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Abstract

We introduce the topological spaces (L, 7,1) which are well-defined for any given subset
of random variables L on any given non-additive probability space (2, F,v). A (c,€)-ball
at X € L contains all random variables in L that are sufficiently close to X in the sense
that any payoff differences to X smaller than ¢ > 0 happen with v-probability greater than
1 — e. We derive two main results concerning (c, €)-balls. Firstly, all (¢, €)-balls must be
open sets in (L, 7,1) whenever v is continuous from below and dual-autocontinuous from
above. In that case, convergence of sequences of random variables on (L, 7,1) is equivalent
to convergence in non-additive probability measure v with probability-one coincidence.
Secondly, an open (c,€)-ball cannot be a convex strict subset of L whenever L has a
non-trivial local cone structure and (2, F,v) is dual-nonatomic.
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1 Introduction

Fix an arbitrary measurable space (£2, F) where F is a sigma-algebra on the state space (.
A not necessarily additive (=non-additive) probability measure on (2, F) is a set function
v:F — [0,1] that satisfies

o v(2)=0,r(2) =1 (normalization);
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e Forall A, B e F, AC B implies v (A) < v (B) (monotonicity).

Denote by LY the set of all F-measurable real-valued functions (i.e., random variables)
defined on the non-additive probability space (£, F,v). Fix an arbitrary subset L C L° of
random variables. For given X € L and ¢, e € Q¢ define the following (¢, €)-ball at X

Bil(X)={Y eLv(X-Y|[<c)>1—¢} (1)

which contains all Y € L such that any differences between X and Y that happen with v-
probability greater than 1 — ¢ must be smaller than c.

Definition 1. Given L C L° we define the topology
Ta={UCL]| forall X eU, U e WS} U{D, L}

such that the weak neighborhood system at X € L s given as

W”lz{VQL|Bl’ji(X)§Vforsomem€N>0}.

m’m

As generalizations of additive probability measures, non-additive probability measures de-
scribe subjective beliefs of Choquet expected utility (Schmeidler 1986; 1989; Gilboa 1987)
and /or of prospect theory decision makers (Tversky and Kahneman 1992; Wakker 2010). Struc-
tural properties of non-additive measures—such as, e.g., concavity/submodularity and convez-
ity/supermodularity' —are used in Choquet expected utility theory to model ambiguity attitudes
of decision makers. Such ambiguity attitudes might serve as possible explanations for Ellsberg
(1961)-type paradoxa which represent violations of Savage’s (1954) axiomatic foundation of sub-
jective expected utility theory. In prospect theory, structural properties of non-additive beliefs
might additionally capture inverse-S shaped probability weighting functions which represent
the typical transformation of objective (and therefore additive) probability measures elicited
in decision theoretic experiments. In our opinion, the topological space (L, 7,;) is relevant in
mathematical decision theory because it stands for a plausible model of how decision makers
with non-additive subjective belief » might perceive convergence of random variables on the
subset L C L° (cf. Section 2).2

This short paper presents two theorems for topological spaces (L, 7,1). Theorem 1 shows
that every (c, €)-ball is an open set in any topological space (L, 7,1) whenever v satisfies con-
tinuity from below combined with dual-autocontinuity from above. A sequence {Xn}neN>o CL
converges in v to X with probability-one coincidence iff (=if and only if), for every ¢ > 0,

'For formal definitions of such structural properties see, e.g., Denneberg (1994, Chapter 2). Additive prob-
ability measures are non-additive probability measures that are both concave and convex.

2For the special case of subjective additive beliefs given as the Lebesgue measure A defined on the open
unit interval, Assa and Zimper (2018) and Zimper and Assa (2021) discuss utility- and/or risk-measure rep-

resentations of preferences over random variables that are (semi-)continuous in the topology of convergence in
A



lim,, o v (| X, — X| < ¢) = 1. By Corollary 1, convergence on (L, T,;) is equivalent to con-
vergence in v with probability-one coincidence whenever v is continuous from below and dual-
autocontinuous from above. Next we investigate properties of convex and open subsets of
topological spaces (L, 7,1) where L has a local cone structure and (2, F,v) is a dual-nonatomic
space. By Theorem 2, the convex hull of every open subset containing X € L must also con-
tain the sum X + Y for all Y € L. For local cones L that are non-trivial (in the sense that
they contain some random variable whose absolute payoff values are bounded away from zero),
Corollary 2 shows that any open (c,¢)-ball which is a strict subset of L cannot be a convex
set. Corollary 3 applies our analysis to non-trivial local cones given as (i) the set of all random
variables, (ii) the set of all non-negative random variables, and (iii) the set of all non-positive
random variables.

The remainder of our paper is organized as follows. Section 2 briefly explains the difference
of our approach to the existing literature. Theorem 1 is derived and discussed in Section 3. In
Section 4 we derive and discuss Theorem 2.

2 Related literature

The existing literature considers convergence in nonadditive measure v with probability-zero
divergence in the sense that for every ¢ > 0, lim,, o v (| X, — X| > ¢) = 0 (cf. Wu, Ren, and
Wu 2011; Ouyang and Zhang 2011; Li 2012; Borzovi-Molnarova, Hal¢inovd, and Hutnik 2016).
While these authors construct weak base topologies with respect to different notions of balls
(i.e., different distance functions), all these topologies turn out to be equivalent to the same
weak base topology, denoted 7,9, for an arbitrary nonadditive probability measure v. To be
precise, consider, for example, the following definition of a ball

B"(X)={Y € L|d(X,Y)<¢}
with respect to the distance function d: L x L% — [0, 1] introduced in Li (2012):
d(X,Y)=inf{b> 0| v(|X = Y| >b) <b}.
The topology 7,9 on L is then defined as follows:
oo = {u CL| forall X €U, U e W}’gd}u{@,L}
such that the weak neighborhood system at X € L is given as
Wit = {V C L| By (X) CV for some m € N>o} :

If v satisfies additional structural properties (e.g., Condition (*) in Wu, Ren, and Wu (2011)
or the stronger condition of uniform autocontinuity from above in Ouyang and Zhang (2011)),
then convergence in the topology 7,0 is equivalent to convergence in v with probability-zero



divergence. Whereas convergence in v with probability-zero divergence and our notion of con-
vergence in v with probability-one coincidence are identical concepts for additive probability
measures, this is not necessarily the case for arbitrary nonadditive probability measures. Con-
vergence with probability-one coincidence would be the appropriate convergence concept for
a decision maker or/and modeler who perceives two random variables X and Y as identical
whenever they coincide on some probability one event, i.e., whenever

v(|Y - X|=0) =1. 2)

In contrast, convergence with probability-zero divergence would correspond to a decision maker
or/and modeler who perceives two random variables X and Y as identical if they only diverge
on some probability zero event, i.e., whenever

v(Y = X|>0)=0.
Example 1. Consider L = {X,Y} such that the random variables

Ar | Ay
X1 |1
Y |1 |0

are defined on (2, F,v) whereby {A;, Ao} C F forms a partition of Q2. Consider, at
first, a nonadditive probability measure v such that

v <A1> =1and v (AQ) > 0.

Then both random variables coincide on the probability-one event A; so that, triv-
ially, X —,1 Y as well as Y —,; X. On the other hand, both random variables
diverge on the event A, which has probability strictly greater zero. Consequently,
we neither have X —,q Y nor Y —,9 X. As corresponding topologies we obtain

Tyl = {@7 {X7Y}} 7& Tvo = {@, {X} ) {Y}7{X7Y}} :
Next, consider a nonadditive probability measure v/ such that
V' (A1) <1and V' (Ay) =0.

Both random variables only diverge on the probability-zero event As but they do
not coincide on any probability-one event (here: ). In that case, we have X — o Y
as well as Y — g X but neither X —,; Y nor Y —,/; X. Note that

Tyl = {@7 {X} ) {Y} ) {X,Y}} 7£ Tyvo = {(ba {Xv Y}} .
Ul

While our topology 7,1 is thus not necessarily equivalent to 7, for arbitrary v, one can
easily show the following equivalence relationship between both topological approaches. For
arbitrary v, we have 7,1 = 759 where v : F — [0, 1] denotes the dual of v, i.e.,

7(A)=1—-v(Q—A) forall Ac F.



3 Convergence on (L,7,;) versus convergence in v with
probability-one coincidence

3.1 First main result: Theorem 1

The family { ) }
BY | XelL

with
B = {B, (X)| meN.o} 3)

m’m

forms a weak base for the 7,,-topology whereby

B (X) for all m € Ny.

e[

3|

(X) C Bty (X) form >n and X € BY

1
n’n

3|~

Because (3) is countable for every X € L, 7,1 is weakly first-countable (or g-first countable) (cf.
Arkhangel’skii 1966; Siwiec 1974; Hong 1999).
A set U is open in 7,4 iff for every Y € U there exists some my € n € Ny such that

B L (Y)CuU.
my 'my
In general, a (c, €)-ball BY! (X) is not necessarily an open set in the topology 7,1. In a seminal
paper, Wang (1984) discusses several continuity and autocontinuity properties of nonadditive
measures. Our first main result identifies a new autocontinuity condition on v which ensures
that the (c, €)-balls are open sets in any topological space (7,1, L), L C L°.

Theorem 1. Fix an arbitrary (Q, F,v) and L C L°. Suppose that v satisfies the following
two conditions:

(a) ‘Continuity from below’: for any increasing sequence {A,} C F with Ay C Ay C ...

we have

n€N>0

JLH(’)lOI/(An>=I/< U An>.

nEN>0

(b) ‘Dual-autocontinuity from above’: For any sequence {A,} C F with lim,, o v (4,) =

1 we have for all A € F

n6N>0

lim v (A, NA)=v(A).

n—oo

Then we have the following:

(i) All (c,€)-balls (1) are open sets in T,1; that is, BY, (X) € 1,1 for all c,e € Qs and all
X el

(ii) The family of open sets BY!, given by (3), forms a countable neighborhood base at X € L
so that T, is first-countable.



The following two examples illustrate that the conclusions of Theorem 1 do not necessarily
hold for v that either violate continuity from below or dual-autocontinuity from above.

Example 2. Violation of continuity from below. Let 2 = [0, 1) with F as
the Borel sigma-algebra and consider the nonadditive measure such that v (4) =0
for all A € F with A # Q. Observe that v satisfies ‘dual-autocontinuity from above’
since the only sequences with lim,,_,., v (A!) = 1 must satisfy A, = Q, n > M for
some M, so that

lim V(AmA;)_y<A)_{ VoA

Construct the countable partition

{A”}n€N>o

of 2 into half-open intervals such that

1 1+a,
A = [0, 5) and, for alln > 1, 4, = {an, —;a ) (4)
1+ apn—
where a,, = %.

That is, A; = [0, 1), Ay = [%, %), Az = [%, %) etc. whereby lim,, .., a, = 1. Let

and note that A} C A, C ... with U Al =0,1) but with A/, # [0,1) for all
nEN>0
n € Nyg. Consequently, v violates ‘continuity from below’ because we have

limV(An)—O<1—1/< U An).

n€N>0

Next assume that L consists of the following random variables which are all constant
on each partition cell A,,, n € Ny,

1
X(w) = n+1f0rw€An

Y(w) = 1forweQ,

1+ ifweAd
— n+1 n
Zn (W) { 1 else.




Fix m = 1. Observe, at first, that Y € B1 1 (X) because of
X (w) =Y (w)| = nj—l for w € A, for all n € Ny
=
v X-Y|<1l) = v(@Q)=1>0.

Next note that Z,, ¢ B1 1 (X) for all n € N because of

1
v(|X -2, <1)=v(Q\A,) =0<1— — for all n € No.
n

However, we also have that Z,, € B1 1 (Y) for all n € Noy because of

11
n’n

{ L ifweAd,

+1

Y (@) = Zn (@) m DY

1
V(]Y—Zn\ < —)
n

That is, we cannot find any n € Ny, such that

—
1

= v(Q)=1>1-—— for all n € Ny,.
n

B11(Y)§B

1 1
n’n m’m

(X)

in spite of Y € B1 1 (X). Consequently, the ball B
an open set in Tl,lnfﬁ

(X) with m = 1 cannot be

1 1
m’m

Example 3. Violation of dual-autocontinuity from above. Let {A;, A3} C
F be some partition of €2 into non-empty sets and assume that v satisfies

v (A) =1 for all non-empty A € F.
On the one hand, v violates dual-autocontinuity from above because of

lim V(AIHAQ):O%:[:V(AQ)

n—o0

in spite of lim,, ., v (A;) = 1. On the other hand, continuity from below holds as
for any increasing sequence

lim v (4,) = V( U An):()ifAn:®f0rallnand

’VLEN>0
lim v (A, = v ( U An) =1 else.
e n€N>0

7



Next consider L = {X,Y, Z} such that

A | Ay
X |1 |1
Y |1 |0
Z |0 |1

Note that we have for any m € Ny
BT, (X) = {X,Y,Z},
BY . (Y) = {X,V},
Bi.(2) = {X, 7},

m’m

=% 3-8 3
3= Ek

resulting in weak neighborhood systems

WE/(I = {{X7 Y, Z}}a
Wil;l = {{va}v{X7Y7Z}}7
ng = {{X,Z},{X,Y,Z}}.

This weak base generates 7,, as the trivial topology
Tyl = {Q), {X, Y, Z}}
with neighborhood systems
X =M =N = {{XY 2}

Clearly, the conclusion of Theorem 1 does not hold as not all balls are open sets in
TV1.|:|

A sequence {X”}n€N>O C L converges on the topological space (L, T,1), denoted X,, —,,, X,
iff all but finitely many members of this sequence in every neighborhood V € N¥! whereby the
netghborhood system at X is defined as

W ={VCL|UCYV forsomelU € 7,, with X € U}. (5)

A sequence {Xn}neN>0 C L converges in v to X with probability-one coincidence, denoted
X, —,1 X, iff for every ¢ > 0
lim v (| X, — X| <c¢)=1. (6)

n—oo

If the (£, L)-balls BY!

m

T (X) are open sets U € 7, for all m € Ny, the neighborhood system

(5) becomes
)121:{VgL|B’fL(X)giorsomemEN>0}.

In that case, convergence on (L, T,;) to some X € L is equivalent to convergence on all the
(%, %)—balls at X, which is the same convergence concept as (6). Theorem 1 therefore implies
the following result.



Corollary 1. If v is continuous from below and dual-autocontinuous from above, we have

X, —,, X if and only if X,, —,1 X. (7)

3.2 Proof of Theorem 1

Part (ii) of Theorem 1 follows from Part (i) (cf. Aliprantis and Border 2006, p.27). We prove
Part (i) of Theorem 1 through a string of propositions. We start out with the following obvious
fact.

Proposition 1. Suppose that 7,1 satisfies the following condition for all c,e € Q<o and all
X eL:

Condition YX: If Y € B (X), then there exists some m € Nsq such that

BY, (V) C B (X). ®)

1
‘m

3

Then all (c,€)-balls are open sets in T,;.

Proof. By definition, B} (X) is an open set in 7, iff for every Y € B/ (X)

BZi(X)EW”:{VQL|B”ji(Y)§Vforsomem6N>o}. 9)

m’m

Letting By (X) = V in (9) shows that By} (X) is an open set in 7, if (8) is satisfied for all
Y e B/ (X).0O
Next we identify a continuity condition which ensures that Condition YX is always satisfied.

Proposition 2. Suppose that v satisfies the following Continuity Condition for all X,Y, Z €
L:

Condition CC: Let
v(| X -Y]|<e)>0.

For any 6 > 0, there exists some mgs € N such that, for all Z € L,

implies
v(| X -Y|<e)=d<v(X-Y|+|Y -Z|<c).

Then 7,1 satisfies Condition YX for all c¢,e € Q<o and all X € L.



Proof. Let Y € B (X) be arbitrarily given so that
v(| X -Y|<e¢)>1-—e
Suppose that Condition CC holds so that for any
de(0,v(|X—-Y|<e)—(1—¢), (10)

there exists ms € N such that, for all Z € L,

implies

v(| X -Y|<e)-d<v(X-Y|+|Y -Z|<c).

Because of
(I X=Y|+|Y -Z|<c)C(|X-Z| <0,

we have, by monotonicity of v, for all Z € B4 | (Y),

ms T ms
l—e<v(|X-Y|<e)=d0<v(X-Y|+Y -Z|<)<v(|X-Z]<ec).

Consequently, BYY , (Y) C BY(X), i.e., Condition YX holds.0J]

mg’mg

Proposition 3. Suppose that v is continuous from below as well as dual-autocontinuous from
above. Then Condition CC holds for any L C L°.

Proof. Step 1. Observe that we have, for all n € N,

((|X—Y!<c—%)ﬂ(]¥—2]<%)) CUX—Y|+|Y = 2] <o)

Define the increasing sequence {A,,} C F such that

TLGN>0
1
4, = <|X—Y| <c__).
n
By monotonicity of v, we have
1
U(Anﬁ(]Y—Z]<—)>§V(\X—Y]—|—]Y—Z\<c) (11)
n

for all n € Nyy. By continuity from below, we have

lim v (A,) = 1/( U An>
n—oo nENoo

= v(X-Y|<e¢)

10



so that there exists, for every € > 0, some n, such that
1
v | X=Y|<c——|>v(X-Y|<c) —e.
Ne

Fix any 6" > 0 and let ¢ = %.
Step 2. By dual-autocontinuity from above, there exists for every n. € Nyg and § > 0 some
ns such that

implies

v(| X -Y|<c¢)—e—-4§ < V(|X—Y|<C—i>—5
n

€

o((wrize- D) n(v-z< 1)),

Let § = & to obtain, by (11), that
1 1
y(\Y—Z|<—) >1—-—
Ne ns

implies
v X -Y|<e) =6 <v(X-Y|+|Y -Z|<c).

Choosing some mg« > max {n.,ns} gives us Condition CC, i.e.,

1 1
1/<|Y—Z|< )>1—
me* me*

implies
v(| X -Y|<e)=6 < v(X-Y|+|Y -Z|<c).

[

Combining the Propositions 1-3 gives us part (i) of Theorem 1. Because all open sets
U € 1,1 with X € U are neighborhoods of X, a combination of Theorem 1 with the following
proposition gives us Corollary 1.

Proposition 4.

(i) For all v we have that

X, —,1 X implies X, —, , X. (12)

1

(ii) If every BY' | (X), m € Ny, is a neighborhood of X for all X € L in the topology 7,1,
we have that
X, —r, X implies X,, —,1 X. (13)

11



Proof. Part (i). By the weak base construction of 7,1, there exists for every U € 1 with
X € U some m such that B' , (X) CU. Fix U € 7,, with corresponding B4 ;, (X) C U and

suppose that X,, —,; X. If {X } is eventually in every (— —) ball, it must eventually be in
B’”1l 1 (X) and therefore in every neighborhood V of X such that & C V. Since this argument

apphes to every U € 7,0 with X € U, {X,,} will be eventually in every neighborhood of X.
This gives us the convergence behavior (12).

Part (ii). Suppose now that X, —, , X. If {X,} is eventually in every neighborhood
of X, it will be eventually in every B"l1 1 (X), m € N5y, whenever all (%, %)—balls at X are

neighborhoods of X. This gives us the convergence behavior (13).00

4 Properties of open subsets of random variables if L has
a local cone structure and ({2, F,v) is dual-nonatomic

4.1 Second main result: Theorem 2

Our second main result concerns topological spaces (L, 7,1) under the assumptions that (i) L
satisfies specific structural properties and (ii) the space (2, F,v) is dual-nonatomic.

e (9, F,v) is nonatomic iff there exists for every e > 0 some finite partition {€,...,Q,} C F
such that
v () <eforallie{l,..,n}.

o (O, F, v)is dual-nonatomic iff there exists for every ¢ > 0 some finite partition {{2y,...,Q,} C
F such that
v(Q)>1—eforallie{1,..,n}.

For additive probability measures nonatomicity and dual-nonatomicity are equivalent. The
standard example of an additive nonatomic (i.e., dual-nonatomic) probability space is ((0, 1) , 5, \)
where B stands for the Borel-sigma algebra defined on the open unit interval (0, 1) and A is the
Lebesgue measure (cf. Problem 2.19(a) in Billingsley 1996).

Next consider the following structural properties of L.

Structural properties of L.

(P1) L is closed under additivity, i.e.,

X,Y € L implies X +Y € L.

(P2) L is closed under multiplication with natural numbers, i.e.,

X € L implies nX € L for all n € Ny.

12



(P3) L is closed under locality in the following sense: for any A € F,
X € L implies X14 € L

where 1,4 denotes the indicator function.

(P4) L is non-trivial if there exists some Z € L such that, for some § > 0,

|Z (w)| > 6 for all w € Q. (14)

Theorem 2. Suppose that (Q, F,v) is dual-nonatomic. Consider a topological space (L, T,1)
such that L satisfies the Structural Properties P1, P2, and P3.

(i) We have for any open set U € 7,1 that
X € U implies X +Z € co(U) for all Z € L.

where co (U) denotes the convex hull of U.

(i) In particular, we have for any convex and open U € T, that

X €U implies X + Z e U for all Z € L. (15)

Before we prove Theorem 2, let us demonstrate that Theorem 2 comes with powerful impli-
cations.

Corollary 2. Suppose that (Q,F,v) is dual-nonatomic and that L satisfies the Structural
Properties P1, P2, and P3. If L additionally satisfies the non-triviality condition P4,
then there cannot exist any open ball BY. (X) in (L,7,1) that is also a convex strict
subset of L.

Proof. Suppose to the contrary that By '(X) € L is open and convex. If Z € L, we also
have nZ € L for all n € N5o. By (15), X +nZ € B!} (X) which is equivalent to
v(I X = (X+nZ)<ec) > 1—c¢
=
v(nZ] <e) > 1—c¢ (16)

whereby By} (X) C L requires € < 1. Pick some n > £ and observe that
v (g |Z] < C)

= v(|Z| <d)=rv (D) by (14)
— 0,

v(InZ] < ¢)

IN

13



which is a contradiction to (16).000
Recall that convex cones are closed under positive linear combinations, i.e.,

X,Y € L implies aX 4+ 0Y

for a,b € R.y. Consequently, all subsets of random variables that are convex cones satisfy the
Structural Properties P1 and P2. We call L a non-trivial local cone whenever L is a convex cone
that additionally satisfies Structural Properties P3 and P4. The set of all random variables L°
is a non-trivial local cone. Other relevant subdomains of random variables that are non-trivial
local cones are the sets of all non-negative and all non-positive random variables, respectively,
defined as follows

LY = {Yel’|0<Y (w) forallwe Q},
L = {yeLl|Y(w)<0forallweQ}.

Recall from Theorem 1 that the (c, €)-balls (1) are open sets in (L, 7,,1) whenever v is continuous
from below and uniformly dual-autocontinuous from above. In this case, any (c,€)-ball on
(L,71), L € {L° L%, L%}, that is a strict subset of L cannot be a convex set by Corollary 2.

Next, let us write X < Y iff, for every w € Q, either X (w) = Y (w) or X (w) < Y (w).
Applying Theorem 2 to the non-trivial local cones L°, LY, and L?, respectively, gives us the

following properties of convex and open sets for the corresponding topological spaces.

Corollary 3. Suppose that (2, F,v) is dual-nonatomic. Denote by U any convex and open
set in the topological space (L,T,1) such that X € U.

(i) For L = L° we have that Y € U for all Y € L°.
(ii) For L = L% we have that Y € U for all Y € LY such that X <Y.
(iii) For L = L° we have that Y € U for all Y € L° such that Y < X.

By Corollary 3(i), the only non-empty, open and convex subset of the topological space
(L% 7,1) is the set of all random variables L° itself. This implication of Theorem 2 extends a
well-known result from the analysis of not locally convex LP-spaces, 0 < p < 1-which are de-
fined on some nonatomic additive probability space—to non-additive dual-nonatomic probability

spaces.?

4.2 Proof of Theorem 2

We start with a lemma.

3Compare., e.g., Theorem 13.41(3) in Aliprantis and Border (2006), Paragraph 1.47 in Rudin (1991), Theorem
1 in Day (1940).

14



Lemma 1. Consider a topological space (L, T,1) such that L satisfies the Structural Properties
P1 and P3. Then there exists for every open set U € 7,1 with X € U some m € Nyg

such that, for all Y € L,

1
v(A%) >1-— - implies X + Y1, € U.

(17)

Proof. If L satisfies the Structural Properties P1 and P3, we have X + Y14 € L for
any X,Y € L and any A € F. Let X € U for an arbitrary open set . By the weak base

construction of 7,1, there exists some m € Ny such that

BY L (X)CU.

[
|-

Next observe that, for any % > 0,

1 1
V(‘X+Y1A—X’<—> = I/(|Y1A‘<—)
m m
> ()
because
1
w € A%implies |[Y14(w)]=0< —
m
=
1
A C (|Y1A|<—>
m
By (18), v (A°) > 1 — = implies
1 1
1/<|X+Y1A—X|<—) > 1——
m m

p=—
X+Y1ly € By, Cu

m’m

for any Y € L.JO

(18)

Proof of Theorem 2. Fix X € L. If v is dual-nonatomic, there exists for every m € Nyq

some partition {1, ...,Q,} C F such that, for every i = 1, ..., n,

Q) > 1—

m

(19)

If L satisfies the Structural Property P2, we have that nZ € L for any Z € L. Because L also
satisfies the Structural Properties P1 and P3, we obtain, by Lemma 1, that there exists for

every U € 7,4 with X € U some m such that (19) implies, for every i = 1,...,n,

X +nZlg, €U.

By construction,
n

which gives us the desired result X + Z € co (U).000
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