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a b s t r a c t

From 1952 until now, the sufficient descent property and the global convergence of conjugate gradient
(CG) methods have been studied extensively. However, the sufficient descent property and the global
convergence of some CG methods such as the method of Polak, Ribière, and Polyak (PRP) and the method
of Hestenes and Stiefel (HS) have not been established yet under the strong Wolfe line search. In this
paper, based on Yousif (Yousif, 2020) we present a criterion that guarantees the generation of descent
search directions property and the global convergence of CG methods when they are applied under
the strong Wolfe line search. Moreover, the PRP and the HS methods are restricted in order to satisfy
the presented criterion, so new modified versions of PRP and HS are proposed. Finally, to support the the-
oretical proofs, a numerical experiment is done.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Unconstrained optimization problems usually arise in various
fields of science, engineering, and economics. They are mathemat-
ically formulated as

min
x2Rn

f ðxÞ; ð1:1Þ

where f : Rn ! R is a continuously differentiable function. The
methods of the conjugate gradient are widely used to solve prob-
lems (1.1), this is due to their simplicity and small footprint. It
should be mentioned that optimization problems as in (Eq. (1.1))
are also solved using non-gradient methods especially successfully
using different population based heuristics. The previous methods
use the following iterative expression:
xkþ1 ¼ xk þ akdk; k ¼ 0;1;2; � � � ; ð1:2Þ
Such that ak represents the step length that is a CG method

takes in each step toward the search direction dk. Strong Wolfe line
search is one of the most used methods in practical computations
for computing ak, in which ak satisfies

f xk þ akdkð Þ � f xkð Þ þ dakgT
kdk ð1:3Þ

jg xk þ akdkð ÞTdkj � rjgT
kdkj ð1:4Þ

Such that gk represents the gradient of the nonlinear function f
at the value xk and 0 < d < r < 1 and dk is the search direction
given by:

dk ¼
�gk; ifk ¼ 0;

�gk þ bkdk�1; if k P 1;

� �
ð1:5Þ

Such that bk is the factor that determines how the conjugate
gradient methods differ. Some of the very well-known formulas
attributed to Hestenes-Stiefel (HS) (Hestenes and Stiefel, 1952),
Fletcher-Reeves (FR) (Fletcher and Reeves, 1964) and Polak-
Ribière-Polyak (PRP) (Polyak, 1969; Polak and Ribière, 1969). These
formulas are given by

bHS
k ¼ gT

kðgk � gk�1Þ
dT
k�1ðgk � gk�1Þ
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bFR
k ¼ kgkk2

kgk�1k2

bPRP
k ¼ gT

k gk � gk�1ð Þ
kgk�1k2

respectively. Other formulas are conjugate descent (CD)
(Fletcher, 1987), Liu-Storey (LS) (Liu and Storey, 1992), and Dai-
Yuan (DY) (Dai and Yuan, 2000). For more formulas for the coeffi-
cient bk see (Abubakar et al., 2022; Yuan and Lu, 2009; Zhang,
2009; Rivaie et al., 2012; Hager and Zhang, 2005; Dai, 2002;
Yuan and Sun, 1999; Salleh et al., 2022; Dai, 2016; Wei et al.,
2006, Wei et al., 2006).

To guarantee that every search direction generated by a CG
method is descent, the sufficient descent property

gT
kdk � �Ckgkk2;8k � 0and a constant C > 0, (1.6)

is needed.
The global convergence and descent directions property of the

FR method are established using both exact (Zoutendijk and
Abadie, 1970) and strongWolfe line search (Al-Baali, 1985) on gen-
eral functions. The PRP and the HS methods with exact line search
can cycle infinitely without approaching a solution which implies
that they both do not have global convergence for general func-
tions (Powell, 1984). Nevertheless, the good performance of the
PRP and the HS in practice, that is, due to self-restarting property,
both methods are preferred to the FR method. To establish the con-
vergence of them with the strong Wolfe line search, Powell
(Powell, 1986) suggested restricting them to be non-negative.
Motivated by Powell’s suggestion (Powell, 1986), Gilbert and Noce-
dal (Gilbert and Nocedal, 1992) conducted an elegant analysis and
established that they are globally convergent if they are restricted
to be non-negative and the step length satisfies the sufficient des-
cent condition. Further studies on global convergence properties of
CG methods are of Hu and Storey (Hu and Storey, 1991), Liu et al
(Zoutendijk and Abadie, 1970), and Touati-Ahmed and Storey
(Touati-Ahmed and Storey, 1990) among others.

Recently, Yousif (Yousif, 2020) gave detailed proof for the suffi-
cient descent property and the global convergence of the modified
method of Rivaie; Mamat, Ismail, and Leong (RMIL + ) (Rivaie et al.,
2012). In this author’s work, the coefficient is given by

bRMILþ
k ¼

gT
k
ðgk�gk�1Þ
kdk�1k2

; if0 � gT
kgk�1 � kgkk2;

0; otherwise:

8<
: ð1:7Þ

The proof is based on the inequality

kgkk
kdkk < 2; k � 0; ð1:8Þ

In the above setting the RMIL + method generated gkf g and dkf g
under the application of strong Wolfe line search in the case of
r 2 ½0; 14 �.

In this paper, inspired by Yousif (Yousif, 2020), we present a
criterion that guarantees the descent property and the global
convergence of each CG method satisfying this criterion. This is
presented in Sections 2. In Section 3, based on this criterion,
we propose modified versions of PRP and HS methods. Finally,
in Section 4, to show the efficiency of the proposed modified
methods in practical computation, they are compared with
PRP, HS, FR, and RMIL + methods.

2. A new criterion guarantees sufficient descent and global
convergence

In this section, we firstly show that for every CG method whose
coefficient bk satisfies
2

bkj j � l kgkk2
kdk�1k2

; fork � 1and a real numberl � 1; ð2:1Þ

the inequality (1.8) holds true. Secondly, we prove the sufficient
descent property and the global convergence of any CG method
whose coefficient bk satisfies (2.1) under the application of strong
Wolfe line search in the case of r 2 ½0; 1

4l �.

2.1. The sufficient descent property

Before we prove the desired property, we first note that for
every-two positive real numbers r and l � 1, we have

0 < r <
1
4l

) �2 < 2 2lr� 1ð Þ < �1

) �1 < 2lr� 1 <
�1
2

) 1
2
< 1� 2lr < 1

) 1 <
1

1� 2lr
< 2 ð2:2Þ

Theorem 2.1: Assume that gkf g and dkf g are generated by a CG
method such that bk satisfies (2.1) under the application of strong
Wolfe line search in the case of r 2 ½0; 1

4l �. Then (1.8) holds.

Proof: We follow the induction argument. For k ¼ 0, (1.5)
shows that (1.8) is satisfied. Now , suppose that (1.8) is true for
k � 1, rewrite equation (1.5) for kþ 1 and multiply the resulting
equation by gT

kþ1, we get

kgkþ1k2 ¼ �gT
kþ1dkþ1 þ bkþ1g

T
kþ1dk

Applying the triangle inequality, we get

kgkþ1k2 � jgT
kþ1dkþ1j þ jbkþ1g

T
kþ1dkj

Using the condition (1.4), we obtain

kgkþ1k2 � jgT
kþ1dkþ1j þ rjbkþ1jjgT

kdkj
Substitute (2.1) for bkþ1 and use CAS inequality, we get

kgkþ1k2 � kgkþ1kkdkþ1k þ lrkgkþ1k2
kgkk
kdkk : ð2:3Þ

Dividing both sides of (2.3) by kgkþ1k and then applying the
induction hypothesis (1.8), we come to

kgkþ1k < kdkþ1k þ 2lrkgkþ1k
which leads to

kgkþ1kð1� 2lrÞ < kdkþ1k
Since 1� 2lrð Þ > 0 and 1

1�2lr < 2 (see (2.2)), we come to

kgkþ1k
kdkþ1k <

1
1� 2lr

< 2

thus, the proof is complete.
Now, we are able to establish the sufficient descent property

(1.6) under the condition (2.1). This is the topic of the following
theorem

Theorem 2.2: Assume that gkf g and dkf g are generated by a CG
method such that bk satisfies (2.1) under the application of strong
Wolfe line search in the case of r 2 ½0; 1

4l �. Then the sufficient descent

property (1.6) holds true.
Proof: For k ¼ 0; the result is clear by using (1.5). Consider the

case k > 0.
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From (1.5), we have

gT
kdk ¼ �kgkk2 þ bkg

T
kdk�1

� �kgkk2 þ bkj j gT
kdk�1

�� ��
Applying the strong Wolfe condition (1.4), we get

gT
kdk � �kgkk2 þ r bkj j gT

k�1dk�1

�� ��:
Using Cauchy-Schwartz inequality gT

k�1dk�1

�� �� � kgk�1kkdk�1k and
then substituting (2.1) and (1.8), we come to

gT
kdk � �kgkk2 þ lrkgkk2

kgk�1k
kdk�1k

< �1þ 2lrð Þkgkk2;
which means

gT
kdk < �Ckgkk2; ð2:4Þ

where C ¼ 1� 2lr > 0 (see (2.2)). Thus the proof is complete.

2.2. The global convergence

Now, based on the following assumption on the objective func-
tion f , we establish the global convergence under strong Wolfe line
search with 0 < r < 1

4l of every CG method whose coefficient satis-

fies (2.1).
Assumption 2.1

(i) Define X ¼ x 2 Rn : f xð Þ � f ðx0Þ
� �

and assume that X is
bounded for all initial points x0.

(ii) Let N be a neighborhood of X and assume that f 2 CðN) such
that for some l > 0

kg(x)-g(y)k �l kx-yk, " x,y 2 N.

Under this assumption, Zoutendijk (Zoutendijk and Abadie,
1970) proved the following results.

Lemma 2.1 Let Assumption 2.1 is given. The for any conjugate
gradient method in the forms (1.2)-(1.5) such that a_k is computed
according to strong Wolfe line search. Then

X1
k¼0

ðgT
kdkÞ

2

kdkk2
< 1: ð2:5Þ

From (2.4), we get

C2kgkk4 < ðgT
kdkÞ

2
; for all k � 0

which leads to

X1
k¼0

kgkk4
kdkk2

<
1
C2

X1
k¼0

ðgT
kdkÞ

2

kdkk2
: ð2:6Þ

From (2.5) and (2.6) together, we come to.

X1
k¼0

kgkk4
kdkk2

< 1: ð2:7Þ

Therefore, based on Assumption 2.1, we deduce that if the
sequences gkf g and dkf g are generated by a CG method with coef-
ficient bk satisfying (2.1) when it is applied under the strong Wolfe
line search with 0 < r < 1

4l, then (2.7) holds.

The following lemma will be used in the proof of the global
convergence

Lemma 2.2: Suppose that gkf g and dkf g are generated by any CG
method such that bk satisfies (2.1) under the application of the strong
3

Wolfe line search with 0 < r < 1
4l . Then there exists a positive con-

stant C1 > 1 such that

gT
kdk � �C1kgkk2 ð2:8Þ
Proof: Multiplying (1.5) by gT

k and then applying the triangle
inequality, we obtain

gT
kdk

�� �� � kgkk2 þ bkj j gT
kdk�1

�� ��
Substituting (2.1) and applying the strong Wolfe condition (1.4)

and using inequality (1.8), we get

gT
kdk

�� �� � kgkk2 þ 2lrkgkk2

which means

dk � �C1kgkk2

where C1 ¼ 1þ 2lr and this completes the proof.
Theorem 2.3: Suppose that Assumption 2.1 holds. Any CG

method with a coefficient bk satisfying (2.1) is globally convergent
when it is applied under the strong Wolfe line search with
0 < r < 1

4l, that is,

lim inf
k!1

kgkk ¼ 0: ð2:9Þ

Proof: The proof is by contradiction. It assumes that the oppo-
site of (2.9) holds, that is, there exists a constant e > 0 and an inte-
ger k1 such that

kgkk � e; for all; k � k1 ð2:10Þ
which leads to

1

kgkk2
� 1
e2

; for all k � k1 ð2:11Þ

From (1.5), by squaring both sides of dk þ gk ¼ bkdk�1, we get

kdkk2 ¼ �kgkk2 � 2gT
kdk þ ðbkÞ2kdk�1k2 ð2:12Þ

Using (2.8), we obtain

kdkk2 � �kgkk2 þ 2C1kgkk2 þ ðbkÞ2kdk�1k2;
which means

kdkk2 � C3kgkk2 þ ðbkÞ2kdk�1k2; where C3 ¼ 2C1 � 1.

Substituting (2.1) and dividing both sides by kgkk4, we get

kdkk2
kgkk4

� C3

kgkk2
þ l2

kdk�1k2
:

Since 1
kdk�1k2

< 4
kgk�1k2

(see (1.8)), then

kdkk2
kgkk4

<
C3

kgkk2
þ 4l2

kgk�1k2
: ð2:13Þ

Combining (2.11) and (2.13) together, we come to

kdkk2
kgkk4

<
C3 þ 4l2

e2
; for allk � k1 þ 1:

This means

kgkk4
kdkk2

> c;where c ¼ e2

C3 þ 4l2 :

Then

Xn
k¼k1þ1

kgkk4
kdkk2

> n� k1ð Þc:

Since



Table 1
A comparison between FR, HS, PRP, OHS, OPRP, and RMIL +.

NI/NF/NG NI/NF/NG NI/NF/NG NI/NF/NG NI/NF/NG NI/NF/NG

1 GENERALIZED WHITE & HOLST (Andrei,
2008)

2 49/233/127
74/307/177

15/113/47
16/111/53

15/98/47
Fail

14/89/49
18/112/62

14/89/45
18/115/64

20/113/59
24/141/80

2 THREE-HUMP (Molga and Smutnicki, 2005) 2 14/397/85
Fail

26/750/93
26/770/122

11/293/48
14/347/143

26/750/93
19/530/138

11/293/48
15/385/86

14/387/99
20/547/175

3 SIX-HUMP (Molga and Smutnicki, 2005) 2 13/44/30
10/54/28

5/19/13
8/47/23

5/19/13
8/47/25

5/19/13
7/40/22

5/19/13
8/45/24

5/19/13
8/50/26

4 TRECANNI (Zhu, 2004) 2 10/40/25
9/32/20

5/26/16
4/17/10

5/26/16
Fail

5/26/16
5/20/12

5/26/16
5/19/11

5/26/16
Fail

13 EXTENDED WOOD (Andrei, 2008) 4 6897/33847/
16150
1115/5012/2624

123/481/282
167/736/401

106/428/243
157/697/383

51/225/128
74/397/200

57/250/142
85/458/233

118/406/254
245/982/581

14 FREUDENSTEIN & ROTH (Andrei, 2008) 4 24/88/53
194/85/47

Fail
7/41/19

7/39/19
10/52/25

7/35/18
7/45/20

7/36/19
9/52/25

8/40/20
9/52/25

15 GENERALIZED TRIDIAGONAL 2 (Andrei,
2008)

4 5/16/13
Fail

4/13/11
10/51/34

4/13/11
10/49/33

4/13/11
12/61/43

4/13/11
12/61/43

4/13/11
12/61/43

16 QP1 (Andrei, 2008) 4 205/69/45
17/74/43

6/24/14
10/54/27

7/27/16
8/43/22

7/27/16
10/52/29

7/27/16
10/52/29

7/28/17
11/55/31

17 FLETCHER (Andrei, 2008) 10 1203/5826/2809
2443/1202/587

56/256/134
73/344/173

56/256/134
73/348/174

56/256/134
66/380/175

56/256/134
51/300/137

74/307/171
105/502/253

18 GENERALIZED TRIDIAGONAL 1 (Andrei,
2008)

10 27/88/58
43/164/103

23/76/50
27/112/68

23/76/50
27/112/68

23/76/50
27/112/68

23/76/50
27/112/68

22/73/48
27/109/66

19 HAGER (Andrei, 2008) 10 11/34/31
97/314/215

12/37/32
17/60/51

12/37/32
17/60/51

12/37/32
17/60/51

12/37/32
17/60/51

12/37/32
18/65/57

20 ARWHEAD (Andrei, 2008) 10 7/27/17
13/70/36

5/22/14
8/52/24

5/22/14
9/55/26

5/22/14
9/58/28

5/22/14
8/55/26

5/22/14
9/58/28

21 GENERALIZED QUARTIC (Andrei, 2008) 10 11/222/58
47/1065/868

8/89/57
17/335/102

8/93/59
16/320/131

7/69/39
14/223/115

8/93/59
15/236/147

6/48/17
12/154/76

22 POWER (Andrei, 2008) 10 10/30/20
103/30/20

10/30/20
10/30/20

10/30/20
10/30/20

10/30/20
10/30/20

10/30/20
10/30/20

104/312/208
122/366/244

23 GENERALIZED ROSENBROCK (Andrei, 2008) 10 Fail
Fail

437/1702/
1000
361/1540/868

480/1847/
1103
449/1840/
1054

642/2271/
1431
962/3409/
2124

1805/5798/
3804
1211/4135/
2615

1173/3915/
2505
1691/5709/
3598

24 RAYDAN 1 (Andrei, 2008) 10

102

19/90/76
2806/9964/6278
949/484/197
880/3806/1910

17/80/67
Fail
74/287/152
170/723/373

17/80/67
Fail
75/314/157
169/694/371

17/80/67
36/199/166
74/287/152
130/559/294

17/80/67
36/196/168
75/314/157
130/565/293

20/96/81
37/200/171
86/266/179
153/587/353

25 EXTENDED DENSHENB (Andrei, 2008) 10

102

9/31/22
17/65/42
18/68/44
9/44/23

5/19/14
8/34/21
8/34/21
9/51/27

5/19/14
8/34/21
8/34/21
10/48/26

5/19/14
9/37/23
9/37/23
9/44/23

5/19/14
9/37/23
9/37/23
9/44/23

5/19/14
10/45/29
10/45/29
10/47/25

26 EXTENDED PENALTY (Andrei, 2008) 10

102

12/52/31
17/64/38
238/4732/506
2830/11510/4309

45/162/106
10/49/29
17/97/51
15/96/49

29/106/67
11/52/33
Fail
Fail

16/63/39
9/40/23
13/78/40
12/71/37

15/60/37
9/40/23
13/81/42
12/71/37

14/57/36
8/37/22
23/144/78
13/75/39

27 QP2 (Andrei, 2008) 102 283/3487/737
2482/3295/649

21/219/74
27/285/88

23/244/77
24/256/84

35/322/114
31/294/100

36/325/116
32/308/104

33/301/105
30/287/97

28 DIXON3DQ (Andrei, 2008) 50 25/79/55
25/79/55

25/79/55
25/79/55

25/79/55
25/79/55

25/79/55
25/79/55

25/79/55
25/79/55

123/376/262
127/392/275

29 QF2 (Andrei, 2008) 50 116/394/285
73/299/168

70/244/160
66/272/150

70/244/160
65/269/148

70/244/160
66/272/150

70/244/160
65/269/148

78/274/181
74/305/177

30 QF1 (Andrei, 2008) 50

500

38/114/76
40/120/80
131/393/262
137/411/274

38/114/76
40/120/80
131/393/262
137/411/274

38/114/76
40/120/80
131/393/262
137/411/274

38/114/76
40/120/80
131/393/262
137/411/274

38/114/76
40/120/80
13/393/262
137/411/274

69/207/138
78/234/156
162/486/325
198/594/397

31 HIMMELH (Andrei, 2008) 500 13/79/29
11/64/23

5/15/10
5/15/10

5/15/10
5/15/10

6/32/13
6/18/12

6/32/13
6/18/12

5/15/10
6/18/12

32 QUARTC (Andrei, 2008) 500 3/31/26
4/43/33

Fail
Fail

2/24/23
Fail

3/31/26
3/26/16

3/31/26
3/26/16

3/31/26
3/26/16

33 EXTENDED TRIDIAGONAL 1 (Andrei, 2008) 500

103

340/1190/1035
14/68/58
399/1396/1212
518/1813/1561

14/71/60
7/42/35
14/71/60
7/43/25

14/72/58
11/63/53
14/72/58
14/83/61

12/61/50
8/47/38
12/61/51
13/78/55

12/61/50
8/47/38
12/61/50
13/77/55

12/60/50
8/47/38
12/60/50
7/44/24

34 DIAGONAL 4 (Andrei, 2008) 500

103

2/6/5
2/6/5
2/6/5
2/6/5

2/6/5
2/6/5
2/6/5
2/6/5

2/6/5
2/6/5
2/6/5
2/6/5

2/6/5
2/6/5
2/6/5
2/6/5

2/6/5
2/6/5
2/6/5
2/6/5

2/6/5
2/6/5
2/6/5
2/6/5

35 EXTENDED WHITE & HOLST (Andrei, 2008) 500

103

57/257/143
282/3749/859
572/257/143
1231/1608/372

15/113/47
50/585/212
15/113/47
35/297/135

15/98/47
49/548/207
15/98/47
35/292/128

15/95/50
50/432/195
15/95/50
48/371/168

15/95/50
50/432/194
15/95/50
49/376/170

22/121/65
52/436/199
22/121/65
120/914/418

36 EXTENDED ROSENBROCK (Andrei, 2008) 103

104

68/530/182
260/2899/718
71/539/188

19/120/58
23/176/70
19/120/58

21/134/67
25/183/72
21/134/67

28/168/90
33/219/102
28/168/90

28/167/88
32/215/99
28/167/88

31/181/99
27/185/88
31/181/99
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Table 1 (continued)

NI/NF/NG NI/NF/NG NI/NF/NG NI/NF/NG NI/NF/NG NI/NF/NG

715/6694/1764 17/115/53 18/117/54 18/105/57 18/105/57 45/301/148
37 EXTENDED HIMMELBLAU (Andrei, 2008) 103

104

15/54/34
11/51/27
22/127/55
17/72/38

7/29/17
9/48/24
9/44/23
10/52/24

8/32/19
9/43/22
9/44/23
Fail

8/32/19
7/39/19
10/47/25
9/47/21

8/32/19
7/39/19
9/44/23
9/47/21

7/30/18
7/39/19
9/39/22
9/48/22

38 STRAIT (Mishra, 2005) 103

104

35/146/91
88/682/269
35/147/92
109/774/348

17/86/48
19/148/59
18/90/51
20/129/59

17/86/48
19/150/60
18/90/51
20/127/60

15/80/44
19/179/71
15/80/44
19/185/71

15/80/44
18/172/63
15/80/44
18/184/68

20/96/55
22/193/78
20/97/55
23/167/71

39 SHALLOW (Issam, 2005) 103

104

18/63/48
179/605/390
46/144/97
19/71/49

7/27/21
13/63/42
8/28/20
9/38/26

7/17/21
14/66/39
8/28/20
10/41/28

7/28/22
12/62/39
9/35/26
10/49/32

7/28/22
12/62/39
9/35/26
10/49/32

7/28/22
15/70/46
8/33/25
10/47/31

40 EXTENDED BEALE (Andrei, 2008) 103

104

75/242/159
80/254/170
88/285/187
86/272/182

10/48/31
10/42/29
9/41/26
10/42/29

13/67/41
11/45/31
9/41/24
11/45/31

11/52/33
12/52/39
10/48/31
12/52/39

14/72/46
12/52/39
9/43/26
12/52/39

14/62/43
13/53/40
6/30/18
13/53/40
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X1
k¼0

kgkk4
kdkk2

>
X1

k¼k1þ1

kgkk4
kdkk2

¼ lim
n!1

Xn
k¼k1þ1

kgkk4
kdkk2

;

and

X1
k¼k1þ1

kgkk4
kdkk2

¼ lim
n!1

Xn
k¼k1þ1

kgkk4
kdkk2

> lim
n!1

n� k1ð Þc ¼ 1:

We come to

X1
k¼0

kgkk4
kdkk2

> 1:

This contradicts (2.7). Therefore, the proof is completed.

3. Modified versions of the PRP and the HS methods

In this section, since the sufficient descent property and the glo-
bal convergence of the well-known PRP and HS methods are not
established under strong Wolfe line search, then motivated by
the results in Section 2, we propose modified versions of PRP and
HS methods, that is, by restricting the coefficients bPRP

k and bHS
k in

order to satisfy (2.1) as follows

bOPRP
k ¼ bPRP

k if � l g2
k

d2k�1
< bPRP

k < l g2
k

d2k�1

0; otherwise:

8<
: ð3:1Þ

and

bOHS
k ¼

bHS
k if � l g2

k

d2k�1
< bHS

k < l g2
k

d2k�1

0; otherwise:

8><
>:

ð3:2Þ
We call these modified versions OPRP and OHS respectively,

where the letter ‘‘O” stands for Osman.
Of course, both of the modified versions of PRP and HS satisfy

(2.1), so that they generate descent directions at each iteration
and globally convergent when they are applied under strong Wolfe
line search with 0 < r < 1

4l. Note that, in (3.1) and (3.2) when

l! 1, then bOPRP
k ! bPRP

k and bOHS
k ! bHS

k and also r tends to zero.
Therefore, for a sufficiently large value of l, the OPRP and the
OHS methods can be considered as good approximations to both
PRP and HS methods.

We also note, like PRP and HS methods, OPRP and OHS methods
perform a restart when they encounter a bad direction, i.e., when
5

gk approaches gk�1, then both bOPRP
k and bOHS

k approach zero, so that
dk approaches �gk. Hence, we expect that they perform better than
FR method in practice. Also, the sufficient descent property and the
global convergence of both OPRP and OHS methods qualified them
to be better than both PRP and HS theoretically, but it remains to
show their performance in practical computations and this will
be shown in the next section.

4. Numerical experiment

In this section, to show the efficiency and robustness and to
support the theoretical proofs in Section 2, numerical experiments
based on comparing the proposed OPRP and OHS when l ¼ 10
with PRP, HS, FR, and RMIL + methods are done. To accomplish
the comparison, a MATLAB coded program for these methods when
they are all implemented under strong Wolfe line search with
d ¼ 10�4 and r ¼ 10�2 is run. We stop the program if
kgkk � 10�6. The test problems are unconstrained and most of
them are from (Andrei, 2008). To show the robustness, test prob-
lems are implemented under low, medium, and high dimensions,
namely, 2, 3, 4, 10, 50, 100, 500, 1000, and 10000. Furthermore,
for each dimension, two different initial points are used, one of
them is the initial point, which is suggested by Andrei (Andrei,
2008) and the other point is chosen arbitrarily. The comparison
is based on the number of iterations (NI), the number of function
evaluations (NF), and the number of gradient evaluations (NG).
The numerical results are in Table 1. In Table 1, a method is consid-
ered to have failed, and we report ‘‘Fail” if the number of iterations
exceeds 5� 103, or the search direction is not descent.

According to Table 1, we show the performance of OPRP, OHS,
HS, PRP, FR, and RMIL + methods in Figs. 1-3 relative to the number
of iterations, number of function evaluations, and number of gradi-
ent evaluations respectively. We used the performance profile
introduced by Dolan and More (Dolan and More, 2002) which pro-
vides solver efficiency, robustness, and probability of success. In
Dolan and More performance profile, we plot the percentage P of
the test questions where a method falls within the best t-factor.
Obviously, in the performance profile table, the curved shape at
the top of the method is the winner. Furthermore, plot correctness
is a measure of the robustness of the method.

Clearly, from Figs. 1-3, OPRP and OHS solve all test problems
and therefore, reach 100 % percentage, whereas, FR, HS, PRP, and
RMIL + solve about 94 %, 96 %, 90 %, and 99 % respectively. Further-
more, the left sides of all figures show that OPRP, OHS, PRP, and HS
almost have the same highest probability of being the optimal sol-
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Fig. 3. The performance based on NG.
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vers. In general, since the curves of both OPRP and OHS are above
all other curves in most cases, then their performance is better
than of the other methods.
6

5. Conclusions

In this paper, under the strong Wolfe line search, with
0 < r < 1

4l, l � 1, we established the sufficient descent property

and global convergence of CG methods with their coefficient bk sat-

isfying bkj j � l kgkk2
kdk�1k2

; for all k � 1. At the same time, we have pro-

posed new modified versions of both PRP and HS methods called
OPRP and OHS respectively. To show the efficiency and robustness
and to support the theoretical proofs which establish the sufficient
descent property and the global convergence, numerical experi-
ments based on comparing OPRP and OHS with HS, PRP, FR, and
RMIL+ have been done. Based on Dolan and More performance pro-
file, it has been found that the new modified versions perform bet-
ter than the other methods.
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