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Abstract: The present work is concerned with the experimental analysis of the thermal and hydraulic
performance of Al2O3 − H2O nanofluid flow in dimpled rib with arc pattern in a square duct. The
Alumina nanofluid consists of nanoparticles having a size of 30 nm. Reynolds number (Renum)

studied in the square duct range from 5000 to 26,000. The nanoparticle volume fraction (φnp) ranges
from 1.5% to 4.5%, the ratio of dimpled-arc-rib-height to print-diameter (HAD/Pd) ranges from 0.533
to 1.133, the ratio of the dimpled-rib-pitch to rib height (PAD/HAD) range from 3.71 to 6.71 and
dimpled arc angle (αAD) range from 35◦ to 65◦. The Al2O3 − H2O-based nanofluid flow values of
Nusselt number (Nurs) and friction factor ( frs) are higher in comparison to pure water. The dimpled
ribs in the arc pattern significantly improved the thermal-hydraulic performance of the investigated
test section. The nanoparticle concentration of 4.5%, the ratio of dimpled arc rib height to print
diameter of 0.933, the relative dimpled arc rib height of 4.64 and the dimpled arc angle of 55◦ deliver
the maximum magnitude of the heat transfer rate. The maximum value of the thermal-hydraulic
performance parameters was found to be 1.23 for Al2O3 − H2O-based nanofluid flow in a dimpled rib
with arc pattern square duct for the range of parameters investigated. Correlations of Nurs, frs and ηrs

have been developed for the selected range of operating and geometric parameters.

Keywords: dimpled rib; rough surface; nanofluids; friction factor; turbulence

1. Introduction

Heat transfer (HT) is a thermal engineering subject that deals with thermal energy
generation, transformation, and transfer [1]. Overall performance can be improved by
using various methodologies and techniques, like either increasing the surface of the heat-
transferring body or the heat transfer coefficient between the fluid and the surface that
allows high heat transfer in a slight capacity [2]. Aside from the solicitation in heat transfer,
hybrid nanofluids can also be blended for exceptional electrical, magnetic, chemical, and bi-
ological applications [3–8]. The great perspective of hybrid nanofluids for the augmentation
of thermal energy in various applications leads to the development of effective and compact
heat-transferring engineering equipment [9]. Ding et al. conducted several experiments
to improve the thermal performance of heat transfer fluids and concluded that in many
industrial sectors like power generation and chemical production, traditional heat transfer
fluids play an important role. Naseema et al. [10] and Karthikeyan et al. [11] examined
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the function of thermal conductivity of heat fluid transfer in the development of energy-
efficient heat transfer equipment. Their analysis showed that the nonmetallic liquid thermal
conductivity is much lesser as compared to the metallic liquids. Dormohammad et al. [12]
and Shehzad et al. [13] have shown that natural convection and forced convection are two
methods on the basis of which Nu and f can be classified, and that is necessary to improve
the characteristics of HT so that the energy-saving efficiency in industries is increased. In
the experiment, they used solid particles for heat transfer because they possess good con-
ductivity characteristics. Tang et al. [14] investigated the possibility of increasing thermal
conductivity by replacing the pure liquid with nanofluid, as nanofluids have better perfor-
mance in comparison to pure water. Sharifpur et al. [15] and some others [16–19] concluded
that under natural convection, the nanoparticle concentration is a significant factor in the
enhancement of HT. Mansoury et al. [20] and Mayeli et al. [21] conducted a parametric
investigation to assess HT increase in various heat exchangers containing Al2O3 − H2O
nanofluid and found that by cumulative the solid volume fraction of the Al2O3 nanopar-
ticles, the average heat transfer increases. Chun et al. [22] observed that a low particle
concentration of nanofluids could boost heat conductivity by more than 20%; they also
concluded that due to the high concentration of nanoparticles, there is an increase in the
average Nu. Ghosh and Mukhopadhyay [23] observed that nanofluid thermo-physical
properties are better as compared to conventional heat transfer fluids. Yang et al. [24]
reported that as compared to alumina-zirconia/water nanofluid, alumina-water nanofluid
has higher Nu and lower f .

Aliabadi and Hormozi [25] concluded that using CuO − H2O nanofluid instead of the
base fluid, Nu, as well as f , are both plain and perforated channels have increased. When
both heat transfer enhancement approaches discussed in this article are used simultaneously, a
significant thermal performance factor of 1.34 is attained. Xuan and Li [26] measured the aver-
age Nu of Al2O3 − H2O nanofluid and reported 35% enhancement at 2 vol% of Al2O3 − H2O
nanofluid. Their analysis showed that the f for the dilute nanofluids consisting of H2O and
Cu nanoparticles is approximately the same as that of H2O. Xia et al. [27] investigated Al2O3
and TiO2 nanofluids in a different microchannel for studying Nu and f . It is found that the
performance of Al2O3 is better than TiO2 for 1.0% of the volume fraction. Raei et al. [28] con-
ducted a number of experiments on nanofluids and concluded that the thermal conductivity,
as well as the heat transfer coefficient of the base fluid, can be enhanced by using porous
metal. Ekiciler and Çetinkaya [29] analyzed the turbulent flow of water-based monotype
nanofluid and hybrid nanofluid having a constant 1.0% nanoparticle volume fraction in a
duct with rib. Heat transfer, pressure drop, temperature contour, and turbulence intensity
were among the parameters studied and evaluated; they discovered that, while the increase in
Nusselt number with monotype nanofluid is approximately 18.0%, the increase in Nusselt
number with hybrid nanofluid is about 32.0%.

Pourpasha et al. [30] carried out optimization of the parameters affecting the HT coeffi-
cient of nanofluids (Al2O3/H2O, CuO/H2O, and Cu/H2O). According to their findings, the
optimized parameters increased Nu by 82% for Al2O3/H2O nanofluids. Çobanoglu et al. [31]
investigated the result of water-ethylene glycol mixture-based Fe2O3 nanofluids (0.01, 0.05,
and 0.1 vol.%) on the annular flow propagation and heat transfer in the annuli of a double
pipe heat exchanger at the low-pressure side of the refrigeration cycle; they noticed that
the highest concentration has the most excellent transferred heat (13.6% increase in per-
formance over the base fluid), the nanofluids with the most negligible concentration have
the lowest pressure drop value (25% decrease over the working fluids), and the highest
performance evaluation criteria with a tiny increase in exergy destruction (1.45% over
the working fluids). Vinoth et al. [32] carried out an experiment with deionized water,
Al2O3/H2O nanofluid, and a hybrid nanofluid Al2O3/CuO/H2O at varying mass flow
rates in a curved channel. Findings revealed that the rate of HT curved channel was
improved by 11.98% compared to the straight channel. Additionally, the utilization of
Al2O3/CuO/H2O hybrid nanofluid increased the rate of heat transfer by 3.5% and 2.1%,
respectively, in comparison to water and Al2O3/H2O nanofluid. Fujimoto et al. [33] ex-
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amined the turbulent HT capability of graphene nanofluids in a horizontal circular tube
experimentally and numerically. According to their findings, the Nu of graphene nanofluid
had an increase of 33% compared to water. Ho et al. [34] experimentally investigated the
laminar and forced convection heat transfer by using Al2O3/PCM nanofluids in a concen-
tric double-tube duct. Heat transfer, pressure drop, thermal and hydraulic performance,
and flow parameters were all analyzed and evaluated. According to their findings, a high
total flow rate combined with a high concurrent flow ratio can effectively increase heat
transfer efficacy. Jalili et al. [35] studied HT convection in a countercurrent double-tube heat
exchanger with varied fins and Al2O3/H2O and TiO2/H2O nanofluids (0.4%, 2%, 4%, 6%).
Results revealed that Al2O3/H2O nanofluid has a more excellent convection HT coefficient
than TiO2/H2O and H2O. In addition, increasing nanofluid concentration from 0.4% to 6%
increased convection HT by 12%. Huihui Zhang et al. [36] experimentally investigated the
pressure-drop, and nanoparticle deposition physiognomies of multiple twisted tapes with
partitions in turbulent duct fluid flows using air as working fluid. Penetration tests for
nano-sized particles and pressure loss measurements were carried out in the empty duct,
and the construction process was fitted with twisted tapes and zones operating at the same
pumping power; they revealed that the penetration efficiency of nanoparticles enhanced
with nanomaterials diameter and mass flow rate. Omri et al. [37] investigated a novel heat
exchanger configuration using CNT-nanofluid and jet impingement with a uniform wall
temperature profile. The volume fraction of the selected nanoparticles ranges from 0 to
5%, along with the varying fin’s height. It was concluded that the use of CNT nanofluid
significantly enhances the heat transfer rate.

From the literature review, no research has been carried out on square duct heat
exchangers using dimpled ribs with arc patterns of roughness on the heat-transferring
surface. Thus, utilizing nanofluid and dimpled rib with arc pattern turbulence promotor can
significantly improve the thermal performance of the heat exchanger. Hence, the present
study aims to analyze the heat transfer experimentally, and friction factor characteristics of
a ribbed square duct having a dimpled rib with an arc pattern on the heated wall roughened
duct with Al2O3 − H2O nanofluid flow. This research fills the lack of experimental research
for Al2O3 − H2O nanofluid flow in a ribbed square duct with dimpled rib with arc pattern.

The primary goals of the current experimental analysis are:

• To investigate the effect of arc rib pitch, arc flow attack angle, dimpled arc rib, and vol-
ume fraction on Nu and f with Al2O3 − H2O nanofluid flow in a ribbed square duct.

• To determine the prolific dimpled rib with arc pattern and flow parameters for
Al2O3 − H2O nanofluid flow in a ribbed square duct by considering the thermal-
hydraulic performance.

2. Rib Parameters

The measurements can describe the rib roughness of arc rib height (HAD), the Print
diameter of arc rib (Pd) and the pitch between arcs (PAD). Dimensionless roughness parameters
have been used to express these parameters, viz., relative arc rib height (HAD/Pd), relative rib
pitch (PAD/HAD) and arc angle (αAD). Figure 1 represents the geometry of the dimpled rib
arc pattern. Table 1 demonstrates the ranges of dimpled arc rib and flow parameters that are
selected in the present investigation for enhancing the thermal performance of the duct.

Table 1. Range of dimpled arc rib and flow parameters.

S.N. Parameters Ranges

1. HAD/Pd 0.533–1.133
2. PAD/HAD 3.71–6.71
3. αAD 35◦–65◦

4. φnp 1.5–4.5%
5. dnp 30 nm
6. Renum 5000–26,000
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Figure 1. Discuss arc with dimpled rib parameters.

3. Experimental Setup

The components of the experimental setup are designed following the ASHRAE
standards [38], which are discussed in this section, and the experimental test rig is shown in
Figure 2. A submersible pump is employed for circulating the fluid through the test section
integrated with a flow meter with a changeable area for measurement and controlling the
fluid flow in the loop and the test division. The pressure drop during fluid circulation
was measured with a differential pressure manometer connected at the inlet and outlet of
the test section. The heat was supplied to the test section with an electric heater built of
nichrome wire wrapped around a mica sheet. The auto-transformer was incorporated to
manage the power supply, and the magnitude of current and voltage were determined by
a multi-meter. The temperature of the examination unit was measured at various locations
with the help of calibrated T-type thermocouples, and a digital micro voltmeter (DVM)
was utilized to display the temperature. The drop in the pressure across the test section
during experimentation was recorded by a digital micro-manometer having the least count
of 1 Pa. A number of experiments were performed for varying geometric parameter sets of
dimpled arcs rib roughness on the heated surface at different flow rates of fluid in the duct
to accumulate the experimental data viz. plate temperature, inlet and outlet temperature
of nanofluids and pressure drop across the channel test section. All measurements were
made under steady-state circumstances. Further, the data reduction has been performed
by utilizing the raw data to obtain the heat flow and friction in dimensionless form as
a purpose of a system and operating parameters. A condenser is installed after the test
section to bring down the temperature of the nanofluid at the ambient level as the nanofluid
is circulated in the closed loop.
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4. Nanofluid Preparation and Its Thermo-Physical Properties

The Al2O3 − H2O nanofluid has been prepared for four different volume concentra-
tions of 1.5%, 2.5%, 3.5% and 4.5% by mixing the Al2O3 nanoparticles of 99.9% purity in
distilled water. As a surfactant, sodium dodecyl benzene sulphonate was utilized to make
Al2O3/H2O more soluble and stable nanofluid with a surfactant to nanofluid proportions
of 10:1. Sodium dodecyl benzene sulphonate is a high-content anionic surfactant having
good emulsility and dispersity properties as compared to other surfactants. The signifi-
cance pH for improving the stability of Al2O3-based nanofluid was attained at 5.0. Better
dispersing of nanoparticles in distilled water is required to obtain a homogeneous fluid.
The homogenization and sonication of all solutions were carried out in an ultrasonic ho-
mogenizer, shown in Figure 3, for three days to reduce particle aggregation and nanofluid
sedimentation. The stability of the nanofluid is checked by using a UV-vis spectrometer
(Evolution 201). To check the visual stability of nanofluid, Figure 3 shows the photograph
of nanofluid taken immediately after preparation as well as after two and then after four
days of nanofluid preparation.

Nanoparticles and base fluid properties are used to calculate the thermo-physical param-
eters of nanofluids. The nanofluid density is calculated using the following relationship [39]

ρn f = (1 − ϕ)ρb f + ϕρnp (1)

To compute the nanofluid’s specific heat following equation is obtained [39]:(
ρCp

)
n f = (1 − ϕ)

(
ρCp

)
b f + ϕ

(
ρCp

)
np (2)
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The following correlations are used to affect the nanofluid’s thermal conductivity [40,41]:

ke f f = kstatic + kBrownian

kstatic = kb f


(

knp + 2kb f

)
− 2ϕ

(
kb f − knp

)
(

knp + 2kb f

)
+ ϕ

(
kb f − knp

)
 (3)

kBrownian = 5 × 104βϕρb f Cp,b f

√
KT

2ρnpRnp
f (T, ϕ) (4)

where K(Boltzmann constant) = 1.3807 × 10−23 J/K, T is the temperature, and β is the por-
tion of the liquid volume that travels with particles. The value of β = 8.4407(100ϕ)−1.07304

for Al2O3 particles.
Modeling,

f (T, ϕ) =
(

2.8217 × 10−2 ϕ + 3.917 × 10−3
)( T

To

)
+
(
−3.0669 × 10−2 ϕ − 3.91123 × 10−3

)
(5)

For 1% ≤ ϕ ≤ 4% and 300 K < T < 325 K, T0 = 293 K.
The following empirical relation is used to calculate dynamic viscosity [42]:

µe f f = µb f ×
1(

1 − 34.87(dnp/d f )
−0.3 × ϕ1.03

) (6)

d f =

[
6M

Nπρb f

]1/3

(7)

where M is the base fluid’s molecular weight, N = 6.022 × 1023 mol−1 is the Avogadro
number, and ρb f is the base fluid’s mass density at T0 = 293 K.

5. Validation of Experimental Setup

The obtained experimental results were compared with the literature data in terms
of Nuss and fss in the situation of a smooth surface square channel, as shown in Figure 4a,b.
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The values of Nuss and fss of a smooth surface square duct under each Renum value are
compared with available standard correlation results under similar experimental conditions.
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Dittus–Boelter equation [43] (Equation (8)) and Gnielinski equation [44] (Equation (9))
of Nuss for the smooth surface wall are given as:

Nuss = 0.023Re0.8
numPr0.4

num (8)

Nuss =
( fss/8)(Renum − 1000)Prnum

1 + 12.7( fss/8)1/2(Prnum2/3 − 1
) f or 3000 < Renum < 10, 000 (9)

Blasius equation [44] and Petukhov equation [44] of fss for the smooth surface wall
are given as:

fss = 0.316Renum
−0.25 (10)

fss = (0.79lnRenum − 1.64)−2 (11)

The result of these comparisons is shown in Figure 4a,b. The figure indicates that
there was extremely strong agreement between the current analysis conclusions and those
predicted by the Dittus–Boelter equation and Gnielinski equation of, Nuss and Blasius
equation, and Petukhov equation of fss for a smooth surface.

Figure 4a,b clearly illustrated that the average deviation of Nuss and fss was approxi-
mately 3.37% and 3.09%, respectively, which is an acceptable range.

6. Data Reduction

The calculation procedure of Renum, Nurs, frs and ηper are presented in the present
section. The data reduction is carried out by fetching the experimental data at the steady state
condition and using the energy balance equation. The data in the form of temperature and
pressure drop across the test channel is reduced in the non-dimensional form of the Nusselt
number and the friction factor. The heater power supply is calculated by the equation [42].

Qin = I × V (12)

The energy absorbed by the fluid in the duct is computed using the formula

Qout =
.

mcp(To − Ti) (13)



Sustainability 2022, 14, 14675 8 of 16

The h between the fluid and the heated surface is calculated as

h =
Qout

Ap

(
Tpw − Tf

) (14)

The value of Renum is determined by

Renum =
ρn f umDh

µn f
(15)

The equation to determine the Nurs is

Nurs =
h Dh
kn f

(16)

and the frs is calculated from

frs =
2Dh∆pd
ρn f Lu2

m
(17)

7. Uncertainty Analysis

The uncertainty of dimensionless numbers, such as Nurs and frs, was calculated with
the method proposed by Kline [45]. The uncertainty in a measurement of “y” when the
major experimental parameters are computed by using specific measured quantities:

δy
y

δy
y

=

[(
δy
δx1

δx1

)2
+

(
δy
δx2

δx2

)2
+

(
δy
δx3

δx3

)2
+ · · ·+

(
δy

δxn
δxn

)2
]0.5

(18)

where, δx1, δx2, δx3, . . . δxn are the possible error in the measurement of x1, x2, x3, . . . xn.
δy is absolute uncertainty, and δy

y the relative uncertainty. The main uncertainty
analysis equations are given below:

A. Uncertainty in Nurs

δNurs

Nurs
=

( δDh
Dh

)2
+

(
δht

ht

)2
+

(
δkn f

kn f

)2
0.5

(19)

B. Uncertainty in frs

δ frs

frs
=

( δDh
Dh

)2
+

(
δum

um

)2
+

(
δLt

Lt

)2
+

(
δρn f

ρn f

)2

+

(
δ∆p
∆p

)2
0.5

(20)

The uncertainty for key parameters determined, Nurs and frs of the existing experi-
mental examination is found to be ±4.41% and ±5.95%, respectively. To show the variation
of Nurs and frs as a function of Renum, the error bars are shown in Figure 5a,b, respectively.
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8. Results and Discussion

Experimental results are reported in terms of Nurs, frs and ηper as a function of Renum,
ranging from 5000 to 26,000, φnp from 1.5% to 4.5% at constant dnp of 30 nm, HAD/Pd from
0.533 to 1.133, PAD/HAD from 3.71 to 6.71 and αAD range from 35◦ to 65◦. The effects of
nanoparticle volume fraction variation and artificially rib-roughened square duct on heat
transfer are studied. Figure 6 shows the variation of Nurs and frs with Renum at different φnp
of Al2O3 nanoparticle ranging from 1.5% to 4.5% of the entire test surface with the rib-
roughened wall, which is performed at dnp of 30 nm, HAD/Pd = 0.933, PAD/HAD = 4.64,
and αAD =55◦. Figure 6a illustrates that as Renum increased, Nurs also increased, and
it also shows an enhancement in average heat transfer by 2.06%, 7.02% and 10.74% at
φnp = 2.5%, 3.5% and 4.5%, respectively, when compared to φnp = 1.5%. This enhancement
is due to the nanofluid’s thermal conductivity and Brownian motion increment. Whereas
Figure 6b illustrates that frs decreased as Renum increased, and when the concentration of
nanoparticles increased average friction factor increased. Furthermore, the friction factor is
augmented around 5.55%, 9.25% and 13.15% at φnp = 2.5% , 3.5% and 4.5%, respectively,
in comparison to φnp = 1.5%.
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The maximum heat transfer rate and flow friction are observed at φnp = 4.5% for all
values of Renum. Figure 7 shows the variation of Nurs and frs with Renum at HAD/Pd ranging
from 0.533 to 1.133 executed at fixed parameters dnp of 30 nm, φnp = 4.5%, PAD/HAD = 4.64,
and αAD =55◦. Figure 7a shows an enhancement in average heat transfer of 7.69%, 14.52% and
29.9% at HAD/Pd = 0.733, 0.933 and 1.133, respectively when compared to HAD/Pd = 0.533.
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The general trends of heat transfer enhancement for the different values of relative arc rib
height first immediately increased for HAD/Pd = 0.533 to 0.933 and then decreased for
HAD/Pd = 1.133 for all values of Renum due to the effect of stronger rotational momentum
of secondary flow along the ribs, it may line the main flow to speed up it, providing a
more heat transfer. The maximum heat transfer enhancement is found at HAD/Pd = 0.933.
Whereas Figure 7b demonstrated that frs decreases as Renum increased as well as it is minimum
at HAD/Pd = 0.533 and maximum at HAD/Pd = 1.133 for all values of Renum. From the same
figure, it is also concluded that the friction factor is augmented around 9.98%, 21.95% and
33.03% at HAD

Pd
= 0.733, 0.933 and 1.133, respectively, in comparison to HAD/Pd = 0.533.
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The effect of PAD/HAD on Nurs and frs with Renum is illustrated in Figure 8, where PAD/HAD
ranging from 3.71 to 6.71 and other parameters, dnp =30 nm, φnp = 4.5%, HAD/Pd = 0.933 and
αAD =55◦ were fixed. Figure 8a clearly indicates that Nurs increased as Renum increased, and it
is maximum when PAD/HAD =4.64, minimum at PAD/HAD = 6.71. Figure 8a also indicated
an enhancement of 5.32%, 9.83% and 2.87% in average heat transfer at PAD/HAD = 3.71, 4.64
and 5.71, respectively, as compared to PAD/HAD = 6.71. The heat transfer coefficient raised when
the value of relative rib pitch increased from 3.71 to 4.64, and then it decreased with a further
increase in the value of relative rib pitch for all values of Renum. Figure 8b clearly confirms that
frs is minimum at PAD/HAD = 6.71 and maximum at PAD/HAD = 3.71. It is also witnessed
that friction factor is improved around 32.34%, 20.51% and 10.25% at PAD/HAD = 3.71, 4.64
and 5.71, respectively, concerning PAD/HAD = 6.71. The details of fluid flow for the cases of arc
angle and arc-shaped ribs are shown in Figure 9. It displayed the variation of Nurs and frs with
Renum at αAD ranging from 35◦ to 65◦ when other operating parameters are kept constant as dnp of
30 nm, φnp = 4.5%, HAD/Pd = 0.933 and PAD/HAD = 4.64.

Figure 9a shows an enhancement in average heat transfer of 8.43%, 13.08% and 4.64% at
αAD =45◦, 55◦ and 65◦ respectively, when compared to αAD =35◦. It is also observed that the
heat transfer coefficient enhanced when the arc angle increased from 35◦ to 55◦, and then it
decreased with a further increase in arc angle. Moreover, a higher heat transfer rate is found
at αAD = 55◦ due to the strong secondary flow-induced arc angle of dimpled ribs inside
the flow channel, and αAD =35◦ provides the low heat transfer rate for all values of Renum.
Figure 9b indicates that frs increases when the arc angle increases from 35◦ to 55◦, and then it
decreases with a further increase in arc angle. An enhancement of 22.46%, 34.58% and 10.35% is
found in friction factor at αAD = 45◦, 55◦ and 65◦ respectively, when compared to αAD =
35◦. Furthermore, from all these cases investigated, it is observed that the maximum heat
transfer rate is found at φnp = 4.5%, HAD/Pd = 0.933, PAD/HAD = 4.64 and αAD = 55◦ for all
values of Renum. The results reveal a stronger rotational momentum of secondary flow along
the dimpled arc pattern ribs shown in Figure 10. It is seen from the flow pattern that the main
flow is guided over the dimpled rib with an arc pattern, which tends to increase the turbulence
intensity. On the other side, the secondary flow is developed in the vicinity of the dimpled rib,
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which tends to boost the intensity of turbulence of the fluid, thus enhancing the rate of heat
transfer. Furthermore, it is evident from this discussion that the ratio of rib height to print, the
ratio of rib pitch to rib height, and the arc angle should be maintained to increase the velocity of
the fluid moving through the duct to induce local turbulence.
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The thermal-hydraulic performance
(
ηper

)
of three different dimpled with combined

arc-shaped ribbed square ducts is described in Figure 11. The thermal-hydraulic perfor-

mance was expressed as ηper =
Nurs
Nuss

/
(

frs
fss

)1/3
[46]. The greater the value of this parameter,

the better the performance of the heat exchanger. Figure 11a shows the effect of the ratio of
rib height to print (HAD/Pd) range from 0.533 to 1.133 on thermal hydraulic performance
for selected values of Renum, where it can be experiential that the value of ηper is increased
when the value of HAD/Pd increases from 0.533 to 0.933, and then it decreases with a further
increase in the value of HAD/Pd. It is evident from this figure that there is an enhancement
of 2.02%, 13.84% and 19.79% in overall thermal performance at HAD/Pd = 0.533, 0.733
and 0.933, respectively, when compared to HAD/Pd = 1.133 and maximum value of ηper is
found at HAD/Pd = 0.933 for Renum = 11, 000. Figure 11b represents the thermal-hydraulic
performance as a function of the ratio of rib pitch to rib height (PAD/HAD), ranging from
3.71 to 6.71 for the particular values of Renum. From the figure, it can be clearly seen that
the value of ηper is increases when the value of PAD/HAD increases from 3.71 to 4.64 and
then it starts decreasing with a further increase in the value of PAD/HAD from 4.64 to 1.133.
There is an enhancement of 8.73%, 20.03% and 3.98% in overall thermal performance at
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PAD/HAD = 3.71, 4.64 and 5.71, respectively, with respect to PAD/HAD = 6.71. The high-
est value of the thermal-hydraulic performance is observed at PAD/HAD = 4.64 and lowest
at PAD/HAD = 6.71 for Renum = 11, 000. Figure 11c represents the thermal-hydraulic
performance as a function of arc angle in dimpled rib (αAD) equal to 35◦, 45◦, 55◦ and
65◦ for the particular values of Renum. Here it can be clearly recognized that the value
of ηper is increases when the value of αAD increases from 35◦ to 55◦ and then it starts
decreasing with a further increase in the value of αAD. The thermal-hydraulic performance
is significantly high, about 13.01%, 16.36% and 3.85%at αAD = 45◦, 55◦ and 65◦ respectively,
when compared to αAD = 35◦. The highest value of the thermal-hydraulic performance is
observed at αAD =55◦ and lowest at αAD = 35◦ for Renum = 11, 000.
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9. Correlations for Nusselt Number and Friction Factor

The discussion of results reveals that the selected parameters for investigation are
a strong function in determining the Nurs, frs and ηrs values. The yielded experimental
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data of Nurs, frs and ηrs is utilized in the development of the correlations that will be valid
for the selected range of Re. The functional relationship for Nurs, frs and ηrs for selected
operating and geometric parameters is given as:

Nurs = f
(

Re, φnp, HAD/Pd, PAD/HAD, αAD
)

(21)

frs = f
(

Re, φnp, HAD/Pd, PAD/HAD, αAD
)

(22)

ηrs = f (Re, HAD/Pd, PAD/HAD, αAD) (23)

The experimental values are subjected to regression analysis in order to determine
statistical correlations between Nurs, frs and ηrs for the selected geometrical and flow
parameters.

The values result in the following correlation for Nurs.

Nurs = 0.019 × Re0.91 φnp
0.07 (HAD/Pd)

0.011(PAD/HAD)
−0.17(αAD)

0.14 (24)

Likewise, a statistical correlation for fTT and ηTT can be written as

frs = 1.56 × Re−0.33 φnp
0.11

(
HAD

Pd

)0.25( PAD
HAD

)−0.33

(αAD)
0.3 (25)

ηrs = 0.85 × Re0.015
(

HAD
Pd

)0.002( PAD
HAD

)−0.05

(αAD)
0.029 (26)

In order to determine the variation between the experimental and predicted data of
Nurs, frs and ηrs, a comparative analysis is carried out, and the outcome is represented
in are presented in Figure 12a–c. The difference of experimental and predicted data of
Nurs, frs and ηrs has an average deviation of ±10.2%, ±9% and ±9.3%, respectively.
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10. Conclusions

In this paper, the effect of the nanoparticle concentration, dimpled rib height, dimpled
rib pitch, and dimpled arc angle on the hydrothermal characteristics of Al2O3 − H2O
nanofluid flow in a square duct are investigated experimentally. The key conclusions are
presented here:

• Dimpled arc rib pitch, dimpled arc rib height, dimpled arc angle and volume fraction
of nanofluid strongly affected the flow pattern and augmented the thermal-hydraulic
performance of the square duct.

• In general, the Nurs and frs all tend to upsurge with the upsurge in nanoparticle
concentration, attaining the highest value of nanoparticle concentration of 4.5% gives
the highest values of both the Nurs and frs for the range of parameters investigated.

• A ratio of dimpled arc rib height to print diameter of 0.933 gives the highest value
of Nurs and ηper, whereas a ratio of dimpled arc rib height to print diameter of 1.133
gives the highest value of the frs.

• A relative dimpled arc rib height of 4.64 gives the highest value of both the Nurs and
ηper, whereas a relative dimpled arc rib height of 3.71 gives the highest value of the frs.

• In general, the value of Nurs, frs and ηper have been found to increase with increases in
the values of dimpled arc angle. Attaining the maximum value of dimpled arc angle of
55◦ gives the highest values of Nurs, frs and ηper given the set of parameters examined.

• The maximum value of the thermal-hydraulic performance parameter occurs at ϕnp
of 4.5%, dnp of 30 nm, HAD/Pd of 0.933, PAD/HAD of 4.64 and αAD of 55◦ for Renum
of 11,000. The thermal-hydraulic performance characteristics’ maximum value was
discovered to be 1.23 for Al2O3 − H2O-based nanofluid flow in a dimpled rib with arc
pattern square duct for the range of parameters investigated.
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Nomenclature

Cp, n f Specific heat
dnp Nanoparticle diameter
Dh Hydraulic diameter
h Convective heat transfer coefficient
HAD dimpled-arc-rib-height
PAD dimpled-rib-pitch
Pd print diameter
Prnum Prandtl number
Nurs Nusselt number of rough surface
frs Friction factor of rough surface
k Thermal conductivity
Greek symbols
L Duct length
.

m Mass flow rate
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Renum Reynolds number
∆Pd Pressure drop across the duct
um Fluid velocity
αAD dimpled arc angle
φnp Volume fraction
ηrs Thermohydraulic performance parameter
ρn f Nanofluid density
µ Dynamic viscosity
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