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Abstract

We introduce the topological spaces (L; ��1) which are well-de�ned for any given subset
of random variables L on any given non-additive probability space (
;F ; �). A (c; �)-ball
at X 2 L contains all random variables in L that are su¢ ciently close to X in the sense
that any payo¤di¤erences to X smaller than c > 0 happen with �-probability greater than
1 � �. We derive two main results concerning (c; �)-balls. Firstly, all (c; �)-balls must be
open sets in (L; ��1) whenever � is continuous from below and dual-autocontinuous from
above. In that case, convergence of sequences of random variables on (L; ��1) is equivalent
to convergence in non-additive probability measure � with probability-one coincidence.
Secondly, an open (c; �)-ball cannot be a convex strict subset of L whenever L has a
non-trivial local cone structure and (
;F ; �) is dual-nonatomic.

Subject classi�cations: 60A86; 60B05
Keywords: Convergence in non-additive probability measure; Weak-base topology;

Dual-autocontinuity; Dual-nonatomicity

1 Introduction

Fix an arbitrary measurable space (
;F) where F is a sigma-algebra on the state space 
.
A not necessarily additive (=non-additive) probability measure on (
;F) is a set function
� : F ! [0; 1] that satis�es

� � (?) = 0, � (
) = 1 (normalization);
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� For all A;B 2 F , A � B implies � (A) � � (B) (monotonicity).

Denote by L0 the set of all F-measurable real-valued functions (i.e., random variables)
de�ned on the non-additive probability space (
;F ; �). Fix an arbitrary subset L � L0 of
random variables. For given X 2 L and c; � 2 Q>0 de�ne the following (c; �)-ball at X

B�1c;� (X) = fY 2 Lj� (jX � Y j < c) > 1� �g (1)

which contains all Y 2 L such that any di¤erences between X and Y that happen with �-
probability greater than 1� � must be smaller than c.

De�nition 1. Given L � L0 we de�ne the topology

� �1 =
�
U � L j for all X 2 U , U 2 W�1

X

	
[ f;; Lg

such that the weak neighborhood system at X 2 L is given as

W�1
X =

n
V � L j B�11

m
; 1
m
(X) � V for some m 2 N>0

o
.

As generalizations of additive probability measures, non-additive probability measures de-
scribe subjective beliefs of Choquet expected utility (Schmeidler 1986; 1989; Gilboa 1987)
and/or of prospect theory decision makers (Tversky and Kahneman 1992; Wakker 2010). Struc-
tural properties of non-additive measures�such as, e.g., concavity/submodularity and convex-
ity/supermodularity1�are used in Choquet expected utility theory to model ambiguity attitudes
of decision makers. Such ambiguity attitudes might serve as possible explanations for Ellsberg
(1961)-type paradoxa which represent violations of Savage�s (1954) axiomatic foundation of sub-
jective expected utility theory. In prospect theory, structural properties of non-additive beliefs
might additionally capture inverse-S shaped probability weighting functions which represent
the typical transformation of objective (and therefore additive) probability measures elicited
in decision theoretic experiments. In our opinion, the topological space (L; � �1) is relevant in
mathematical decision theory because it stands for a plausible model of how decision makers
with non-additive subjective belief � might perceive convergence of random variables on the
subset L � L0 (cf. Section 2).2
This short paper presents two theorems for topological spaces (L; � �1). Theorem 1 shows

that every (c; �)-ball is an open set in any topological space (L; � �1) whenever � satis�es con-
tinuity from below combined with dual-autocontinuity from above. A sequence fXngn2N>0 � L
converges in � to X with probability-one coincidence i¤ (=if and only if), for every c > 0,

1For formal de�nitions of such structural properties see, e.g., Denneberg (1994, Chapter 2). Additive prob-
ability measures are non-additive probability measures that are both concave and convex.

2For the special case of subjective additive beliefs given as the Lebesgue measure � de�ned on the open
unit interval, Assa and Zimper (2018) and Zimper and Assa (2021) discuss utility- and/or risk-measure rep-
resentations of preferences over random variables that are (semi-)continuous in the topology of convergence in
�.
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limn!1 � (jXn �Xj < c) = 1. By Corollary 1, convergence on (L; � �1) is equivalent to con-
vergence in � with probability-one coincidence whenever � is continuous from below and dual-
autocontinuous from above. Next we investigate properties of convex and open subsets of
topological spaces (L; � �1) where L has a local cone structure and (
;F ; �) is a dual-nonatomic
space. By Theorem 2, the convex hull of every open subset containing X 2 L must also con-
tain the sum X + Y for all Y 2 L. For local cones L that are non-trivial (in the sense that
they contain some random variable whose absolute payo¤ values are bounded away from zero),
Corollary 2 shows that any open (c; �)-ball which is a strict subset of L cannot be a convex
set. Corollary 3 applies our analysis to non-trivial local cones given as (i) the set of all random
variables, (ii) the set of all non-negative random variables, and (iii) the set of all non-positive
random variables.
The remainder of our paper is organized as follows. Section 2 brie�y explains the di¤erence

of our approach to the existing literature. Theorem 1 is derived and discussed in Section 3. In
Section 4 we derive and discuss Theorem 2.

2 Related literature

The existing literature considers convergence in nonadditive measure � with probability-zero
divergence in the sense that for every c > 0, limn!1 � (jXn �Xj � c) = 0 (cf. Wu, Ren, and
Wu 2011; Ouyang and Zhang 2011; Li 2012; Borzová-Molnárová, Halµcinová, and Hutník 2016).
While these authors construct weak base topologies with respect to di¤erent notions of balls
(i.e., di¤erent distance functions), all these topologies turn out to be equivalent to the same
weak base topology, denoted � �0, for an arbitrary nonadditive probability measure �. To be
precise, consider, for example, the following de�nition of a ball

B�;d� (X) = fY 2 L j d(X; Y ) < �g

with respect to the distance function d : L0 � L0 ! [0; 1] introduced in Li (2012):

d(X; Y ) = inffb > 0 j �(jX � Y j > b) � bg.

The topology � �0 on L is then de�ned as follows:

� �0 =
n
U � L j for all X 2 U , U 2 W�;d

X

o
[ f;; Lg

such that the weak neighborhood system at X 2 L is given as

W�;d
X =

n
V � L j B�;d1

m

(X) � V for some m 2 N>0
o
.

If � satis�es additional structural properties (e.g., Condition (*) in Wu, Ren, and Wu (2011)
or the stronger condition of uniform autocontinuity from above in Ouyang and Zhang (2011)),
then convergence in the topology � �0 is equivalent to convergence in � with probability-zero
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divergence. Whereas convergence in � with probability-zero divergence and our notion of con-
vergence in � with probability-one coincidence are identical concepts for additive probability
measures, this is not necessarily the case for arbitrary nonadditive probability measures. Con-
vergence with probability-one coincidence would be the appropriate convergence concept for
a decision maker or/and modeler who perceives two random variables X and Y as identical
whenever they coincide on some probability one event, i.e., whenever

� (jY �Xj = 0) = 1. (2)

In contrast, convergence with probability-zero divergence would correspond to a decision maker
or/and modeler who perceives two random variables X and Y as identical if they only diverge
on some probability zero event, i.e., whenever

� (jY �Xj > 0) = 0.

Example 1. Consider L = fX; Y g such that the random variables

A1 A2
X 1 1
Y 1 0

are de�ned on (
;F ; �) whereby fA1; A2g � F forms a partition of 
. Consider, at
�rst, a nonadditive probability measure � such that

� (A1) = 1 and � (A2) > 0.

Then both random variables coincide on the probability-one event A1 so that, triv-
ially, X !�1 Y as well as Y !�1 X. On the other hand, both random variables
diverge on the event A2 which has probability strictly greater zero. Consequently,
we neither have X !�0 Y nor Y !�0 X. As corresponding topologies we obtain

� �1 = f;; fX;Y gg 6= � �0 = f;; fXg ; fY g ; fX;Y gg .

Next, consider a nonadditive probability measure � 0 such that

� 0 (A1) < 1 and � 0 (A2) = 0.

Both random variables only diverge on the probability-zero event A2 but they do
not coincide on any probability-one event (here: 
). In that case, we haveX !�00 Y
as well as Y !�00 X but neither X !�01 Y nor Y !�01 X. Note that

� �01 = f;; fXg ; fY g ; fX;Y gg 6= � �00 = f;; fX; Y gg .

�

While our topology � �1 is thus not necessarily equivalent to � �0 for arbitrary �, one can
easily show the following equivalence relationship between both topological approaches. For
arbitrary �, we have � �1 = � ~�0 where ~� : F ! [0; 1] denotes the dual of �, i.e.,

~� (A) = 1� � (
� A) for all A 2 F .
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3 Convergence on (L; � �1) versus convergence in � with
probability-one coincidence

3.1 First main result: Theorem 1

The family �
B�1X j X 2 L

	
with

B�1X =
n
B�11

m
; 1
m
(X) j m 2 N>0

o
(3)

forms a weak base for the � �1-topology whereby

B�11
m
; 1
m
(X) � B�11

n
; 1
n
(X) for m � n and X 2 B�11

m
; 1
m
(X) for all m 2 N>0.

Because (3) is countable for every X 2 L, � �1 is weakly �rst-countable (or g-�rst countable) (cf.
Arkhangel�ski¼¬1966; Siwiec 1974; Hong 1999).
A set U is open in � �1 i¤ for every Y 2 U there exists some mY 2 n 2 N>0 such that

B�11
mY

; 1
mY

(Y ) � U .

In general, a (c; �)-ball B�1c;� (X) is not necessarily an open set in the topology � �1. In a seminal
paper, Wang (1984) discusses several continuity and autocontinuity properties of nonadditive
measures. Our �rst main result identi�es a new autocontinuity condition on � which ensures
that the (c; �)-balls are open sets in any topological space (� �1; L), L � L0.

Theorem 1. Fix an arbitrary (
;F ; �) and L � L0. Suppose that � satis�es the following
two conditions:

(a) �Continuity from below�: for any increasing sequence fAngn2N>0 � F with A1 � A2 � ::::
we have

lim
n!1

� (An) = �

 [
n2N>0

An

!
.

(b) �Dual-autocontinuity from above�: For any sequence fAngn2N>0 � F with limn!1 � (An) =
1 we have for all A 2 F

lim
n!1

� (An \ A) = � (A) .

Then we have the following:

(i) All (c; �)-balls (1) are open sets in � �1; that is, B�1c;� (X) 2 � �1 for all c; � 2 Q>0 and all
X 2 L.

(ii) The family of open sets B�1X , given by (3), forms a countable neighborhood base at X 2 L
so that � �1 is �rst-countable.
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The following two examples illustrate that the conclusions of Theorem 1 do not necessarily
hold for � that either violate continuity from below or dual-autocontinuity from above.

Example 2. Violation of continuity from below. Let 
 = [0; 1) with F as
the Borel sigma-algebra and consider the nonadditive measure such that � (A) = 0
for all A 2 F with A 6= 
. Observe that � satis�es �dual-autocontinuity from above�
since the only sequences with limn!1 � (A

0
n) = 1 must satisfy A

0
n = 
, n � M for

some M , so that

lim
n!1

� (A \ A0n) = � (A) =
�
0 if A 6= 

1 if A = 
.

Construct the countable partition

fAngn2N>0

of 
 into half-open intervals such that

A1 =

�
0;
1

2

�
and, for all n � 1, An =

�
an;

1 + an
2

�
(4)

where an =
1 + an�1

2
.

That is, A1 =
�
0; 1

2

�
, A2 =

�
1
2
; 3
4

�
, A3 =

�
3
4
; 7
8

�
etc. whereby limn!1 an = 1. Let

A0k =
k[
n=1

An =

�
0;
1 + ak
2

�

and note that A01 � A02 � ::: with
[

n2N>0

A0n = [0; 1) but with A0n 6= [0; 1) for all

n 2 N>0. Consequently, � violates �continuity from below�because we have

lim
n!1

� (An) = 0 < 1 = �

 [
n2N>0

An

!
:

Next assume that L consists of the following random variables which are all constant
on each partition cell An, n 2 N>0,

X (!) =
1

n+ 1
for ! 2 An

Y (!) = 1 for ! 2 
;

Zn (!) =

�
1 + 1

n+1
if ! 2 An

1 else.
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Fix m = 1. Observe, at �rst, that Y 2 B 1
m
; 1
m
(X) because of

jX (!)� Y (!)j =
n

n+ 1
for ! 2 An for all n 2 N>0

=)
� (jX � Y j < 1) = � (
) = 1 > 0.

Next note that Zn =2 B 1
m
; 1
m
(X) for all n 2 N>0 because of

� (jX � Znj < 1) = � (
nAn) = 0 � 1�
1

n
for all n 2 N>0.

However, we also have that Zn 2 B 1
n
; 1
n
(Y ) for all n 2 N>0 because of

jY (!)� Zn (!)j =

�
1
n+1

if ! 2 An
0 else

=)

�

�
jY � Znj <

1

n

�
= � (
) = 1 > 1� 1

n
for all n 2 N>0.

That is, we cannot �nd any n 2 N>0 such that

B 1
n
; 1
n
(Y ) � B 1

m
; 1
m
(X)

in spite of Y 2 B 1
m
; 1
m
(X). Consequently, the ball B 1

m
; 1
m
(X) with m = 1 cannot be

an open set in � �1.�

Example 3. Violation of dual-autocontinuity from above. Let fA1; A2g �
F be some partition of 
 into non-empty sets and assume that � satis�es

� (A) = 1 for all non-empty A 2 F .

On the one hand, � violates dual-autocontinuity from above because of

lim
n!1

� (A1 \ A2) = 0 6= 1 = � (A2)

in spite of limn!1 � (A1) = 1. On the other hand, continuity from below holds as
for any increasing sequence

lim
n!1

� (An) = �

 [
n2N>0

An

!
= 0 if An = ; for all n and

lim
n!1

� (An) = �

 [
n2N>0

An

!
= 1 else.
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Next consider L = fX;Y; Zg such that

A1 A2
X 1 1
Y 1 0
Z 0 1

Note that we have for any m 2 N>0
B�11

m
; 1
m
(X) = fX; Y; Zg ,

B�11
m
; 1
m
(Y ) = fX; Y g ,

B�11
m
; 1
m
(Z) = fX;Zg ,

resulting in weak neighborhood systems

W�1
X = ffX; Y; Zgg ,

W�1
Y = ffX; Y g ; fX; Y; Zgg ,

W�1
Z = ffX;Zg ; fX; Y; Zgg .

This weak base generates � �1 as the trivial topology

� �1 = f;; fX; Y; Zgg

with neighborhood systems

N �1
X = N �1

Y = N �1
Z = ffX; Y; Zgg .

Clearly, the conclusion of Theorem 1 does not hold as not all balls are open sets in
� �1.�

A sequence fXngn2N>0 � L converges on the topological space (L; � �1), denoted Xn !��1 X,
i¤ all but �nitely many members of this sequence in every neighborhood V 2 N �1

X whereby the
neighborhood system at X is de�ned as

N �1
X = fV � L j U � V for some U 2 � �1 with X 2 Ug . (5)

A sequence fXngn2N>0 � L converges in � to X with probability-one coincidence, denoted
Xn !�1 X, i¤ for every c > 0

lim
n!1

� (jXn �Xj < c) = 1. (6)

If the
�
1
m
; 1
m

�
-balls B�11

m
; 1
m

(X) are open sets U 2 � �1 for all m 2 N>0, the neighborhood system
(5) becomes

N �1
X =

n
V � L j B�11

m
; 1
m
(X) � V for some m 2 N>0

o
.

In that case, convergence on (L; � �1) to some X 2 L is equivalent to convergence on all the�
1
m
; 1
m

�
-balls at X, which is the same convergence concept as (6). Theorem 1 therefore implies

the following result.
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Corollary 1. If � is continuous from below and dual-autocontinuous from above, we have

Xn !��1 X if and only if Xn !�1 X. (7)

3.2 Proof of Theorem 1

Part (ii) of Theorem 1 follows from Part (i) (cf. Aliprantis and Border 2006, p.27). We prove
Part (i) of Theorem 1 through a string of propositions. We start out with the following obvious
fact.

Proposition 1. Suppose that � �1 satis�es the following condition for all c; � 2 Q>0 and all
X 2 L:

Condition YX: If Y 2 B�1c;� (X), then there exists some m 2 N>0 such that

B�11
m
; 1
m
(Y ) � B�1c;� (X) . (8)

Then all (c; �)-balls are open sets in � �1.

Proof. By de�nition, B�1c;� (X) is an open set in � �1 i¤ for every Y 2 B�1c;� (X)

B�1c;� (X) 2 W�1
Y =

n
V � L j B�11

m
; 1
m
(Y ) � V for some m 2 N>0

o
. (9)

Letting B�1c;� (X) = V in (9) shows that B�1c;� (X) is an open set in � �1 if (8) is satis�ed for all
Y 2 B�1c;� (X).��
Next we identify a continuity condition which ensures that Condition YX is always satis�ed.

Proposition 2. Suppose that � satis�es the following Continuity Condition for all X;Y; Z 2
L:

Condition CC: Let
� (jX � Y j < c) > 0.

For any � > 0, there exists some m� 2 N such that, for all Z 2 L,

�

�
jY � Zj < 1

m�

�
> 1� 1

m�

implies
� (jX � Y j < c)� � < � (jX � Y j+ jY � Zj < c) .

Then � �1 satis�es Condition YX for all c; � 2 Q>0 and all X 2 L.
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Proof. Let Y 2 B�1c;� (X) be arbitrarily given so that

� (jX � Y j < c) > 1� �.

Suppose that Condition CC holds so that for any

� 2 (0; � (jX � Y j < c)� (1� �)) , (10)

there exists m� 2 N such that, for all Z 2 L,

�

�
jY � Zj < 1

m�

�
> 1� 1

m�

implies
� (jX � Y j < c)� � < � (jX � Y j+ jY � Zj < c) .

Because of
(jX � Y j+ jY � Zj < c) � (jX � Zj < c) ,

we have, by monotonicity of �, for all Z 2 B�11
m�
; 1
m�

(Y ),

1� � < � (jX � Y j < c)� � � � (jX � Y j+ jY � Zj < c) � � (jX � Zj < c) .

Consequently, B�11
m�
; 1
m�

(Y ) � B�1c;� (X), i.e., Condition YX holds.��

Proposition 3. Suppose that � is continuous from below as well as dual-autocontinuous from
above. Then Condition CC holds for any L � L0.

Proof. Step 1. Observe that we have, for all n 2 N>0,��
jX � Y j < c� 1

n

�
\
�
jY � Zj < 1

n

��
� (jX � Y j+ jY � Zj < c) .

De�ne the increasing sequence fAngn2N>0 � F such that

An =

�
jX � Y j < c� 1

n

�
.

By monotonicity of �, we have

�

�
An \

�
jY � Zj < 1

n

��
� � (jX � Y j+ jY � Zj < c) (11)

for all n 2 N>0. By continuity from below, we have

lim
n!1

� (An) = �

 [
n2N>0

An

!
= � (jX � Y j < c)
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so that there exists, for every " > 0, some n" such that

�

�
jX � Y j < c� 1

n"

�
> � (jX � Y j < c)� ".

Fix any �� > 0 and let " = ��

2
.

Step 2. By dual-autocontinuity from above, there exists for every n" 2 N>0 and � > 0 some
n� such that

�

�
jY � Zj < 1

n"

�
> 1� 1

n�

implies

� (jX � Y j < c)� "� � < �

�
jX � Y j < c� 1

n"

�
� �

< �

��
jX � Y j < c� 1

n"

�
\
�
jY � Zj < 1

n"

��
.

Let � = ��

2
to obtain, by (11), that

�

�
jY � Zj < 1

n"

�
> 1� 1

n�

implies
� (jX � Y j < c)� �� < � (jX � Y j+ jY � Zj < c) .

Choosing some m�� � max fn"; n�g gives us Condition CC, i.e.,

�

�
jY � Zj < 1

m��

�
> 1� 1

m��

implies

� (jX � Y j < c)� �� < � (jX � Y j+ jY � Zj < c) .

��
Combining the Propositions 1-3 gives us part (i) of Theorem 1. Because all open sets

U 2 � �1 with X 2 U are neighborhoods of X, a combination of Theorem 1 with the following
proposition gives us Corollary 1.

Proposition 4.

(i) For all � we have that
Xn !�1 X implies Xn !��1 X. (12)

(ii) If every B�11
m
; 1
m

(X), m 2 N>0, is a neighborhood of X for all X 2 L in the topology � �1,
we have that

Xn !��1 X implies Xn !�1 X. (13)

11



Proof. Part (i). By the weak base construction of � �1, there exists for every U 2 � �1 with
X 2 U some m such that B�11

m
; 1
m

(X) � U . Fix U 2 � �1 with corresponding B�11
m
; 1
m

(X) � U and
suppose that Xn !�1 X. If fXng is eventually in every

�
1
m
; 1
m

�
-ball, it must eventually be in

B�11
m
; 1
m

(X) and therefore in every neighborhood V of X such that U � V. Since this argument
applies to every U 2 � �1 with X 2 U , fXng will be eventually in every neighborhood of X.
This gives us the convergence behavior (12).
Part (ii). Suppose now that Xn !��1 X. If fXng is eventually in every neighborhood

of X, it will be eventually in every B�11
m
; 1
m

(X), m 2 N>0, whenever all
�
1
m
; 1
m

�
-balls at X are

neighborhoods of X. This gives us the convergence behavior (13).��

4 Properties of open subsets of random variables if L has
a local cone structure and (
;F ; �) is dual-nonatomic

4.1 Second main result: Theorem 2

Our second main result concerns topological spaces (L; � �1) under the assumptions that (i) L
satis�es speci�c structural properties and (ii) the space (
;F ; �) is dual-nonatomic.

� (
;F ; �) is nonatomic i¤there exists for every � > 0 some �nite partition f
1; :::;
ng � F
such that

� (
i) < � for all i 2 f1; :::; ng .

� (
;F ; �) is dual-nonatomic i¤there exists for every � > 0 some �nite partition f
1; :::;
ng �
F such that

� (
ci) > 1� � for all i 2 f1; :::; ng .

For additive probability measures nonatomicity and dual-nonatomicity are equivalent. The
standard example of an additive nonatomic (i.e., dual-nonatomic) probability space is ((0; 1) ;B; �)
where B stands for the Borel-sigma algebra de�ned on the open unit interval (0; 1) and � is the
Lebesgue measure (cf. Problem 2.19(a) in Billingsley 1996).
Next consider the following structural properties of L.

Structural properties of L.

(P1) L is closed under additivity, i.e.,

X; Y 2 L implies X + Y 2 L.

(P2) L is closed under multiplication with natural numbers, i.e.,

X 2 L implies nX 2 L for all n 2 N>0.
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(P3) L is closed under locality in the following sense: for any A 2 F ,

X 2 L implies X1A 2 L

where 1A denotes the indicator function.

(P4) L is non-trivial if there exists some Z 2 L such that, for some � > 0,

jZ (!)j � � for all ! 2 
. (14)

Theorem 2. Suppose that (
;F ; �) is dual-nonatomic. Consider a topological space (L; � �1)
such that L satis�es the Structural Properties P1, P2, and P3.

(i) We have for any open set U 2 � �1 that

X 2 U implies X + Z 2 co (U) for all Z 2 L.

where co (U) denotes the convex hull of U .

(ii) In particular, we have for any convex and open U 2 � �1 that

X 2 U implies X + Z 2 U for all Z 2 L. (15)

Before we prove Theorem 2, let us demonstrate that Theorem 2 comes with powerful impli-
cations.

Corollary 2. Suppose that (
;F ; �) is dual-nonatomic and that L satis�es the Structural
Properties P1, P2, and P3. If L additionally satis�es the non-triviality condition P4,
then there cannot exist any open ball B�1c;� (X) in (L; � �1) that is also a convex strict
subset of L.

Proof. Suppose to the contrary that B�1c;� (X) ( L is open and convex. If Z 2 L, we also
have nZ 2 L for all n 2 N>0. By (15), X + nZ 2 B�1c;� (X) which is equivalent to

� (jX � (X + nZ)j < c) > 1� �
,

� (jnZj < c) > 1� � (16)

whereby B�1c;� (X) ( L requires � � 1. Pick some n � c
�
and observe that

� (jnZj < c) � �
�c
�
jZj < c

�
= � (jZj < �) = � (;) by (14)
= 0,
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which is a contradiction to (16).��
Recall that convex cones are closed under positive linear combinations, i.e.,

X; Y 2 L implies aX + bY

for a; b 2 R>0. Consequently, all subsets of random variables that are convex cones satisfy the
Structural Properties P1 and P2. We call L a non-trivial local cone whenever L is a convex cone
that additionally satis�es Structural Properties P3 and P4. The set of all random variables L0

is a non-trivial local cone. Other relevant subdomains of random variables that are non-trivial
local cones are the sets of all non-negative and all non-positive random variables, respectively,
de�ned as follows

L0+ =
�
Y 2 L0 j 0 � Y (!) for all ! 2 


	
,

L0� =
�
Y 2 L0 j Y (!) � 0 for all ! 2 


	
.

Recall from Theorem 1 that the (c; �)-balls (1) are open sets in (L; � �1) whenever � is continuous
from below and uniformly dual-autocontinuous from above. In this case, any (c; �)-ball on
(L; � �1), L 2

�
L0; L0+; L

0
�
	
, that is a strict subset of L cannot be a convex set by Corollary 2.

Next, let us write X � Y i¤, for every ! 2 
, either X (!) = Y (!) or X (!) < Y (!).
Applying Theorem 2 to the non-trivial local cones L0, L0+, and L

0
�, respectively, gives us the

following properties of convex and open sets for the corresponding topological spaces.

Corollary 3. Suppose that (
;F ; �) is dual-nonatomic. Denote by U any convex and open
set in the topological space (L; � �1) such that X 2 U .

(i) For L = L0 we have that Y 2 U for all Y 2 L0.

(ii) For L = L0+ we have that Y 2 U for all Y 2 L0+ such that X � Y .

(iii) For L = L0� we have that Y 2 U for all Y 2 L0� such that Y � X.

By Corollary 3(i), the only non-empty, open and convex subset of the topological space
(L0; � �1) is the set of all random variables L0 itself. This implication of Theorem 2 extends a
well-known result from the analysis of not locally convex Lp-spaces, 0 � p < 1�which are de-
�ned on some nonatomic additive probability space�to non-additive dual-nonatomic probability
spaces.3

4.2 Proof of Theorem 2

We start with a lemma.
3Compare., e.g., Theorem 13.41(3) in Aliprantis and Border (2006), Paragraph 1.47 in Rudin (1991), Theorem

1 in Day (1940).
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Lemma 1. Consider a topological space (L; � �1) such that L satis�es the Structural Properties
P1 and P3. Then there exists for every open set U 2 � �1 with X 2 U some m 2 N>0
such that, for all Y 2 L,

� (Ac) > 1� 1

m
implies X + Y 1A 2 U . (17)

Proof. If L satis�es the Structural Properties P1 and P3, we have X + Y 1A 2 L for
any X; Y 2 L and any A 2 F . Let X 2 U for an arbitrary open set U . By the weak base
construction of � �1, there exists some m 2 N>0 such that

B�11
m
; 1
m
(X) � U :

Next observe that, for any 1
m
> 0,

�

�
jX + Y 1A �Xj <

1

m

�
= �

�
jY 1Aj <

1

m

�
(18)

� � (Ac)

because

! 2 Ac implies jY 1A (!)j = 0 <
1

m
)

Ac �
�
jY 1Aj <

1

m

�
.

By (18), � (Ac) > 1� 1
m
implies

�

�
jX + Y 1A �Xj <

1

m

�
> 1� 1

m
,

X + Y 1A 2 B�11
m
; 1
m
� U

for any Y 2 L.��
Proof of Theorem 2. Fix X 2 L. If � is dual-nonatomic, there exists for every m 2 N>0

some partition f
1; :::;
ng � F such that, for every i = 1; :::; n,

� (
ci) > 1�
1

m
. (19)

If L satis�es the Structural Property P2, we have that nZ 2 L for any Z 2 L. Because L also
satis�es the Structural Properties P1 and P3, we obtain, by Lemma 1, that there exists for
every U 2 � �1 with X 2 U some m such that (19) implies, for every i = 1; :::; n,

X + nZ1
i 2 U .
By construction,

X + Z =

nX
i=1

1

n
(X + nZ1
i) ,

which gives us the desired result X + Z 2 co (U).��

15



References

Aliprantis, D.C., Border, K. (2006) In�nite Dimensional Analysis. 2nd edition. Berlin:
Springer.

Arhangel�ski¼¬, A.V. (1966) �Mappings and Spaces�Russian Mathematical Surveys 21, 115-
162.

Assa, H., Zimper, A. (2018) �Preferences over all Random Variables: Incompatibility of Con-
vexity and Continuity�Journal of Mathematical Economics 75, 71-83.

Billingsley, P. (1995) Probability and Measure. New York: John Wiley.

Borzová-Molnárová, J., Halµcinová, L., Hutník, O. (2016) �The Smallest Semicopula-based
Universal Integrals III: Topology Determined by the Integral�Fuzzy Sets and Systems
304, 20-34.

Choquet, G. (1954) �Theory of Capacities�Annales de l�Institut Fourier 5, 131-295.

Day, M.M. (1940) �The Spaces Lp with 0 < p < 1�Bull. Amer. Math. Soc. 46, 816-823.

Denneberg, D. (1994) Non-Additive Measure and Integral. Kluwer Academic Publishers, Dor-
drecht.

Ellsberg, D. (1961) �Risk, Ambiguity and the Savage Axioms�Quarterly Journal of Economics
75, 643-669.

Gilboa, I. (1987) �Expected Utility with Purely Subjective Non-Additive Probabilities�Jour-
nal of Mathematical Economics 16, 65-88.

Li, G. (2012) �A Metric on Space of Measurable Functions and the Related Convergence�
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 20, 211-
222.

Ouyang, Y., Zhang, H. (2011) �On the Space of Measurable Functions and its Topology
Determined by the Choquet Integral� International Journal of Approximate Reasoning
52, 1355-1362.

Rudin, W. (1991) Functional Analysis. 2nd edition. New York: McGraw-Hill.

Savage, L.J. (1954) The Foundations of Statistics. New York: John Wiley.

Schmeidler, D. (1986) �Integral Representation without Additivity�Proceedings of the Amer-
ican Mathematical Society 97, 255-261.

Schmeidler, D. (1989) �Subjective Probability and Expected Utility Without Additivity�
Econometrica 57, 571-587.

16



Siwiec, F. (1974) �On De�ning a Space by a Weak Base�Paci�c Journal of Mathematics 52,
233-245.

Tversky, A., Kahneman, D. (1992) �Advances in Prospect Theory: Cumulative Representation
of Uncertainty�Journal of Risk and Uncertainty 5, 297-323.

Wakker, P.P. (2010) Prospect Theory for Risk and Ambiguity. Cambridge University Press.

Wang, Z. (1984) �The Autocontinuity of Set Function and the Fuzzy Integral� Journal of
Mathematical Analysis and Applications 99, 195-218.

Wu, C., Ren, X., Wu, C. (2011) �A Note on the Space of Fuzzy Measurable Functions for a
Monotone Space�Fuzzy Sets and Systems 182, 2-12.

Zimper, A., Assa, H. (2021) �Preferences over Rich Sets of Random Variables: On the In-
compatibility of Convexity and Semicontinuity in Measure�Mathematics and Financial
Economics 15, 353-380.

17


