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Abstract 

The literature describes different stances concerning the focus on how mathematics should be 
taught, with some preferring a conceptual knowledge approach and others a procedural knowledge 
approach. The current study investigated the relationship between students' conceptual and 
procedural knowledge in a calculus context. To better understand the relationship between students' 
conceptual and procedural knowledge, we conducted a content analysis of possible student 
responses to two mathematical problems and then analysed student work. Students (n =192) were 
enrolled for a first-year mathematics module which forms part of an extended engineering degree 
in South Africa. The solutions to the two problems were analysed based on the number and nature 
(conceptual or procedural) of experts and students' steps to solve each problem. Each step in the 
solution was categorised based on the approaches used to solve the problem. The study found that 
solutions are not unique and could follow more than one approach. More importantly, the study 
found that the relationship between conceptual and procedural knowledge is complex and 
integrated as solutions require both procedural and conceptual knowledge. The findings reveal that 
calculus problems cannot be uniquely described as mainly conceptual or procedural. Both 
procedural and conceptual thinking is required to solve calculus problems and is often iterative. 
Student techniques to solve the calculus problems included algebraic, graphical and unexpected 
approaches. The analyses of student solutions suggest that lecturers and teachers should compare 
and discuss multiple solution strategies with their students to enhance mathematical proficiency 
and understanding. 
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Introduction 

The literature describes different stances concerning how mathematics should be taught and raises 
questions about whether the focus should be on concepts and applications or on developing skills 
in carrying out procedures first. The debates about differences between concept-driven versus 
skills-orientated approaches have led to tension and the so-called 'math wars' between mathematics 
education researchers globally (Brown et al., 2002; Sowder, 2007; Star, 2005; Wu, 1999), as well 
as in South Africa (Engelbrecht et al., 2009; Engelbrecht et al., 2005). These tensions have been 
described by Star (2005): 

Whether developing skills with symbols leads to conceptual understanding or 
whether basic understanding should precede symbolic representation and skill 
practice is one of the fundamental disagreements between the opposing sides of 
the so-called math wars ( Star, 2005, p.404). 

The mathematics education researchers advocating concept-driven reform emphasise 
understanding mathematics and using mathematics to solve real-world problems (Sowder, 2007). 
This perspective focuses on concepts, relations between concepts and contextual applications and 
favours reasoning, critical thinking and problem-solving skills, including using different methods 
to solve a problem. Brown et al. (2002) argue that teaching for conceptual understanding leads to 
developing procedures and skills, but the knowledge of procedures does not necessarily promote 
conceptual understanding.  

 

In contrast, skills-oriented mathematics education researchers prefer direct instruction that 
promotes procedures and skills, focusing on numerical and symbolic calculations and 
manipulations. The assumption is that as students develop skills in carrying out procedures, their 
conceptual understanding will implicitly be enhanced (Wu, 1999). The group advocating a 
procedural focus argues that the concept-driven mathematics approach is "fuzzy". It lacks rigour, 
and mathematical skills are best learned through the drill and practice of procedures (Sowder, 
2007).  

 

The two groups hold different beliefs about mathematics and how it should be learned and taught 
(Sowder, 2007). In procedural knowledge, teaching focuses on definitions, symbols and isolated 
skills, whereas teaching for conceptual understanding begins with posing problems that require 
students to reason flexibly (Brown et al., 2002). The two paradigms are in opposition to each other, 
and teaching approaches are influenced by teachers' prior experiences and their paradigms.  

 

This paper examines the mathematical knowledge and different problem-solving approaches used 
during the problem-solving process in the context of two problems from a calculus course. The 
following research question is explored: Can we categorise solutions to the two mathematical 
problems using a mainly conceptual or procedural approach? 
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The study is located within a first-year mathematics module presented to engineering students 
enrolled in an extended curriculum programme in South Africa. The authors investigate two 
problems and their solutions presented by three mathematics education specialists and examples of 
student solutions.  

Conceptual and procedural knowledge and problem-solving approaches 

Secondary and tertiary mathematics courses in many North American universities are often taught 
with a heavy procedural focus, resulting in a lack of development of conceptual knowledge and 
limiting a student's ability to apply procedures to unfamiliar problems and problem-solving 
(Maciejewski & Star, 2016). Researchers developed an interest in moving away from rote learning 
and procedures toward initiatives to improve first-year students' calculus learning, focusing on 
concepts. Understanding the concept(s) that underpin a procedure will make the procedure more 
robust and applicable in other contexts.  

 

Conceptual knowledge is described as relations between concepts and operations within a specific 
domain (Kilpatrick et al., 2001). Conceptual knowledge is described as abstract, general, explicit, 
or implicit understanding of principles (Rittle-Johnson, 2017). Procedural knowledge is the ability 
to perform step-by-step procedures to solve problems (Star et al., 2016). Both types of knowledge 
develop procedural flexibility, described as knowledge of multiple methods and choosing the most 
appropriate method based on specific problem properties (Kilpatrick et al., 2001; Rittle‐Johnson, 
2017; Star, 2005). Mathematics competence or proficiency requires both types of mathematical 
knowledge and procedural flexibility (Rittle‐Johnson, 2017, Kilpatrick et al., 2001).  

 

While procedural knowledge is described as routine procedures focusing on the accuracy of 
procedures and answers, rules and techniques (Rittle-Johnson & Schneider, 2016), conceptual 
knowledge requires the integration of related concepts. Engelbrecht et al. (2009) noted that some 
students 'proceduralised' mathematical solutions were assumed to be conceptual since the students 
used procedural methods. Therefore, the description of being 'conceptual' or 'procedural' is not 
necessarily a property of the problem but rather depends on the specific solution (Engelbrecht et 
al., 2009).  

 

A collaboration project between South Africa and Sweden investigated whether the teaching 
emphasis in undergraduate mathematics courses for engineering students would benefit from being 
conceptual rather than the traditional, more procedural approach (Engelbrecht et al., 2009; 
Engelbrecht et al., 2012). According to the study, the high school mathematics focus in these two 
countries is primarily routine and procedural. As a result, these first-year mathematics students 
have often experienced mathematics as a subject focusing on procedures and manipulation, and 
few students have been exposed to deeper conceptual thinking. Therefore university lecturers may 
claim that these students have little comprehension of basic pre-calculus concepts and that stronger 
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students are only better at procedural thinking (Engelbrecht et al., 2005; Engelbrecht et al., 2012). 
The collaborative study between South Africa and Sweden assumed that the problem-solving 
approach used to solve a mathematical problem could be mainly conceptual or procedural 
(Bergsten et al., 2015; Bergsten et al., 2017; Engelbrecht et al., 2012). The terms conceptual and 
procedural approaches are distinguished below: 

 

Conceptual approach: This includes translations between verbal, visual (graphical), numerical, 
and formal/algebraic mathematical expressions (representations), linking relationships, and 
interpretations and applications of concepts to mathematical situations. 

Procedural approach: This includes symbolic and numerical calculations, employing (given) 
rules, algorithms, formulae, and symbols. 

 

Problem-solving that takes on procedural approaches focuses on the accuracy of calculations, 
routine procedures and notation. In contrast, that based on conceptual approaches focuses on 
translations between different representations, linking relationships, interpretations and 
applications. Some studies (Chappell & Killpatrick, 2003) have looked at whether the type of 
approach influences achievement. The authors investigated student achievement in calculus for 
two groups of students where instruction followed either a procedural or a conceptual teaching 
approach. The study favoured the concept-based environment since students subjected to the 
conceptual approach scored significantly higher than students who followed the procedural 
approach on both procedural and conceptual assessments.  

 

Although some believe that the two approaches are separate and that students take either a 
procedural or a conceptual approach, there are links between the two approaches. Procedures could 
connect concepts through reasoning and representations, e.g. graphs (Davis, 2005). Students should 
be exposed to discussions about different strategies. Evaluating, comparing, and explaining 
numerous strategies for solving the same problem promotes student learning (Star et al., 2016). 
Comparing different solution methods for solving the same problem supports procedural flexibility 
across students and develops conceptual and procedural knowledge among students with prior 
knowledge of one of the methods (Durkin et al., 2017).  

 

Mathematical solution approaches could be described as bidirectional causal relations since 
solution methods show that procedural and conceptual steps alternate (Rittle-Johnson et al., 2015) 
but in no specific order (Rittle‐Johnson et al., 2016). The analysis of solution methods in a study 
showed that some steps repeat, indicating iterative relations between concepts and procedures 
(Rittle-Johnson, 2017). In the current study, we analyse the approaches used by experts and 
students to solve two problems to understand how the procedural and conceptual approaches are 
used and how they relate to each other. The first problem on functions is based on solving an 
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inequality involving the absolute value function and quadratic expressions. The second task is a 
calculus problem where students must calculate the local extrema.  

The literature confirms that students have misconceptions about absolute functions and 
inequalities. A recent Wewe (2020) study confirms that students have difficulties mastering the 
concept of absolute value inequalities. Student errors include omitting the absolute value sign and 
changing the absolute value bars to parentheses, in other words changing the absolute value 
function into a different function (Almog & Ilany, 2012; Aziz et al., 2019), as well as incorrect use 
of the logical connectors  ( ,  intersection) and  ( ,  union)and or   and not reaching the final 

solution (Almog & Ilany, 2012).  

 

White and Mesa (2014) categorise finding extreme values as routine optimisation tasks, in 
particular, 'recognise and apply procedure tasks' since students could approach this task 
procedurally by finding the derivative or setting it equal to zero. A study by Mkhatshwa (2019) 
found that the zeros of the derivative function were found by: factorising the derivative and 
equating each factor to zero, the quadratic formula, graphing the derivative and calculating the x-
intercepts. On the other hand, if the student understands the derivative's graphical meaning and the 
critical points' conceptual importance, problem-solving can be done with reasoning instead of by 
memorising a procedure (White & Mesa, 2014). 

Methodology 

The analysis is part of a more extensive, mixed-method study investigating the relationship 
between procedural and conceptual knowledge in calculus (Hechter, 2020). The study examined 
the types of knowledge required to solve 33 calculus problems. The qualitative approach involves 
a content analysis of the solutions to the tasks, followed by a quantitative Rasch analysis. A test 
with 33 items was developed and administered to 192 first-year engineering students enrolled in a 
mathematics module, where 76% were male. Subject matter experts were asked to comment on the 
items, confirming that the instrument and items were well-developed. Quantitative evidence for 
the reliability and validity of the whole instrument was reported in a separate study, where the 
instrument can also be obtained (Hechter, 2020). 

This paper presents a case study of two selected problems from the more extensive study and 
written student responses for the tasks. These items were selected since student work presented 
alternative, interesting methods and rich data related to conceptual and procedural problem-solving 
approaches. The two problems are: 

1. Solve  
|௫ିଵ|

௫మା௫ି଺
൒ 0. Write your final answer in interval notation. 

2. If a stone is thrown vertically upwards, the position function of the stone is given by 
𝑠ሺ𝑡ሻ ൌ  30𝑡 െ 5𝑡ଶ ൅ 20, where 𝑠 is in metres and 𝑡 is in seconds. Calculate:  

 a) the time 𝑡 when the stone will reach its maximum height 

 b) the maximum height of the stone (before it falls to the ground). 
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Data Analysis  

The problems were given to three subject specialists who provided their solution approaches to the 
problems. These solutions were subjected to a content analysis using categories that expand the 
conceptual and procedural approaches described by Engelbrecht et al. (2012) and Bergsten et al. 
(2015, 2017) for the topics of functions and differentiation. Table 1 

shows the codes for the associated categories we used to characterise the solutions to the problems 
chosen for this paper. We have distinguished conceptual and procedural steps using the letters C 
and P, respectively.  

Table 1 

Conceptual and procedural problem-solving categories 

Code Conceptual and procedural problem-solving categories 

C1 translations between verbal, visual, numerical, and formal/algebraic mathematical 
expressions 

C2F linking relationships wrt functions: functions  inverse functions, equation of a function 

C2D linking relationships wrt differentiation: '' '', ,f ff f f D D    '( ) 0f x   f  local 

extrema, '( ) 0f x   f  increasing, '( ) 0f x    f  decreasing, ''( ) 0f x   a possible 

point of inflexion, ''( ) 0f x    f  concave up, ''( ) 0f x   f  concave down, link position 

function (displacement)  velocity (speed)   acceleration 

C3F
 interpretation of concepts wrt functions: definitions, functions and relations, inverses, 

domain and range, restrictions, inequalities (quadratic and higher-order), incl. intersection 
and union, the turning point of a parabola (extreme), an axis of symmetry, x-intercepts 

C3D
 interpretation of concepts wrt differentiation: gradient, continuity, differentiability, point of 

inflexion, concavity 

C4
 applications of concepts to mathematical situations 

P1
 symbolic and numerical calculations, substitution 

P2F rules wrt functions, expressions (e.g. division by zero), exponential laws (e.g. a0 = 1), log 

laws, equations (e.g. . 0 0 or 0a b a b    ), inequalities (e.g. division by -1), graph of 

the parabola, factorisation, 2 | |a a   

P2D differentiation rules 

P3 algorithms (set of rules), e.g. long division or completing the square 

P4 formulae, e.g. quadratic formula and turning point formula 

P5 symbols (including notation) 
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Source: Extracted from Hechter (2020) 

We analysed the solutions according to the number of conceptual and procedural steps used to 
solve the problem. The numbers of conceptual and procedural problem-solving categories were 
coded and counted, resulting in a label for each step of the solution approach. Coding and counting 
categories need further explanation. A problem-solving category is only counted once when the 
exact procedure/concept is repeated for a particular approach in a problem solution. The repeated 
step is shaded in grey, as shown below: 

2
2D

2D

P : differentiation rules

P : differentiation 

2

rul

 
( ) '(

5 e
)

5 s

 
    

 

xx
f x f x

x
          

Result: C = 0 P = 1 (conceptual steps 0, procedural steps 1) 

 

A problem-solving category should be counted more than once when the same category requires 
different thinking skills for a procedure/concept in a particular step in the solution, e.g. 

 
 

3F

3F

C 1 : interpretation inequality

C 2 : interpretation  inequality

( 3)( 4) 0 

1 0

quadratic 

absolute v

x x

aluex

  

 
 

Result: C = 2 P = 0 (conceptual steps 2, procedural steps 0) 

 

The quadratic and absolute value functions are different functions that require similar but also 
alternative reasoning skills to solve the respective inequalities. The square brackets indicate the 
different conceptual skills. If a problem solution follows more conceptual than procedural steps, it 
could be classified as a conceptual problem; similarly, a problem that uses more procedural than 
conceptual steps is procedural. Analyses of 192 written student solutions followed the expert 
analyses. The number of students who completed Problem 1 was 178, and 182 did Problem 2. 

 

Ethical Considerations 

We obtained clearance from the engineering faculty's ethics committee. Students signed a consent 
form and voluntarily agreed to participate in the study and that their results could be used for 
research purposes. The test formed part of the students' continuous assessment marks and was a 
natural part of their learning and assessment. 

Results 

The expected solution responses to the problems on functions and application of differentiation 
analyses are shown first. We then share students' written responses to illustrate alternative 
strategies used by the students. Note that solution approaches cannot be uniquely described since 
the responses indicate that students used various solution methods. 
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Results of the analysis of responses of subject experts and students to Problem 1 

Problem 1 appears in Figure 1. 

 

Figure 1 

Instructions for Problem 1 

Solve 
|𝑥 െ 1|

𝑥ଶ ൅ 𝑥 െ 6
൒ 0. Write your final answer in interval notation. 

 

In Table 2, we show mathematical experts' content analysis of Problem 1. We include graphical 
demonstrations to explain the solution steps. The analysis revealed that the algebraic approach had 
nine non-repeated steps (C=5 P=4). Repeated steps, shaded in grey, were not counted twice. 
Analyses of student work indicated that only three of the 178 students who attempted the problem 
scored the full two marks (1.7%). Students struggled with this item; the mean was 10.7% (weighted 
average). Some 17% of the students could gain one mark out of two, but most failed to solve the 
problem, and 7% did not even try to answer even though the assessment counted as class marks. 

 

Table 2 

Analysis of steps used in Approach 1 to Problem 1 

Approach 1: Algebraic method Result: C=5 P=4 

2

2

1
0

6
( 2)( 3) 0          1 0

Graph of parabola               

( , 3) (2, ) and

( , 3) (2, ) 

1
0

6

x

x x
x x x

x x

x

x

x x




 
    

     

     




 

and 

[and]

OR (

 

R

∪)

 

P2F[1]: inequality rules(  or )+ -
+ -  

P2F[2]: factorisation 

C1: translations (graph) 

C3F [1]: interpretation quadratic inequality 

C3F [2]: interpretation absolute value ineq 

C3F [3]: interpretation inequality (and) 

 

P2F[1]: inequality rules(  or )+ -
+ -  

 

C1: translations (graph) x

1 2-3

x

1 2-3

P2F[2] 

P2F[1] 

C3F [2] 

C1 

C3F [1] 

C1 

P2F[1] 

C3F [3] 
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( 2)( 3) 0          1 0

Graph of  parabola               

( 3, 2) and 1 0 1

1  

x x x

x x x

x

    

     

 

and 

[and]

 

 

Final answer: ( , 3) {1} (2, ) [     x OR]  

C3F [1]: interpretation quadratic inequality 
C3F [2]: interpretation absolute value 
inequality  

P1: numerical calculations 

C3F [3]: interpretation inequality (and) 

C3F [4]: interpretation inequality (or) 

P5: notation 

 

The three successful students did not use the first approach but instead a graphical method, although 
the algebraic method was taught as a preferable method. Interestingly, the three students who 
achieved full marks on this item performed more poorly on the test overall than those with higher 
personal proficiency (Hechter, 2020). Figure 2 presents an example of a student response who used 
the graphical approach.  

 

Figure 2 

Student response to Problem 1 showing Approach 2 (graphical method) 

 
As can be seen from the student who used the graphical approach, fewer steps were required for 
the approach, and the student relied on both procedural and conceptual knowledge. 

  

C3F [3] 

C3F [1] 

P1 

C3F [2] 

C3F [4] 

P5
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Table 3 

Analysis of steps used in Approach 2 (graphical method) to Problem 1 (graphical method) 

Approach 2: Graphical method Result: C=5 P=1 

 C1[1]: translations (graph of absolute value) 

C1[2]: translations (graph of parabola) 

C3F[1]: interpretation x-intercepts parabola 

C3F[2]: interpretation x-intercepts absolute 
value 

C3F[3]: interpretation inequality (graphical) 

therefore  + + or - -   

P5: notation 

 

The analysis of the graphical method presents an alternative, shorter solution method with fewer 
procedural steps and fewer technical obstacles. The steps analysed in Table 3 are not based on 
subject matter experts but student solutions. Table 4 summarises the 178 students' approaches to 
solving Problem 1. Most students used algebraic approaches (91.6%). Only 15 (8.4%) of the 
students used graphs to attempt the problem.  

 

Table 4 

Content analysis of student strategies to solve Problem 1 and common errors 

Method  
n 

(178) 
% Common errors per approach Example 

Algebra 163 91.6% Conceptual error (34% of students) 

Absolute value changed to straight-line 
function 

1 0

1 0

1

 

  
 

x

x

x

 

Graphs  12 6.7% Procedural error (6% of students) 

Quadratic inequality solved incorrectly 

2 6 0

( 2)( 3) 0 

Error : 3 and 3 

  
   

  

x x

x x

x x

3 1.7%   
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For more than a third of students, the most common error was a conceptual error, where the absolute 
value function was changed to become a straight-line function (Almog & Ilany, 2012; Aziz, 2019). 
The procedural error was less common than the conceptual error. The content analysis for both 
approaches confirms that Problem 1 could be classified as a conceptual problem focusing primarily 
on interpreting function concepts, including x-intercepts and inequalities. 

 

Results of the analysis of responses of subject experts and students to Problem 2 

Problem 2 appears in Figure 3. 

 

Figure 3 

Instructions for Problem 2 

If a stone is thrown vertically upwards, the position function of the stone is given by 

 𝑠ሺ𝑡ሻ ൌ  30𝑡 െ 5𝑡ଶ ൅ 20, where 𝑠 is in metres and 𝑡 is in seconds. 

Calculate:   

            1.   the time 𝑡 when the stone will reach its maximum height 

 2.   the maximum height of the stone (before it falls to the ground)   

 

The expectation was that students would use their knowledge of differentiation, mainly position 
function and velocity concepts, to solve the problem. This approach is referred to as Approach 1 
and is seen in the student work presented in Figure 4, where calculations refer to the position 
function and velocity. 

 

Figure 4 

Student response to Problem 2 showing Approach 1 
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The analysis of the student's work is demonstrated with Approach 1 in  

Table 5. 

 

Table 5 

Analysis of steps used in Approach 1 to Problem 2 

Approach 1 Result: C=5 P=3 

2( ) 30 5 20 (position function)

'( ) 30 10 (velocity function)

'( ) 0 (velocity function = 0)

s t t t

s t t

s t

  
 


 

C4[1]: context - position function stone  

P2D: differentiation rules 

C4[2]: context - velocity function  

time velocity zero  time max-height 

2

30 10 0

10 30

3

(3) 30 5 20

(position function at t = 3)

t

t

t s

s t t

  
   
 

  

 

 

(3) 90 45 20

(3) 65  (max height)

   
 

s

s m
 

C2D[1]: link '( ) 0f x   f  local extrema 

P1[1]: numerical calculations  

C4[3]: context - position function 

max height  time velocity zero 

C2D[2]: link position function (max height) 
and  velocity (zero) at t = 3 

P1[2]: substitution into position function 

P1[1]: numerical calculations 

C4[1]: context - position function stone 

Students also used other methods such as the turning point formula and the parabola's axis of 
symmetry to calculate the time when the maximum height would be reached (Figure 5 and Figure 
6). 

  

C4[2] 

P1[1] 

C4[3] 

C2D[1] 

P2D 

C4[1]

P1[2] 

C2D[2] 

C4[1] 

P1[1] 
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Figure 5 

Student response to Problem 2 showing the use of the turning point formula (Approach 2) 

  

Here the student relied on completing the square and the turning point method to reach the correct 
answer. Another alternative is shown in Figure 6, where a student relied on the parabola's axis of 
symmetry to solve the problem. 

 

Figure 6 

Student response to Problem 2 showing the use of axis of symmetry of the parabola (Approach 3) 
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The 'completing of the square and the turning point formula approach' used to calculate 
(time; maximum height) is analysed and presented as Approach 2 in Table 6. 

 

Table 6 

Analysis of steps used in Approach 2 to Problem 2 

Approach  Result: C=2 P=5 

2

2

2

( ) 30 5 20

6 4

( 6 9) 4 9

( 3) 13

TP: (3, -13)

maximum height at 3

(3) 65  (max height)

  

  
    

  

 

 

s t t t

t t

t t

t

t s

s m  

P1[1]: numerical calculations (division by -5) 

P3: completing the square 

P2F: factorisation 

P4: Turning point formula 

C3F: interpretation of turning point (p;q) of a 

parabola:  p time max-height 

C4: contextual applications: time, max-height 

P1[2]: substitution into position function 

P1[1]: numerical calculations  

 

Table 7 displays Approach 3, which uses the axis of symmetry of a parabola to calculate 

(time; maximum height).  

 

Table 7 

Analysis of steps used in Approach 3 to Problem 2 

Approach  Result: C=2 P=3 

2

2

30
2( 5)

( ) 30 5 20

3

maximum height at 3

(3) 65  (max height)






  
 

 

 
 

 

b
a

s t t t

x

x

x

t s

s m  

P4: formula for the axis of symmetry 

P1[1]: substitution into formula  

P1[2]: numerical calculations  

C3F: interpretation of axis of symmetry of a 
parabola (extreme value) 

C4: context - time, max height  

P1[1]: substitution into position function  

P1[2]: numerical calculations  

Table 8 summarises the 182 students' approaches to solving Problem 2.  

P1[1] 

P3 

P2

C3F 

P1[2]

C4 

P1[1]

P4 

P1[1] 

P4 

C3F 

P1[1] 

C4 

P1[2] 

P1[2]
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Table 8 

Content analysis of student strategies to solve Problem 2 and common errors 

Method  
n 

(182) 
% 

Common error per approach 

Calculus 172 94.5% Conceptual error (6%) 
2( ) 30 5 20 0

then factorise with quadratic formula, etc

   s t t t  
Turning point formula 3 1.7% 

Axis of symmetry 7 3.8% 

 

The students performed well in this item, and the item mean was 81.3% (weighted average). The 
reason for the good results may be because many students (procedurally) know that the expression 
s' (t)  is associated with the local extreme value(s), in this case, the time when the stone would 
reach maximum height. Most students used calculus procedures knowledge to solve Problem 2 
(94.5%), but some used secondary school knowledge to solve the problem. These students used the 
turning point formula (1.7%) and a parabola's axis of symmetry (3.8%) to calculate the time it took 
for the stone to reach its maximum height. The most common error in the student responses was a 
conceptual error where students assumed the maximum height was reached when the position 
function was zero instead of when the velocity function was zero (Table 8). Procedural errors were 
found but were less common than conceptual ones. The analysis of the steps in Approach 1 
suggested more conceptual than procedural steps; however, the analysis of the student solutions 
identified more procedural than conceptual steps (Approach 2 and 3). The problem can therefore 
not be described as mainly procedural or mainly conceptual. 

Discussion 

On the one hand, the analyses confirm that Problem 1 can be classified as a conceptual problem 
since, for both approaches, more conceptual than procedural steps were used to obtain the answer. 
Most students attempted to do the problem following an algebraic approach. However, the three 
students who successfully completed the problem used graphs to obtain the answer. The most 
common error (conceptual) was when students changed the absolute value function into a straight-
line function, changing the question's nature (Almog & Ilany, 2012; Aziz, 2019). The procedural 
error of wrongly solving the quadratic inequality was found in a few answers (6%). Students' 
responses to this problem showed more conceptual than procedural errors. 

 

On the other hand, Problem 2 cannot be described as mainly procedural or mainly conceptual 
because the number of conceptual and procedural steps differed across the different approaches. 
For Approach 1, there were more conceptual than procedural steps (C=5 P=3, C > P), and Approach 
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2 and 3 proposed more procedural than conceptual steps (C=2 P=5, C=2 P=3, C < P). Most students 
used the position function's derivative to solve the problem (94.5%), showing a preference for a 
conceptual approach (Chappell & Killpatrick, 2003). However, it is essential to note that 5.5% of 
students used the parabola's turning point and axis of symmetry to reach the correct answer. 
Approaches 2 and 3 could be used since the position function is quadratic – if a polynomial of a 
different degree were chosen, the alternative methods would not have been possible. To solve the 
problem, a few students made the conceptual error of equating the position function to zero. These 
students procedurally knew that they had to equate a function to zero but made a conceptual error 
when choosing the position function instead of the velocity function.  

 

One of the findings from the analysis is that the two problems taken from a calculus course cannot 
be uniquely described as mainly conceptual or procedural. The analysis of solution approaches for 
the two selected items confirms that the relations between the types of knowledge within problem 
solutions are integrated (Kilpatrick et al., 2001), complex and reciprocal. Solution approaches draw 
on both procedural and conceptual steps. Furthermore, evidence confirms that solution methods 
are not unique and could follow more than one solution approach. The evidence supports Star and 
Stylianides's (2013) assertion that the nature of mathematical problems and solutions is not 
absolute. Procedural and conceptual steps are present and appear to be bidirectional since the 
procedural and conceptual knowledge categories alternate (Rittle-Johnson et al., 2015) but in no 
specific order (Rittle‐Johnson et al., 2016), and some solution steps repeat (Rittle-Johnson, 2017).  

The analysis of the responses to Problem 2 provides disconfirming evidence for the statement that 
the approach used to solve a mathematical problem is classified as either mainly conceptual or 
mainly procedural (Bergsten et al., 2015; Bergsten et al., 2017; Engelbrecht et al., 2012). 
Furthermore, an approach that would be conceptualised for one student could be seen as procedural 
for another since the solution selected could depend on whether the person saw the problem 
beforehand. Some students' familiar and procedural problems could be unfamiliar and conceptual 
to other students. Problem 2 is an example of a contextual problem that could be seen as such a 
problem since many students (procedurally) know that the expression s' (t) is required in order to 
find the local extreme value(s) (White & Mesa, 2014). Nonetheless, the most common error in 
student responses was when the position function (instead of the velocity function) was equated to 
zero. These students procedurally know how to solve the problem but struggle to apply the 
procedure. As an analogue to this argument, a final year school examination question may be 
procedural for students whose teachers have taught and tested similar problems but conceptual for 
students whose teachers have avoided such questions. 

 

A second finding that emerged from the study is that student work shows alternative solutions that 
should alter teaching practice to promote learning. The responses to Problem 1 illustrated 
alternative student methods, and these could be used to inform comparison and explanation of 
different strategies. The algebraic method was the preferred method to teach solving inequalities 
in class; however, the three students who successfully solved the inequality used graphs to reason 
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and justify their answers. They used a shorter method with fewer procedural steps and fewer 
technical obstacles than Approach 1. If teachers draw upon the teaching strategy of comparing the 
two approaches and connecting the inequality rules to the graphs of the functions, this may assist 
student learning.  

Students' responses for Problem 2 suggested additional methods for solving the contextual problem 
using the parabola's turning point or axis of symmetry. The turning point and axis of symmetry 
methods (x, extreme y – value) could be connected to the extreme y-value of the position function 
(s(t)) at t). The local extreme will be for a t - value where s’(t) = 0 (velocity function = 0), that is, 
where the gradient is zero. This is the t-value where the gradient of the graph function s changes 
from positive to negative. Explaining and comparing the different methods will connect the local 
extreme of the position function (where velocity function = 0) to the extreme value of the parabola, 
which will enhance the conceptual understanding of calculus, particularly the relationship between 
the position and velocity function. 

 

The two problems exemplify how different student approaches could influence future teaching 
instruction. The solutions to both the problems show how different problem-solving approaches 
could be connected through reasoning and explanation using procedures, concepts and different 
representations (Davis, 2005). Comparing and explaining multiple strategies for solving the same 
problem will deepen and promote student learning (Star et al., 2016). Furthermore, these practices 
could enhance students' procedural flexibility and develop conceptual and procedural knowledge 
among students with prior knowledge of one of the methods (Durkin et al., 2017). 

Conclusion 

The concept-driven and skills-oriented perspectives should not stand in opposition; teaching and 
learning strategies should focus on both concepts and procedures. The evidence suggests that 
calculus problem solutions include multiple solution strategies. The recommendation is that 
calculus teaching strategies evaluate, explain and compare multiple problem-solving methods. 
Lecturers should facilitate learning by asking probing questions that link procedures and concepts 
through reasoning, comparison and justification (Davis, 2005). Furthermore, we recommend 
examining and analysing more calculus problem solutions using the defined mathematical 
problem-solving categories to investigate multiple solution methods further. 

 

A limitation of the study may be that the content analysis was a subjective interpretation by three 
mathematical education experts. Hence, the results may not represent the views of a wider group. 
Furthermore, the current study only examined two calculus questions answered by a small, 
homogeneous sample of engineering students. The extent of the response analysis could be 
improved by expanding the number of respondents taken from a more heterogeneous population. 
Future research could include further empirical evidence, analysis of student solutions when 
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solving calculus problems, and further investigation of the teaching strategy of comparing and 
explaining multiple problem solutions when learning calculus. 
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