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Abstract: An examination is carried out for three-dimensional incompressible viscoelastic fluid flow
over a porous stretching/shrinking sheet with hybrid nanoparticles copper-alumina (Cu− Al2O3)

in base fluid water (H2O). The uniform magnetic field of strength B0 is applied perpendicular to
the fluid flow and considered the Navier slip. The mass transfer is considered with the chemical
reaction rate. The governing equation for the defined flow forms the system of partial differential
equations, which are then transformed into a system of ordinary differential equations via similarity
transformations. The goal is to find the exact analytical solution, and the unique solution is deter-
mined by considering the boundary layer theory. Furthermore, the obtained system is solved to
get the exact analytical solution for velocity and concentration fields in exponential form and in
hypergeometric form, respectively. The exact solutions are obtained for velocity and temperature
profiles, Skin friction, and Nusselt number. These findings are beneficial for future research in the
present area. The parameters magnetic field, Inverse Darcy number, slip parameter, chemical reaction
parameter, stretching/shrinking parameter, and viscoelastic parameter, influence the flow. The effect
of these parameters on fluid velocity and concentration field will be analyzed through graphs. Skin
friction and Nusselt number are also analyzed. This work found many applications in machining and
manufacturing, solar energy, MHD flow meters and pumps, power generators, geothermal recovery,
flow via filtering devices, chemical catalytic reactors, etc.

Keywords: viscoelastic fluid; hybridnanofluid; MHD; porosity; chemical reaction parameter

1. Introduction

Mass transfer and momentum boundary layer flow have practical potential in the fields
of polymer process and electrochemistry; the non-Newtonian fluids flow is a significant
field in industry and so has become an field of interest for researchers. Several studies have
been done on the flow of various non-Newtonian fluids [1,2].

Bhattacharya [3] studied the first order chemical reaction with the impact of mass
transfer by using the shooting method. Akyildiz et al. [4] investigated the chemical reaction
of non-Newtonian fluid through a porous medium to obtain an exact solution, which
had some interesting properties that led to further study on chemically reactive species.
Mahabaleshwar et al. [5,6] examined the inclined MHD flow, mass, and heat transfer with
the effect of radiation and flow due to porous medium by considering different kinds of
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BCs. Sarpkaya [7] discussed non-Newtonian fluids over a stretching sheet. The influence
of viscous dissipation and chemical reaction on the stagnation point flow of NF due to
the stretching/shrinking plate was examined by Murthy et al. [8]. The viscous flow on
the shrinking sheet was examined by Miklavcic and Wang [9] and showed the existence
and uniqueness, or non-uniqueness, of the exact solution. Due to the importance of the
porous medium in practical applications, Mahabaleshwar et al. [10] examined the impact
of both heat generation/absorption and stress work on the MHD flow due to a porous
stretching sheet and analyzed the Brinkman model by considering the effect of slip on a
shrinking sheet. Hayat et al. [11] gave attention to the flow of non-Newtonian fluid over
a stretching/shrinking sheet and investigated the effect of partial slip. Rizwan et al. [12]
studied the dual nature solution of the nanofluid convective flow in porous medium due to
a shrinking sheet. Pop and Merkin et al. [13,14] studied unsteady flow in a porous medium
considering the thermal slips using the shooting method and studied some limited cases.
They continue work on finding a more exact solution to the same problem.

Knowing that the radiation effect is important for certain isothermal processes, Sid-
dheshwar and Mahabaleshwar et al. [15] worked on the flow and heat transfer of MHD
viscoelastic fluid flow on shrinking sheet under the effects of radiation. Turkyilmazoglu [16]
also examined the flow, heat, and mass transfer of viscoelastic fluid and the impact of mag-
netic field and slip over a stretching surface and got multiple solutions. Furthermore, [17]
examined heat and mass transfer of viscoelastic fluid due to a porous stretching sheet
induced with a uniform magnetic field. Sakiadis [18] and Crane [19] are pioneers in the
investigation of stretching sheet problems. An analytical study of Walters’ liquid B over
a stretching sheet has been discussed by Ghasemi [20]. Being motivated by these works,
researchers conducted an investigation on stretching sheet problems. In the present work,
there is investigation of the exact analytical solution for velocity and concentration field
for 3D MHD flow viscoelastic HNF due to porous sheet which stretched/shrunk along
both x and y axes with linear velocity and Navier slip. The mass transfer is analyzed with
a chemical reaction rate parameter. The effects of different physical parameters on skin
friction and Nusselt number are also analyzed.

2. Physical Model

Consider the 3D incompressible viscoelastic fluid flow with HNF due to porous
stretching/shrinking sheet induced by uniform magnetic field of strength B0, which is
applied perpendicular to the fluid flow (Figure 1). The sheet is stretched/shrunk along
the x-axis and the y-axis is perpendicular to it. The mass transfer is considered with
chemical reaction rate kC. The governing equations for the defined flow are as follows
(Turkyilmazoglu [21]).

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (1)

u ∂u
∂x + v ∂u

∂y + w ∂u
∂z =

µe f f
ρhn f

∂2u
∂z2 + γ0u− νhn f

K1 u− σhn f B0
2

ρhn f
u

−k0

{
u ∂3u

∂x∂z2 + w ∂3u
∂z3 −

(
∂u
∂x

∂2u
∂z2 + ∂u

∂z
∂2w
∂z2 + 2 ∂u

∂z
∂2u
∂x∂z + 2 ∂w

∂z
∂2u
∂z2

)}
,

(2)

u ∂v
∂x + v ∂v

∂y + w ∂v
∂z =

µe f f
ρhn f

∂2v
∂z2 + γ0v− νhn f

K1 v− σn f B0
2

ρn f
v

−k0

{
v ∂3v

∂y∂z2 + w ∂3v
∂z3 −

(
∂v
∂y

∂2v
∂z2 + ∂v

∂z
∂2w
∂z2 + 2 ∂v

∂z
∂2v
∂y∂z + 2 ∂w

∂z
∂2v
∂z2

)}
,

(3)

u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

= DB
∂2C
∂y2 + kC(C− C∞), (4)

with traditional BCs assumption,

u = ax + l ∂u
∂z , v = by + l ∂v

∂z , w = w0, C = Cw, at z = 0,
u→ 0, ∂u

∂z → 0, v→ 0, ∂v
∂z → 0, C → C∞ as z→ ∞

}
. (5)
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Figure 1. Schematic diagram of the flow.

Here, µe f f is the effective viscosity, γ0 is porosity, K1 is permeability of porous medium,
σ is electrical conductivity,kC is the chemical reaction rate parameter, a and b are stretching
rates along x and y axes, l is slip parameter.

The momentum equation for the velocity component w is neglected because of bound-
ary layer limitations (Turkyilmazoglu [22]),

• The velocity in the axial direction is much larger than that in the transverse direction,
i.e.,

u >> v >> w.

• The velocity gradient in the transverse direction is much bigger than the velocity
gradient in the axial direction.

Now define the similarity transformations as follows,

u = |a|x ∂ f
∂η

, v = |a|y ∂g
∂η

, w = −
√
|a|ν( f (η) + g(η)), φ(η) =

C− C∞

Cw − C∞

with

η =

√
|a|
ν

z, (6)

Via these similarity transformations, the system PDEs in Equations (1)–(3) will trans-
form into

Λ
ε1

fηηη + fηη( f + g)− fη
2 + γ fη − 1

ε1

(
ε2Da−1 + ε3M

)
fη

+K
{

fηηηη( f + g) + fηη

(
fηη − gηη

)
− 2 fηηη

(
fη + gη

)}
= 0

(7)

Λ
ε1

gηηη + gηη( f + g)− gη
2 + γgη − 1

ε1

(
ε2Da−1 + ε3M

)
gη

+K
{

gηηηη( f + g) + gηη

(
gηη − fηη

)
− 2gηηη

(
fη + gη

)}
= 0

(8)

φηη + Sc( f + g)φη + Scβφ = 0 (9)

and the B.Cs (5) can be reduced as follows:

f (0) = VC, fη(0) = d + Γ fηη(0), gη(0) = c + Γgηη(0), φ(0) = 1,
fη(∞)→ 0, fηη(∞)→ 0, gη(∞)→ 0, gηη(∞)→ 0, φ(∞)→ 0

(10)
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Here, Λ =
µe f f
µ f

is the Brinkman ratio, Da−1 =
ν f

K1|a| , is the inverse Darcy number,

M =
σf B0

2

ρ f |a|
is the magnetic parameter, γ = γ0

|a| is the porosity parameter, K = k0|a|
ν is the

viscoelastic parameter, Γ = l
√
|a|
ν is the first order velocity slip parameter, VC = − w0√

|a|ν
indicates mass transpiration, where VC > 0 for suction and VC < 0 for injection, and
d = a

|a| = ±1 and c = b
|a| are the stretching/shrinking sheet parameters along the x and y

axes, respectively, where d = 1 indicates stretching rate and d = −1 indicates shrinking
rate. β = kC

|a| is the chemical reaction rate parameter.
The quantities δ′i s, i = 1, 2, 3 in Equation (7) are defined as

δ1 =
ρhn f

ρ f
, δ2 =

µhn f

µ f
, δ3 =

σn f

σf
. (11)

2.1. Analytical Solution of Momentum Problem

The solutions of Equations (7) and (8) are assumed in the following form based on
the analytical solutions taken as in Turkyilmazoglu [22] and Crane [19], with BCs as in
Equation (10),

f (η) = VC +
d(1− exp(−λη))

λ(1 + Γλ)
, g(η) =

d(1− exp(−λη))

λ(1 + Γλ)
(12)

Using these solutions in Equation (7) will provide the following expressions,

λ =
1√
2K

, (13)

− 2d
(

1 + Kλ2
)
+ (1 + Γλ)

{
γ− 1

δ1

(
δ2Da−1 + δ3M

)
− λ

(
VC −

Λ
δ1

λ + KVCλ2
)}

= 0 (14)

Using Equation (13) in Equation (14) will provide the expression for mass transpiration
as

VC =
2
[

Λ
δ1

(√
2K + Γ

)
+ 2KΓα + 2K

√
2K(−3d + α)

]
3
(

2K + Γ
√

2K
) (15)

where, α = γ− 1
δ1

(
δ2Da−1 + δ3M

)
is assumed as one parameter which combines the effect

of parameters, γ and Da−1, M > 0. The physically interested parameters and local skin
friction coefficient are given by

fηη(0) = gηη(0) = −
λd

(1 + Γλ)
(16)

2.2. Analytical Solution of Mass Transfer Problem

To solve the Equation (9) with BCs in (10), the new variable is introduced as ε = Sc
λ2 e−λη

which will provide

ε
∂2φ

∂ε2 +

{
1− Scχ1 +

2d
1 + Γλ

ε

}
∂φ

∂ε
+

Scβ

λ2
1
ε

φ = 0 (17)

Here,

χ1 =
VCλ(1 + Γλ) + 2d

λ2(1 + Γλ)

Next, the BCs (10) are reduced to become

φ

(
Sc
λ2

)
= 1, φ(0) = 0, (18)
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where ε = 0 is the regular singular point of ε = Sc
λ2 e−λη . By assuming the solution of

Equation (17) as power series solution φ(ε) =
∞
∑

r=0
crεm+r by adopting the Frobenius method

(Hamid et al. [22]) the final solution in terms of ε can be obtained as

φ(ε) = c0εχ4 H[χ4, χ2 + 1,−χ3ε] (19)

The solution in terms of η will be

φ(η) = c0

(
Sc
λ2 e−λη

)χ4

H
[

χ4, χ2 + 1,−χ3
Sc
λ2 e−λη

]
(20)

Using the BC the solution will be

φ(η) =
(

e−λη
)χ4 H

[
χ4, χ2 + 1,−χ3

Sc
λ2 e−λη

]
H
[
χ4, χ2 + 1,−χ3

Sc
λ2

] (21)

and the local Nusselt number is obtained as

− φη(0) = λχ4 −
χ4

χ2 + 1
χ3Sc

λ

H
[
χ4 + 1, χ2 + 2,−χ3

Sc
λ2

]
H
[
χ4, χ2 + 1,−χ3

Sc
λ2

] (22)

Here,

χ2 =

√
Sc2χ1

2 − 4
Scβ

λ2 , χ3 =
2χ2

1 + Γλ
, χ4 =

Scχ1 + χ2

2
(23)

3. Results and Discussion

The 3D incompressible viscoelastic fluid flow over porous stretching/shrinking sheet
with hybrid nanoparticlesis was examined along with the mass transfer problem by con-
sidering the impact of the chemical reaction rate. The uniform magnetic field of strength
B0 is applied to the flow. The governing equation for the defined flow Equations (1)–(4)
with B.Cs (5) forms the system of PDEs which are then transformed to a system of ODE
Equations (7)–(9) by applying similarity transformations as in Equation (6). Furthermore,
the system of ODEs is solved to obtain the exact analytical solution for velocity and con-
centration fields in exponential form and in hypergeometric form, respectively. The new
defined parameter α = γ − 1

δ1

(
δ2Da−1 + δ3M

)
, which includes the effect of magnetic

field (M), Inverse Darcy number
(

Da−1), porosity parameter (γ), Brinkman ratio, (Λ)
slip parameter (Γ), chemical reaction parameter (β), stretching/shrinking parameter (d),
viscoelastic parameter (K), and Schmidt number (Sc), influences the flow. The effect of
these parameters on fluid velocity and concentration field was analyzed through graphs.
Skin friction and Nusselt number were also analyzed.The graphs are analyzed for HNF
Cu − Al2O3/H2O. The solid lines indicate Γ = 0 and the dotted lines indicate Γ = 2.
The nanoparticle copper was noted to have higher rate of heat transfer and surface shear
stress. To enhance the positive compatible features of each other, the appropriate composi-
tion of nanomaterials must be chosen. In previous studies, alumina has been a favorable
nanoparticle due to its significant chemical motionlessness and stability.

Figures 2 and 3 depict the behavior of VC with different parameters. Figure 2a,b
demonstrates the solution curve of VC verses K for stretching and shrinking sheet, respec-
tively. The behavior of VC for stretching and shrinking sheet are almost same, but solution
in the shrinking case will shift upward. As the parameter α increases, VC also increases
in both the cases. It is clear that, for α < 0, VC will decrease as K increases and for α > 0,
VC will increase as K increases. Furthermore, for α = 0, VC will decrease as K increases in
the stretching case and VC will increase as K increases in the shrinking case. Figure 3a,b
show the solution domain of VC verses Λ and d, respectively. As α increases the mass
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transpiration VC also increases. Furthermore, VC increases as Casson fluid parameter Λ
increases and VC decreases as d increases. VC will be greater for higher values of the slip
factor.
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Figure 3. The solution domain of VC for different values of α, (a) versus Λ and (b) versus d in
stretching case.

Figure 4 depicts the transverse velocity for different values of α for both stretching
and shrinking cases and increases with increases in α. Transverse velocity increases with
increases in slip factor in the stretching case and decreases with increases in the slip factor
in the shrinking case. Figure 5 demonstrates the axial velocity for various K, Γ, and d in
both stretching and shrinking cases. Axial velocity increases with increases in K or d for the
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stretching case and decreases with increases in K or d for the shrinking case. In reverse, the
axial velocity is lower for higher values of Γ in the stretching case and is higher for higher
values of Γ in the shrinking case. Axial velocity decreases up to certain values of η, then
becomes constant in the stretching case and continues increasing up to certain values of η,
then becomes constant in the shrinking case.
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denote the stretching case and red curves denote the shrinking case.

The behavior of skin friction with different parameters is analyzed in Figure 6. The
effect of various values of d on skin friction versus K and versus Γ is demonstrated in
Figure 6a,b, respectively, showing that skin friction is less for higher values of d. Further-
more, the skin friction is higher in the shrinking sheet case than in the stretching sheet case.
Skin friction is increases with increases in K or Γ and becomes constant after a certain stage
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in the stretching case and will decrease with increases in K or Γ for the shrinking sheet
case. It can also be observed in Figure 6c, which demonstrates the skin friction verses d for
different values of K, where the stretching and shrinking cases are observed in the domains
0 < d ≤ 10 and −10 ≤ d < 0, respectively. Skin friction decreases as d increases.Sustainability 2022, 14, x FOR PEER REVIEW 12 of 19 

 

 
(a) 
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Sustainability 2022, 14, x FOR PEER REVIEW 13 of 19 
 

 
(c) 

Figure 6. The skin friction ( )0fηη− , (a) verses K  for different values of d , (b) verses d  for dif-

ferent values of K , and (c) verses Γ  for different values of d ; black curves denote stretching case 
and red curves denote shrinking case. 
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Figure 6. The skin friction − fηη(0), (a) verses K for different values of d, (b) verses d for different
values of K, and (c) verses Γ for different values of d; black curves denote stretching case and red
curves denote shrinking case.
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Figures 7–9 demonstrated the concentration profile φ(η) by varying different param-
eters. The behavior of φ(η) according to the variation of K, β, and Γ for the stretching
and shrinking cases is examined, respectively in Figures a and b. φ(η) will be higher for
greater values of K or β. As seen earlier, φ(η) will be greater for higher values of Γ in
the stretching case, and it will be less for higher values of Γ in the shrinking case. φ(η)
decreases exponentially up to certain stage of η and after that becomes constant at zero.
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4. Conclusions

Consider the 3-dimensional incompressible viscoelastic fluid flow over the porous
stretching/shrinking sheet with hybrid nanoparticles Cu− Al2O3 in base fluid H2O. The
uniform magnetic field of strength B0 is applied perpendicular to the fluid flow and
considered the Navier slip. The mass transfer is considered along with the chemical reaction
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rate. On converting a system of partial differential equations into system of ordinary
differential equations via similarity transformations, it can be solved to get the exact
analytical solution for velocity and concentration fields in exponential and hypergeometric
forms, respectively. The parameters magnetic field, Inverse Darcy number, slip parameter,
chemical reaction parameter, stretching/shrinking parameter, and viscoelastic parameter
influence the flow. The effect of these parameters on fluid velocity and concentration
field, skin friction and Nusselt number will be analyzed through graphs and the following
observations can be made:

• As the parameter α increases, mass transpiration also increases in both the stretching
and shrinking cases.

• Mass transpiration increases with increases in Casson fluid parameter Λ and slip
factor, and will decreases as d increases.

• Transverse velocity will be higher for higher values of the slip factor in the stretching
case and lower for higher values of the slip factor in the shrinking case.

• Axial velocity expands with K or d for the stretching case and shrinks with K or d for
the shrinking case. The effect is reversed while varying Γ.

• Skin friction decreases with increases in d and it is greater in the shrinking sheet case
than in the stretching sheet case.

• Skin friction increases with increases in K or Γ in the stretching case and will decrease
with increases in K or Γ for the shrinking sheet case and become constant after a certain
stage.

• The concentration profile will be higher for higher values of K or β; it will higher
for higher values of Γ in the stretching case and lower for higher values of Γ in the
shrinking case.
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Nomenclature
Symbol Description S.I. Units
a, b stretching/shrinking rates

(
s−1)

B0 magnetic field strength
(
wm−2)

C concentration field
(

mol/m3
)

c, d

c, d Stretching/shrinking parameters along x and y axis (−)
DB molecular diffusivity

(
m2s−1)

Da−1 Inverse Darcy number (−)
k0 material constant (W/mK)
K viscoelastic parameter

(
m−2)

kC chemical reaction parameter (−)
K1 permeability of porous medium

(
m2)

l slip factor (−)
Γ first order slip parameter (−)
M magnetic parameter (−)
Sc Schmidt number (−)
T Temperature (K)
VC Mass transpiration (−)
(u, v, w) velocities along x, y and z direction respectively

(
ms−1)

(x, y, z) Cartesian coordinates (m)
w0 wall transpiration

(
ms−1)

Greek symbols
β chemical reaction parameter (−)
η Similarity variable (−)
γ0 porosity (−)
γ porosity parameter (−)
µ dynamic viscosity o

(
kgm−1S−1

)
ν Kinematic viscosity

(
m2s−1)

ρ density
(

kgm−3
)

φ dimensionless concentration (−)
σ Electric conductivity

(
Sm−1

)
Λ Brinkman ratio (−)
Subscripts
hn f Hybridnanofluid parameter (−)
w Wall condition (−)
∞ ambient condition (−)
Abbreviations
HNF hybrid nanofluid (−)
MHD Magneto hydrodynamics (−)
ODEs Ordinary differential equations (−)
PDEs Partial differential equations (−)
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