = 0⇔ x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

The pair (X, d) is called a generalized metric space.

Definition 1.2. [2] Let (X, d) be a generalized metric space. A sequence {xn} in X is
called:

(a) convergent to x ∈ X if and only if xn → x as n→∞. In this case, we write

lim
n→∞

xn = x.

(b) Cauchy sequence if and only if d(xn, xm)→ 0 as n,m→∞.

Definition 1.3. [2] A generalized metric space (X, d) is said to be complete if every
Cauchy sequence in X converges to some element in X.

Several authors have obtained fixed point results in such spaces (see, [20, 21] and [3])
references are mentioned therein. Sarama [21] presented an example which shows that
there exist a generalized metric space that does not satisfy any of the following conditions:

(1) The metric d is continuous in both variables.
(2) Each open ball is an open set.
(3) The topology induced by d is Hausdorff.
(4) Each convergent sequence is a Cauchy sequence.
(5) In particular, a sequence may converge to at the most one point.

Recently, Jleli and Samet [8] introduced a new class of mappings called θ−contraction
and established an interesting fixed point theorem for such mappings in the setting of
generalized metric spaces.

Definition 1.4. [8] Let ∆θ be the set of all functions θ : (0,∞)→ (1,∞) satisfying the
following conditions:

(Θ1): θ is increasing,
(Θ2): for any sequence {tn} in (0,∞) , limn→∞ tn = 0+ if and only if

lim
n→∞

θ(tn) = 1,

(Θ3): there exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+
θ(t)− 1

tr
= l.

Example 1.5. [8] Let i ∈ {1, 2, 3}. Define θi : (0,∞)→ (1,∞) as follows:

θ1(t) = e
√
tet , θ2(t) = 4

√
t, θ3(t) = e

√
t.

Note that θ1, θ2, θ3 ∈ ∆θ.

Jleli and Samet presented the following definition and fixed point theorem in [8].

Definition 1.6. [8] Let (X, d) be a generalized metric space and θ ∈ ∆θ. A mapping
T : X → X is called θ−contraction if

θ (d (T (x), T (y))) ≤ [θ (d (x, y))]
k
, (1.1)

for any x, y ∈ X, where d(T (x), T (y)) > 0 and 0 ≤ k < 1.
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Theorem 1.7. [8] Let (X, d) be a generalized metric space and a selfmapping T on X a
θ−contraction. Then T has a unique fixed point in X.

Let A and B be two nonempty subsets of a generalized metric space X such that
A ∩ B = φ and T : A → B. In this case d(x, Tx) > 0 for any x ∈ A, and hence the
solution of a functional equation x = Tx does not exist. It is then an interesting problem
to find an element x∗ ∈ A which solves the following optimization problem:

min {d(x, Tx) : x ∈ A} .

A point x∗ in A which not only solves the above optimization problem but also satisfies
d(x∗, Tx∗) = d(A,B) is known as best proximity point of mapping T, where A ∩ B = φ
and

d(A,B) = inf{d(x, y), where x ∈ A and y ∈ B}.

If A∩B 6= φ then d(A,B) = 0, the best proximity point of T becomes a fixed point of T.
Ky Fan [6] proved the following result:

Theorem 1.8. [6] If A is nonempty convex subset of a Housdroff locally convex topologi-
cally vector space X and T : A→ X is a continuous mapping, then there exist an element
x∗ in A such that

d(x∗, Tx∗) = d(A,B).

Several authors have extended and generalized Fan’s theorem in different directions
(see, [4, 5, 9–11, 13–19, 22, 23, 25]).

Following definitions are also needed in the sequel.

Definition 1.9. [5] If x ∈ X and A is any nonempty subset of X, then

d(x,A) = inf {d(x, a) : a ∈ A} ,

is the distance of a point x from a set A. Also,

A0 = {x ∈ A : d(x, y) = d(A,B), for some y ∈ B} , and

B0 = {x ∈ B : d(x, y) = d(A,B), for some y ∈ A} .

Throughout this paper, we assume that A and B are nonempty disjoint subsets of a
complete generalized metric space (X, d).

We now state “the p− property” and “the weak p−property” in the setting of gener-
alized metric space.

Definition 1.10. [12, 24] Let A0 6= φ. The pair (A,B) is said to satisfy:

(a) the p−property, if for any x1, x2 ∈ A and y1, y2 ∈ B with

d (x1, y1) = d (A,B)
d (x2, y2) = d (A,B)

}
implies d (x1, x2) = d (y1, y2) .

(b) the weak p−property, if for any x1, x2 ∈ A0 and y1, y2 ∈ B0 with

d (x1, y1) = d (A,B)
d (x2, y2) = d (A,B)

}
implies d (x1, x2) ≤ d (y1, y2) .
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Definition 1.11. [7] Let α : A×A→ [−∞,∞). A mapping T : A→ B is called proximal
α+− admissible, if for any x, y, u, v ∈ A,

α(x, y) ≥ 0
d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

 =⇒ α(u, v) ≥ 0. (1.2)

In this paper, we establish a best proximity point result for (θ, α+)−proximal admis-
sible contraction in the set up of generalized metric spaces.

2. Main Results

We start the section by introducing the notion of (θ, α+)−proximal admissible con-
traction of first kind and second kind as follows.

Definition 2.1. Let α : A × A → [−∞,∞) and θ ∈ 4θ. A mapping T : A → B is said
to be (θ, α+)−proximal admissible contraction of

(i) first kind, if

α(x, y) ≥ 0
d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

 =⇒ 0 ≤ α (u, v) + θ [d (u, v)] ≤ [θ (d (x, y))]
k
, (2.1)

(ii) second kind, if

α(x, y) ≥ 0
d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

 =⇒ 0 ≤ α (u, v) + θ [d (Tx, Ty)] ≤ [θ (d (x, y))]
k
,

where x, y, u, v ∈ A and k ∈ (0, 1).

If we choose α(x, y) = 0, for all x, y ∈ A. Then we obtain the following definitions.

Definition 2.2. Let α : A × A → [−∞,∞) and θ ∈ 4θ. A mapping T : A → B is said
to be θ− proximal admissible contraction of:

(i) first kind, if

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
=⇒ θ [d (u, v)] ≤ [θ (d (x, y))]

k
, (2.2)

(ii) second kind, if

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
=⇒ θ [d (Tx, Ty)] ≤ [θ (d (x, y))]

k
, (2.3)

where x, y, u, v ∈ A and k ∈ (0, 1).

Now we prove our main result of the article.

Theorem 2.3. Let α : A×A→ [−∞,∞), T : A→ B be a (θ, α+)−proximal admissible
contraction of first kind. Moreover, if A0 is nonempty closed set in X and T (A0) ⊆ B0,
then there exist a best proximity point of a mapping T provided that there exists x0, x1 ∈ A0

such that

d(x1, Tx0) = d(A,B) and α (x0, x1) ≥ 0.

Moreover, if α (x, y) ≥ 0, for every x, y ∈ A satisfying d(x, Tx) = d(A,B) = d(y, Ty),
then x∗ is a unique best proximity point of a mapping T.
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Proof. Let x0, x1 ∈ A0 such that d(x1, Tx0) = d(A,B) and α (x0, x1) ≥ 0. As Tx0 ∈
T (A0) ⊆ B0, there exists x2 in A0 such that d (x2, Tx1) = d(A,B). Since T is proximal
α+− admissible, we have α (x1, x2) ≥ 0. Similarly, by T (A0) ⊆ B0, we obtain a point
x3 ∈ A0 such that d (x3, Tx2) = d(A,B) which further implies that α (x2, x3) ≥ 0.
Continuing this way, we can obtain a sequence {xn} in A0 such that

d(xn, Txn−1) = d(A,B),

d(xn+1, Txn) = d(A,B), α (xn, xn+1) ≥ 0, for all n ∈ N ∪ {0} . (2.4)

Since T is (θ, α+)− proximal admissible contraction of first kind, we have

α (xn, xn+1) + θ (d (xn, xn+1)) ≤ (θ (d (xn−1, xn)))
k
.

Since α (u, v) ≥ 0 for all x, y ∈ A, we obtain that

θ (d (xn, xn+1)) ≤ α (xn, xn+1) + θ (d (xn, xn+1)) ≤ (θ (d (xn−1, xn)))
k
.

Thus

θ (d(xn, xn+1)) ≤ (θ (d (xn−1, xn)))
k
, for all n ∈ N.

Now,

1 < θ (d(xn, xn+1))

≤ (θ (d (xn−1, xn)))
k

≤ (θ (d (xn−2, xn−1)))
k2

...

≤ θ (d (x0, x1))
kn
, (2.5)

gives that

lim
n→∞

θ (d (xn, xn+1)) = 1+,

and hence

lim
n→∞

d (xn, xn+1) = 0.

From definition of θ, there exist r ∈ (0, 1) and l ∈ (0,∞] such that

lim
n→∞

θ (d (xn, xn+1))− 1

[θ (d (xn, xn+1))]
r = l.

Suppose that l <∞. In this case, for C = l
2 > 0, there exist some n0 ∈ N such that∣∣∣∣θ (d (xn, xn+1))− 1

[θ (d (xn, xn+1))]
r − l

∣∣∣∣ ≤ C, for all n ≥ n0 ∈ N.

This implies that

θ (d (xn, xn+1))− 1

[θ (d (xn, xn+1))]
r ≥ l − C = l − l

2
=
l

2
= C, for all n ≥ n0 ∈ N.

Thus

n [θ (d (xn, xn+1))]
r ≤ nD [θ (d (xn, xn+1))− 1] ,



594 Thai J. Math. Vol. 20 (2022) /N. Saleem et al.

holds for all n ≥ n0 ∈ N, where D = 1
C . Now suppose that l = ∞ and C > 0 is any

arbitrary positive real number. Then there exists some n0 ∈ N such that

θ (d (xn, xn+1))− 1

[θ (d (xn, xn+1))]
r ≥ C, for all n ≥ n0.

Thus

n [θ (d (xn, xn+1))]
r ≤ nD [θ (d (xn, xn+1))− 1] ,

holds for all n ≥ n0 ∈ N. So, in all cases, there exist D > 0 and n0 ∈ N such that

n [θ (d (xn, xn+1))]
r ≤ nD [θ (d (xn, xn+1))− 1] , for all n ≥ n0 ∈ N.

From (2.5), we have

n [θ (d (xn, xn+1))]
r ≤ nD

[
θ (d (x0, x1))

kn − 1
]

, for all n ≥ n0 ∈ N.

On taking limit as n→∞ on both side of the above inequality, we obtain that

lim
n→∞

n [d (xn, xn+1)]
r

= 0.

Thus, there exists n1 ∈ N, such that

d (xn, xn+1) ≤ 1

n1/r
, for all n ≥ n1 ∈ N. (2.6)

Suppose that xn 6= xm for every n,m ∈ N with n 6= m. By (2.1), we have

θ (d (xn, xn+2)) ≤ α (xn, xn+2) + θ [d (xn, xn+2)] ≤ [θ(d (xn−1, xn+1))]k.

That is,

θ (d (xn, xn+2)) ≤ [θ(d (xn−1, xn+1))]k, for all n ∈ N.

Therefore
1 < θ [d (xn, xn+2)] ≤ [θ (d (xn−1, xn+1))]

k ≤ [θ (d (xn−2, xn))]
k2 ≤ . . . ≤ [θ (d (x0, x2))]

kn
,

for all n ∈ N, gives that

lim
n→∞

θ[d(xn, xn+2)] = 1+,

and hence,

lim
n→∞

d (xn, xn+2) = 0.

Now, from the definition of θ and using the similar arguments as above, we can choose
n2 ∈ N, such that

d (xn, xn+2) ≤ 1

n1/r
, for all n ≥ n2 ∈ N.

Let N = max {n0, n1}. We consider two cases.
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Case 1: If m > 2 and m is odd, then m = 2L+ 1, where L ≥ 1. Note that

d(xn, xn+m) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d (xn+2, xn+m)

≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4)

+ d(xn+4, xn+m)

≤ d(xn, xn+1) + d(xn+1, xn+2) + d (xn+2, xn+3) + . . .

+ d(xn+m−1, xn+m)

≤ 1

n1/r
+

1

(n+ 1)1/r
+

1

(n+ 2)1/r
+ . . .+

1

(n+m− 1)1/r

≤
∞∑
i=n

1

i1/r
,

for all m ≥ n ≥ N ∈ N.
Case 2: If m > 2 and m is even, then m = 2L, where L ≥ 2. Note that

d(xn, xn+m) ≤ d(xn, xn+2) + d(xn+2, xn+3) + d (xn+3, xn+m)

≤ d(xn, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+5)

+ d(xn+5, xn+m)

≤ d(xn, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4)+

+ d(xn+m−1, xn+m)

≤ 1

n1/r
+

1

(n+ 2)1/r
+ . . .+

1

(n+ 2L− 1)1/r

≤
∞∑
i=n

1

i1/r
,

for all m ≥ n ≥ N . Thus in all the cases, we have

d(xn, xn+m) ≤
∞∑
i=n

1

i1/r
, for all m,n ≥ N ∈ N.

On taking limit as n→∞, we have

d(xn, xn+m)→ 0, for all m,n ≥ N ∈ N,

which shows that {xn} is a Cauchy sequence in A0 ⊆ A ⊂ X. As X is complete and A0

is closed, there exists x∗ ∈ A0 such that xn → x∗ ∈ A0. Note that T (A0) ⊆ B0 gives that
Tx∗ ∈ B0 and hence we may choose a point z ∈ A0 such that z 6= x∗ and

d(z, Tx∗) = d(A,B). (2.7)

By (2.4) and (2.7), we have

θ(d(z, xn+1)) ≤ α(z, xn+1) + θ(d(z, xn+1))

≤ [θ(d(x∗, xn))]
k

< θ(d(x∗, xn)).

which implies that

d(z, xn+1) < d(x∗, xn). (2.8)
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Now, by the rectangular property, (2.6) and (2.8), we obtain that

d(x∗, z) ≤ d(x∗, xn) + d(xn, xn+1) + d(xn+1, z)

≤ d(x∗, xn) +
1

n1/r
+ d(x∗, xn).

On taking limit as n→∞ in the above inequality, we conclude that z = x∗. Hence

d(A,B) = d(x∗, Tx∗),

and x∗ is a best proximity point of the mapping T .
Uniqueness: We now show that x∗ is a unique best proximity point of the mapping

T. Suppose that x∗ and w are two best proximity points of a mapping T , that is,

d(w, Tw) = d(A,B) = d(x∗, Tx∗).

Since α(x, y) ≥ 0, for every x, y ∈ A and T is (θ, α+)− proximal admissible contraction
of first kind, we obtain that

θ (d(x∗, w)) ≤ α (x∗, w) + θ (d (x∗, w))

≤ [θ (d (x∗, w))]
k

< θ (d (x∗, w)) ,

a contradiction. Therefore, x∗ = w. Thus, x∗is a unique best proximity point of the
mapping T .

Corollary 2.4. Let α : A × A → [−∞,∞), T : A → B be a θ− proximal admissible
contraction of first kind. Suppose that A0 is nonempty closed set and T (A0) ⊆ B0. Then
there exist a unique best proximity point of T provided that there exists x0, x1 ∈ A0 such
that

d(x1, Tx0) = d(A,B).

Proof. The result follows from theorem (2.3) by choosing α(x, y) = 0, for all x, y ∈ A.

To support the Theorem (2.3), following example is provided.

Example 2.5. Let X = {0, 1, 2, 3, 4, 5, 6, 7, 8}. Define d : X ×X → [0,∞) by

d(x, y) = d(y, x) and d(x, x) = 0 for all x, y ∈ X,

and

d(4, 6) = d(5, 7) = 1,

d(2, 7) = d(4, 7) = d(6, 1) = d(6, 7) = 7,

d(3, 7) = d(2, 6) = 2, d(0, 2) = d(1, 3) = 3,

d(2, 4) = d(3, 5) = 4, d(0, 4) = d(1, 5) = 5,

d (0, 1) = d(2, 3) = d(4, 5) = d(6, 7) = d(0, 5) = d(0, 7) = 7,

d(0, 8) = d(2, 8) = d(4, 8) = d(6, 8) = d(1, 8) = d(6, 5) = d(4, 1) = d(2, 1) = 8.

d(0, 6) = d(1, 7) = d(6, 3) = d(4, 3) = d(0, 3) = d(3, 8) = d(5, 8) = d(2, 5)

= d(7, 8) = 8.

Note that (X, d) is a generalized metric space but not a metric space. Indeed,

d (0, 6) 6≤ d(0, 2) + d(2, 6).
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If A = {2, 4, 6} and B = {1, 5, 7} , then d(A,B) = 7, A = A0 and B = B0. Define mapping
T : A→ B by

T (6) = 1, T (2) = 5, T (4) = 1.

Note that T (A0) ⊆ B0. Define a mapping α : A×A→ [−∞,∞) by

α (x, y) =

{
1
2 , if x, y ∈ {(2, 4), (4, 2), (4, 6) , (6, 4)}

0, if x, y ∈ {(2, 6), (6, 2)} .
Define a function θ : (0,∞)→ (1,∞) by

θ (t) = e
√
t.

Note that u = 4, v = 6, x = 2, y = 4 ∈ A with α(2, 4) =
1

2
≥ 0 and

d(4, T (2)) = d(6, T (4)) = 7,

gives that

α(u, v) + θ [d (u, v)] = 0.584 ≤ [θ (d (x, y))]
k

= k.

The inequality (2.2) is satisfied when k ∈ [0.584, 1). Thus, all conditions of Theorem (2.3)
holds. Moreover, x = 6 is a unique best proximity point of T .

Theorem 2.6. Let α : A×A→ [−∞,∞), T : A→ B be a (θ, α+)−proximal admissible
contraction of second kind and A0 a nonempty closed set such that T (A0) ⊆ B0. Then
there exist a best proximity point of a mapping T provided that (A,B) satisfies weak
p−property and there exists x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and α (x0, x1) ≥ 0.

Moreover, if α (x, y) ≥ 0, for every x, y ∈ A satisfying d(x, Tx) = d(A,B) = d(y, Ty),
then x∗ is a unique best proximity point of a mapping T.

Proof. Let x0, x1 ∈ A0 be such that d(x1, Tx0) = d(A,B) and α (x0, x1) ≥ 0. Following
arguments similar to those given in the proof of Theorem (2.3), we obtain a sequence
{xn} in A0 such that

d(xn, Txn−1) = d(A,B),

d(xn+1, Txn) = d(A,B) and α (xn, xn+1) ≥ 0, for all n ∈ N ∪ {0} . (2.9)

Since T is (θ, α+)−proximal admissible contraction of second kind, we have

α (xn, xn+1) + θ (d (Txn−1, Txn)) ≤ (θ (d (xn−1, xn)))
k
.

As α (u, v) ≥ 0 for all x, y ∈ A, we obtain that

θ (d (Txn−1, Txn)) ≤ α (xn, xn+1) + θ (d (Txn−1, Txn)) ≤ (θ (d (xn−1, xn)))
k
.

Using weak p−property of the pair (A,B) given by (2.9), we have

d(xn, xn+1) ≤ d (Txn−1, Txn) , for all n ∈ N.
As θ is increasing,

θ (d(xn, xn+1)) ≤ θ (d (Txn−1, Txn)) .

Thus

θ (d(xn, xn+1)) ≤ (θ (d (xn−1, xn)))
k
, for all n ∈ N.
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Again by using the arguments as in the proof of Theorem (2.3), we obtain

d (xn, xn+1) ≤ 1

n1/r
, for all n ≥ n1 ∈ N. (2.10)

Suppose that xn 6= xm for every n,m ∈ N with n 6= m. By (2.9), we have

θ (d (Txn−1, Txn+1)) ≤ α (xn, xn+2)+θ [d (Txn−1, Txn+1)] ≤ [θ(d (xn−1, xn+1))]k.

As (A,B) satisfies weak p−property, from (2.9), we have

d(xn, xn+2) ≤ d (Txn−1, Txn+1) , for all n ≥ n1,
which further implies that

θ (d (xn, xn+2)) ≤ [θ(d (xn−1, xn+1))]k, for all n ∈ N.
By using the similar arguments as in the proof of Theorem (2.3) we obtain that {xn} is
a Cauchy sequence in A0 ⊆ A ⊂ X and

d(z, Tx∗) = d(A,B). (2.11)

By (2.9) and (2.11), we have

θ(d(Tx∗, Txn)) ≤ α(z, xn) + θ(d(Tx∗, Txn))

≤ (θ (d (x∗, xn)))
k

< θ(d(x∗, xn)).

which implies that

d(Tx∗, Txn) < d(x∗, xn).

By the weak p−property, we have

d(z, xn+1) ≤ d(Tx∗, Txn) < d(x∗, xn). (2.12)

Then, by the rectangular property, (2.10) and (2.12), we have

d(x∗, z) ≤ d(x∗, xn) + d(xn, xn+1) + d(xn+1, z)

≤ d(x∗, xn) +
1

n1/r
+ d(x∗, xn),

which on taking limit n→∞ implies that z = x∗. Hence

d(A,B) = d(x∗, Tx∗).

and x∗ is a best proximity point of the mapping T .
Uniqueness: Now, we show that x∗ is a unique best proximity point of the mapping

T. Let x∗ and w be two best proximity points of a mapping T , that is,

d(w, Tw) = d(A,B) = d(x∗, Tx∗).

Since α(x, y) ≥ 0, for every x, y ∈ A and by using properties of T and reasoning as above,
we obtain that

θ (d(x∗, w)) ≤ θ (d(Tx∗, Tw))

≤ α (x∗, w) + θ (d (Tx∗, Tw))

≤ [θ (d (x∗, w))]
k

< θ (d (x∗, w)) ,



Best Proximity Point Results in Generalized Metric Spaces 599

a contradiction. Therefore, x∗ = w. Thus x∗ is a unique best proximity point of the
mapping T .

Corollary 2.7. Let α : A × A → [−∞,∞), T : A → B be a θ− proximal admissible
contraction of second kind and A0 a nonempty closed set with T (A0) ⊆ B0. Then there
exist a unique best proximity point of T provided that (A,B) satisfies weak p−property
and there exists x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B).

Proof. The result follows from Theorem (2.6) by choosing α(x, y) = 0, for all x, y ∈ A.

We now provide the following example to support the Theorem (2.6).

Example 2.8. Let X = {0, 1, 2, 3, 4, 5, 6, 7, 8}. Define d : X ×X → [0,∞) by

d(x, y) = d(y, x) and d(x, x) = 0 for all x, y ∈ X,

and

d(4, 6) = d(5, 7) = 1,

d(3, 7) = d(2, 6) = 2, d(0, 2) = d(1, 3) = 3,

d(2, 4) = d(3, 5) = 4, d(0, 4) = d(1, 5) = 5,

d(0, 8) = d(2, 8) = d(4, 8) = d(6, 8) = d(1, 8) = d(4, 1) = 8,

d (0, 1) = d(2, 3) = d(4, 5) = d(6, 7) = d(0, 5) = d(0, 7) = d(2, 1) = 7,

d(2, 7) = d(4, 7) = d(6, 1) = d(6, 5) = d(6, 7) = d(2, 5) = 7,

d(0, 6) = d(1, 7) = d(6, 3) = d(4, 3) = d(0, 3) = d(3, 8) = d(5, 8) = d(7, 8) = 8.

Note that (X, d) is a generalized metric space but not a metric space. Indeed,

d (0, 6) � d(0, 2) + d(2, 6).

If A = {0, 2, 4} and B = {1, 3, 5} , then d(A,B) = 7, A = A0, B = B0 and (A,B) satisfies
the weak p−property. Define a mapping T : A→ B by

T (0) = 3, T (4) = 1, T (2) = 3.

Note that T (A0) ⊆ B0. Define a mapping α : A×A→ [−∞,∞) by

α (x, y) =

{
1
2 , if x, y ∈ {(0, 2), (2, 0), (2, 4) , (4, 2)}

0, if x, y ∈ {(0, 4), (4, 0)} .

Define a function θ : (0,∞)→ (1,∞) by

θ (t) = e
√
t.

Note that u = 0, v = 2, x = 4, y = 0 ∈ A with α(2, 4) =
1

2
≥ 0 and

d(0, T (4)) = d(2, T (0)) = 7,

gives that

α (u, v) + θ [d (T (x), T (y))] = 0.8125 ≤ [θ (d (x, y))]
k

= k.

The inequality (2.3) is satisfied when k = [0.8125, 1) . Thus all conditions of Theorem
(2.6) holds. Moreover, x = 2 is a unique best proximity point of T .
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3. Application to Fixed Point Theory

If we take A = B = X, then from Definition (1.11), proximal α+− admissible mapping
implies

d(u, Tx) = d(A,B) = 0⇒ u = Tx,

and

d(v, Ty) = d(A,B) = 0⇒ v = Ty.

Since u = Tx and v = Ty, the inequality (1.2) becomes

α(x, y) ≥ 0 implies α(Tx, Ty) ≥ 0,

for all x, y ∈ X.

Remark 3.1. Note that, every proximal α+− admissible self mapping is α+− admissible
mapping.

Remark 3.2. If T : X → X, then (θ, α+)−proximal admissible contraction of first kind
and second kind satisfies:

α (Tx, Ty) + θ [d (Tx, Ty)] ≤ [θ (d (x, y))]
k
, (3.1)

where θ ∈ 4θ, k ∈ (0, 1) , u = Tx and v = Ty, for all x, y ∈ X.

Definition 3.3. A self mapping T and α : X ×X → [−∞,∞) satisfying (3.1) is known
as (θ, α)−contraction.

Corollary 3.4. Let X be a complete generalized metric space, α : X×X → [−∞,∞) and
T : X → X a (θ, α)− contraction. If {xn} is a sequence in X such that α (xn, xn+1) ≥ 0
and limn→∞ xn = x ∈ X, then α (xn, x) ≥ 0 for all n ∈ N. Then there exists a fixed point
of T provided that x0 ∈ X such that α (x0, Tx0) ≥ 0. Moreover, if α (x, y) ≥ 0, for every
x, y ∈ X, then x∗ is a unique fixed point of a mapping T.

Proof. Let A = B = X. We now show that T satisfies (θ, α+)−proximal admissible
contraction of first kind and second kind. Note that

α (x, y) ≥ 0

d (u, Tx) = d (A,B)

d (v, Ty) = d (A,B) .

for all x, y, u, v ∈ A. As d (A,B) = 0, u = Tx and v = Ty. Since T satisfies condition
(3.1). Therefore

α (u, v) + [θ (d (u, v))] = α (Tx, Ty) + θ (d (Tx, Ty)) ≤ [θ (d (x, y))]
k
,

implies that

α (u, v) + [θ (d (u, v))] ≤ [θ (d (x, y))]
k
,

which further implies that T is (θ, α+)− proximal admissible contraction of first kind.
Also,

α (u, v) + [θ (d (Tx, Ty))] = α (Tx, Ty) + θ (d (Tx, Ty)) ≤ [θ (d (x, y))]
k
,

implies that

α (u, v) + [θ (d (Tx, Ty))] ≤ [θ (d (x, y))]
k
,
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which further implies that T is (θ, α+)− proximal admissible contraction of second kind.
Since T is proximal α+− admissible, by Remark (3.1), T is α+− admissible mapping. If
there exists x0 ∈ X such that α (x0, Tx0) ≥ 0 and d(x, Tx) = d(A,B) = 0, then x∗ is a
fixed point of T .

Uniqueness: Let α (x, y) ≥ 0 for all x, y ∈ X. Now we will show that x∗ is a unique
fixed point of a mapping T. On the contrary, suppose that w∗ is another fixed point of
mapping T. Hence

d(w∗, Tw∗) = 0.

Then by using the properties of T, we obtain

θ (d (x∗, w∗)) = θ (d (Tx∗, Tw∗))

≤ α (Tx∗, Tw∗) + θ (d (Tx∗, Tw∗))

≤ (θ (d (x∗, w∗)))
k

< θ (d (x∗, w∗)) ,

a contradiction. Hence x∗ is a unique fixed point of mapping T.

Remark 3.5. By taking α(x, y) = 0 for all x, y ∈ X in the above Corollary (3.4), we
obtain the main result (1.7) of Jleli [8].
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