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Abstract 

Rationale: Attaining scientifically robust, clinically representative, and functionally 

translatable preclinical models for pharmaceutical research has become increasingly 

desirable. Relevant hepatic models are pivotal for the screening and accurate 

identification of safe new drug candidates. Currently, primary human hepatocytes are 

considered the gold standard for hepatic modelling However, their limited 

accessibility, high variability and terminal nature hamper their widespread adoption. 

Immortalised cell cultures, for example the human hepatoma cell line (HepG2), have 

served as widespread substitutes. However, the representativeness of HepG2 cells is 

of concern due to the relatively large phenotypic disparity when compared to primary 

human hepatocytes. Recent studies have postulated that the adoption of HepG2 cells 

into three dimensional (3D) conformations may promote a more closely correlated 

phenotype. Little is known regarding the extent of proteomic changes which occur 

when cells as cultured as spheroids, nor is there sufficient insight into the temporal 

dynamics which may drive these changes. The aim of this study was to investigate 

whether proteomic changes occur in HepG2 cells when cultured as spheroids 

compared to traditional monolayer culture techniques and if so whether these changes 

were culture time dependent. Additionally, HepG2 spheroid cultures were assessed 

for improved metabolic adaption following extended-time spheroid-based culture in 

the presence of specific drugs, a key characteristic of human hepatocytes that would 

be critical for hepatotoxicity testing models. 

Methods: HepG2 cells were cultured as spheroids using two established 3D culture 

models; cells were seeded into hanging drop plates (20 000 cells/spheroid) and into 

81 well, 3D micro moulds (1000 cells/spheroid), then maintained under untreated 

control or drug exposed groups, using a 7-drug cocktail representing substrates of 

phase I metabolizing enzymes. Spheroid cultures were characterized for protein 

content, size, viability, and immunohistochemistry. Cultures from different groups 
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and culture times were compared by means of quantitative proteomic methods using 

isobaric labelling proteomics. Sample proteins were reduced, alkylated, precipitated, 

digested with trypsin and labelled using 6-plex tandem mass tag (TMT) isobaric 

labels. Proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano 

liquid chromatography system coupled to a Thermo Scientific Fusion Lumos Orbitrap 

Mass Spectrometer. Protein identification was conducted using an alternating 

SequestHT/MS Amanda schema. Relative protein quantitation for the different 

spheroid groups were expressed relative to original monolayer cultured HepG2 

control cells. Relative metabolic competences of spheroid cultures were assessed using 

a defined hepatic metabolism phenotyping cocktail using an in-house developed 

liquid chromatography tandem mass spectrometry method. 

Results:  HepG2 spheroid cultures were shown to progressively upregulate 

expression of hepatic marker proteins over the 28-day culture time course. 

Quantitative proteomic methods initially identified over 5000 proteins which when 

filtered to include only proteins with at least three identified peptides and presence in 

all replicates, reduced to approximately 4800 proteins. Identified proteins showed 

differential expression between spheroid culture groups compared to monolayer 

cultures. Additionally, progressive differential proteome expression was evident 

between spheroid cultures according to time spent in culture and based on presence 

or absence of drug exposure. Thorough bioinformatics analyses revealed insights into 

the potential mechanisms responsible for the proteomic differences and identified that 

while spheroids exposed to drug appear to adapt metabolically to their culture 

environments, the nature of these changes may lack impact for clinical relevance. 

Metabolomic investigations corroborated the proteomic findings showing that, while 

maintaining some capacity for phase I metabolism, overall, clinically relevant 

metabolism for cytochrome P450 enzymes was absent.  

Conclusion: Quantitation of large protein cohorts demonstrated that there are 

adaptive changes occurring during long-term culture of HepG2 cell spheroids. While 
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the proteomic changes observed, under all culture conditions, do not support 

adoption of these cultures for modelling drug metabolism, use in other bespoke model 

systems which concern other aspects of liver function is feasible. The high-quality 

proteomic data generated shows temporal dynamics in spheroid cultures which have 

implications for their utility. It necessitates the requirement for more comprehensive 

investigations into the relevance of the time-points used when adopting spheroid 

cultures. 
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Chapter 1. Literature review 

1.1. The drug development process 

The rise and distribution of modern medicine has led to a global increase in average 

life expectancy for humanity [1]. This increase is attributable to the continuous 

emergence of new drugs and therapeutics which facilitate the improvement of patient 

prognosis and in the best cases, elimination of disease. A drug can be defined as a 

substance which produces a physiological or psychological effect when introduced to 

an organism. It is useful for its diagnosis, treatment or management of a disease or 

pathological condition [2]. The drug development process is a time consuming and 

high-risk process. The development of a single new therapeutic often carries costs 

which surpass two billion USD, and usually require the associated financial burden to 

be borne by both the private and public sectors [3, 4]. The average time taken for the 

discovery, development and approval of new drug candidates is approximately 13.5 

years. For approval to be granted, the drug candidate must first demonstrate both 

safety and efficacy [5]. A general strategy adopted by pharmaceutical companies is to 

initially invest in research to understand disease development, progression and 

pathology in order to identify therapeutic targets for potential treatments [5]. The 

drug development process is made up of 4 phases namely, discovery, preclinical 

research, clinical research, and review by drug regulating authorities. The process 

begins with the discovery phase which involves review of the existing data 

surrounding specific disease conditions and potential drug targets, then screening 

large compound libraries of up to 100 000 compounds for potential candidate drugs. 

These screenings are often initially in silico-based molecule docking studies [6, 7]. The 

discovery phase is followed by the preclinical phase, whereby the promising 

compounds identified during screening are evaluated using in vitro modelling and 

testing followed by in vivo animal studies.  Discovery and preclinical testing are 

routinely conducted concurrently and may take up to 7 years to complete. 
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Compounds showing promising efficacy and low toxicity are selected, and an 

application is made to the drug regulating authorities for permissions to undertake a 

clinical trial. Phase I clinical trials begin, to address drug safety, in healthy volunteers 

and typically include only small numbers of participants (20-50). Phase II trials, which 

can be randomized, evaluate the candidate drug’s efficacy and establish a side effects 

profile over a period of 1-2 years in 40-120 participants. Finally, development of the 

unapproved candidate drug is concluded with phase III clinical trials, that typically 

last 3-4 years and the number of participants range from several hundred up to many 

thousands. The purpose of phase III trials is to confirm treatment efficacy and to 

monitor for long term side effects and potential drug interactions in a diverse 

population. Phase IV, or post-approval surveillance, should take place after the drug 

regulating authority gives marketing or emergency use approval to the drug 

candidate. [8]. 

Clinical trials are encumbered by strict regulatory and ethical requirements yet show 

low success rates and successful drug development remains a slow and costly process. 

In general, over half of all drugs fail during phase II and phase III clinical trials due to 

a lack of efficacy whereby the drugs are unable to demonstrate a clinical benefit, and 

about another third of drugs fail due to safety issues including a risky narrow 

therapeutic index where small discrepancies from the intended drug exposure may 

lead to poor efficacy or toxic side effects [9]. Hwang et al. reviewed 640 phase III trials 

with novel therapeutic agents and found that 54% failed during clinical testing with 

57% of those being due to inadequate efficacy [10], while approximately 17% failed 

due to safety concerns. Though safety is monitored through every phase of clinical 

trials, potential complications generally only become apparent during the larger study 

population sizes included in phase III trials or, more detrimentally, during post-

marketing surveillance (phase IV) [11]. By this point, a large proportion of available 

resources would have been committed. An overview of the drug development process 

is summarized in Figure 1.1 that indicates the phases and the attrition rate of potential 

candidate drug compounds.  



 

3 

Drug safety is not always straightforward to assess, as inter-patient genotypic and 

phenotypic variability are major contributors to drug exposure outcomes and 

influence the progression of certain diseases or conditions and may be dose or time 

since exposure dependent. Genotypic considerations are important to ensure the 

safety of participants in a clinical trial, however, a duality exists in their application. 

Screening of participants for potential risk factors and pre-trial exclusion may aid in 

the preservation of both resources and to reduce overall participant risk. 

 

Figure 1.1 Overview of the drug development process. Figure produced using Diagrams.net. 

 

An example is described in a personal communication by Fijal et al. [12] where, the 

genotypic screening of over 600 participants for three genetic “poor metabolizer” 
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phenotype variants of CYP2D6 prompted the exclusion of 40 individuals from a trial 

thereby reducing the sponsor cost by approximately $300,000 while simultaneously 

reducing the overall safety risks to the participants in the study. Conversely, improper 

disclosure of these approaches may be used to bias participant safety data which 

inappropriately represents a drug under investigation as safer than it truly is. The use 

of these screening methods, while potentially useful to the development pipeline, do 

not entirely circumvent the potential for wasted investment of a trial therapeutic 

which will ultimately fail as these interventions are only possible during the 

controlled later phases of drug development. The earlier in the pipeline a drug under 

investigation fails, the lower the wasted development costs will be. 

 

1.2. The role of preclinical screening 

The Nuremberg Code and Helsinki Declaration dictate minimum research ethics 

surrounding human experimentation, which mandates that any new experimentation 

to be conducted on humans be based on prior data from animal studies [13]. From this 

mandate, the preclinical phases of drug development were established and are now 

an international legal requirement. Ideally, investigational drugs would be screened 

for safety and efficacy earlier during the development process, using in vitro and 

preclinical animal experiments where intact neural, immune, circulatory, hepatic, 

gastric, renal, and excretory systems can be affected. However, this screening effort is 

confounded by the lack of representative models with adequate predictive potential 

for accurate toxicity or efficacy testing. It is therefore essential to improve on the 

accurate predictability aspects of in vitro type models. Modelling for preclinical 

studies initially involves in vitro analysis in selected representative cellular models, 

followed by non-clinical in vivo studies in three different species of relevant animal 

models. The purpose of these platforms is to establish metabolic and toxicity profiles 

and to determine pharmacokinetic and pharmacodynamic parameters. 

Pharmacokinetic parameters investigated must include absorption, distribution, 
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metabolism, and excretion (ADME) characteristics which are essential in 

understanding safety concerns and determining drug concentrations that can be 

expected at the target site that influences the efficacy. Historically, the majority of high 

throughput screening (HTS) for drug safety and efficacy have taken place using two-

dimensional (2D or monolayer) cell culture model systems [14]. While useful in their 

ease of applicability, relatively low cost, and high turnover, 2D systems suffer several 

notable limitations when addressing the requirements of reliable model systems [15]. 

These limitations include rapid loss of cell polarity, limited cell-cell and cell-

extracellular matrix (ECM) signalling [16]. Cells cultured in 2D undergo 

comparatively rapid growth compared to their in vivo counterparts, where disparity 

exists with regards to oxygen gradients, utilization of nutrients and growth factors as 

well as build-up of metabolic waste products [17, 18]. Several cell types undergo rapid 

de-differentiation and experience loss of function when cultured in 2D, as in the case 

of primary human hepatocytes (PHH) [19, 20]. These characteristics have prompted a 

paradigm shift within recent years where 2D systems are being substituted with three-

dimensional (3D) spheroid systems [19-22]. Three-dimensional culture models allow 

cells to better recapitulate their in vivo architecture. By their nature, 3D systems allow 

a higher proportion of cells in direct contact with other cells and promotes the 

maintenance of cellular polarity as well as deposition of ECM [16, 23]. Three-

dimensional systems still carry several limitations; the formation of spheroids using 

single cell types, an absent vascular system and supporting structures which 

underrepresent the inherent physiological complexity. Prior to clinical investigations 

in humans, animal models with fully intact physiological systems are used to improve 

relevance. These platforms will be discussed more extensively later in this chapter. 

 

1.3. Contextualising in vitro and preclinical modelling platforms 

Revisiting one of the initial steps in drug candidate development, in vitro cultures are 

established on the premise of simplification. In vitro models have been utilized for 
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over 100 years and were originally described by Loeb in 1897 when maintaining 

rudimentary cultures of liver, kidney, thyroid and ovary in vitro on plasma clots for 

up to 3 days [24]. A variety of commercially available healthy or diseased tissue cells 

have since been adapted and optimised for use in culture and are typically grown in 

2D formats, generally on sterile polystyrene-based culture vessels that can be also be 

sourced commercially [25].  Simple 2D tissue cultures provide a highly controlled and 

easily reproducible growth environment but sacrifice their in vivo mimicry in favour 

of ease of experimental facilitation. Despite this, these systems are valuable for 

measuring initial parameters related to efficacy or toxicity. These include elucidating 

molecular mechanisms of action and investigation of the ligand-target interactions of 

drugs as well as potentially identifying off target effects [25]. Many aspects of cell 

biology are observable within homogenous cell type 2D in vitro cell cultures and are 

robust despite the absence of the relevant supporting physiological systems.  

Primary cell cultures are directly derived from fresh tissues or organs, and in many 

applications are regarded as the gold standard as they most accurately mirror the 

biology of the tissues from which they originated. However, primary cells are limited 

in their availability, are expensive, difficult or slower to expand and in many cases 

cannot be expanded or passaged more than 3 – 4 times and can be highly variable 

depending on the source and method of harvesting. They are also often contaminated 

by supporting stromal cells and exhibit varying levels of dedifferentiation within 

hours or days when cultured in 2D. Finally, primary cells are more susceptible to 

passaging-induced phenotype alterations, are increasingly sensitive to their culture 

environment post-harvest and typically require more sophisticated techniques or 

complex culture media composition. 

Primary cell organoids are 3D conformations of mixed primary cell types derived 

directly from a specific organ or tissue type [26]. Sources are typically explanted tissue 

harvested during surgery or from patient biopsies. These cultures retain the 

histological architecture and genomic background relevant to each donor cell type in 

the organoid and have been shown to be more representative of the heterogenous 
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nature of patient tissue [27, 28]. The growth and maintenance of organoid cultures 

requires cell specific growth factor cocktails with varying combinations of Wnt, R-

Spondin-1 (a Wnt amplifier), epidermal growth factor (EGF), prostaglandin E2, 

fibroblast growth factor 10 (FGF10), noggin (inhibitor of bone morphogenetic protein 

signalling), A83-01 (inhibitor of TGF-signalling), SB202190 (p38 inhibitor) and Y-27632 

(Rho/ROCK kinase inhibitor) with new, more tailored cocktails constantly being 

optimised [29]. Relatively slow growth rates, patient specific variability, labour 

intensiveness, requirement of highly skilled personnel, limited cell sources, and 

difficulty in upscaling to HTS are present challenges in the mainstream adoption of 

primary cell organoids [30]. 

 

Transformed (immortalized) cell lines were established over 30 years ago and are still 

commonly utilized in preclinical settings. Transformed cells are originally derived 

from primary cells but have been genetically altered to overcome several culture 

related challenges associated with primary cells. Transformation is achieved by the 

introduction of oncogenes into the cells genome to confers characteristics such as 

faster proliferation rate, increased resistance to external stressors and a reduced rate 

of dedifferentiation [31, 32]. Indeed, these adaptations carry several knock-on 

limitations; increased growth kinetics impose an increased demand on cellular 

resources which often causes a cell to switch from a functional phenotype to a 

proliferative phenotype. Though phenotypically stable in the short term, genotypic 

drift is a common occurrence within long term passaged cells which leads to high 

inter-lot variability and poor reproducibility between older and newer cell batches [33, 

34]. Transformed cell lines are robust and therefore more successful in transfection 

studies, allowing the stable introduction of genes in instances requiring the expression 

of a specific reporter, inducible expression of an extrinsic protein or as an 

overexpression system. Conversely specific methods of gene suppression (antisense 

RNA, small interfering RNA) allow the inhibition of gene activity more easily [35]. 
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The concept of differentiating one cell type into another cell type was pioneered by 

developmental biologist Sir John Gurdon who attempted the first nuclear 

transplantation in 1958 [36]. Since then, the field of developmental biology has 

undergone extensive advances including the establishment of induced pluripotent 

stem cell (iPSC) cultures. Takahashi and Yamanaka identified several transcription 

factors (OCT-3/4, SOX-2, cMYC, and KLF-4) involved in the pluripotency of cells [37]. 

A multitude of differentiation protocols have since been established, enabling the 

differentiation of iPSC’s into numerous cell lineages/types such as neuronal, hepatic, 

gastrointestinal etc. [38, 39]. These cultures have been used in an array of applications 

including organ and disease modelling, toxicology, embryology, and developmental 

biology. However, inconsistent differentiation endpoints, emergence of alternate cell 

types during differentiation, potential for divergence to a cancer-like phenotype and 

the often-attained foetal characteristics associated with iPSC derived cultures remain 

limitations which confound their biology. 

 

Animal models have been serving as the front-line testing platforms to simulate 

human physiology and modelling an in vivo biological response to drugs in 

development. Data from animal studies confirming safety of drugs are used as the 

premise for initiation of first in human (FIH) phase 1 clinical trials [40]. Animal models 

are often used to demonstrate modulation of  disease progression and to develop 

rudimentary proof-of-concept efficacy and baseline safety [41]. Although animal 

models are an essential platform for establishing these parameters and mitigating 

harm to humans during drug development, the general concordance between humans 

and animals remains low. Altered volume of distribution, variable basal metabolic 

rates, discordance in receptor expression, and differential metabolic pathways all 

serve as limitations to animal models. More recently, animal models have been 

genetically modified to express humanized gene products and to carry humanised 

organ systems [42]. Chimeric animal models are being developed to bridge some of 

the gaps presented in the use of standard animal models. However, these chimeras 
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are extraordinarily expensive to produce and carry considerably more ethical 

concerns depending on the extent of their humanization.  

In general, when considering the current states of preclinical development platforms, 

it is apparent that no single model system exists which is capable of modelling all 

facets required for the development of new drugs. Careful consideration is required 

when selecting the most appropriate model system or combination of systems. The 

understanding of what data/endpoints a particular model can accurately and 

relevantly provide are essential to addressing the challenges arising during drug 

development, as well as deciding on the trade-offs between HTS adaptability and 

physiological relevance.  Figure 1.2 shows the increasing complexity of available cell 

culture and preclinical animal models with increasing relevance to the human 

contrasted against the ability to perform HTS. Table 1.1 provides a brief overview of 

the of advantages and limitations associated with the various model systems.  

 

 

Figure 1.2: Preclinical modelling platforms comparing physiological relevance with adaptability to high 

throughput analysis. Created with BioRender.com 
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Table 1.1: Summary of advantages and disadvantages associated with preclinical models 

 

Model Advantages Disadvantages 

Immortalized cell 

lines 
• Simple and low-cost 

maintenance 

• Long term culture 

• Amenable to genetic 

manipulation 

• Mainly valuable for drug 

screening and gene expression 

patterns 

• Lack of relevance compared to 

in vivo microenvironment 

• Growth kinetics not 

representative  

• Loss of cell polarity 

• Loss of correlation with host 

tissue  

• Cancerous phenotypes 

Primary cells • Replicate patient specific 

phenotypes 

• Applicable in vivo functional 

correlation 

• Limited culture duration 

• Limited supply  

• Inter-donor variability 

• High cost 

Induced 

pluripotent stem 

cells  

• Multiple somatic cells can act 

as cell sources 

• Donor genetics preserved 

• High proliferative/ 

differentiation capacity 

• Useful in understanding 

developmental pathways  

• Highest promise for preclinical 

modelling 

• Differentiation protocols not 

fully refined  

• Immature differentiation 

phenotype 

• Inconsistent terminal 

phenotypes  

• High cost 

• Requires specialized personnel  

• Prone to differentiating 

heterogenous cell types 

• Ethical concerns in the case of 

derived models for 

developmental biology 

applications 

• Laborious culture protocols 

Patient-derived 

organoids 
• Highly representative of patient 

phenotypes  

• Ability to mimic organ 

ultrastructure 

• Suitable for precision medicine  

• Can be cryopreserved for bio-

banking 

• Relatively genetically stable 

• High cost  

• Limited cell sources 

• Inter-donor variation 

• Inter-culture structural variation 

• Less amenability to HTS 

• Requires specialized personnel 

• Laborious 

Animal models • Full organism system 

• Suitable for ADMET studies 

• Ability to track multiple organ 

responses simultaneously 

• Multiple routes of drug 

exposure 

• Useful for studying 

development/embryology 

• Lack of relevance to humans 

• Ethical considerations 

• Laborious  

• Can be costly  

• Require housing facility and 

trained personnel 

 

Chimeric animal 

models 
• Similar to animal models 

• Higher degree of correlation to 

humans 

• Ability to modulate human 

pathologies  

• Similar to animal models 

• Extremely costly  

• Difficult to adapt to HTS 



 

11 

1.4. Safety pharmacology and the liver 

Drug related toxicity is a common occurrence in the pharmaceutical industry. 

Improper dosing, patient deviation from prescribed regimens, genetic variance, and 

drug-drug or drug-food interactions are all factors that may contribute individually 

or concurrently to a toxic response, even where drugs have reported wide margins of 

safety. The concept of dose related toxicity was pioneered over 500 years ago by 

Paracelsus [43], with the notion that all substances are poisonous, but that the dose 

distinguishes a poison from a remedy. A ‘margin of safety’ for drug doses must 

therefore be established to prevent toxicity. Presently, preclinical animal testing is 

needed to establish the no-observed-adverse-effects-level (NOAEL), which is the 

highest dose at which no signs of toxicity are detected in an animal model [44]. 

Toxicity can be divided into at least four categories according to the pathological effect 

induced. These include direct cell death/tissue injury, altered phenotype/function, 

immunological hypersensitivity, and mutagenicity/carcinogenicity. In a similar way, 

drug mediated toxicity can be divided into five categories, namely, mechanistic or 

target related toxicities, immunological hypersensitivities, off-target site or peripheral 

toxicities, idiosyncratic toxicities, and biological transformation induced toxicities 

[44].  

Over 90% of adverse clinical reactions are associated with frequent use of drugs such 

as analgesics, anticoagulants, anticancer drugs, antimicrobials, antidiabetics, 

diuretics, and steroids. Most cases of adverse clinical reactions manifest as 

exaggerated effects at the primary drug target (mechanism-based toxicity) due to; 

dosing errors, prolonged and/or permanent use, and cytotoxicity. Hepatotoxicity is 

one of the most notable toxic effects since the liver is responsible for metabolizing most 

exogenous compounds including most drugs [45]. This toxicity may go unnoticed for 

extended periods of time due to the size of the liver and the ability to repair itself 

under mildly toxic conditions. Many drugs with hepatotoxic effects may only exhibit 

obvious adverse effects long after the drug was first administered or even after 

discontinuing the drug. 
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There are many mechanisms which may constitute or contribute to hepatotoxicity 

[46]. The underlying mechanisms initiating hepatotoxicity influences the extent of 

liver damage and alters specific markers commonly used for identification/diagnosis 

of the extent of hepatic damage. These markers are also used to monitor treatment 

success. Reactive drugs or drug metabolites produced as intermediates during drug 

metabolism may bind covalently to critical intracellular proteins leading to cellular 

dysfunction. This causes cytoskeletal disruption and a decline in adenosine 

triphosphate (ATP) that results in swelling and cell membrane rupture (Figure 1.3A) 

[47]. Drugs that block transport proteins in hepatic canaliculi can interfere with bile 

and metabolite export (Figure 1.3B) resulting in cholestasis, which when combined 

with other underlying pathologies such as pre-existing genetic defects of supporting 

proteins may cause a secondary hepatotoxicity [48]. Biotransformation of drugs can 

involve reactions where drug-enzyme adduct formation occurs spontaneously, 

decreasing the available metabolic capacity as these adducts are functionally inactive. 

These adducts may be moved to the hepatocyte cell surface where they serve as 

immunogens, stimulating the production of antibodies or inducing direct cytotoxic T-

cell responses (Figure 1.3C - D) [49]. The resulting immune cell cytokine response can 

elicit programmed cell death (apoptosis) driven by ligand binding to tumour necrosis 

factor (TNF) and CD95 (Fas) receptors (Figure 1.3E) [50]. Drugs can also bind to and 

disrupt mitochondrial DNA or hinder the cellular respiratory pathways or disrupt 

fatty acid oxidation blocking energy production. This can cause steatosis type liver 

injury (Figure 1.3F) [51]. 
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Figure 1.3: Mechanisms driving hepatotoxicity. Created with BioRender.com  

 

1.5. The liver as an adaptable organ 

The liver is a compact multilobed granular organ with a high regenerative capacity. 

Hepatocytes are parenchymal cells which together with biliary epithelial cells 

(cholangiocytes) constitute approximately two thirds of the hepatic cell population. 

These cells are spatially heterogenous along the portal-central axis of the liver lobule, 
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with zonation being evident ultrastructure level [52, 53] at the with enzyme activities 

and other cellular functionality grading across the zones of liver lobules. Non-

parenchymal cells include hepatic sinusoid epithelial cells, hepatic stellate cells, 

vascular cells and Kupffer cells (a subpopulation of differentiated hepato-specific 

macrophages). During development, post-gastrulation, the major hepatic cell types 

(hepatocytes and cholangiocytes) are derived from the endoderm with the remaining 

cell types deriving from the mesoderm. Foetal liver cells known as hepatoblasts form 

the liver bud which follows a series of migratory and proliferative processes giving 

rise to the liver organ. During the epithelial differentiation stage these hepatoblasts 

either mature into hepatocytes or differentiate into cholangiocytes [54]. 

 

In the mature non-foetal liver, the hepatoblast cell population no longer exists, 

however the liver maintains the capacity for regeneration, which is a characteristic 

absent in most mature organ types. This regenerative capacity is enabled by a 

plasticity unique to liver cell populations [54-57]. Historically it has been assumed that 

hepatic regeneration is driven by an unknown underlying population of dormant 

hepatic progenitor cells. However, more recently, multiple lines of evidence suggest 

the main mechanism of hepatic regeneration is via the dedifferentiation of hepatic 

cells, which were assumed to be terminally differentiated (eg. hepatocytes, 

cholangiocytes), into cells with progenitor-like functionality which then form the bulk 

of the replenishing cell source. Figure 1.4 represents the proposed model of cellular 

differentiation, dedifferentiation and transdifferentiation of hepatocytes, 

cholangiocytes and liver progenitor-like cells to facilite cellular replenishment during 

liver injury. 
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Figure 1.4: During liver injury, hepatocytes undergo dedifferentiation to liver progenitor-like cells (LPLCs), 

which express both hepatocyte and biliary epithelial cell markers (red arrow). LPLCs differentiate into 

hepatocytes and biliary epithelial cells to regenerate the liver after injury cessation (green arrows). In 

mammals, when liver injury becomes severe, biliary epithelial cells can transdifferentiate into hepatocytes via 

a biphenotypic status expressing both biliary epithelial cell and hepatocyte markers (blue arrow). Similarly, 

hepatocytes can transdifferentiate into biliary epithelial cells to regenerate biliary epithelium when these cells 

become depleted (blue arrow) reprinted from [58] with permission from Elsevier under the Creative Commons 

Attribution-NonCommercial-No Derivatives License (CC BY NC ND). 

 

This plasticity is likely to be governed by a combination of intrinsic and extrinsic cell 

mechanisms such as the retention of progenitor permissive chromatin by hepatocytes 

conferring a degree of reprogramming competence [59]. The cellular 

microenvironment and peripheral cell signalling may contribute to the plasticity of 

mature hepatocyte populations during certain subtypes of liver injury.  

 

1.6. Pharmacological relevance of the liver 

Many tissues can metabolize drugs, but the most active tissue per unit weight is the 

liver [60]. The importance of liver metabolism is especially evident by its effective 

removal of lipophilic compounds from the body. This is achieved by metabolism to 

more polar and hydrophilic compounds which increases the rate of excretion by the 

kidneys. Without this metabolism, these compounds could easily accumulate in lipid 

rich tissues. The liver has an extraordinary, varied group of enzymes, which are 



 

16 

responsible for the metabolism of both endogenous and exogenous compounds.  Drug 

metabolism is usually divided into two major sequential phases simply termed phase 

I and phase II reactions [60] which are preceded by phase 0 and followed by phase III 

reactions. The adequate expression and complex interplay of these coordinating 

enzymes is essential in metabolic functions. 

Phase 0 reactions have been described as the initiatory transport reactions whereby 

the drug is transported from the blood into the liver and delivered to the hepatocytes 

through the basolateral uptake process [61]. 

Phase I reactions activate or prepare drugs for downline conjugation by adding polar 

groups to the structure of lipophilic drugs. This is achieved through reactions such as 

oxidation, reduction, hydrolysis, demethylation, and hydroxylation by the haem 

containing cytochrome P450 (CYP450) superfamily of enzymes. The CYP450 enzymes 

are integral membrane proteins primarily localized in clusters on the endoplasmic 

reticulum or in specialized vesicles known as microsomes [62] which serve to export 

hepatic enzymes to their functional zones. These enzymes are rapidly and highly 

inducible within the liver following exposure to a number of general or specific 

enzyme inducing drugs. 

Phase II reactions are conjugation reactions whereby a polar molecule is covalently 

bound to the polar handle added during phase I metabolism. Glucuronic acid is the 

most commonly added group resulting in glucuronidation [62] but also includes 

sulphate or amino acid additions. These conjugations allow the whole molecule to 

become more hydrophilic which increases water solubility that enhances renal 

excretion.  

Phase III reactions involve the transport of the metabolically transformed drug out of 

the cell [63]. These reactions do not change the structure of the parent compounds; 

however, these proteins are essential in the successful elimination of derivatized 

xenobiotics from the cell. The major family to which these transporters belong is the 

ATP binding cassette protein superfamily (ABC), which are found within cell 

membranes throughout all cells of the body. Notable transporters in the liver include 



 

17 

multidrug resistance associated protein 2 (MRP2) organic anion transporting 

polypeptide 2 (OATP2) and P-glycoprotein (Pgp or ABCB1) [64].  

Cytochrome enzymes are considered the body’s major group of drug metabolizing 

enzymes and were first identified by Martin Klingenberg in 1958. The human 

cytochrome P450 monooxygenase family is a membrane-associated, hydrophobic 

enzyme system with 57 reported members. These are contained in 18 families and 43 

subfamilies. Families 1, 2 and 3 make up approximately half of the total number of 

CYPs in mammals. They are generally designated as drug detoxification enzymes due 

to their ability to metabolize many different xenobiotic compounds alongside the 

capacity to metabolize endogenous compounds. Members of Family 4 are better 

known for fatty acid ω- and (ω-1)-oxidation, rather than xenobiotic metabolism. 

Members of Families 5–51 (14 families) perform various physiological functions 

involving the metabolism of specific endobiotics [65].  

The major CYP isoforms, which are responsible for approximately 75% of hepatic drug 

metabolism, in typical decreasing order hepatic expression are CYP3A4/5, CYP2D6, 

CYP2C8/9, CYP1A2, CYP2C19, and CYP2B6. Additional isoforms include those 

responsible for the metabolism of sterols (CYP1B1), vitamins (CYP2R2), eicosanoids 

(CYP4F2), fatty acids (CYP2J2) and others (CYP2A7) with currently unknown function 

[66]. In the liver, their prevalence is highly variable. Table 1.2 contains the major CYP 

enzyme families, their contribution to hepatic enzyme abundance, and the extent of 

their variability. Biological variance such as age, gender, race, disease state or enzyme 

induction are known contributors to the observed variability in these enzymes. [67]. 
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Table 1.2: Representation of CYP enzyme proportion and extent of variability [68] 

(aBold type indicates enzymes involved in the metabolism of numerous drugs. Underlining indicates 

enzymes involved in the metabolism of major chemicals with possible toxicological consequences. bNo 

data.) 

 

  

Figure 1.5: Proportion of commercial drugs metabolised by CYP isoforms, Adapted from [69] and 

reprinted with permission from Elsevier under the CC BY NC ND licence. 
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Although CYP450 enzymes exist in certain proportions in the liver, their role in drug 

metabolism is variable and does not correlate to their relative proportion. Figure 1.5 

shows the percentage of commercial drugs metabolized by each major isoform.  

Regulation of drug metabolizing enzymes is carried out by an array of ligand-

dependent nuclear receptors such as the aryl hydrocarbon receptor [70]. Upon 

activation, receptors are internalized and translocate to the nucleus where they then 

up-regulate the expression of phase I/II metabolizing enzymes [71] that alters the rate 

of specific drug metabolism pathways. 

While metabolic functions of CYP450 enzymes are intended to be cytoprotective, there 

are instances where  altered metabolism may lead to highly reactive products which 

can overload cell detoxification machinery and damage the cell [44]. Due to the 

dominant hepatic localization of these drug metabolising enzymes, potential liver 

pathologies are common. Under appropriate dosing regimens and absence of genetic 

variants, hepatotoxicity is rare, however, enzyme induction or inhibition or genetic 

variants can alter the prevalence of toxicity [44].  

Hepatic expression of a single or multiple CYP families or subfamilies may be induced 

or inhibited following exposure to specific compounds. For instance, Midazolam 

primarily induces CYP3A4 whereas Phenobarbital is a broad-spectrum inducer which 

influences several different CYP families simultaneously. Mechanisms of induction 

may be variably attributed to several factors such as an increase in basal transcription 

or translation of enzyme mRNA, inhibition of enzyme degradation or increase in 

enzyme stability [72]. By making use of these properties, it is possible to increase the 

expression of certain enzyme subfamilies through selective induction with a drug 

cocktail.  

1.7. In vitro hepatotoxicity screening methods 

As attrition rates in drug development due to hepatotoxicity remain high, there is a 

need for new technologies that facilitate improved outcomes in drug discovery. 

Unlike other organ toxicity models, the concordance between human and animal 
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livers is low [23, 73] resulting in development of a number of in vitro models for 

screening for hepatotoxicity. Although failing to represent the complexity of a whole 

organism, in vitro models have been used extensively to investigate hepatotoxicity and 

have significantly contributed to the current understanding of hepatotoxic 

mechanisms [74-76]. 

Among in vitro systems, primary hepatocytes are recognized as the gold standard for 

toxicity screening due to their retention of most hepato-specific functions such as 

gluconeogenesis, glycogen metabolism, urea formation, plasma protein synthesis and 

secretion, lipid metabolism, and drug-metabolizing capacity (phase I and II enzymes) 

for limited periods in culture [77]. Consensus regarding cell culture conditions for 

hepatocytes used in toxicity screening is lacking despite this having a variable impact 

on hepatocyte function.  

Standard culture conditions make use of chemically defined media with hormone 

supplementation and extracellular matrix coated culture surfaces, which are suitable 

for approximately one week of culture. Extended culture times require additional 

supplementation with soluble factors or the adoption of 3D culture conformations to 

maintain hepatic functions. [78]. Suspension cultures of hepatocytes have been widely 

used for monitoring toxicity of soluble compounds, however these cultures have only 

been useful in very short studies. Precision-cut liver slices preserve the intact liver 

structure and allow for simultaneous assessment of tissue morphology, biliary 

function, and response to potential toxicants. However, liver slices are confounded by 

the high inter-preparation variability and widespread scarcity which limits adoption 

of this technique [79]. Subcellular fractions have been used widely for rudimentary 

metabolic studies. However, in comparison to cellular models their hepatotoxicity 

screening capacity is limited [80]. 

Table 1.3 summarizes the advantages and limitations associated with several 

hepatotoxicity screening platforms using different primary human hepatocytes, 

subcelluar fractions and transformed hepatocytes. 
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 Table 1.3: In vitro hepatotoxicity screening platforms 

 

In Vitro Model 

 

Advantages Limitations 

Liver slices • Structure and metabolic 

complement maintained 

• Maintains cellular 

heterogeneity  

• Useful for histology  

• Functional assessments 

• Organ polarity preserved 

• Hepatobiliary function  

• Short term viability 

• Scarce availability 

• High inter-donor and technical 

variability 

• Preservation and expansion 

limited 

• Difficult to culture  

Primary hepatocytes 

(suspension cultures) 

• Cryopreservation  

• Representative phenotype 

• Genotypically identical to 

donor 

• Suitable for functional studies 

(enzyme activity) 

• Inter-species assessments 

• Short term viability (approx. 6 

hours) 

• No cell-cell/cell-substrate 

interactions (may alter signalling 

pathways) 

• Unnatural culture environment  

• High variability 

• Limited accessibility for human 

isolates 

Primary cultured 

hepatocytes (adherent 

cultures) 

• Cryopreservation  

• Co-culture  

• Suitable for toxicology and 

function studies  

• Representative phenotype  

• Suitable for metabolomic 

studies  

• Cell-substrate and cell-cell (3D 

cultures) interactions  

• Inter-species assessments 

• Phenotype instability in 

monolayers (less prevalent in 3D 

culture) 

• Limited cryopreservation cycles 

• High variability 

• Strong influence from culture 

environment on 

function/phenotype 

Liver-derived cell lines 

(immortalized) 

• High capacity for expansion 

• Easy to use 

• Cheap to maintain 

• Adaptable to HTS 

• Genetic manipulation  

• Suitable for pathway/receptor 

studies  

• High reproducibility  

• Limited hepatic function 

• Low metabolic competence  

• Poor correlation to in vivo hepatic 

phenotype  

Subcellular fractions 

 (S9, microsomes, 

mitochondria) 

• Easily availabe depending on 

cell source used 

• Easy to use 

• Mitochondrial studies 

• Rapid metabolomic studies 

• Absent cell structures/processes  

• Technical isolation procedures 

• Poor extrapolation to in vivo 

Hepatocyte like cells 

(iPSC-derived 

hepatocytes 

• Capacity to model patient 

diseases  

• High self-renewal capacity 

• High metabolic competence 

relative to immortalised cells  

• Differentiation protocol 

influences terminal competence 

(variability) 

• Immature hepatic phenotype 
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HepG2 cells, a continuous cell line derived from a hepatocellular carcinoma, are 

considered viable for long term studies due to their ease of application while retaining 

some of the metabolic properties of PHH. HepG2 cells are consistent in their gene 

expression profile in early passage which is valuable as it allows for experimental 

reproducibility and robustness [81]. However, concerning aspects of the HepG2 

phenotype include the notably lower expression profile of certain phase I enzymes 

such as CYP2D6 with a relative abundance up to 4.3% of the hepatic pool and ~20% 

contribution to commercial drug metabolism [69, 81]. Contrasting the poor CYP2D6 

abundance is the overexpression of other enzymes such as CYP2W1 with the 150-fold 

increase in expression compared to pooled PHH. Some enzymes, such as CYP19A1, 

are found in HepG2 cells but are not expressed in pooled PHH [82]. These 

discrepancies highlight the alterations of HepG2 cells, which could potentially be 

manipulated in vitro to better phenotypically resemble PHH. Published data suggests 

an improved expression of several cytochrome subfamilies, promoting a more 

competent hepatic phenotype, when HepG2 spheroids are cultured past 21 days after 

seeding [83]. 

Historically, most of the hepatotoxicity screening has used 2D cell culture models. 

This raises several concerns, specifically when comparing the toxicity of a compound 

tested using 3D counterparts in vivo. It was previously believed that monolayer 

cultures could be used to reflect the approximate physiology of in vivo tissue [84]. 

However, when considering the physiologically incompatible nature of hard flat 

culture surfaces the opposite is true. Synthetic surfaces with reduced extracellular 

matrix components and limited cell-cell adhesion do not mimic the natural cell 

environment. Adhesion in 2D cultures is limited to that existing between 

neighbouring cells which is distorted by adherence to the culture vessel. 

Consequently, cell cultures lose the ability to mimic the classical in vivo cell-cell 

communication pathways established through gap junctions and chemical paracrine 

cell messaging systems [84]. 
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The implications of this artificial cellular microenvironment are that cultures lose 

tissue related functions which hinders their predictive power. As an example, PHH in 

2D cultures can dedifferentiate and die within 3-4 days. Continuous cell lines are 

considered more robust in maintaining their phenotype. However, these cells are also 

prone to varying states of differentiation and have reduced metabolism in comparison 

to primary tissues. This is an especially important consideration in metabolomic based 

toxicity screening [78].  

 

1.8. 3D culture formats 

When considering research under the umbrella of precision medicine, the success 

rates in drug development are expected to improve proportionally to the emergence 

of new technologies. The discovery of novel biomarkers has given rise to more precise 

drug targets and new preclinical models that are reported to better recapitulate in vivo 

biology and microenvironmental factors. One such technique which has helped bridge 

the gap between in vitro and in vivo systems is the adaptation of traditional monolayer 

cell culture techniques into 3D cultures. It is now well-accepted that culturing cells in 

3D systems that mimic key factors of tissue is much more representative of the in vivo 

environment than simple 2D monolayers [84, 85]. While traditional monolayer 

cultures are still predominant in cellular assays used for high-throughput screening 

(HTS), 3D cell cultures techniques for applications in drug discovery are making rapid 

progress [86-89]. 

Currently, a wide variety of both static and fluid 3D culture techniques are available 

for culture of human hepatocytes. Static techniques are divided into hydrogels and 

scaffolds which can be synthetic or natural in origin  as well as scaffold free cultures 

[90].  

The advantages and limitations of several methods are described in Table 1.4 [90]. 
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Table 1.4: 3D cell culture method advantages and limitations 

Culture technique  Description Advantages Limitations 

Static suspension 

cultures  

Cells seeded in a low 

attachment material and 

maintained in 

suspension in media, 

spheroids form from cell 

aggregation 

• Relatively low cost  

• Cell type dependent 

success 

• High throughput 

• Ease of application 

• Continuous passaging is 

difficult 

• Inconsistent spheroid 

formation 

Bio-scaffold cultures  Cells grown on a 

natural, isolated bio-

scaffold such as collagen 

or basement membrane 

• Promotes cell-cell 

adhesion 

• Allows for 

extracellular matrix 

adhesion  

• Cells regain 

morphology 

• If executed correctly is 

more representative of 

culture environment  

• Difficulties in sample 

collection 

• Growth factor interplay 

with isolated basement 

membrane, poorly 

standardized, expensive, 

inconsistent spheroid 

size/ generation 

Microfluidic device Plastic chip array with 

inlets for media and 

specialised wells/inlets 

for spheroid formation 

• Highly controlled 

spheroid size, ensures 

uniformity, perfusion 

of media supporting 

nutrient / waste 

exchange 

• Culture harvesting can 

be difficult 

• Constricting culture 

environment 

• Specialised equipment 

required 

Spinner/bioreactor 

dynamic suspension 

cultures 

Cells seeded in culture 

vessels and grown 

under constant rotation, 

spheroids form via 

aggregation 

• Mass production 

• Long term 

maintenance 

• Less media exchange 

required 

• Simple execution 

• Require costly 

specialised equipment 

• Spheroid uniformity 

difficult to control 

• Inconsistent spheroid 

growth 

Synthetic scaffold 

systems (agarose) 

Cells grown using 

agarose as scaffold for 

spheroid formation 

• Promotes cell-cell 

adhesion, cost 

effective 

• Promotes compact 

spheroids 

• High density scaffold 

limiting cell proliferation 

• Synthetic surface 

• Tedious sample 

collection 

Magnetic levitation  Cells treated with 

magnetic nanoparticles 

and held in suspension 

using neodymium 

magnets  

• Relatively simple 

implementation once 

established 

• Requires special 

equipment/ media 

• Colorimetric interference 

of media within 

magnetic fields causes 

inconsistent spheroid 

formation 

Hanging drop  Cells grown in medium 

alone with aggregation 

occurring at apex of 

drop 

• Control over spheroid 

size 

• Relatively low cost, 

generation of uniform 

spheroids 

• Adaptable to high 

throughput 

• Drop variations 

influence cell kinetics, 

drops prone to fall 

• Tedious medium 

exchange 

• Expensive if using 

specialised plates 
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Static cultures are good for long term maintenance of liver specific functionality, have 

an increased sensitivity towards drugs and support long term expression of phase I 

and II enzymes. However, lack of standardization and difficulty in recovery of cells in 

tethered cultures (biogels or scaffold) remains problematic [91]. Fluid or dynamic 

culture systems are advantageous in that they allow for drug flow, rapid 

differentiation of cells, sustained functionality and increased liver-specific 

functionality. Shortcomings include low throughput and a lack of standardization 

[91].  

 

1.9. Role of the extracellular matrix in cellular processes 

Multicellular organisms require a structural framework to provide tissue integrity and 

define tissue boundaries. Initial studies on the intricacies of the extracellular matrix 

(ECM) and how its organization influences cell behaviour were conducted by Mina 

Bissell and her team in the 1980's [92]. It is now well known that ECM proteins are 

essential for the preservation of cell viability and to promote tissue specific 

phenotypes, this is especially true in the case of hepatocytes. The differential impact 

of selected matrix proteins (collagens, fibronectin, and laminin) has been previously 

described in monolayer cultures [93, 94], and more recently in 3D spheroids [95].   

The ECM is a fibrous, hydrogel containing network consisting of proteins, 

proteoglycans, and glycosaminoglycans arranged into tissue specific 3D 

conformations to provide cells with topographical structure and signalling cues. It is 

a dynamic matrix to which cells attach and that enables cell migration [96] through 

growth factor and morphogen sequestration and release [97, 98]. The ECM provides 

binding sites for various cell surface receptors such as integrins. These integrin-ECM 

interactions can trigger cell signalling cascades regulating survival, proliferation, 

differentiation, and even apoptotic cues [99-101].  The function of the ECM is 

dynamically adaptable, controlling tissue texture, playing a central role in embryonic 

development and wound healing, and has a differential contribution to tissue-specific 

microenvironments [102]. Crosstalk within these microenvironments exist, with 
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resident cells producing and altering their surrounding ECM while simultaneously 

receiving signalling cues defining their own function. 

The evolving understanding of the ECM has contextualised its importance in bridging 

pitfalls in the relevance of preclinical screening models. Figure 1.6 represents the 

comparative role of the ECM within 2D and 3D cell cultures and highlights its 

involvement in signal transduction.  

Given the essential contribution of the ECM to maintain phenotypically relevant cell 

states, and the dynamic repurposing-remodelling relationship with the cells, assessing 

the phenotypic changes of cells when transitioning from an environment relatively 

devoid of ECM (2D monolayer cultures) to one which enables cellular deposition of 

ECM (scaffold free 3D spheroids) would be worthwhile to investigate.  
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Figure 1.6: Cell–extracellular matrix interactions and matrix remodelling. A. 2D plastic substrates (top left) 

restrict cell attachment in a planar direction and force cells into an apical–basal polarity but allow diffusion 

of secreted soluble factors in the culture medium. By contrast, 3D extracellular matrix (ECM) substrates (top 

right) enable cell attachment in both planar and perpendicular directions without restricting cell polarity. 

The discrete matrix fibrils sterically hinder the spreading of cells and contribute to the sequestration of 

secreted growth factors into concentration gradients within the matrix. B. Cells interact with their 

environment through integrin and growth factor receptors. Cells convert mechanical stimuli from the ECM 

into biochemical activity through the binding and activation of integrin receptors, resulting in the activation 

of intracellular signalling pathways, activation of gene transcription and synthesis and secretion of ECM 

components. During matrix remodelling, proteolytic degradation induced by matrix metalloproteinases 

(MMPs) results in the release of tethered growth factors and matrix-bound nanovesicles (MBVs), as well as 

the production of cryptic peptides. The released bioactive components can interact with cells to promote 

diverse cellular functions such as proliferation, migration and differentiation. FGF2, fibroblast growth factor 

2; TGFβ, transforming growth factor-β; VEGF, vascular endothelial growth factor. Taken directly from [103] 

with permission from Springer Nature, licence number 5452981407455. 
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1.10. The omics 

The emergence of the omics technologies has revolutionised the understanding of 

systems biology. Genomics, the first of the omics technologies, focused on 

interrogating single genes or gene variants and provided a useful framework for the 

assessment of the underlying mechanisms contributing to hereditary and complex 

genetic disorders [104]. Since then, a there has been a rapid expansion in the 

emergence of new omics technologies which have all made significant intra-omic 

improvements proportional to the concurrent increases in computing power. Omics 

technologies include genomics, epigenomics, transcriptomics, proteomics, 

metabolomics, lipidomics and microbiomics. In the past decade, the use of combined 

omics approaches has provided a multi-faceted understanding of the maintenance of 

cell systems, developmental biology, and disease progression. An important 

consideration is that the foundation of omics technologies follows an extension of the 

central dogma of biology, in that, simply, the understanding of genomics is essential 

for the understanding of transcriptomics and the understanding of transcriptomics is 

essential for the understanding of proteomics, and so on as represented by Figure 1.7. 

The correct correlation and application of these is essential in multi-omic studies. 
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Figure 1.7: Interrelatedness of multi-omics data. Circles represent the collected data for that form of omics 

technology resulting from an underlying contributor on the genome. Axes represent the contribution of 

genetic underpinnings and environmental factors. Arrows represent the interrelatedness of data from one 

omics platform to another. Image used from [104] with permission from BMC under the Creative Commons 

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). 

 

1.10.1. Proteomics 

The term “proteomics” refers to the systematic study of all proteins present in a cell 

or tissue at a given time. This includes describing their structure, function and 

expression in various biological systems [105]. Proteins are essential to all biological 

activities and their localisation, identification and quantitation provides insight into 

complex cellular regulatory networks [106]. Before the genomics revolution, chemical 

methods such as the stepwise Edman N-terminal degradation were used to determine 
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the sequences of single, highly purified protein samples. This was time consuming, 

costly, large enough samples were difficult to obtain and in certain instances 

sequencing was impossible to replicate [107]. With the emergence of mass 

spectrometric protein analysis and protein sequence prediction from genome 

sequences, large scale protein identification by correlating mass-spectrometric data 

with the available translated gene sequence databases [108] became routine. 

Proteomic studies can now reliably and reproducibly determine diverse protein 

properties including the amino acid sequence, abundance, post-translational 

modifications, protein-protein interactions, location and structure [109].  

Whole proteome analysis remains challenging because of its vastness and unknown 

complexity. The number of genes in a species is not representative of the number of 

proteins present in an organism’s phenotype. Protein numbers are higher in 

comparison, due to alternative splicing, RNA editing and degradation, post-

translational modifications as well as protein complexing. Moreover, the range of 

protein concentrations generally exceeds the dynamic range of any single analytical 

method. High-throughput proteomic analysis workflows generally consist of four 

stages: sample extraction and preparation, protein or peptide separation, mass 

spectrometric (MS/MS) analysis, and protein identification inference and quantitation 

using bioinformatics tools. Common approaches in proteomics include intact protein 

sequencing using MS (top-down proteomics), separation at the protein level by one or 

two dimensional gel electrophoresis which can be followed by proteolysis and mass 

spectrometry (GeLCMS), and MS analysis of peptides following enzymatic or 

chemical cleavage of proteins (bottom up or shotgun proteomics) [110]. The shotgun 

strategy allows high-throughput identification of thousands of proteins from highly 

complex mixtures such as cell lysates [111].  

Proteomics analysis can be targeted or non-targeted with non-targeted approaches 

relying on matching of peptide fragmentation spectra from individual precursor 

peptides collected using specific mass spectrometer acquisition parameters, which 

often confers a bias for more abundant peptides. Targeted proteomics differs 
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fundamentally in that the mass spectrometer is programmed to analyse only a 

preselected group of unique peptides using selected or multiple reaction monitoring 

(SRM/MRM) and is used to quantitate specific proteins. 

 

1.10.2. Tandem mass tagging 

In the field of proteomics, there are a vast array of techniques available for the isolation 

and identification of proteins. The mainstay of protein profiling was the use of two-

dimensional polyacrylamide gel electrophoresis (2D-PAGE) to separate highly 

complex protein mixtures followed by spot isolation, reduction, alkylation, 

proteolysis to peptides and finally mass spectrometric peptide sequencing [112]. This 

process is laborious, shows poor reproducibility and is limited in dynamic range [113]. 

This results in poor correlation between sample replicates and causes difficulties in 

performing quantitative analysis between samples.  

For these reasons, selection of the appropriate technique for proteomic analysis and 

peptide identification is crucial for generating reproducible and reliable data. Tandem 

mass tag (TMT) based isobaric tagging (or isobaric tags for relative and absolute 

quantitation: iTRAQ) enables samples under different conditions to be multiplexed 

and combined for relative quantitation by mass spectrometry. Reagent sets are 

available in various multiplexing options capable of labelling 2, 4, 6, 8 or 10 

comparable samples obtained from cells or tissues which can be analysed 

simultaneously. Each mass tagging reagent has the same nominal mass (equal Dalton 

weight) chemical structure and chemical structure which is composed of an amine-

reactive NHS-ester group, a spacer arm or mass normalizer, and an MS/MS reporter 

(Figure 1.8). For each sample, the unique reporter in the low mass region of the MS/MS 

spectrum (126-131Da for TMT6 Isobaric Label Reagents) is used to infer relative 

protein expression during peptide fragmentation [114]. Isobaric labelling exhibits a 

wide dynamic range in profiling both high- and low-abundance proteins. It can be 

used to identify and quantify proteins across a wide array of physiological properties 
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with diverse molecular weight and pI ranges, functional categories, and cellular 

locations [115, 116]. TMT can be employed in targeted MS analysis to track specific 

peptides or proteins of interest. 

 

Figure 1.8: Representation of the general chemical structure of an isobaric TMT tag having different regions 

with stable isotope atomic distribution to provide a series of fixed mass molecules that provide different 

reporter mass fragments during fragmentation in the mass spectrometer (126 Da in this example). 

 

Inherent limitations of both iTRAQ- and TMT-based quantifications include the 

requirement to observe low m/z fragment ions (reporter ions) and accurately resolve 

the mass difference (less than or equal to 1 Da), which limits the type of mass 

spectrometers that can be used. Because iTRAQ and TMT label-based quantifications 

are measured at the MS/MS level, potentially higher signal/noise ratios may be 

obtained for quantification compared with those obtained at the MS level. 

Additionally, the accuracy of MS/MS level quantification depends on the isolation 

window for selected precursors in the first stage MS, as all ions within that window 

will fragment, and potential interferences could skew the quantification results [117]. 

 

1.10.3. Bioinformatics for proteomics 

The successful development of high-resolution MS-proteomics has hinged on 

concurrent developments in computational science and computing power. Together 

these systems have been at the forefront driving advances in systems biology. Protein 
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identification requires the matching of peptide level MS/MS spectral data with 

reference libraries either generated in previous experiments or by theoretical fragment 

ion predictions by specific computational search engines aided by neural networks 

[118, 119]. Following library scanning, peptide candidates are assigned confidence 

scores based on mathematical algorithms weighing a variety of search engines, user-

defined and workflow specific characteristics. Confident peptide spectrum matching 

(PSM) is essential for downstream protein assignment, and the selection criteria for 

peptide-protein assignment is central to experimental validity. Algorithmic variances 

across search engines in peptide assignment can be a limitation and may introduce 

engine-specific biases in identified protein cohorts. The use of multiple search engines 

simultaneously can circumvent this issue but carries the potential of increasing the 

false discovery rate (FDR) [120]. Once initial identification and quantification 

workflows are completed, a new challenge is to provide functional interpretation of 

proteomic datasets. Successful analysis of proteomic datasets seeks to properly 

annotate functional or clinical implications, a process that hinges on proper sample 

data representation, which requires adequate and applicable data clean-up, 

normalisation, and statistical analysis. In the case of large proteomic datasets, 

statistical testing for significant differential expression is confounded by multiple 

hypothesis-testing that results in an increase in type I error frequency (incorrectly 

identifying significant differences) making the correct choice of statistical correction 

method essential to delineate these errors.  

Functional assignment of correctly processed proteomic datasets is largely driven by 

gene ontology (GO) hierarchy as developed by the GO consortium. The GO 

vocabulary is organised into a directional, acyclic, tree like node structure where 

higher order terms are broken down into multiple constitutive lower order nodes with 

increasing annotation specificity [121]. Gene ontology is also useful to provide 

probable function of protein subsets when assigned according to gene inferences for 

similar sets of proteins, for example, annotation of function, subcellular localisation 

and biological pathway involvement is useful in assigning protein function with a 
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degree of statistical confidence. Figure 1.9 represents a typical pipeline for the analysis 

of proteomic data. 

 

Figure 1.9: Example of typical proteomic data analysis workflow, taken from [122] with permission 

from Springer Nature under the terms of the Creative Commons CC BY license. 

 

1.10.4. Metabolomics 

Metabolomics is another omics field related with the study of metabolites, which 

exploits a combination of sophisticated analytical chemistry techniques and advanced 

computational methods to characterise complex mixtures. Metabolites represent one 

of the downstream outputs of the genome and a product of the environment. 

Therefore, metabolomics may be used to explore the nexus of gene-environment 

interactions and by extrapolation, provide protein-metabolite interactions. A 

significant application of metabolomics is in the analysis of how drugs are 
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metabolised, providing data for the regulatory requirement of identification of the 

metabolic products of new drug candidates. Additional information is in ascertaining 

which enzymes are involved in specific metabolic pathways as well as flagging 

potential concerns of drug-drug interactions and pharmacogenetic idiosyncrasies.  

 

Widely used techniques in metabolomic research include nuclear magnetic resonance 

(NMR) spectrometers and gas/liquid chromatography-mass spectrometry (GC/LC-

MS). Other techniques such as electrochemistry and infrared spectroscopy have not 

been widely adopted due to being bulk property analysis techniques with poor 

specificity, low resolution and lack of structural elucidation [123]. Given the disparity 

in analytical coverage of widely used metabolomic techniques these applications are 

used either individually or in combination for targeted or shotgun metabolomics, each 

leveraging specific advantages. Generally, NMR provides good metabolite 

identification, quantitation and automation but sacrifices sensitivity and carries a 

greater start-up cost compared to MS applications. GC-MS is robust with good 

sensitivity and convenient identification of common volatile metabolites from 

commercial databases, but sample preparations can be labour intensive, and 

identification of novel compounds is challenging. LC-MS/MS is the most widely 

adopted method and confers high sensitivity, wider mass detection ranges and 

coverage of soluble compounds and easily amenable to different methodologies, 

however it is less robust [124-126].  

 

1.11. Study rationale and aim 

As the implementation of spheroid cultures becomes more mainstream in hepatic 

preclinical in vitro modelling, there is a requirement for better understanding of the 

phenotypic alterations conferred to these model systems. HepG2 cells remain central 

as an initial hepatotoxicity screening platform and to this end have also been adapted 

for use in spheroid culture models. However, given the multitude of spheroid 

generation methods as well as the variety of functional endpoints required by 
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preclinical screening models, the degree of their usefulness has not been established 

robustly. There is also little understanding regarding the temporal proteomic changes 

occurring within these systems and the time points at which optimum recapitulation 

of cellular phenotypes is achieved. This research set out to contextualise any 

phenotypic changes as modulated by culture conditions as well as the effect of 

external environmental stimuli relevant to the liver i.e., extended exposure to a low 

concentration drug cocktail.  
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1.11.1. Aim 

The aim of this study was to compare the observable proteomic changes of HepG2 

cells cultured as 3D spheroids over time and after induction with a prototypical drug 

cocktail using stable isotope labelled tags for relative quantitation and mass 

spectrometry-based proteomic methodology. 

 

1.11.2. Objectives 

1. To use the sulforhodamine B assay on HepG2 monolayer cultures to determine 

the maximum sub-toxic concentration of individual drug compounds from a 

drug cocktail containing Phenacetin, Diclofenac, Omeprazole, 

Dextromethorphan, Midazolam, Buspirone and Artemisinin 

2. To optimise and characterise the cell culture parameters for long term HepG2 

spheroid culture 

3. To culture viable HepG2 cell spheroids in the presence of the predetermined 

sub-toxic concentrations of the induction drug cocktail 

4. To perform microscopic evaluation of spheroid cultures over an extended time 

course (0 – 28 days) using phase-contrast microscopy and live-dead staining 

5. To confirm the lack of cytotoxicity of the induction drug cocktail in spheroids 

using the lactate dehydrogenase cell enumeration assay 

6. To develop and optimise a confocal microscope method for visualisation of 

selected hepatic function marker-protein expression and spheroid 

ultrastructure 

7. To generate protein mass profiles of protein samples using SDS-PAGE to 

confirm protein extraction 

8. To characterise the temporal proteomic changes occurring in HepG2 spheroids  
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9. To determine the effects of extended drug exposure of specific metabolic 

enzymes on HepG2 spheroid cultures over time by means of stable isotope 

labelled tags for relative quantitation by mass spectrometry-based proteomics  

10. To assess metabolic competence of spheroid cultures using LC-MS/MS method 

following a probe drug challenge 
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Chapter 2. HepG2 spheroid culture characterisation 

2.1. Brief overview 

Hepatic cell culture models are essential tools in the preclinical phases of drug 

development. Assessment of cell growth kinetics, the expression of relevant marker 

proteins and dose related cytotoxicity profiles are important prior to undertaking 

long-term studies using these models. The wide availability and ease of culturing of 

HepG2 cells has resulted in their routine use in hepatic cytotoxicity screening of drug 

candidates and existing drugs. However, as with all immortalised cell lines, functional 

attenuation, dysregulation of phenotypic characteristics, and genetic aberrations are 

all phenomena which occur proportionally to time in culture and exposure to repeat 

stress events [127]. Additionally, while these cells have been well described in 

literature with regard to their use as in monolayer culture [128-131] the reports of their 

adoption as 3D type spheroid cultures is still sparse. The numerous spheroid 

generation and maintenance methods all contribute unique caveats when comparing 

methods. For example, the use of matrix or scaffold supplementation to aid in cell 

adhesion may induce variable drug responses due to drug-matrix interactions. 

Biological matrices also have the potential to mediate cell signalling pathways which 

may be otherwise absent in scaffold-free systems [132]. Additionally, long term 

studies on spheroid models require the maintenance of viable cultures maintenance 

of similar size spheroids over the specified culture period and all the parameters 

enabling these need to be considered. 

 

2.1.1. Selection of cocktail drugs 

Induction of hepatic enzymes is an adaptive response associated with liver 

enlargement, induction of gene expression, and changes in cellular conformations 

[133, 134]. Induction is triggered by ligand activation by xenobiotic ligand 

compounds, with several nuclear receptors (PXR, CAR, and AhR) that upon ligand 
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binding, translocate to the nucleus where together with various co-activators, bind to 

response elements that then mediate trans-activation of target genes and expression 

of drug metabolising enzymes. An overview of the process is provided in the context 

of phenobarbital mediated induction of CAR (Figure 2.1).  

 

Figure 2.1: Schematic representation of CAR activation by phenobarbital (PB). Cytosolic CAR sequestered 

by heat shock protein 90 (HSP90) is activated by PB binding and translocates to the nucleus where it 

heterodimerizes with retinoid X receptor (RXR). The heterodimer then binds to enhancers of target genes, in 

this case PBREM, which is an enhancer for CYP2B genes. The complex together with other co-activators 

induce the expression of drug metabolizing enzymes [135]. Reprinted with permission from Taylor and 

Francis, reference number: iemt/02836149. 

 

An extensive number of studies exploring the mechanisms of CYP enzyme induction 

have been reported [135-139], however, the process is still poorly understood. 

Multiple hypotheses exist regarding alternate mechanisms for CYP induction which 

may underlie or act concurrently with those described, such as, the interplay of 

unknown receptors and/or orphan receptors with undescribed cofactors [135]. The 

above-described interaction of nuclear receptors with various xenobiotics implies that 

simultaneous induction of multiple families of CYP enzymes is possible, and this has 

been described previously [140, 141]. Broad-spectrum or prototypical inducers such 
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as carbamazepine have been shown to concurrently upregulate CYP 1A2, 2B6, 2C9, 

2C19 and 3A4/5 families. Coupled to the induction or inhibition of their metabolizing 

enzymes, various xenobiotics have been shown to up- or down-regulate other 

proteins, as in the case of the upregulation of multidrug resistance-associated protein 

2 (MRP2). Careful consideration is required when undertaking drug exposure studies 

as not all xenobiotics induce or suppress enzymes during exposure, and some may do 

so even when predicted not to through interaction with expression regulators. These 

phenomena are likely due to the intrinsic properties of each drug and the way the 

individual chemical structures interact with different receptors, and the biological 

context of the hepatocytes mediating this metabolism. A drug cocktail (Table 2.1), 

validated as substrates for hepatic enzymes, was selected based on the criteria that the 

compounds are clinically approved and have limited potential for hepatocytotoxicity 

when used as recommended physicians in patients without genotypic or 

pathophysiological liver impairment. 
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Table 2.1:Details of drugs selected for potential toxicity drug cocktail and CYP selective metabolism assays 

Drug Name Drug Class Nuclear receptor 

binding 

CYP Class 

*  Inducer 

#  Inhibitor 

^  Substrate 

References 

Artemisinin Antimalarial PXR, CAR CYP2B6*^ 

CYP3A4*^ 

CYP2C19* 

[142, 143] 

Buspirone Anxiolytic N/A CYP3A4^ 

CYP3A5^ 

CYP3A7^ 

CYP2D6^ 

[144, 145] 

Dextromethorphan Antitussives N/A CYP2D6^ 

CYP3A4^ 

CYP3A7^ 

CYP2B6^ 

CYP2C19^ 

CYP2C9^ 

CYP2B4^ 

[146-151] 

Diclofenac NSAID N/A CYP2C9^ 

CYP2C19^ 

CYP1A2^ 

CYP2C8^ 

CYP3A4^# 

CYP2B6^ 

CYP2C18^ 

[152-156] 

Midazolam Benzodiazepines N/A CYP3A4^# 

CYP3A5^ 

CYP3A7^ 

[157-162] 

Omeprazole PPI AhR CYP1A1*^ 

CYP1A2* 

CYP1B1* 

CYP2C8^ 

CYP2C9^ 

CYP2C18^ 

CYP2D6^ 

CYP3A4^*# 

CYP2C19^# 

[163-169] 

Phenacetin NSAID N/A CYP1A2^ 

CYP2D6^ 

CYP1A1^ 

CYP1A13^ 

CYP2A6^ 

CYP2C19^ 

CYP2C9^ 

CYP2E1^ 

CYP3A4^ 

[170-174] 
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2.2. Materials and Methods  

All reagents and consumables used in this study were purchased from reputable 

vendors and used within the specified shelf lives. Reagents and consumables used in 

cell cultures were either purchased as sterile or sterilised using an autoclave (121°C, 

45 min). Consumables for cell cultures were all purchased from Gibco (Thermo Fisher, 

Waltham, MA, USA) unless otherwise stated. All percentage dilutions were as weight 

per volume (w/v) unless otherwise specified. All experimental assays were conducted 

as 3 technical replicates with 3 biological replicates unless otherwise specified. Cell 

cultures were thawed at passage 12 and maintained no further than passage 35 with 

biological replicates of cell cultures no more than 5 passages apart. Fresh stocks of 

drug cocktails were prepared and used throughout biological replicate sets. Routine 

mycoplasma PCR screening was conducted every month, and cultures were visually 

monitored daily for other sources of contamination or abnormalities. All proteomic 

centric workflows made use of Protein LoBind® Tubes (Eppendorf; Hamburg, 

Germany) to avoid selective loss of protein groups and maximize sample recovery. 

 

2.2.1. Monolayer cultures 

Two-dimensional cell cultures were seeded and maintained under standard cell 

culture conditions (37°C with 5% CO2, 90-95% humidity). HepG2 cells were obtained 

from Cellonex (Johannesburg, RSA: CHG2-C) and cultured in Dulbecco’s modified 

minimum Eagle medium (DMEM) supplemented with 10% foetal bovine serum (FBS), 

and 2 mM GlutaMAX. Cells were cultured in various culture vessels at the appropriate 

densities. Densities when plating 2D cultures did not exceed 2 x 104, 5 x 105, 2 x 106, 

and 5 x 106 cells per 96-well plate, 6-well plate, 25 cm2 or 75 cm2 flask respectively.  

Cells were maintained until 80-90% confluence prior to passaging or harvesting using 

recombinant dissociation enzyme TrypLE for 5 min at 37°C. Culture media was 

added, and dissociated cells were collected and transferred to a sterile Falcon tube, 

centrifuged (200 g, 5 min) and counted using the trypan blue (0.1%) exclusion assay 

on a Countess II Automated Cell Counter (Invitrogen, Waltham, MA, USA). 
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2.2.2. Three-dimensional culture generation 

Three-dimensional cultures, in general, have been adopted far less frequently than 

traditional monolayer cultures and carry an increased technical complexity for 

generation. Careful consideration is required with regards to application and study 

endpoints. Useful measures are the ease of applicability and maintenance, 

adaptability to high throughput screening (HTS), biological relevance and potential 

interference of culture scaffolds with assay parameters. In some applications, 

introduction of an external biological scaffold may allow for a more representative 

cellular architecture to be achieved [175], however batch to batch variations, 

inconsistencies in formation kinetics and interference with assay readouts, present 

variables that are difficult to control for. For these reasons, two spheroid generation 

methods were selected for this study. The hanging drop method was selected as the 

most appropriate method for downstream whole-cell proteomic assessments as it 

provided a static, scaffold-free system of spheroid generation. Perfecta3D® 96-well 

plates were purchased from 3D Biomatrix (Michigan, USA) and culture conditions 

optimised for seeding density, growth kinetics and medium volume in a previous 

study [176]. For metabolomic and microsomal assessments, the 3D Petri Dish® 

method was deemed most appropriate due to its ease of application, ability to 

generate a large number of spheroids per plate and superior scalability for HTS.  The 

3D Petri Dish® method was selected and 9x9 spheroid micro-moulds, suitable for the 

wells of a 12-well plate were purchased from Microtissues®. 

 

2.2.3. Generation of hanging drop spheroids 

Hanging drop plates were prepared by addition of autoclave-sterilized molten 

agarose (1%) to the upper and lower plate reservoirs to aid in humidity control. 

HepG2 cells were harvested and counted as described above, seeded at 20 000 

cells/well in 45 µL of culture media and incubated at 37°C under 5% CO2, 90-95% 

humidity. Spheroid formation occurred by cellular aggregation due to gravity at the 
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apex of each drop over several hours. Spheroid cultures were maintained for up to 42 

days with partial media exchange (10-12 µL) every alternate day. Spheroids were 

harvested by aspiration using an air displacement pipette. 

 

2.2.4. Generation of 3D Petri Dish spheroids 

Micro-mould 3D Petri Dishes were rinsed with deionised ultrapure water (dH2O) 

before autoclave sterilisation. Agarose for casting was prepared by dissolving 2 g of 

agarose powder in 90 mL of phosphate-buffered saline (PBS), pH 7.4, and then 

topping up to 100 mL with PBS before autoclaving. PBS was used in favour of dH2O 

to minimise any potential disturbance to in-well osmolarity due to leaching of dH2O 

into the culture media. Moulds (9 x 9 array) were cast by the addition of 500 µl molten 

agarose (2%) into the mould reservoirs and allowed gel for 5-10 min. Once set, gentle 

flexing of the mould casing released the agarose mould reservoirs which was 

transferred to 12-well cell culture plates. In the cases where moulds fell in upside 

down, gentle reorientation was performed using a sterile pipette tip. Moulds were 

equilibrated by addition of 200 µL of culture media to the reservoir and plates placed 

in the incubator for 2 h until all the wells were free from bubbles. Equilibration media 

was aspirated off using a pipette and harvested HepG2 cells, counted as described 

above seeded at 81 000 cells/mould in 180 µL of culture media by slow addition of the 

cell suspension to the mould reservoir. Plates were incubated for 1 hour to allow cell 

suspensions to settle in the wells of the micro-mould before slowly adding 2 mL of 

culture media to each well around the micro-mould. Plates were incubated under 

standard conditions and media changed weekly by vacuum aspiration of depleted 

media and replacing as described above. When harvesting spheroids, moulds were 

lifted vertically, and spheroids displaced from wells by gently rinsing with culture 

media and collecting using a pipette. 
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2.2.5. Overview of drug exposure for the assesment of various endpoints in spheroid 

cultures 

During this study HepG2 spheroids were exposed to different concentrations of drugs 

to meet specific assay endpoints. The concentration of individual drugs and the 

combined drug cocktails used for cell culture drug exposures can be separated 

according to the context of two different experimental endpoints.  

The first endpoint is for the assessment of proteomic changes in response to long-term 

exposure to sub-toxic concentrations of a drug cocktail. The drug cocktail for these 

experiments is detailed in Table 2.1 above and was to optimise sub-toxic drug 

concentrations for long-term drug exposure to assess downstream proteomic changes 

by mass spectrometry (MS) based experiments. Results characterising the cytotoxicity 

profiles of this cocktail are reported later in this chapter and within the context of 

downstream MS based proteomic experiments reported later in Chapter 4. In general 

control spheroid cultures that were not exposed to drug cocktail are denoted by the 

suffix (C) and those which had undergone drug exposure receiving the suffix (I).  

The second drug cocktail (the Geneva cocktail [177]) is a combination of probe drugs 

used for functional metabolomic assessment of selected CYP450 enzymes. This 

cocktail was developed and validated for use within clinical settings for patient 

phenotyping experiments. This drug cocktail and the defined metabolites will be 

discussed in Chapter 4 as part of the metabolomic competence assays. 

 

2.2.6. Spheroid protein quantitation 

Protein was quantified using the bicinchoninic acid (BCA) assay, which makes use of 

the reduction of Cu2+ to Cu+ and after complexing the BCA, produces a colorimetric 

change proportional to protein content, originally described by Wiechelman et al. 

[178]. Pierce™ BCA Protein Assay Kit was purchased from Thermo Scientific™ and 

assay carried out using an inhouse optimized, modified version of the manufacturer’s 

instructions. Briefly, spheroids were collected as described above, pooled, centrifuged 
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(500 g, 10 min) and washed with 5 volumes of PBS. Spheroids were lysed using 

radioimmunoprecipitation buffer (RIPA: 10 mM Tris-HCL (pH 8), 1 mM 

ethylenediaminetetraacetic acid, 0.5 mM ethylene glycol tetraacetic acid, 1% Triton X-

100, 0.1% sodium dodecyl sulphate, 0.1% sodium deoxycholate, 140 mM sodium 

chloride) containing cOmplete™ protease inhibitor cocktail (Roche)). Lysis was aided 

by ultrasonic disruption on ice (1500 W, 5 min) and mechanical disruption of pellets 

using a Dounce Homogenizer. Samples were cleared by centrifugation (16000 g, 10 

min) and supernatants transferred to new Eppendorf tubes. Working solution of BCA 

reagent was prepared by combining reagent A (2% sodium carbonate, 0.16% sodium 

tartrate, 0.9% sodium bicarbonate, and 1% BCA; pH 11.25) with reagent B (4% copper 

II sulphate pentahydrate) at a ratio of 50:1. Assay calibration curves were generated 

for 8 calibration points (0 – 2 mg/mL) using bovine serum albumin (BSA) included in 

the kit. Dilutions for calibration points were made in RIPA buffer to serve as an 

internal control for potential colorimetric interferences. Samples and standards were 

combined with BCA working reagent at a 1:40 ratio to a total volume of 200 µL/well. 

Assay plates were covered in aluminium foil and incubated for 30 min at 60°C in the 

dark before quantification using a Bio-Rad iMarkTM microplate reader at 560 nm. 

 

2.2.7. Establishment of baseline cytotoxicity profiles  

Paracelsus is regarded as the father of toxicology and pioneered several concepts that 

are still emphasized in modern practices. One of his more notable contributions is that 

all compounds are toxic, and that the dose distinguishes a poison from a remedy [43]. 

Following this narrative, it is important to establish toxicological thresholds for any 

compounds used in cell culture assays. Drug induction studies require long term 

repeat exposure to compounds of varying concentrations and deleterious or toxic 

effects to cell systems, as a result of the drug itself or its metabolites must be avoided. 

These are important parameters that need to be established before undertaking any 



 

48 

proteomic analysis that requires functional cell systems and the use of subtoxic 

concentrations is therefore essential.  

 

2.2.8. Sulforhodamine B cell enumeration assay 

Cell enumeration assays are useful tools for cytotoxicity screening as increases or 

decreases in cellular densities may be used as an inference for growth or drug induced 

cytotoxicity. Changes in cell densities can be compared to negative controls to assess 

potential stimulatory, inhibitory, or toxic effects. Cell enumeration using a modified 

version of the Sulforhodamine B assay (SRB) described by Vichai et al. [179]. HepG2 

cell monolayers were seeded at 20 000 cells per well in 100 µL of culture media. Cells 

were allowed to attach overnight and then exposed to eight half-log concentrations of 

each drug from 200 µM. Drugs were prepared as 50 mM stocks in dimethyl sulfoxide 

(DMSO) and diluted as required immediately before exposures. A vehicle control of 

0.5% DMSO was included to correct for any effects contributed by the organic solvent. 

Cells were exposed to drugs for 72 h before fixation with 50% trichloroacetic acid 

(TCA) overnight at 4°C. After fixing, cells were washed gently under running water 

and placed in a dry heat oven at 60°C. Once dried SRB staining solution (0.057% SRB 

in 1% v/v acetic acid) was added to each well and cells stained for 30 min at room 

temperature. Plates were washed three times with 1% v/v acetic acid to remove excess 

unbound dye and dried as described previously. Bound dye was solubilised using 

200 µL of pH 10 Tris-base solution (10 mM) under gentle agitation for 60 min. 

Absorbance was quantified at 510 nm with a reference wavelength of 610 nm using a 

Bio-tek Elx800 microplate reader. 

 

2.2.9. Lactate dehydrogenase assay 

Lactate dehydrogenase (LDH) is a ubiquitous enzyme present in a wide variety of cell 

types and released following damage to cell membranes. Free LDH present in cell 

culture media facilitates the conversion of lactate to pyruvate via the reduction of 
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nicotinamide adenine dinucleotide (NAD+) to NADH. The resulting NADH is then 

used as a cofactor for the reduction of tetrazolium salt to a formazan product (red) 

which can be quantitated using a plate reader at 490 nm. Formazan production is 

directly proportional to the amount of LDH present and can thus be used as an 

inference for cytotoxicity.  

 

Figure 2.2: Schematic of lactate dehydrogenase assay mechanism. 

 

Potential cytotoxicity in hanging drop spheroid cultures was assessed using the LDH 

assay. Spheroids were grown as described above as control or drug treated groups. 

Stocks of drugs from the cocktail described in Table 2.1 were prepared as described in 

Section 2.2.8 above and diluted in complete media to a final concentration of 5 µM. 

Cells for control spheroids were resuspended in complete media containing an 

equivalent solvent vehicle concentration (0.07% DMSO) only while drug treated 

spheroids were seeded into drug cocktail supplemented media. After select culture 

time points, LDH release from dead cells was measured using the Peirce LDH 

cytotoxicity assay kit (Thermo Fisher, Waltham, MA, USA) using a modified version 

of the manufacturer’s protocol. Briefly, reaction mixture was prepared by combining 

11.4 mL of assay substrate, solubilized in dH2O, with 0.6 mL assay buffer under 

exclusion of light. Positive controls were prepared by diluting 1 µL of included LDH 

positive control with 10 mL of 1% BSA in PBS. Spheroids, (8 per hanging drop plate) 

were collected via air displacement, pulsed to sediment spheroids, and media 

transferred to a new tube and stored at -80°C for downstream quantification. 

Spheroids were washed 3 times with PBS and protein quantified as described above. 

For LDH maximum release controls (LDHmax), spheroids were collected as described 
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above and 40 µL of 10x lysis buffer was added to the tube containing media and 

spheroids (360 µL). Lysis was aided by mechanical disruption for 20 min before 

pelleting debris by centrifugation at 16000 g and collecting supernatant media. Sample 

collections, including controls, were done weekly from days 14 – 28 of the culture time 

courses. After completion of the time course, stored media samples were thawed and 

equilibrated to room temperature. Media from LDHmax controls was diluted 3x to 

ensure readings were within the linear range. LDH was quantified by combining 50 µl 

stored media from samples and controls with 50 µL reaction mixture to triplicate wells 

of a 96-well plate, incubated for 45 min and quenched by addition of 50 µL stop 

solution. Dual wavelength absorbance was measured using a Bio-Rad iMarkTM plate 

reader at 490 nm and 680 nm. Percentage cytotoxicity was calculated by expressing 

absorbances of samples from each time point compared to the corresponding control 

and correcting for dilution of LDHmax controls. Potential differences in cell number 

were accounted for, and relative cytotoxicity values were normalised to quantified 

protein.  

 

2.2.10. Light, fluorescence and confocal microscopic characterisation of spheroid 

cultures 

2.2.10.1. Immunohistochemistry of monolayers and spheroids 

Immunohistochemistry (IHC) tandem confocal microscopy is a useful technique for 

characterisation of protein expression and localisation within cell cultures. The 

principle of IHC utilises the highly selective binding of antibodies or selective ligands 

to specific antigens or receptors. This interaction is generally considered to be 

proportional to the antigen in the case of excess added monoclonal antibodies. The 

antibody (Ab) to antigen interaction can be visualised by introduction of various 

markers including conjugated fluorescent tags, conjugated enzyme-substrate 

colorimetric reactions, radioactive probe conjugation, and colloidal gold [180, 181]. 

However useful, without proper optimisation IHC may give rise to false positive, false 

negative, and non-specific binding results due to a variety of factors acting 
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concurrently or individually, such as, inappropriate fixation methods, inadequate 

antigen retrieval, use of incompatible mounting matrices, inefficient cell 

permeabilization, incubation times and temperatures, optical inaccessibility, and 

improper fluorescent stain concentration and/or primary/secondary Ab ratios. 

Additionally, to enable comparisons across experiments, coupled to the above-

mentioned experimental parameters, several instrument parameters need to be 

optimised and remain constant during a set of assays. In the case of fluorescent 

confocal microscopy, variations in parameters such as laser strength, master gain, and 

aperture size across experiments make direct comparisons difficult. To enable tracking 

of protein expression changes over the time course, the parameters discussed above 

were optimised and kept constant across experiments. The details for antibodies used 

for IHC are present in Table 2.2. Spheroids were stained for various hepatic, structural 

and proliferation related proteins namely α-fetoprotein (AFP), albumin (Alb), 

cytokeratin 18 (CK18), and hepatic nuclear factor 4 alpha (HNF4α). These data will be 

presented here and in other chapters in the context of downstream proteomics data.  

HepG2 cells were grown and harvested as described above and seeded at 60 000 

cells/well onto autoclave sterilized (121°C, 45 min) 12 mm coverslips coated with 500 

µl Corning® Matrigel® Growth Factor Reduced (diluted 1/30 in pre-chilled DMEM) 

in 48-well plates. Cells were maintained for 2-3 days before pre-fixing with 500 µl of 

4% paraformaldehyde (PFA) for 10 min and then replacing with fresh 4% PFA with 

8% sucrose for 40 min. Coverslips were washed 3 times with PBS before cell 

permeabilization and blocking in B-PBT (1% Triton X-100, 10% FBS, and 4% BSA in 

PBS) for 30 min. Samples were incubated with selected primary antibodies diluted in 

B-PBT (Table 2.2) for 2 h followed by 3 washes in B-PBT before incubating with 

secondary antibody (Table 2.2) for 2 h. Whole spheroids were harvested by pipette 

aspiration and fixed in 4% PFA with 8% sucrose overnight then washed 3 times for 1 

h each in PBS on a plate shaker at 100 rpm. Permeabilizing and blocking was 

conducted as above in B-PBT for 2 h. Spheroids were incubated with selected primary 

antibodies in B-PBT overnight at 4°C followed by two washes for 2 h in 0.2% PBT 
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(0.2% Triton X-100 in PBS) and one wash in B-PBT for 2 h before incubating in 

secondary antibody (Table 2.2) in B-PBT overnight. Confocal images were acquired 

on a Zeiss LSM800 confocal laser scanning microscope as described in [182]. 

 

 

Table 2.2: Panel of primary and secondary antibodies for immunofluorescent staining 

Primary antibody Species Vendor Dilution 

AFP Mouse Abcam 1/50 

Alb Chicken Abcam 1/100 

CK18 Mouse Abcam 1/100 

HNF4α Rabbit Abcam 1/100 

Secondary antibody Species Vendor Dilution 

Alexa Fluor 488 Goat anti-chicken Abcam 1/1000 

Alexa Fluor 555 Donkey anti-rabbit Abcam 1/1000 

Alexa Fluor 647 Donkey anti-mouse Abcam 1/1000 

 

 

2.2.10.2. Spheroid size and morphology  

Characterisation of spheroid growth and morphology are important metrics to define 

in 3D culture.  In the context of hepatocyte spheroids, formation of well compacted, 

uniform spheroids has been shown to be an indicator of an optimal cell culture 

environment promoting more relevant ultrastructural organisation and phenotypic 

function [183]. Spheroid cultures maintained over a 28-day time course, were imaged 

on days 1, 3, 7, 14, 21 and 28 using a Zeiss AxioVert A1 with an AxioCam digital 

camera. Spheroids (8 per hanging drop plate, 10 per µmold) were collected and 

diameters, circumferences, and coefficients of roundness measured for each culture 

timepoint using the measure tool built into Zeiss Zen blue software package. 

 

2.2.10.3. Live-Dead staining 

Live-dead staining of spheroids allows for a two-colour discrimination of viable and 

compromised cell populations. Briefly, non-fluorescent membrane permeable 

fluorescein diacetate (FDA) is cleaved by the esterase enzymes present in viable cells, 

liberating the highly fluorescent fluorescein. Propidium iodide is a cell impermeable 
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dye which intercalates with the DNA double helix and can be used as an inference of 

compromised cell membranes of dead/dying cell populations. Spheroids were 

collected as described previously, centrifuged (200 g; 5 min) and washed with PBS. 

One millilitre of staining solution (10 µl of 2 mg/mL propidium iodide in PBS and 2 

µL of 5 mg/ml FDA in acetone) was used to stain spheroids for 5 min at room 

temperature under exclusion of light. Spheroids were then washed 3 times with PBS 

and visualized using a Zeiss AxioVert A1 with an AxioCam digital camera using light 

emitting diode (LED) excitation with green or red fluorescence filter sets. Digital 

images were recorded and processed using the Zeiss Zen blue software package. 

Assay positive controls were spheroids exposed to 5 or 10 µg/mL puromycin for 16 h 

and prepared and processed in the same way were used as controls. 

 

2.2.10.4. Expression, purification and validation of CNA35 collagen probes 

The construction of a fluorescent collagen binding protein (CNA35) has been 

described previously by Krahn et al. [184]. CNA35 contains the soluble N1 and N2 

collagen binding protein domains from Staphylococcus aureus bacteria [185]. Plasmids 

pET28a-mTurquoise2-CNA35 (Plasmid #61602) and [185] pET28a-tdTomato-CNA35 
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(Plasmid #61606) were purchased from Addgene (Watertown, MA, USA) and were 

transformed into XL10-Gold® ultracompetent cells (Stratagene). 

 

Figure 2.3: Schematic representation of pET28a-mTurquoise2-CNA35 plasmid used for expression of 

CNA35 containing Kanamycin resistance, lac operon, lac promoter and 6x histidine tag regions. 

 

Single bacterial colonies were picked and used for inoculation of 8 mL Luria-Bertani 

(LB) broth cultures (10 g/L Tryptone, 10 g/L NaCl, 5 g/L yeast extract, pH 7.2) 

supplemented with 20 µg/mL kanamycin. Cultures were grown overnight in a 

shaking bacterial incubator at 37°C under circular agitation (250 rpm) until an optical 

density at 600 nm of approximately 0.6 was reached. Cultures were then used to 

inoculate a further 100 mL of fresh LB broth and maintained under the same 

conditions until a similar optical density was achieved. Lac operon mediated 
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expression of CNA35 was induced by introduction of 0.5 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG; Sigma-Aldrich). Protein expression was allowed to 

continue for 24 h before harvesting by centrifugation (6000 g, 10 min). Pellets were 

washed 3 times in PBS, resuspended and transferred to fresh Falcon tubes before 

lysing by ultrasonic disruption using a BioLogics model 3000 ultrasonic homogenizer 

(900 W, 30 second pulses). Bacterial lysates (1 mL) were transferred to 1.5 mL 

Eppendorf tubes and centrifuged at 16000 g for 15 min. The resultant soluble fractions 

were collected and used for purification. MagReSyn® NTA Screening Kits (ReSyn 

Biosciences, Gauteng, South Africa) were kindly donated by Dr Justin Jordaan. 

Purification was conducted according to the manufacturers protocol; briefly, Ni2+ 

chelated magnetic beads were vortex mixed and 100 µL of suspension transferred to 

a new tube. Collected beads were washed twice and then equilibrated in binding 

buffer (80 mM sodium phosphate, 40 mM imidazole, 1.0 M NaCl, pH 7.4) for 5 min, 

collected via magnetic pelleting and excess buffer discarded. Previously collected 

soluble fractions (300 µL) were then introduced to the beads and topped up with an 

additional 400 µL of binding buffer and vortex mixed thoroughly. Binding was 

allowed to continue for 10 min at room temperature under agitation. Beads, with 

bound protein, were pelleted by magnetic collection and the supernatant discarded. 

Pellets were washed 5 times in binding buffer and supernatants from the wash steps 

discarded. Bound proteins were eluted by addition of 100 µL of elution buffer (80 mM 

sodium phosphate, 500 mM NaCl, 500 mM imidazole pH 7.4) for 5 min at room 

temperature under agitation. Beads were pelleted and supernatant containing 

purified CNA35 probes collected (approx. 100 µg/workflow) and transferred to a new 

tube and stored at -20˚C until use. 

2.2.10.5. Preparation of type 1 collagen from rat tails 

The use of collagen in bioengineering applications has been described extensively 

with relevance to bio-scaffolds, coatings and hydrogels [186-188]. Rat tails, used for 

collagen harvest, were kindly donated by Prof Michael Pepper from the Institute for 

Cellular and Molecular Medicine (ICMM) at the University of Pretoria. Collagen type 
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I fibres from rat tail tendons were isolated, collected and reconstituted using an 

adapted version of the protocol described by Rajan et al. [189]. Rat tails were washed 

in ultrapure water, dried and thin extremities twisted, and skin broken off. White 

collagen fibres were exposed, sheaths nicked using a surgical blade and fibres gently 

recovered using surgical tweezers and transferred to a beaker containing PBS. This 

process was repeated for the full length and both sides of the tails (n =12). Collected 

fibres were transferred to 100% acetone (5 min) and then to 70% ethanol (v/v) for a 

further 15 min. Fibres were then solubilized in a covered beaker containing 20 mM 

acetic acid with constant stirring (4°C; 48 h). Resulting opaque collagen containing 

solution was transferred to new tubes and centrifuged to remove insoluble 

components and impurities (10 000 g; 30 min) and supernatant collected and stored at 

-20°C until use.  

 

2.2.10.6. Coating of coverslips for collagen probe validation 

Type I rat tail derived collagen was thawed at 4°C, aliquoted, diluted and quantified 

using the previously described BCA assay. Collagen, for coating, was neutralized (pH 

6-7) using 100 mM sodium hydroxide solution in water and diluted in ice cold PBS 

(pH 10-11). The required collagen concentration was calculated using the formula: 

Collagen Conc [µg/mL]  =  
ACoating [cm2]  ×  5 [𝜇g/cm2]

V[ml]
 

 

Collagen solution was added to 12 mm cover slips within 12-well plates, neutralized, 

and incubated over night at 4°C. Plates were then warmed in an incubator at 37°C for 

2 h. After coating, excess collagen solution was aspirated off and coverslips dried 

before washing 3 times with PBS, blocking in 1.5 mL of 1% BSA in PBS and washing 

again 3 times with PBS. Coverslips were incubated with 1 µM of each CNA35 probe 

for 3 h at 37°C before rinsing 3 times with PBS, fixing with 4% PFA and mounting to 

a microscope slide. Binding of CNA35 probes were visualized using a Zeiss LSM800 

confocal laser scanning microscope as described in [182]. 
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2.2.10.7. Generation of protein-mass profiles from HepG2 cultures 

Proteins recovered from HepG2 cell monolayers and spheroids were separated using 

sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Briefly, 10 

µg of protein was combined 3:1 with 4x Laemmli sample buffer 0.250 M Tris-HCL (pH 

6.7), 8% SDS, 40% (v/v) glycerol, 20% (v/v) β-mercaptoethanol, 0.004% bromophenol 

blue) then incubated at 95°C on a dry heat block for 5 min, cooled and pulse 

centrifuged before loading onto Novex precast 4-20% gradient polyacrylamide Tris-

Glycine gels (Invitrogen, Waltham, Massachusetts, USA). Precision Plus All Blue 

(BioRad, Hercules, USA) protein standards were used as mass marker. Proteins were 

separated in a Mini-PROTEAN Tetra System in running buffer (0.1% SDS, 25 mM Tris-

base, and 19.2 mM glycine) at 80 V for 15 min then 160 V until the buffer front reached 

the end of the gel.  Gels were fixed in 1% acetic acid (v/v) with 50% methanol (v/v) in 

dH2O for at least 30 min then stained with Coomassie brilliant blue (0.1% Coomassie 

R250, 5% acetic acid (v/v) with 50% methanol (v/v) in dH2O). Gels were then washed 

with dH2O multiple times on an orbital shaker until background was reduced and 

protein bands clearly visible. Destained gels were visualized using a ChemiDoc™ Gel 

Imaging System (BioRad, Hercules, USA) and analysed with Image Lab software 

(BioRad, Hercules, USA). 

 

2.3. Results and discussion 

2.1.1 Culture and characterization of HepG2 monolayer and spheroid models 

Key benefits of monolayer cultures lie in their ease of use and being the historically 

standardized application. In the case of hepatocytes, this method of culture often 

oversimplifies the culture environment leading to altered gene expression that 

impacts the cells phenotype. Generally, cells that are immortalized possess inherent 

chromosomal abnormalities and mutational profiles enabling them to replicate 

indefinitely [190]. Prolonged proliferation enables further genetic drift and resultant 

clonal selection of a unique, highly proliferative cell clone over time. Primary 

hepatocyte cultures do not remain viable in monolayer conditions for long enough to 
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mimic this phenotypic drift process, however these cultures demonstrate a different, 

more immediate loss of cell specific processes and relatively rapid functional de-

differentiation [191]. The degree to which immortalized hepatocytes can maintain 

their functional representation, while preserving replicative immortality underpins 

the degree of their usefulness as preclinical models. 

Cell morphology and function are closely related characteristics. HepG2 cells (Figure 

2.4 A-C) display an epithelial like morphology in contrast to the typical cubic cell 

shape of PHH (Figure 2.4 D) adapted from [192]. PHH also show varying subsets of 

binucleated cell populations, a feature largely absent from HepG2 cells. However, 

similar to PHH, HepG2 cells contain large vacuoles with cytoplasmic lipid droplets 

(Figure 2.4 C) and both cell types are capable of developing primitive bile canaliculi 

[193-195]. 

 

Figure 2.4: Phase contrast images of HepG2 cells (A-C) and PHH (D) cells cultured as monolayers. Scale 

bars: 50 µm. PHH image from [192] 

The ability for preclinical models to accurately mimic the in vivo scenario has long 

been pursued yet often misrepresented. The idea that a collection of homogenous cells 

plated onto a dish surface can recapitulate the function of complex and highly 

heterogenous organ systems is unrealistic. Through understanding the shortfalls of a 
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cell culture model system, researchers have been able to adapt the conditions for these 

models to become slightly more representative. An early example of these adaptations 

has been the use of 3D modelling. PHH cultured in bioreactors express hepatocyte-

specific functional proteins [196], and re-establish expression of hepato-specific 

metabolic genes (AhR, CAR and PXR) to the same or higher levels than what is 

observed in vivo. The selection of 3D culture method notably impacts the degree to 

which these changes occur, with bioreactor cultures better than hanging drop cultures 

with regards to growth parameters. Similarly, when HepG2 cells are cultured as 

spheroids using different methods, variable growth characteristics are observed. 

Factors that influence the growth kinetics of monolayer cell cultures, and, by 

extension, spheroid cultures are nutrient accessibility, growth factor binding, chemical 

gradients, environmental pH, nature of substrates and the cell’s genetics. In Figure 

2.5, spheroids grown in hanging drop format were seeded at 20 000 cells per well 

compared to those seeded at 1000 cells per well in the 3D micro-moulds. While 

morphological features were well preserved, total protein content suggests important 

differences in cell growth. Spheroids in the hanging drop model, starting out with a 

higher seeding density, appear to proliferate quickly up to Day 14, after which minor 

increases in cell number are observed between Day 14 and 28 (Figure 2.5 C). However, 

seeding initialized with a lower cell number in the micro-moulds, showed a sustained 

relative protein content increases up to Day 28. These results are similar to those 

observed by Stampar [197] where HepG2 spheroid cross-sectional areas were 

calculated (Figure 2.6). 
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Figure 2.5: Micrographs illustrating spheroid morphology at Days 3 and 14 in culture. Bar graphs showing 

changes in protein content over the 28-day time course for the hanging drop model (HD) (A-C) and micro-

mold µMold (D-F). cultures. D0C stands for the initial protein content of the cells used for seeding. Increases 

in protein content stands as an inference for cell proliferation across methods. Scale bars: 100 µm 

Spheroids are formed through the active attachment and re-configuration of single 

cells to form higher order structures. This process is accompanied by changes of the 

cellular and extracellular organization. Increased cell-cell and cell-matrix interactions 

induce modifications to cytoskeletal structures which trigger differential regulation of 

their associated signalling networks. Activated cadherins transduce signals through 

their intracellular domains by interacting with the adhesion complex, which includes 

various catenin subunits and other cytoskeletal molecules. These complexes are able 

to trigger several other significant signalling cascades like β-catenin, a downstream 

regulator of the Wnt pathway that among others regulates cell fate, proliferation and 

migration [198, 199]. Adhesion molecules also influence growth kinetics through 

mechanical forces which together with a shift to cadherin-mediated binding have been 

shown to reduce cellular proliferation through a process known as contact mediated 

inhibition [200]. These molecular changes, together with the formation of differential 

zones within spheroids (Figure 2.7), may be responsible for the increase in phenotypic 

relevance of spheroid models. 
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Figure 2.6: The growth and morphology of spheroids (planimetry) monitored over 7 days of cultivation. The 

surface area of spheroid size was measured every 24 h (A–B: initial density of 3000 cells/spheroid and C–D: 

initial density of 6000 cells/spheroid). The images were taken using an inverted microscope at 40× 

magnification (N = 3). Results are presented as the mean ± SD (N = 10). The statistical analysis was 

performed in GraphPad Prism 6, by the one-way ANOVA using the Dunnett’s multiple comparisons tests, 

** p < 0.01, *** p < 0.001. Reprinted with permission under the Creative Common CC BY license. Figure 

taken from [197] 
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Figure 2.7: Zones in a spheroid tumour culture. Oxygen and nutrients fail to permeate to the necrotic core 

of the spheroid, and proliferating cells are more likely to be seen in the outer perimeter of the spheroid than 

within. Reprinted with permission from [201] 

2.1.2 Assessing cytotoxicity in response to drug cocktail  

Despite their reported predictive insufficiencies, HepG2 cells have been used 

extensively to identify potentially hepatotoxic drugs. For the purpose of long-term 

drug exposure studies absence of drug associated cytotoxic response must be 

confirmed to ensure the cells in culture remain viable. Assessment of acute innate 

cytotoxicity is easily inferred from a simple cell density assay such as the SRB cell 

enumeration assay as illustrated in Figure 2.8. However, this assessment method does 

not easily monitor long time course exposure, and even less so in the case of 3D 

cultures such as spheroids. It is therefore useful to monitor other cytotoxicity end 

points, such as LDH release, which can be adapted to assay spheroid models. Hanging 

drop based HepG2 spheroids were cultured for 28 days in the presence of a seven-

drug cocktail at 5 µM for each drug to ensure absence of cytotoxic effects.  
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Figure 2.8: Dose response curves representing relative cell density in monolayer cultures of HepG2 cells as measured by the SRB assay 
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When adapting assays outside of their intended use, it is important to consider which 

assay parameters may be compromised and how to account for these. The LDH assay 

infers cytotoxicity from the release of LDH by membrane compromised cells into the 

media. With respect to its use in monolayer cultures, the released LDH accumulates 

over the course of exposure such that a terminal sample which is representative of the 

total LDH is assessed. In the case of spheroids, that are maintained for long culture 

times, regular media exchanges are necessary, which results in removal of the 

accumulated LDH. To account for this, control spheroids were cultured in parallel to 

the drug exposed spheroid group and monitored at the same time points. Potential 

differences in size were accounted for by normalisation to total protein for each 

respective group. Lack of significant cytotoxicity was observed between control 

groups and those exposed to 5 µM of drug cocktail (Figure 2.9) ensuring the viability 

of downstream proteomic assessments which took place at much lower drug exposure 

concentrations.  

 

 

Figure 2.9: Time course LDH release for spheroid groups at Day 14, 21 and 28 (D14, 21 and 28, respectively). 

The C denotes control spheroids and the I denotes drug-exposed spheroids. Cytotoxicity is expressed as 

percentage relative to the LDH max control after normalisation to the protein content. 
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To further characterize and confirm the capacity for long-term culture viability, 

spheroids were assessed using the Live-Dead assay. Control spheroids at Day 28 in 

culture were exposed to 5 and 10 µM puromycin for 16 h before assessment. 

Puromycin exerts its toxic effect through inhibition of protein synthesis by ribosome-

catalysed incorporation into the C-terminus of elongating nascent chains, blocking 

further extension and resulting in premature termination of translation [202]. Acute 

puromycin cytotoxicity (Figure 2.10) was observed in spheroid cultures with the 

response being proportional to dose for both light micrographs (top row) and Live-

Dead stained confocal micrographs (bottom row). Control spheroids exhibited well 

defined borders and high FDA staining with low PI staining. Puromycin exposed 

spheroids in contrast, showed progressive breakdown of spheroid edges, increased PI 

staining and structural enlargement indicative of cytotoxicity. 

 

Figure 2.10: Light and confocal micrographs of Day 28 cultures of control (left), 5 µM (middle), and 10 µM 

(right) puromycin treated spheroids showing the progressive breakdown of spheroid edges and increasing PI 

staining indicating cell membrane damage. Scale bars: 100 µm  

D28C   µ  Puromycin 10 µ  Puromycin 
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2.1.3 Structural changes as a result of spheroid cultures 

Spheroids express a higher abundance and more complex network of extracellular 

matrix proteins compared to monolayer cultures. The basement membrane of healthy 

human livers is made up of appropriate ratios of glycoproteins, collagens, and 

proteoglycans. Collagen forms the primary structural component of the ECM which 

helps to regulate cell adhesion, chemotaxis, and tensile strength. Collagen deposition 

is important for spheroid growth and has been used as a supplemental lattice to 

facilitate robust cell growth. CNA35 is a protein expressed in bacteria which has a pan-

collagen binding affinity. This protein has been functionalised with fluorescent 

markers making it useful for non-invasive collagen imaging [203]. Based on this 

ability, expression and purification of CNA35 was carried out to be able to visualize 

collagen deposition in different cell cultures.  

 

CNA35 was expressed with either mTurquoise or tdTomato fluorescent labels and 

validated for binding using rat-tail collagen coated coverslips (Figure 2.11). However, 

due to its emission wavelength overlapping with that of many common nuclear stains, 

the mTurquoise labelled CNA35 was not used in subsequent assays. HepG2 cell 

collagen deposition was compared between both control monolayer and spheroid 

cultures over the culturing time course (Figure 2.12) where collagen expression was 

observed in both monolayer and spheroid conformations. However, collagen 

abundance was more pronounced in spheroid cultures with a progressive increase in 

abundance based on culture time.  



 

67 

Another useful marker protein for hepatocytes is Cytokeratin 18 (CK18), which is part 

of a major intermediate filament protein in the liver. It has a cytoprotective function, 

is expressed in both major hepatocellular types, hepatocytes and cholangiocytes, and 

is used as a diagnostic marker of hepatic injury or cell death. The clinical measurement 

of CK18 is used to identify the mechanism of hepatocellular death, as stable CK18 

fragments indicate apoptosis due to CK18 being a target for caspase mediated 

proteolysis while the release of full length CK18 is indicative of necrosis [204-206]. 

Both forms of CK18 can be measured using ELISA clinical diagnostic tests. Figure 2.13 

indicates the progressive upregulation of CK18 over the spheroid culture time course 

with a progression pattern similar to that observed for the upregulation of collagen. 

Figure 2.11: CNA35 collagen probe demonstrating binding to collagen coated plate. A) CNA35 mTurquoise, 

B) tdTomato, C) Merge of A and B representing areas of overlap, and D) pellets of transformed bacterial 

colonies induced using IPTG. Scale bar: 20 µm 
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Figure 2.12: Pan-collagen binding by the CNA35 collagen probe (orange) in monolayer cells at Days 2 and 3 in culture (top row) and spheroids at Days 14, 21 and 28 in 

culture (bottom row). Scale bars: 100 µm 
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Figure 2.13: Confocal micrographs of CK18 (yellow) and DAPI nuclear stained (blue) spheroids from Days 14, 

21 and 28 in culture. Scale bar: 100 µm 

 

2.3.1. Protein-mass profiles of HepG2 spheroid and monolayer cultures 

Protein mass profiles were generated using proteins collected from HepG2 monolayers 

and spheroid cultures to assess protein extraction and to qualitatively visualise protein 

expression patterns across culture conditions. Figure 2.14 shows a representative image 

for proteins extracted from various spheroid timepoints compared to monolayer.  

It is important to note that a single band on a gel is generally made up of multiple proteins 

despite this, some differences in the mass ranges of 25-75 kDa are observed when 

comparing spheroid cultures (lanes 2-4) to monolayer (lane 5). Which may be indicative 

of protein expression differences between these culture methods. 
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Figure 2.14: Coomassie stained Novex 4-20% precast gel of Precision Plus All Blue protein standards 10-250 

kDa (1), HepG2 spheroids at days 14 (2), 21 (3) and 28 (4) in culture and HepG2  monolayer culture (5) 

harvested at ~80% confluence. Red box indicative of regions of proteomic change. 

 

2.2 Conclusions 

Spheroids were characterized with respect to a number of features that have potentially 

important outcomes for hepatic models in the in vitro setting for answering biological 

questions. HepG2 cells, cultured as spheroids, display a wider array of structural and 

biological variances compared to their monolayer counterparts, including the time that 

they can be maintained in culture presumable due to reduced growth kinetics conferred 

in proportion to time spent in culture. Hanging drop models, while beginning with 

higher seeding densities, reach a growth plateau after approximately 21 days in culture, 

a feature not observed in the equivalent culture time frame for micro mould cultures.  

HepG2 cells did not display evidence of cytotoxicity in response to the drug exposures in 

the case of dose response curves generated for monolayer cultures and the combined 

drug cocktail at 5 µM exposed to spheroids, and this holds true even for repeated 
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exposures over an extended period of time. Additionally, qualitative changes to the 

proteomes of HepG2 cells between monolayer and spheroid cultures are evident as seen 

within the protein mass profiles generated during SDS-PAGE analysis. These data serve 

as preliminary evidence that that 3D cultures should express proteomic signatures which 

differ from their 2D counterparts. More thorough investigation of the proteomic changes 

to the HepG2 cell proteome, conferred by means of culture as spheroids and the further 

perturbations resulting from long term drug exposure will be discussed more thoroughly 

in subsequent chapters. 
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Abstract: Three-dimensional models are considered a powerful tool for improving the 

concordance between in vitro and in vivo phenotypes. However, the duration of spheroid 

culture may influence the degree of correlation between these counterparts. When using 

immortalised cell lines as model systems, the assumption for consistency and 

reproducibility is often made without adequate characterization or validation. It is 

therefore essential to define the biology of each spheroid model by investigating the 

proteomic dynamics, which arise due to culture duration. As an example, we assessed 

the influence of culture duration on the relative proteome abundance of HepG2 cells 

cultured as spheroids, which are routinely used to model aspects of the liver. Quantitative 

proteomic profiling of whole cell lysates labelled with tandem-mass tags was conducted 

using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In excess of 4800 

proteins were confidently identified, which were shared across three consecutive time 

points over 28 days. The HepG2 spheroid proteome was divergent from the monolayer 

proteome after 14 days in culture and continued to change over the successive culture 

time points. Proteins representing the recognised core hepatic proteome, cell junction, 

extracellular matrix, and cell adhesion proteins were found to be continually modulated.  

Keywords: Spheroids, dynamic proteome, stable isotope labelled proteomics, HepG2 

cells 
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3.1. Introduction 

 

The pharmaceutical industry implements increasingly stringent standards in drug 

development, and enforces persistent regulatory reviews of both new drug candidates 

(NDCs) and commercially available drugs [207, 208]. Only a small percentage of NDCs 

entering development fulfil the requirements to enter into Phase I clinical trials with, less 

than 10% becoming licenced products [209]. Failure of both candidates in development 

and marketed drugs impose great costs to both industries and consumers. Though 

numerous factors contribute to drug candidate failure or post marketed drug 

withdrawal, safety and efficacy together contribute 74-76% [210]. This is largely due to 

the limitations and inconsistencies of preclinical screening models. Exploring this, 

hepatotoxicity has been cited as the most common causative factor for withdrawal of post 

marketed drugs [211, 212]. When using immortalized or primary cell cultures as 

surrogates for their in vivo counterparts it is important to adequately characterize each 

model system before being able to make reliable biological inferences. Currently used 

liver models which include; primary human hepatocytes (PHH), transformed 

hepatocytes (HepG2, Huh7, and HepaRG), and hepatocyte-like cells (HLCs) derived 

from embryonic or induced pluripotent stem cells, are both genotypically and 

phenotypically distinct due to their various origins[213-215]. Each liver model has unique 

limitations, including the high cost and inter-donor variability of PHH [216], the lack of 

clinically relevant biotransformation capacity and strong cancer signatures of HepG2 

cells [217], or the immature and variable hepatic phenotype associated with HLCs [218, 

219]. These distinctive characteristics make each model fit for only certain applications. 

However, an advantage conferred to all in vitro liver model systems is the capacity for 

adaptation to three-dimensional (3D) culture, which supports the maintenance or 

acquisition of a more in vivo representative phenotype [19, 20]. This notion of improved 
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phenotype has been widely adopted by researchers, using cells of various origins, in 

attempts to recapitulate both organs and disease conditions such as tumours in vitro [22, 

220, 221]. Duration of culture, presence or absence of extracellular matrix (ECM) proteins, 

static or perfused systems, ratio of cell number to culture media volume, and spheroid 

physical dimensions are all determinants of in vitro phenotypes [222], although a 

complete understanding of how each influence cell behaviour and phenotype remains 

unclear. Shifting the paradigm from monolayer to 3D culture systems has, in most 

models, not sufficiently addressed the progressive changes that occur as a consequence 

of duration of time spent in culture. Despite the widely accepted notion that cells cultured 

in 3D allow for more representable phenotypes, the rational for experimental time points 

is less thoroughly characterized. The impact of a dynamic baseline would be evident in 

experiments such as drug testing for efficacy or toxicity if cells which rapidly form 

spheroids were first cultured for 7, 10, or 28 days. While recognised as limited in their 

biotransformation capacity [223], HepG2 cell spheroids are used as a liver model to 

investigate genotoxicity [224], and predict hepatotoxicity [225, 226]. Phenotypic 

transitions as a result of growth in 3D have been investigated at the gene transcription 

level [227] which while informative, does not account for the fact that only 20-50% of 

transcribed genes result in functional expressed proteins [228], and could cast doubt on 

the perceived utility of model systems. HepG2 monolayers boast a highly reproducible 

detectible proteome while the proteome of HepG2 spheroids cultured for 10 days 

inconsistently diverges from monolayers [229] across this timeframe. Therefore, since 

proteomic changes which occur as cells arrange and mature within complex 3D structure 

are often overlooked [230], we sought to monitor the relative quantitative changes within 

spheroids over a long-term culture of 28 days using isobaric tagging. This was done to 

determine whether cells maintained in spheroids for more than 10 days undergo 

reproducible, significant, proteomic changes related to their altered culture architecture. 

These data suggest that there is a continual divergence of the HepG2 proteome as a 
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consequence of long-term spheroid culture which impacts cellular functionality. We 

provide new insights into the dynamic nature of 3D culture systems and highlight 

important considerations essential to the field of biological modelling. 

3.2. Results 

3.2.1. Spheroids undergo dynamic proteomic transitions based on time spent in culture 

 

Successful isobaric tagging allowed confident identification and relative quantification of 

4819 proteins shared across biological replicates within experimental groups 

(Supplementary Table 1). Hierarchal clustering (Figure 3.1a) segregated the monolayer 

proteome (D0) from all three spheroid groups D14C, D21C, and D28C. Changes in the 

relative abundances of protein clusters (blue, black, and red arrows) correlate with 

culture time. These trends demonstrate continual phenotypic evolution within the 

analysed spheroid cultures, which is reproducible across biological replicates, but 

dynamic within the observable temporal frame.  

Distinct spatial clustering in PCA (Figure 3.1b) reinforces the observation that the culture 

method generates the greatest variance, with reduced but continual separation between 

spheroid cultures over time. Here, PC1 contributes 64.7% of the variance which appears 

to distinguish culture methodology. PC3 (Supplementary Figure 1), contributed only 

4.4% of the variance, and was not able to spatially resolve groupings despite maintaining 

resolution of monolayers and spheroids by culture time along PC1. Contrary to 

observations in a previous study [229], the spheroid replicates produced reproducible 

proteome data when cultured for longer than 14 days. Correlation plots (Figure 3.1c) were 

poor when comparing monolayers to spheroids from each of Day 14, 21, and 28 replicates, 

illustrating the magnitude of proteomic divergence from monolayers. In contrast, high 

correlations between biological replicates of both monolayers and spheroids within the 

same experimental groups were observed. This high degree of correlation was seen to 
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diminish progressively with time, when comparing spheroid replicates from the earliest 

spheroid groups (day 14) to those from later groups (days 21 and 28). 
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Figure 3.1. (a) Hierarchical clustering of proteomic data cohorts from biological replicates of monolayer (D0C1, 

2, 3) and spheroid groups at Days 14 (D14C1, 2, 3), 21 (D21C1, 2, 3), and 28 (D28C1, 2, 3) in culture. (b) 

PCA of HepG2 cell monolayers (red) and spheroids at Days 14 (green), 21 (blue), and 28 (black) comparing 

Component 1 versus Component 2 and (c) Correlation plot showing strong correlations between biological 

replicates as well as moderate correlations across successive time points, whereas poor correlations were 

observed between D0C monolayers and spheroid cultures from D14C, D21C, and D28C. Figures generated 

using Perseus v. 1.6.7.0 software [231] and InfernoRDN v. 1.1.7626.35996 

https://omics.pnl.gov/software/InfernoRDN [232]. 

https://omics.pnl.gov/software/InfernoRDN
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3.2.2. Direct comparisons demonstrate proteome differences resulting from culture 

methodology and duration 

To determine the number of differentially abundant proteins, volcano plots were 

generated using a two-sided t-test with an FDR of 0.05 while allowing for 250 

randomisations and mean -log2(x) fold change of ± 0.3. Proteome data of spheroids from 

sequential weekly time points were compared to baseline monolayer cultures (D0) 

(Figure 3.2a, b, c; Supplementary Tables 2-4). Additionally, Day 14 (D14C) spheroid 

proteomes were compared with those of Day 28 (D28C) spheroids (Figure 3.2d; 

Supplementary Table 5). Using these significance thresholds, the proportion of 

differentially abundant proteins increased with spheroid culture duration. At Day 14, 

38.72% of the detected proteome had superseded statistical thresholds compared to 

monolayers and this number increased along the temporal frame to 48.89% at Day 21 and 

57.96% at Day 28. Furthermore, the changes between Day 14 and Day 28 involved 41.54% 

of the observed proteome indicating that the spheroid proteome continues to evolve over 

time. 
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Figure 3.2 Volcano plots indicating significant differences in proteins across experimental groups identified using 

a two-sided t-test allowing for 250 randomisations, and FDR of 0.05 and mean fold change of log2(x) ± 0.3 for 

(a) D14C verses D0C, (b) D21C verses D0C, (c) D28C verses D0C, and (d) D28C verses D14C. Figure generated 

using RStudio software loaded with the ggplot package [233, 234]. 
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3.3. Spheroids remain viable over a 28-day time course with a progressive increase in 

abundance of hepatic proteins relative to duration in culture  

Protein content per spheroid (Supplementary Figure 3.2) was quantified throughout the 

time course as an inference for cellular biomass. Increases in protein content were greatest 

within the first two weeks of culture but then plateaued from days 14 to 28. Spheroids 

were monitored for morphological features including structural integrity and 

compactness (Figure 3.3a-d) as well as maintenance of esterase activity (Figure 3.3e-h, 

Supplementary Figure 3, Supplementary videos 1-2) as an indicator of cell viability. 

While the core proteomic assessments in this study were conducted over 28 days, these 

features were measured over a period of up to 6 weeks in order to demonstrate the long-

term viability potential of this model system. HepG2 spheroids expressed hepatic marker 

proteins albumin (ALB), α-fetoprotein (AFP), and hepatic nuclear factor 4 alpha (HNF4α), 

as evidenced by confocal imaging (Figure 3.3i-p; Supplementary videos 3-5). 

Quantitation of AFP and ALB staining (Supplementary Fig 4) supported the trends in the 

proteomic data (Supplementary Table 1). HNF4α is a master regulator for hepatocyte 

differentiation [235] and is essential for the expression of other hepatic transcription 

factors and for maintaining hepatocyte function [236, 237], which remained consistently 

expressed throughout the time course. AFP, a glycoprotein derived from embryonic 

endoderm cells of foetal liver, decreases in abundance throughout hepatic maturation 

[238] whereafter ALB progressively increases in abundance in mature livers [239]. AFP 

and ALB increased in abundance in HepG2 spheroids, which given the cellular origin of 

these cells as being from a well-differentiated hepatocellular carcinoma, the progressive 

increase in AFP expression is expected [240].  
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Figure 3.3: Images of the progression of HepG2 spheroids over a time course of 6 weeks in culture. Light 

micrographs depicting HepG2 spheroids at Days 14 (a), 21 (b), 28 (c), and 42 (d) post seeding. Fluorescent 

micrographs of HepG2 spheroids at Days 14 (e), 21 (f), 28 (g) and 42 (h) stained with FDA and PI showing 

maintenance of esterase activity and no evidence of compromised cell membranes. Confocal images of cleared 

HepG2 monolayers (i) and cleared spheroids at Days 14 (j), 21 (k), 28 (l), stained with DAPI (blue), ALB 

(Albumin, green) and AFP (α-fetoprotein, red). Confocal images of HepG2 monolayers (m) and cleared spheroids 

at Days 14 (n), 21 (o), 28 (p) stained with DAPI (blue) and HNF4α (orange). Scale bars 100 µm for spheroids 

and 20 µm for monolayers. Generated using Zeiss Zen Blue edition software 3.0 

(https://www.zeiss.com/microscopy/int/products/microscope-software/zen.html). 

  

The relative quantitative proteomic data generated allows for not only a global overview 

of the divergence of monolayer and spheroid cultures but also for interrogating the 

abundance of enriched protein data sets which underlie these differences. Spheroid 



83 

 

culture improves the expression of cell specific markers, suggesting that cells within 

spheroids become functionally closer to their in vivo counterparts [241-243], which has 

been observed in numerous hepatic cell spheroid cultures [218, 219, 227]. The potential 

for bias in the protein expression patterns within the enriched data sets due to the cellular 

origin of these spheroids could be a limitation. Therefore, datasets from this study were 

searched against a list of proteins which correlates with hepatic phenotypes from 

previous studies [218, 219, 244] and then enriched for analysis. Expression of proteins 

typically followed a progressive pattern whereby if a protein is up or down regulated at 

Day 14 this change continues and is amplified at Day 28 (Fig 3.4, Table 2; and 

Supplementary Table 6). Several proteins exhibited reduced abundance in spheroids 

when compared to the monolayer cells, namely; CEBPA (enhancer-binding protein 

alpha), EPHX2 (bifunctional epoxide hydrolase 2), MAT1A (adenosylmethionine 

synthase isoform type-1), CPS1 (carbamoyl-phosphate synthase), and AGXT (pyruvate 

aminotransferase). These proteins have a variable expression profile within 

hepatocellular carcinoma and liver tissue. Decreased AGXT expression is implicated in 

the progression of hepatocellular carcinomas [245], while CEBPA has a role in the 

regeneration of normal livers and typically shows down regulated levels of its mRNA 

expression during growth of freshly isolated hepatocytes [246]. This data shows that 

HepG2 cells express hepatocyte marker proteins more abundantly when cultured as 

spheroids for more than for 21 days, suggesting that they could attain a more hepatocyte-

like phenotype than can be achieved during monolayer or early spheroid culture. Indeed, 

upregulated proteins fulfil a variety of hepato-specific functions such as those acting as 

nuclear factors (HNF4α and GATA4), apolipoproteins (APOA/B/C variants), and 

cytokeratins expressed in bile canaliculi of mature hepatocytes (KRT18). Their relatively 

increased abundance may still be insufficient, or conversely exceed what is observed 

within whole liver tissue but provides insight into the continual proteomic changes 

taking place during the time-course of spheroid culture. Cohorts were further enriched 
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for proteins involved in hepatic drug metabolism using the “core” and “extended” 

Absorption, Distribution, Metabolism and Excretion (ADME) lists 

(http://pharmaadme.org/; Supplementary Tables 7, 8) This ADME protein cohort was 

poorly represented in the data set, with only 94 proteins of the combined list of the 299 

search proteins present. This could be due to the poor metabolic competence of these cells 

or alternatively due to a relative low abundance of these proteins within whole cell 

lysates. Where present, these proteins exhibited a variable expression change with time 

(Supplementary Figure 5).  

http://pharmaadme.org/
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Figure 3.4: Hierarchical clustering of enriched proteins representative of a hepatic phenotype. Figure generated 

using Perseus v. 1.6.7.0 software [231]. 
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Table 3.1: Expression of proteins representative of a hepatic phenotype as compared to monolayers. 

Gene names T-test 

Significant 

D14C 

T-test 

Significant 

D21C 

T-test 

Significant 

D28 

Mean 

D14C 

Mean 

D21C 

Mean 

D28C  

  

       

C9 + + + 1.91 2.27 2.69 

APOC2    0.25 -0.24 -0.25 

CEBPA +  + -0.33 -0.2 -0.41 

EPHX2 + + + -0.32 -0.44 -0.59 

MAT1A + + + -0.74 -0.65 -0.85 

CPS1 + + + -0.39 -0.68 -0.94 

AGXT + + + -1.02 -0.91 -1.16 

APOA1 + + + 1.41 1.75 1.88 

VTN + + + 1.11 1.50 1.63 

ITIH2 + + + 0.82 1.33 1.59 

ITIH4 + + + 0.72 1.40 1.86 

APOA2 + + + 1.16 1.12 1.05 

HP + + + 0.89 0.93 1.27 

ASGR1 + + + 0.93 1.08 1.22 

ITIH3 + + + 0.55 1.10 1.19 

FGG + + + 0.56 1.01 1.44 

FGA + + + 0.72 1.15 1.39 

FMO5 +   -0.37 -0.02 0.28 

HNF4A   + -0.11 0.13 0.15 

PROX1 +  + -0.21 0.03 0.22 

SERPINA1 +   -0.24 -0.04 0.03 

GATA4   + 0.29 0.36 0.32 

AHSG   + 0.12 0.35 0.45 

EPHX1   + 0.16 0.26 0.51 
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AGT + + + 0.17 0.26 0.30 

KRT18 +  + 0.28 0.14 0.31 

SERPINC1  + + 0.03 0.16 0.31 

SERPIND1    0.02 0.10 0.19 

KRT8 +   0.15 0.04 0.16 

MAT2A +  + 0.79 0.03 0.82 

AFP  + + 0.19 0.87 0.77 

ALB  + + 0.17 0.81 0.65 

CFB  + + 0.27 0.58 0.63 

AMBP + + + 0.29 0.58 0.52 

C5  + + 0.21 0.57 0.82 

F2  + + 0.13 0.59 0.72 

A1BG   + + 0.41 0.70 0.75 

ASGR2 + + + 0.69 0.72 0.88 

TTR  + + 0.43 0.86 0.99 

MAOA + + + 0.37 0.88 0.95 

MAOB + + + 0.32 0.95 0.86 

APOB + + + 0.33 1.01 1.11 

       

       

1 Values reported are the means, as Log2(x), of three biological replicate experiments showing relative 

fold change relative to monolayer counterparts. + indicates significance for q-value ≤ 0.05. Original non-

averaged values may be found in Supplementary Table 1. 

 

 

3.3.1. Curating biological processes to assess spheroid dynamics 

In large proteomic data sets, biologically significant changes are not always of sufficient 

magnitude to reach statistical thresholds set prior to analysis. Spheroid cultures increase 

the proportion of cells in direct contact with each other. Intuitively, when considering the 

possible drivers of proteomic changes, the most likely contributors are the proteins which 
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facilitate these cell-cell interactions i.e. extracellular matrix (ECM) (GO:0031012), proteins 

which facilitate cell-cell attachment and regulate intercellular signalling pathways [247], 

which are associated with cell junction proteins (GO:0005911), and cell-cell adhesion 

molecules (GO:0098609). Therefore, the trends for proteins of these classes were 

investigated. To avoid missing potentially important divergent proteins or biasing based 

on statistical thresholds, protein annotation and functional classification was used, where 
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proteins were annotated and filtered based on the associated GO terms, and enriched 

using the PANTHER gene function classification system [248].  

Figure 3.5: Hierarchical clustering of proteins involved in the ECM. Figure generated using Perseus v. 1.6.7.0 

software [231]. 
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Major ECM proteins (Figure 3.5; Supplementary Table 9) increased in abundance in 

spheroid cultures, seemingly increasing with time. The greatest fold changes were 

observed for various functional proteins produced by the liver; coagulation factor XIII 

(F13A1), tissue inhibitor of metalloproteinase 3 (TIMP3), and thrombospondin (THBS1) 

with notable changes also evident in laminin (LAMB1/2 and LAMC1) proteins. Galectin 

proteins 1 and 3 (LGALS1 and LGALS3) significantly decreased in expression over the 

time course contrary to what has been reported for hepatocellular carcinomas [249]. 

Interestingly, when enriching for proteins involved in focal adhesions (Supplementary 

Figure 3.6; Supplementary Table 10), integrin beta 1 (ITGB1) was found to be one among 

only 4 proteins of this class with a significant up regulation through the time course of 

spheroid culture. Previous evidence has shown that the expression of ITGB1 is required 

for the expression of LGALS1 [250], and despite the increased ITGB1 expression, LGALS1 

was progressively decreased in spheroids. TIMP3 has been shown to have its expression 

silenced in hepatocellular carcinoma [251], contrary to the trend being observed in this 

study. Literature has reported that increased expression of specific laminin proteins is 

integral to the differentiation of stem cells into hepatocyte-like cells whereby progression 

of feto-hepatic phenotypes to a more mature hepatic phenotype is promoted [252]. 

 

Cell-cell junction (Supplementary Figure 7; Supplementary Table 11) and cell-cell 

adhesion proteins (Supplementary Figure 8; Supplementary Table 12) are involved in 

cell-substrate and intercellular attachment and regulate critical pathways such as 

monitoring of barrier functions in epithelia and playing critical roles in cell proliferation 

and cellular migration [253]. Integrins are the main cell-extracellular matrix adhesion 

molecules involved in the formation of focal adhesions and hemidesmosome junctions, 

while cadherins are usually involved in cell-cell adhesion molecules that forms adherens 

and desmosomal junctions. These anchoring junctions regulate the roles of intercellular 

molecules such as actin and intermediate filaments by dictating the cytoskeletal structure 
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of the cell. Cx32, a protein that forms gap junction channels for cell-cell communication 

[254], is progressively up-regulated throughout the time course. Though the abundance 

of proteins involved in cell-cell junctions and adhesions varied, where increased or 

decreased abundance was observed for a specific protein, this progression was again 

relative to duration in culture.  

 

3.4. Discussion 

Cell culture is integral in the development of therapeutics and continues to advance the 

understanding of biological pathways. The continual evolution of in vitro modelling has 

in recent times seen 3D cultures being widely adopted for new applications with several 

underlying assumptions being accepted. Spheroids allow for better biological mimicry of 

in vivo tissues when compared to monolayers [255], especially in the case of hepatocyte 

derived models [256, 257]. Furthermore, unlike monolayers which are generally limited 

in culture duration from seeding to confluence, spheroids may be cultured in excess of 5 

weeks if given optimal conditions. This greatly extended culture time necessitates that 

the focus shift to whether a certain model is the most appropriate platform to answer a 

certain research question but also requires assessing at which point the model can most 

accurately and reproducibly do so? This study presents a model for HepG2 cell culture 

which has, within set statistical parameters, highlighted a complete divergence of the 

cellular proteomic of spheroid cultures from that of monolayers, contrary to what has 

been previously observed when assessing spheroids cultured for a duration of 10 days 

[229]. This divergence takes place reproducibly across biological replicates, within this 

system, if the spheroids were cultured for a minimum of 14 days from seeding. The 

multidimensional cell-to-cell interactions and improved paracrine signalling resulting 

from spheroid culture allows for new gene expression pathways to be activated and 

ultimately allows for a divergence in cellular phenotype in cells receiving these signals 

[258, 259]. The magnitude of this divergence is not well investigated, nor is it frequently 
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reported in literature. Cells within spheroids progressively deposit extracellular matrix 

thereby altering the abundance of proteins involved in cell junctions and cell adhesion 

[17]. The ECM is an intricate network comprising of multiple proteins, many of which 

provide important information for the building of a sophisticated structure required for 

anchoring cells and sustaining normal function of tissues. The matrix itself has been 

reported to be considered as a paracrine/endocrine entity, with more complex functions 

than previously appreciated [260]. Additionally, in the case of hepatocytes, the 

mechanisms by which these cells attach, changes from being largely integrin mediated in 

monolayer culture to being facilitated by cadherins and extracellular matrix proteins, 

which drives further phenotypic changes [261]. A separate consideration, not addressed 

here, is the variability with which cells from different origins form spheroids and how 

universal these time dependent proteomic changes are across different cell type models.  

 

As reported before [229], spheroid proteomes do indeed diverge from monolayers, 

however, the time taken for this divergence to occur reproducibly across replicates was 

not consistent over the 10-day time course. Therefore, the culture period required to reach 

a stable or more biologically applicable phenotype is critical to the appropriate timing of 

experimentation using these models. Following this narrative, prior to acceptance as 

biological models, within academia or industry, cell phenotypes need to be thoroughly 

characterised. In this study it was observed that while spheroid cultures do converge in 

terms of proteomic phenotypes with time, the equilibrium reached is still not static but 

rather dynamic, and dependant on culture time. This makes standardisation challenging 

and researchers need to extensively characterise culture models with this consideration 

in mind. The focus for the development of 3D culture methodologies should be to 

develop reproducible and predictable ’fit–to-purpose’ assays or models. While no single 

model currently exists to perfectly recapitulate the in vivo scenario in its appropriate 
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complexity, the use and development of appropriate and validated models remains 

paramount to basic biological sciences.  

 

Although gene expression changes are typically several orders of magnitude higher than 

proteomic variances [262], the consensus and quality of the abundant protein cohort in 

spheroid cultures demonstrates that large scale proteomic changes should be used to 

characterize and define spheroid dynamics and not only evidenced at the transcript level. 

However, defining these ‘fit-to-purpose’ models requires the consideration that large fold 

changes in protein levels are not always essential to bring about biological changes, and 

that what is significant in a statistical sense is not always significant in a biological sense 

which is difficult to discern within global proteomic datasets.  

 

As presented here, cells of a single origin are capable of undergoing significant changes 

to the proteome even when keeping all external conditions consistent and introducing a 

simple modulation of the culture environment over time. The changes observed do not 

fully endorse the narrative that spheroid culture allow for a more representative model 

of the in vivo scenario. While these cells are derived from a hepatocellular carcinoma the 

changes observed do not fully fit with the notion that the phenotypes of these spheroids 

become more like a hepatocellular carcinoma. While some cancer signature proteins are 

indeed increased as in the case of AFP (Figure 3.3g, h, i, 4 and Table 2). Others such as 

TIMP3 (Figure 3.4), AGXT and LGALS1/3 (Figure 3.5) changed their expression in the 

favour of a non-cancerous hepatic phenotype. This was coupled to the general increase 

observed in the expression of hepatic marker proteins. Proteome changes of this nature, 

whether considering this platform to model either hepatotoxicity testing or 

hepatocellular carcinoma cytotoxicity, cannot be overlooked. 
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The time course presented here is limited to 28 days, and as noted from the observations 

presented in Figure 3.1, these changes remain dynamic, and it is unclear as to how long 

this progression can continue as well as how beneficial or detrimental it will be to the 

cellular functionality. It is also unclear as to whether a static equilibrium will ever be 

reached within this spheroid system. Additionally, dissociation by TrypLE may have 

biased the baseline of membrane bound proteins in monolayers as compared to 

spheroids. However, as the same monolayer served as the day 0 protein sample and 

seeded the spheroids, the changes in the proteome over days 14 to 28 successfully 

characterize the temporal dynamics of the spheroid proteome. Despite these 

uncertainties, spheroid models such as this now form a central component in the 

pharmaceutical industry and academia [263, 264] and the critical task remains to 

interrogate long term spheroid dynamics and validate these models as appropriate for 

the assays for which they are intended.  

 

This study provides insights into the dynamic nature of 3D culture systems and 

highlights important considerations essential to the application of a biological model. We 

have previously reported that spheroids cultured for 10 days in hanging-drops have a 

less reproducible proteome, across biological replicates, when compared with 

monolayers. Here it was demonstrated that increased culture time allowed for a continual 

divergence of the proteome of spheroid cultured cell replicates from monolayer cultures. 

There is a continuous, reproducible, divergence of proteome along the temporal frame 

with regards to proteins associated with hepatic phenotype, cell junctions, extracellular 

matrix, and cell-adhesion molecules. Taken together, these data demonstrate how highly 

dynamic the proteome of spheroid cultures are and provides a resource for assessing 

proteomic changes based on cell culture modulation. Adequate understanding of time-

dependent changes derived from modulation in cell culture methodology in spheroid 



95 

 

cultures is essential in reducing proteomic heterogeneity and may ultimately allow for 

these ‘fit-to-purpose’ models to become reproducible even across laboratories.  

 

3.5. Materials and Methods 

3.5.1. HepG2 cell culture and spheroid formation 

Human hepatoma HepG2 cells were obtained from Cellonex (Johannesburg, RSA: CHG2-

C) and cultured in Dulbecco’s modified minimum essential medium (DMEM) 

supplemented with 10% foetal bovine serum (FBS), and 2 mM GlutaMAX. HepG2 cells 

were thawed and cultured to 80% confluence (5-6 days) for 2 passages prior to harvesting 

monolayer controls (D0) using TrypLE and seeding spheroids. Spheroids were generated 

by seeding 20 000 cells/well in 45 µl of medium into Perfecta3D 96-well hanging drop 

plates (3D Biomatrix; Michigan, USA) according to the manufacturer’s protocol. Cells 

aggregated under gravity at the droplet apex to form a single spheroid per well and 

partial exchange of growth medium (12 µl) was conducted every alternate day. Spheroids 

were harvested for analysis at culture Days 14, 21, and 28. 

 

3.5.2. Sample collection and protein quantitation  

Cells from dissociated monolayers were harvested as the Day 0 control. Cells were 

washed with PBS and lysed using 100 µl lysis buffer (10 mM Tris-HCL (pH 8), 1 mM 

ethylene diaminetetraacetic acid, 0.5 mM ethylene glycol tetraacetic acid, 1% Triton X-

100, 0.1% sodium dodecyl sulphate, 0.1% sodium deoxycholate, 140 mM sodium 

chloride) containing cOmplete protease inhibitor cocktail. Cell lysis was aided by 

ultrasonic disruption on ice (1500 W, 5 min), and an additional 15 min incubation on ice, 

after which the lysate was centrifuged at 16 000 g for 10 min at 4°C. Soluble protein was 

quantified using the bicinchoninic acid assay. Absorbance was determined using a Bio-

Rad iMark microplate reader at 560 nm. Spheroids (n = 80) were collected, combined, and 
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homogenised in 300 µl lysis buffer using a Dounce homogeniser prior to protein 

quantitation as described above.  

 

3.5.3. Protein preparation and isobaric tag labelling  

Biological replicates (n = 3) of HepG2 monolayers (D0), HepG2 spheroids at Day 14 (D14), 

Day 21 (D21), Day 28 (D28) and a pooled group comprised of equivalent amounts of 

protein from each experimental group (Pool) were each labelled with one of the 6-plex 

tandem mass tags (TMT; Thermo Scientific; Maryland, USA). Seventy-five micrograms 

(75 µg) of protein was reduced at 37°C for 1 h using 10 mM dithiothreitol, then alkylated 

at room temperature with 25 mM iodoacetamide. Proteins were precipitated overnight at 

4°C after addition of 10 volumes of 100% acetone, harvested by centrifugation at 16 000 g 

(20 min) and resuspended in 100 mM HEPES (pH 8.5). Samples were digested with 

sequence-grade modified trypsin (1:40) for 1 h at 37°C with a further overnight digestion 

at 37°C after adding additional trypsin (1:40). Each TMT tag was resuspended in 41 µl 

mass spectrometry-grade acetonitrile. Supernatants from clarified (20 min; 16 000 g) 

digested peptides, were labelled for 2 h at room temperature under constant agitation. 

Labelling was quenched by adding 8 µl of 5% hydroxylamine for 1 h and incubated 

overnight at 4°C with dH2O [265]. To circumvent tag affinity bias, experimental group’s 

biological replicates were divided across tag sets and randomized across the 6-plex tag 

sets. The different tag labelled samples were combined to contain all corresponding 6-

plex tags and dried under vacuum centrifugation. 

 

3.5.4. Solid phase extraction and peptide fractionation 

The combined labelled peptides were solubilized in dH2O with 0.1% trifluoroacetic acid 

and loaded onto a conditioned SepPak C18 cartridge (100 mg), desalted and eluted in 

70% acetonitrile with 0.05% acetic acid. Eluted peptides were vacuum centrifuge dried 
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and resuspended in 100 µl of 20 mM ammonium formate (pH 10) with 4% acetonitrile. 

Sample complexity was reduced by peptide fractionation using a Shimadzu HPLC 

system coupled to a photodiode array detector. Priming was done using a 1:1 ratio of 

mobile phase A (20 mM ammonium formate buffer, pH 10) to mobile phase B (80% 

acetonitrile, 20 mM ammonium formate) for 10 min at 1 ml/min before reducing to 5% 

mobile phase B. Peptides were loaded via a single partial loop injection, onto an Ascentis 

C18 HPLC column (octadecyl bonded phase; 150 mm x 4.6 mm, 5 µm; pore size 100 Å). 

Peptides were eluted at a flow rate of 1 ml/min using an initial isocratic low organic 

mobile phase (5% B) after which the organic phase was increased using a multi-step 

gradient up to 60% B over a total run of 75 min with 1 min fractions collected. Collected 

fractions were pooled to approximately similar peptide abundance by combining 

peptides of different retention times into 13 fractions and dried by vacuum 

centrifugation. 

 

3.5.5. Mass spectrometry  

Labelled samples were analysed (Central Analytical Facility, University of Stellenbosch) 

using a Dionex Ultimate 3000 RSLC nano LC (Thermo Scientific; Massachusetts, USA) 

system coupled to a Thermo Scientific Fusion Orbitrap Mass Spectrometer equipped with 

a Nanospray Flex ionization source. Peptides (1 - 2 µg) were loaded (mobile phase A: 2% 

acetonitrile with 0.1% formic acid) onto a C18 trapping-column (Thermo Scientific; 5 mm 

x 300 µm, 5 µm; pore size 100 Å) and a Luna C18 analytical column (Phenomenex; 350 

mm x 75 µm, 3.6 µm). Samples were loaded onto the trap column at a loading-pump flow 

rate of 15 µl/min from a temperature controlled autosampler (7°C) for 5 min before 

eluting onto the analytical column. Peptide separation was performed at 50°C, at a 

flowrate of 500 nl/min using a non-linear gradient of 2 - 50% mobile phase B (100% 

acetonitrile with 0.1% formic acid) over 105 min. MS2 acquisition was performed using 
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monoisotopic precursor selection for ions with charge states between 2+ and 6+. 

Undetermined charge states and charge states > 24 were excluded. Dynamic exclusion 

was conducted with mass error tolerance of ± 10 ppm with isotopes excluded after 1 time. 

Intensity threshold was set at 5.0e4. Scans were collected in data dependent mode with a 

3 second cycle time.  Selected precursor ions were fragmented by higher-energy 

collisional dissociation set at a normalized collision energy (NCE) of 38% in the 

quadrupole mass analyser and then excluded from fragmentation once for 30 seconds. 

Fragment ions (MS2) were detected in the orbitrap mass analyser (resolution: 60 000), 

using centroid mode, with the automatic gain control (AGC) target of 1.0e5 and 

maximum ion injection of 120 ms. 

 

3.5.6. Data processing and analysis 

.Raw spectrum files were loaded into proteome discoverer version 1.4.1.14 (Thermo 

Scientific, USA) and spectra were filtered using a minimum and maximum precursor 

mass of 350 and 5000 Da respectively with a threshold peak count of 15. Precursor and 

fragment masses were set to 20 ppm and 0.02 Da respectively with a maximum of 2 

missed tryptic cleavages permitted. Dynamic modifications allowed for oxidation of 

methionine as well as deamination of glutamine and asparagine. Static modifications 

included Carbamidomethyl +57.021 (C) Da, TMT 6-plex (K) Lysine +229.163 Da, and TMT 

6-plex (N-terminus). Peak lists were searched against a UniProtKB/Swiss-Prot human 

database (Homo sapiens, Canonical sequences, November 2018, Sequences: 20 194) 

concatenated with the common Repository of Adventitious Proteins (cRAP) using a 

sequential alternating SequestHT/MSAmanda search engine schema. Amino acid 

modifications were iteratively added for each new spectral search cycle. Files from 

Proteome Discoverer software (.msf) were imported into Scaffold Proteome Software 

[266] for data validation using X!Tandem. Final spectrum and peptide matching 
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validation was conducted using Peptide Prophet and Protein Prophet Algorithms with 

the false discovery rates (FDR’s) for protein and peptides set to 1% and 0.1% respectively. 

Relative quantitation was performed using the reporter ions quantifier built into Scaffold 

with the averaged D0 replicate samples set as the reference group. Proteins with missing 

values and not identified with at least 3 unique peptides were filtered out. Those passing 

validation were further analysed using InfernoRDN v. 1.1.7626.35996 

(https://omics.pnl.gov/software/InfernoRDN; [232]), Perseus v. 1.6.7.0 software (Max 

Planck Institute of Biochemistry) [231] and RStudio [233]. For analysis conducted within 

Perseus and RStudio, data were transformed to log2(x) and analysed relative to the D0 

experimental group.  Global dataset statistics were conducted and group variations, 

standard deviations, protein ratios, and associated confidence scores were assigned for 

each protein group identified across TMT experiments. Hierarchical clustering was 

performed by clustering protein groups using Euclidean distances, and principal 

component analysis (PCA) was done using the Benjamini-Hochberg cut-off method with 

a 0.01% FDR. Volcano plots were generated using two-tailed t-tests and mean log2 fold 

change of 0.3 as well as an FDR cut-off of 0.05 used to assign significance (q-value). 

Correlation plots were generated using InfernoRDN, to allow all experimental groups to 

be relatively correlated, relative expression data from D0C, D14C, D21C and D28C were 

normalised to a reference group. Post normalisation, protein replicates were imported as 

relative-expression datasets and correlation plots generated. Annotations were assigned 

to protein accession numbers for gene ontology (GO), biological processes (BP), 

molecular functions (MF), cellular components (CC). Other analysis was conducted using 

GraphPad Prism windows software V7.0.0 (www.graphpad.com). 

  

http://www.graphpad.com/
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3.5.7. Spheroid fixation and immunofluorescent based staining 

HepG2 cells grown in monolayers were harvested, as described above, and seeded (60000 

cells/well) onto 12 mm coverslips coated with 500 µl Corning Matrigel Growth Factor 

Reduced (diluted 1/30 in pre-chilled DMEM) in 48-well plates. Cells at 70-80% confluence, 

were prefixed with 500 µl of 4% paraformaldehyde (PFA) for 10 min and then fixed in 

4% PFA with 8% sucrose for 40 min. Coverslips were washed 3 times with PBS before cell 

permeabilization and blocking in B-PBT (1% Triton X-100, 10% FBS, and 4% bovine serum 

albumin in PBS) for 30 min. Samples were incubated with selected primary antibodies 

diluted in B-PBT (Albumin, HNF4α, and α-fetoprotein; Table 1) for 2 h followed by 3 

washes in B-PBT before incubating with secondary antibody (Table 1) for 2 h. Whole 

spheroids were harvested by pipette aspiration and fixed in 4% PFA with 8% sucrose 

overnight. Spheroids were washed 3 times for 1 h in PBS on a plate shaker at 100 rpm. 

Permeabilizing and blocking was conducted as above in B-PBT for 2 h. Spheroids were 

incubated with selected primary antibodies (Albumin, HNF4α, and α-fetoprotein; Table 

1) in B-PBT overnight followed by washing twice for 2 h in 0.2% PBT (0.2% Triton X-100 

in PBS) and one wash in B-PBT for 2 h before incubating in secondary antibody (Table 1) 

in B-PBT overnight. Separate samples were LiveDead stained with fluorescein diacetate 

(FDA) and propidium iodide (PI) as described previously [176]. Positive controls for 

apoptosis induction were included as spheroids incubated in 10 µg/ml Puromycin for 16 

h. 
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Table 3.2: Primary and secondary antibodies for immunofluorescent staining. 

Primary antibody Species Vendor Dilution 

Albumin Chicken Abcam 1/100 

HNF4α Rabbit Abcam 1/100 

α-fetoprotein Mouse Abcam 1/50 

Secondary antibody Species Vendor Dilution 

Alexa Fluor 488  Goat anti-chicken Abcam 1/1000 

Alexa Fluor 555 Donkey anti-rabbit Abcam 1/1000 

Alexa Fluor 647 Donkey anti-mouse Abcam 1/1000 

 

3.5.8. Tissue clearing and microscopy 

Tissue clearing was performed using an adapted version of the ClearT2 method [267]. 

Briefly, antibody labelled spheroids were incubated, with agitation, in 25% formamide 

and 10% polyethylene glycol 6000 (PEG) in water. After 10 min the solution was changed 

to 50% formamide, 20% PEG and incubated for 2 h replenishing every 30 min until 

spheroid opacity diminished. Spheroids were washed briefly in PBS before mounting on 

a microscope slide, with a 0.12 mm spacer, using ProLong Diamond Antifade Mountant 

with DAPI overnight. Spheroids were then imaged using a Zeiss LSM 800 confocal 

microscope using a 20x objective. The aperture was set to 1 Airy unit and z-stack images 

were collected for each laser channel used (488 nm, 555 nm, 647 nm). Distances between 

z-stack image acquisitions were optimized per sample. Fluorescence and light 

microscopy were conducted using a Zeiss AxioVert A1 fitted with a Zeiss AxioCam 

digital camera. Images were analysed using Zeiss Zen Blue 3.0 software. Fluorescent 

signal from images was quantitated using the “Measure” tool built into the Zen Blue 

software package and normalised to relative fluorescence measurements to DAPI. 
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Chapter 4. Long-term drug cocktail exposure alters cellular 

phenotypes in HepG2 spheroid cultures  

4.1. Chapter Contextualization: 

The ability to recapitulate specific cellular states in vitro with acceptable accuracy is 

required when modelling disease or organotypic conditions. The dynamic temporal 

proteome changes observed in three-dimensional HepG2 cells were presented and 

discussed in Chapter 3 [182]. These data provide evidence for cellular adaptation in 

the context of transitioning from monolayer to spheroid culture environments, and 

the implications of the time course in culture on model applicability. Distinct 

differential expression was detected within the 2793 quantitated proteins, following 

spheroid culture for 28 days compared to the initiating monolayers was observed. 

Additionally, there were notable increases in expression of extracellular matrix, cell-

junction/adhesion proteins as well as subsets of hepatic proteins indicative of a 

maturing hepatic phenotype. However, the data presented in Chapter 3 do not 

account for the influence of exogenous drugs within this system, which is essential if 

HepG2 spheroids are to serve as in vitro preclinical liver models. Typically in vitro 

assessments of hepatotoxicity or drug metabolism employ drug concentrations which 

far exceed their clinically relevant ranges [268]. While this may be necessary to achieve 

a measurable response, it limits the models’ potential physiological inferences. 

Proteomics is an extremely useful technique for the sensitive detection and accurate 

quantitation of small changes in cellular protein expression [269], as has been 

demonstrated in results reported in Chapter 3. In this chapter the impact of extended 

exposure of HepG2 cell spheroids to a set of enzyme specific drugs in a low dose drug 

cocktail on the dynamic, time-dependent changes to the proteome was investigated.  

Cells were cultured in the presence of a drug cocktail containing seven drugs, which 

are metabolized by specific CYP450 enzymes in vivo, to assess whether the observed 

changes to the proteome had functional consequences on drug metabolism. This 
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would support the use of these cell models for hepatotoxic or metabolomic 

assessments, as postulated by others [227, 262, 270-272]. To assess possible proteomic 

and metabolomic changes while preserving translational relevance, the seven drugs 

in the cocktail were used at their typical clinical maximum observed concentration 

(Cmax), that had been shown to be well below cytotoxic thresholds as established in the 

earlier experiments conducted and reported in Chapter 2. 

 

4.2.  Materials and Methods 

4.2.1. Cell culture and long-term drug exposure of spheroid cultures 

Cultures of HepG2 spheroids were seeded, grown, and maintained using the hanging 

drop method as described in Chapter 2. For the assessment of proteomic changes 

occurring due to long term drug exposure in spheroid cultures, drug cocktail culture 

media was made by dilution of 50 mM drug stock solutions prepared previously to 

each drug’s respective Cmax as detailed in Table 4.1 below. Drug dilutions were made 

directly into cell culture media supplemented with 10% FCS and 2 mM GlutaMax to 

match conditions of spheroids cultured in earlier chapters. Cells harvested from 

monolayers for seeing spheroids (20 000) were resuspended directly in either normal 

complete media or drug cocktail supplemented media. Spheroid cultures, as control 

or drug treated groups, were cultured in parallel over the same time course of 28 days 

with samples collected for proteomic analyses at days 14, 21 and 28 in culture. For ease 

of reference, spheroid cultures exposed to drug cocktail are referred to as the 

“induced” denoted by the “I” suffix in downstream abbreviations. Medium exchanges 

were conducted as described in Chapter 2, with the induced groups receiving fresh 

drug cocktail supplemented complete DMEM media at each exchange. The DMSO 

concentration in the media for the induced groups was lower than ~ 0.03% at which 

concentration no cytotoxic effects were observed. 
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Table 4.1: Drugs and respective clinical Cmax concentrations which were used for culture 

Drug Name Approximate 

Cmax (ng/mL) 

Clinical Dose 

(mg) 

References 

Artemisinin 60.0 ± 32.5 20 x 4 (oral) [273, 274] 

Buspirone 1.13 ± 0.15 10 (oral) [275, 276] 

Dextromethorphan 2.9 30 (oral) [277, 278] 

Diclofenac 524 ± 222 100 (oral) [279] 

Midazolam 71 ± 25 5 (nasal) [280, 281] 

Omeprazole 283 ± 113 20 (oral) [282] 

Phenacetin 2100 ± 1300 1000 (oral) [283] 

  

 

4.2.2. Quantitative mass spectrometric proteomics 

All the materials and methods for processing of the drug exposed HepG2 spheroid 

samples for mass spectrometric analysis, including sample collection, spheroid lysis, 

protein quantitation, reduction and alkylation, trypsin digestion, TMT-labelling, 

desalting by SPE clean-up, high-pH reverse-phase HPLC fractionation and LC-

MS/MS analyses were conducted as described in Chapter 3 where the culture time 

course proteome changes were assessed.  

Isobaric peptide tagging of experimental groups were differentially labelled as shown 

in Table 4.2. Samples were labelled according to the following convention as DXXER 

where D represents days in culture with XX an integer placeholder for the day in the 

28-day culture time course, E is the drug exposed experimental condition with C 

indicating non-exposed controls or I indicating drug cocktail exposed experimental 

groups, and R representing the respective biological replicate number. Samples 

indicated as D0 were the reference monolayer cultured controls used to initiate the 

spheroid cultures. Samples denoted as “Pool” comprised of equivalent amounts of 

protein (15 µg) from each sample within respective replicate tag groups included in 

the pooled set. Label assignments for TMT isobaric tags were subject to forward, 
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reverse and partial randomisation labelling to account for potential tag-sample 

affinities or reaction biases.  

 

Table 4.2:Tandem mass tag sample labels for peptides derived from various experimental conditions 

Tag number Replicate 1 Replicate 2 Replicate 3 Replicate 4 

126 D14C1 D14C2 Pool Pool 

127 D14I1 D14I2 D0C2 D0C3 

128 D21C1 D28C3 D28I2 D21I2 

129 D21I1 D28I3 D28C2 D21C2 

130 D28C1 D0C1 D21I3 D14I3 

131 D28I1 Pool D21C3 D14C3 

 

 

4.2.3. Proteomics data processing and analyses software/packages 

Data processing was conducted as described in Chapter 3 with respect to search 

engines, data filtering and software pipelines. However, the final bioinformatics 

analysis pipelines were modified, and are discussed in more detail below. Briefly, 

relative quantitation was conducted using the reporter ion quantifier built into 

Scaffold V4.10 [266] for each confidently identified protein. Protein lists with relative 

quantitation, normalized to D0 values in Scaffold, were imported into R and R Studio 

for further processing [284, 285] normalised log(2x) fold change ratios were scaled up 

from continuous to discrete values compatible with downstream analyses, by 

applying a 104 scale factor to the entire dataset. The detection of differentially 

expressed proteins (DEPs) was conducted using the DESeq2 package [286] and the 

Perseus computational platform for proteomics [231]. Biological inferences were made 

using a combination of the Gene Ontology (GO) databases [287], Molecular Signature 

Database (MSigDB) [288], The Reactome Knowledgebase [289] and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [290]. Other miscellaneous statistical 

and bioinformatics packages imported into R included, Tidyverse [291], DplyR [292], 
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ggplot2 [293], FGSEA [294], GSVA [295], Pathview [296], Gage [297], Goplot [298], 

pheatmap [299] and EnhancedVolcano [300]. 

 

4.2.4. Immunohistochemistry and confocal microscopy 

Spheroid fixation, immunohistochemistry processing and confocal microscopy were 

conducted as described in Chapters 2 and 3. However, for tissue clearing the ClearT2 

method was replaced with an ultrafast optical clearing method (FOCM) originally 

described by Zhu et al. [301] which makes use of inexpensive and readily available, 

nontoxic reagents. The FOCM method has been shown to optically clear tissue slices 

of up to 300 µm in thickness, in as little as 2 min, without compromising the tissue 

morphology or causing immunofluorescent quenching.  Briefly, FOCM reagent was 

prepared by dissolving urea to 30%, D-sorbitol to 20%, and glycerol to 5% in terms of 

w/v in DMSO, all being highest purity reagents purchased from Sigma Aldrich (St. 

Louis, MO, USA). Optical clearing by FOCM was performed by transferring 

immunofluorescent labelled spheroids into FOCM reagent and gently mixing by 

aspiration to ensure complete exposure to the clearing solution. Spheroids were then 

incubated for approximately 5 min becoming mostly transparent. Antibodies used for 

the detection of hepatic marker proteins are summarised previously in Chapters 2 and 

3. 

 

4.2.5. Assessment of cytochrome P450 drug metabolism activity in HepG2 spheroid 

cultures 

Metabolism of commercial drugs is largely facilitated by hepatic CYP 450 enzymes. 

These enzymes usually facilitate the phase 1 metabolism of drugs with specific 

chemical moieties although CYPs generally show overlap in chemical classes of drugs 

they can metabolise. Using this relationship, it is possible, under controlled conditions 

to attribute the formation of a specific metabolite to the activity of a specific CYP 

proteoform. LC-MS/MS based analysis combines high sensitivity, selectivity, and 
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quantitative accuracy with the capacity for simultaneous quantification of multiple 

physiochemically distinct compounds. This makes LC-MS/MS an indispensable 

technique for assessing the biotransformation capacity of candidate in vitro hepatic 

models. A metabolomic study, using a selection of probe drugs from the Geneva 

phenotyping cocktail [177] was conducted to assess the temporal impact of three-

dimensional culture on the metabolic competence of HepG2 cells and to establish the 

functional consequences of extended cell culturing in the presence of a drug cocktail. 

The list of probe drugs used in the metabolic test drug cocktail and their respective 

CYP450 targets are listed in Figure 4.1 and Table 4.2 below. 

 

 

Figure 4.1: Metabolic pathways of the 7-drug Geneva phenotyping cocktail. Adapted with permission from 

[302] 
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Table 4.3: Cytochrome P450 probe drugs, their respective enzyme targets, and metabolites 

Probe drug Target CYP enzyme Metabolite 

Caffeine (CAF) CYP1A2 Paraxanthine 

Bupropion (BUP) CYP 2B6 4-Hydroxybupropion 

Flurbiprofen (FLB) CYP 2C89 4-Hydroxyflurbiprofen 

Dextromethorphan (DEX) CYP 2D6 Dextrorphan 

Omeprazole (OPZ) CYP 2C19 5-Hydroxyomeprazole 

Midazolam (MDZ) CYP 3A4 1-Hydroxymidazolam 

 

To increase spheroid numbers for these metabolic investigations, the hanging drop 

culture method was replaced by the 3D micro-mould culture method (described in 

Chapter 2). The 3D micro-mould allows for the simultaneous generation of 81 

spheroids/well and required less frequent growth medium exchanges. The use of this 

culture method is preferred when requiring high throughput culture, to maximise 

spheroid generation capacity for metabolomic studies. The reduced requirement for 

medium exchanges and lack of a hanging-drop is also desirable for improved 

handling and culture maintenance. Equivalent HepG2 spheroid cultures were 

cultured over the same 28-day time course as control or drug cocktail exposed groups, 

using the drug cocktail composition and drug concentrations shown in Section 4.2.1, 

Table 4.1 above. On selected terminal days (Days 14, 21 and 28) spheroids (n=81) were 

collected and transferred to sterile Eppendorf tubes, washed 3 times with 1 mL PBS to 

remove media and any residual drug cocktail for the induced group. Spheroids from 

both control and induced groups were transferred to new Eppendorf tubes and 

exposed to 1 mL of media containing drug probes from the Geneva phenotyping 

cocktail. All the probe drug were added at a fixed concentration of 5 µM to avoid loss 

of specificity for their target CYP and non-specific metabolism [303].  Separate sets of 

spheroids were incubated at 37°C for 3, 6 and 24 h for 3 biological replicates. After the 
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incubation period, spheroids were pelleted by briefly pulse centrifuging and the 

media supernatant collected and transferred to a new tube. 

 

4.2.6. Analyte extraction from biological matrices in preparation for MS analysis 

Samples prepared and stored as described in Section 4.2.5 above were thawed at 4°C 

then desalted and concentrated using an optimized solid phase extraction (SPE) 

method. Briefly, samples were thawed, and diluted with 10 volumes of MS-grade 

water. Cartridges (Varian Bond Elute Plexa, 60 mg bed, 1 cc vacuum type cartridges) 

were activated and conditioned with 1 mL of 100% methanol, equilibrated twice with 

1 mL of MS-grade water and slowly loaded (10 x 1 mL) onto the cartridge without 

allowing the media to dry. Loaded analytes were then washed with 3 mL of MS-grade 

water before slowly eluting with 2 mL of 80:20 methanol:ACN and collecting into 

clean Eppendorf tubes. Eluates were vacuum dried in a CentriVap Benchtop Vacuum 

Concentrator (Labcono, Kansas City, MO, USA), and stored dry at -20°C until analysis. 

Prior to analysis, died samples were resuspended in exactly 100 µL mobile phase (5% 

mobile phase B in mobile phase A) spiked with 2.5 µM of Acetaminophen (ACAP) 

serving as the internal standard. Samples were solubilized under these conditions to 

match the starting conditions of the LC-MS/MS method.  

 

4.2.7. Metabolic profiling by mass spectrometric assay  

A method for the detection and quantitation of CYP probe drugs and their 

metabolites, was adapted from a validated in-house developed method [302]. The LC-

MS/MS system consisted of an Agilent LC system (Agilent Technologies, Palo Alto, 

CA, USA), equipped with a 1290 Infinity Binary Pump, Infinity II autosampler, 

multicolumn thermostat and solvent degasser. This LC system was coupled to a Sciex 

4000QTrap triple quadrupole mass spectrometer, equipped with a Turbo-V® 

electrospray ionization (ESI) source (Sciex, Concord, Canada). Analyst™ Software, 

version 1.7.2 (Sciex, Concord, Canada), was used to operate the system, manage the 
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method optimization, data acquisition, and perform quantitative data analysis. 

Analyst device driver was used for the method integration and management of the 

Agilent LC method. Quantitation of probe drugs and their metabolites was achieved 

using a targeted multiple reaction monitoring (MRM) method. Instrument tuning for 

each analyte was conducted via direct analyte infusion of 10 µg/mL solutions using a 

Harvard syringe pump (Harvard Apparatus, Hollinston, MA, USA) with a flow rate 

of 10 µL/min. Precursor ion scans (Q1) were conducted for all probe analytes in both 

positive and negative mode, with the initial acquisition settings as follows: ion spray 

voltage (ISV) at 5500 V or -4500 V, curtain gas (CUR) set to 23 psi, turbo heater 

temperature at 200°C with the nebuliser gas flow rate kept at 36 psi and the heater gas 

flow rate at 35 psi. The delustering potential (DP) was optimised for each analyte in 

both positive and negative modes respectively.  

 

Ions from the Q1 scans with the highest intensity for molecular masses (M) of [M+1] 

in positive mode or [M-1] in negative mode were selected for optimization of 

transition pairs in product ion scans (MS2). The collision energy (CE) in Q2 was 

ramped to determine the optimum parameters for fragmentation of precursor ions to 

product ions (detected in Q3). Peripheral method parameters (source gas parameters) 

were optimized in tandem for each transition pair. A multi-step gradient separation 

of analytes was achieved using a Kinetex™ Biphenyl column (100 × 2.1 mm, 2.6 µm 

particle size) with mobile phases consisting of 10 mM ammonium formate for mobile 

phase A and an organic mobile phase B consisting of ACN:Methanol in a ratio of 20: 

80 with 10 mM ammonium formate. The method details for the HPLC and MS 

acquisition are detailed in Tables 4.4 and 4.5 below, respectively. Static parameters 

following initial optimisation for positive mode were as follows: Curtain gas 23 psi, 

collision gas set to medium, ISV to +5500 V, source temperature was maintained at 

450°C, ion source gases were set to 35 and 36 psi for G1 and G2 respectively, interface 

heater on and entrance potential and collision cell exit potential both set to 10 V. 

Parameters for negative mode were kept identical for all gasses and temperature, ISV 



112 

 

was set to -4500 V and entrance potential and collision cell exit potential both set to -

10 V.  Five microlitres of resuspended samples containing metabolites were injected 

and eluted from the column using an isocratic flow rate of 250 µL/min and gradient 

of increasing mobile phase B as per the parameters detailed in Table 4.4 below. Data 

were collected using a targeted MRM method for presence of the parent compound 

and paired metabolite transition pairs noted in Table 4.5 below. Area under the curve 

(AUC) was measured and used for relative quantitation of parent-metabolite pairs 

with the increases or decreases in metabolite formation inferred relatively as 

normalised to parent compound  

 

Table 4.4 Details of chromatographic gradient used in HPLC method 

Time [min] A [%] B [%] Max pressure limit [bar] 

0.00 90 10 800 

1.00 90 10 800 

1.25 68 32 800 

13.00 10 90 800 

14.50 10 90 800 

15.00 90 10 800 

17.20 90 10 800 
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Table 4.5:Optimised MS fragmentation parameters for analytes and internal standard 

Analyte Probing Monoiso

topic 

mass 

Q1 

Mass 

(Da) 

Q3 

Mass 

(Da) 

Dwell 

time 

(msec) 

ID DP CE Mode 

Caffeine CYP1A2 194 195.3 138.2 100 CAF 20 25 Positive 

Paraxanthine  180.1 181.1 124.2 100 PAR 70 27 Positive 

Bupropion CYP2B6 275.1 240.4 131.3 100 BUP 20 50 Positive 

Hydroxybupropion  255.1 256.4 238.1 100 OHBUP 50 52 Positive 

Omeprazole CYP2C19 345.1 346.3 198.1 100 OPZ 25 30 Positive 

Hydroxyomeprazole  361.1 362.1 214.4 100 OHOPZ 50 15 Positive 

Dextromethorphan (1) CYP2D6 271.1 272.4 147.4 100 DEX 90 50 Positive 

Dextromethorphan (2) CYP2D6 271.1 272.4 171.5 100 DEX2 90 50 Positive 

Dextrorphan  257.4 258.4 157.2 100 DTP 80 45 Positive 

Midazolam CYP3A4 441.1 326.3 291.4 100 MDZ 80 35 Positive 

Hydroxymidazolam  341.1 342.2 324.1 100 OHMDZ 89 29 Positive 

Flurbiprofen CYP2C9 244.1 242.9 198.7 100 Flu -50 -50 
Negativ

e 

Hydroxyflurbiprofen  260.1 259 215.1 100 4OH-Flu -50 -20 
Negativ

e 

Acetaminophen (IS) NA 151.1 152.17 110.1 100 APAP 50 30 Positive 

 

4.3. Results and Discussion 

Many candidate in vitro hepatic models assess hepatic marker gene expression at the 

level of mRNA transcript or the secretion of classic hepatic marker proteins which can 

be easily misconstrued to represent physiological functionality [227, 262, 272, 304]. 

While these parameters are important to characterize these models, inferences that the 

models robustly replicate in vivo functionality should be made with care. Currently, 

no in vitro model is able to accurately replicate the highly complex interactions 

involving multiple biological systems seen in vivo. Global hepatic function is complex 

and relies on proteome crosstalk between multiple cell types present in the liver and 

the plasma. Even when constraining the model to represent one specific cell type, 

creating inferences from a limited panel of typical marker proteins would be 
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meaningless without contextualizing these markers against the global biological 

background for that cell type. In earlier chapters it was shown that HepG2 spheroids 

progressively change the expression of many protein groups compared to monolayer 

counterparts by simply transitioning from two-dimensional to three-dimensional 

cultures. This change in the proteome occurs while maintaining and enhancing, 

relative to monolayer, the expression of several typical hepatic marker proteins 

(Chapter 3, Figure 3.4) while progressively depositing extracellular matrix proteins 

(Chapter 2, Figure 2.12 and Chapter 3, Figure 3.5). Here the analyses have been 

expanded to include and characterise the proteomic and selected metabolomic 

changes in spheroids cultured for an extended time (28 days) in the presence of an 

induction drug cocktail relative to equivalent non-induced spheroids. 

4.3.1. Comparison of the proteomic changes in long-term induced vs control HepG2 

spheroids  

Successful isobaric labelling and quantitative proteomic analyses successfully 

identified over 5000 proteins, filtering data as conducted previously reduced the 

dataset to 4817 proteins which were present in all replicates with at least 3 unique 

peptides. Unsupervised hierarchical clustering analysis based on changes in protein 

abundance is useful for simultaneously identifying the similarities and differences 

between the global proteome of experimental groups. Replicates of HepG2 spheroids 

clustered distinctly according to both culture timepoint and to drug exposure 

conditions. In general, spheroid experimental groups trended similarly in the 

progressive increased or decreased expression of specific pathway related proteins 

within their proteomes compared to the monolayers used to initiate the spheroids. 

The proteome of these monolayers served as the mean protein group level 

normalization point for all changes observed. Pronounced proteome changes were 

evident within the control spheroid group, which appeared to be dependent on the 

elapsed time in culture. Clustering of induced groups, while still evidently different 



115 

 

compared to monolayers, showed fewer time dependent changes from Day 14 

through to Day 28 than for the control spheroids. 

 

 

 

Figure 4.2:Hierarchical clustering of proteomic data from spheroid and monolayer experimental groups  

 

The progressive changes in the proteome are also clearly visualized when examining 

the relative contributions to cohort variance as illustrated in the principal component 

analysis (PCA) plots (Figure 4.2). While all spheroid groups resolve from monolayer 

groups, clustering also resolved according to control or drug exposure conditions. A 
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progressive culture-time related difference could be seen (apparent up- and down-

regulation with time) within the control spheroid groups. 

 

 

Figure 4.3: A PCA loading plot of HepG2 cell replicate proteomes for monolayers (red ring), drug induced 

spheroids (black ring), and control groups (blue ring), sample timepoints are denoted by colour and shape, 

for D0 monolayers (red squares), D14C and D14I spheroids (blue squares and circles respectively), D21C 

and D21I spheroids (green squares and circles respectively) and D28C and D28I spheroids (orange squares 

and circles respectively). 

 

Another informative method for visualizing global trends across large datasets is 

though the generation of correlation matrices, whereby the agreement of change 

between datapoints of common identities across experimental replicates are plotted 

against each other. Pearson correlations (Figure 4.3) demonstrated the highest 

correlation (approaching 1) between biological replicates of the same time points and 

within the same experimental grouping (control or induced). Interestingly, while the 

correlation between control and induced spheroids was reasonably high at the 

beginning of the incubation time course, with correlation coefficients of ~0.6 - 0.75, 

these became progressively less correlated as incubation time increased. It could be 

postulated that while control and induced spheroid groups differ within each 

respective proteome relative to monolayers, the protein cohorts which are 
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differentially expressed across experimental grouping could reflect distinct functional 

differences. 

 

 

Figure 4.4: Correlation plot of Pearson correlations between experimental group 

 

Understanding the reproducibility and proteomic concordance between biological 

replicates of spheroids across different time courses is important to validate the 

model’s robustness and suitability of both the biological and technical assay 

approaches utilized. Understanding the probable mechanisms that drive these 

proteomic changes, as well as the effect of these changes have on cellular function are 

relevant objectives of this study. To this end, the functional and biological nature of 

the changes observed were characterized using the inferred protein identity and the 

relative changes in specific protein abundance that could be assigned to known 

biological pathways. 
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4.3.2. Bioinformatics analyses for high level biological inferences from proteomic 

data 

The progressive development of quantitative methods has seen proteomics become a 

powerful tool for the analysis of biological systems. These methods can be leveraged 

to understand different aspects of systems biology such as disease progression or 

prognosis, biomarker identification as well as elucidating the proteomic outcomes of 

genomic and transcriptomic perturbations [305]. Classically these quantitative 

experiments make use of a hierarchical data structure, that is, intensity information 

from summed or median peptide spectrum matches are inferred into amino acid 

sequence of a peptide then the cumulative or median peptide abundances used to 

estimate matched protein group abundances. The subsequent analysis steps are 

critical for gaining insight into the biological underpinnings which determine shift in 

cell functions or phenotypic states. This process usually begins with statistical 

methods for determining the differentially expressed proteins (DEPs) across 

experimental groups. Despite many technological advances in the field of proteomics, 

lack of standardized methods for data analysis leaves bioinformatic approaches open 

for end user discretion. Proteomics datasets come with several unique challenges, 

including a potentially high number of missing values, batch and instrument bias 

effects, as well as the high degree of potential technical but especially biological 

variances. As such, computational tools and software packages have been developed 

for data normalization and imputation of missing values to meet statistical processing 

requirements in quantitative proteomics workflows.  Smaller datasets in particular 

pose a challenge with missing values as the reliability of imputation becomes 

questionable, yet this phenomenon is less pronounced as datasets become larger [306]. 

The students t-test and analysis of variance are commonly used in proteomics for 

detecting DEPs even though both these tests carry well known limitations, which 

again, are more pronounced in smaller datasets [307].  
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In parallel to the technological strides made in proteomics fields, similar progress has 

been made in measuring gene expression. RNA sequencing (RNA-seq) has become 

the predominant tool for measuring gene expression, boasting high degrees of 

coverage, depth, throughput, and reproducibility.  To meet the increasing demands 

of RNA-seq data analyses, several statistical pipelines have been developed, with 

some of the more widely adopted being SAM, DESeq2, Limma and EdgeR. These 

pipelines have seen notable success with some already transferred directly to 

proteomics workflows [307]. Some common issues with the widespread adoption of 

these methods for use in proteomics data analysis are the inability to handle missing 

data and the production of continuous data instead of discrete integer values as in the 

case of quantifying transcript reads. To circumvent the issue of missing values, a 

variety of data imputation strategies have been developed, such as the k-nearest 

neighbour (KNN), maximum likelihood estimate (MLE), and single value 

decomposition (SVD) being among the more widely used [308]. Generally, the nature 

of the missing values relative to the dataset informs the most appropriate type of 

imputation strategy [309], however, paired differences of quantification strategies and 

imputation methods may produce variable identification of DEPs and support false 

conclusions in the analysis of proteomics data.  

 

During the initial filtering phase of proteomics data analysis pipelines, the most 

appropriate method of dealing with missing data needs to be decided. In the analysis 

used in this study, if identified proteins were not present in all replicates with at least 

3 unique peptides and 100% confidence they were removed from the data set. While 

this substantially reduced the size of the dataset it improved the confidence in 

downstream analysis and mitigated the possible variance contribution arising from 

imputation. Additionally, by removing these values, the limitations of software 

package to deal with missing values were also avoided. Previously the Perseus 

proteomics software package for the identification of DEPs and further bioinformatics 

analysis was used. In Perseus, the assignment of DEPs is based on the t-test method. 
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DESeq2 a statistical package for the detection of differentially expressed genes (DEGs) 

in RNA-seq data has recently been shown to be suitable for the analysis of label free 

proteomics data [309-311]. The use of DESeq2 in isobaric tagged proteomics has been 

limited due to the software requirement for discrete integer values. To circumvent this 

a global scaling method was applied, which served a dual the purpose of converting 

the continuous relative abundance data into integer values and to rescale the dataset 

to within the normal RNA-seq data range. An additional benefit of using DESeq2 for 

analysis is that there are many downstream statistical packages built into R that accept 

the DESeq2 object as an input which conveniently expands the available analyses 

methods without the need for porting data across multiple analyses platforms.  

 

Assessment of DEPs across spheroid experimental conditions and selected time 

course points was informative for understanding not only the degree of proteomic 

change conferred by each experimental culture condition, but also for understanding 

the holistic effect of these changes. When assessing DEPs, there are several 

considerations which must be carefully made. Firstly, statistical thresholding which 

generally serves to ensure that an appropriate statistical method is utilized. DESeq2 

uses a population size factor normalized negative binomial generalized linear model 

to assign differential expression [286], supported with a Benjamini Hochberg FDR 

correction [312, 313]. The second consideration is that of biological thresholding, 

which relates to the fold change cut-offs, and are often subjective and disputable. 

While it is common that widely differential gene expression in transcriptomic studies 

can result in differences between experimental conditions with fold changes of orders 

of magnitude apart, this is typically not the case in proteomics data, with the exception 

being seen in knock-in overexpression systems or knock-out expression inhibition 

systems. 
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Figure 4.5:Volcano plots contrasting DEPs between A) D14C spheroids vs monolayer and B) D14I spheroids vs monolayer. 
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Figure 4.6: Volcano plots contrasting DEPs between A) D21C spheroids vs monolayer and B) D21I spheroids vs monolayer 
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Figure 4.7:Volcano plots contrasting DEPs between A) D28C spheroids vs monolayer and B) D28I spheroids vs monolayer 
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Figures 4.4-4.7 show volcano plots of DEPs between same time point control and 

induced spheroids showing the expression changes relative to the initial monolayer 

counterparts at the three sampling timepoints over the 28 day culture time course, 

generated using the EnhancedVolcano R package [300]. Here, the monolayers were 

set as the reference group within the DESeq2 object using the factor relevel function. 

Therefore, changes in the spheroid groups were expressed as their relative fold 

changes compared to the initial monolayer cultures used to initiate the spheroid 

cultures, i.e. positive fold changes (positive values in red to the right) are due to higher 

expression in spheroids, and negative fold changes (in red to the left) are due to lower 

expression in spheroids. In general, all the spheroid experimental groups showed 

similar positive and negative differential expression compared to monolayers when 

considering only the statistical threshold (p-value).  However, when also considering 

the relative fold changes (p-value and Log2 FC), a larger number of proteins were 

significantly differentially expressed in the untreated control spheroid groups seen in 

Figure 4.4 A, C and E. When superficially examining the types of proteins increasing 

between control and drug induced spheroid groups, there is overlap in upregulated 

protein ID’s. Notably, in the earlier time points, multiple histone proteins were 

increased in both treated and untreated spheroids. Yet, disparities became evident 

across control and induced spheroid groups as the number of DEPs increased 

progressively over the time course in only control spheroid groups. Proteins showing 

increased differential expression in the induced groups included several with 

metabolic activity such as alcohol dehydrogenases (ALDH), ornithine 

transcarbamylase (OTC), Cytochrome P450 7A1, and UGT2B4 among others, while in 

the control groups various structural proteins showed increased differential 

expression, such as several non-muscle myosins (MYH9&10), laminin (LAMB1) and 

fibronectin (FN1) as well as some hallmark hepatic protein markers such as albumin 

(ALB) and apolipoprotein B (APOB). 
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4.3.3. Investigation of differentially expressed proteins across control and drug 

treated spheroid cultures 

The data presented above and in Chapter 3 highlight two variables which contribute 

to proteomic change in HepG2 spheroid cultures. The first being the temporal element 

where changes are proportional to time spent in culture, though this is continuous in 

control spheroids with evidence suggesting stasis between day 14-28 in induced 

groups. The second variable being long-term exposure to the drug cocktail. Given the 

observable disparity in DEPs after exposure to relatively low levels of drug cocktail, 

differences between DEPs from control and induced spheroids at identical culture 

time points were characterized.  To achieve this, the DplyR package in R was used to 

subset the dataset to enable direct comparisons between groups of interest. Volcano 

plots were used and unsupervised hierarchical clustering done using the top 50 

proteins (Figure 4.5) with highest Z-score variances using the pheatmap R package 

[299]. Contrasts were generated using the relevel function, as done previously, with 

the control spheroids group set as the reference level factor i.e. positive values are 

indicative of higher expression in induced spheroids and negative values are 

indicative of higher expression in control groups. Consistent with what was observed 

previously, when comparing differences using significance thresholds alone (p-

value), similar numbers of DEPs are noted between the experimental groups, but 

when the fold change contributions (p-value and Log2 FC) are included, the control 

spheroids show a greater magnitude of change. Unsupervised clustering of control 

versus induced groups indicated similar trends, (Figures 4.8-4.10) with variance 

contributed by upregulation being largely attributed to the control group spheroids. 

This is also noted when comparing these groups relative to baseline monolayer (D0) 

proteomes. However, as demonstrated by the paired volcano plots in the same figures 

drug treated spheroid groups also show progressive changes of different protein 

groups over time, though with a comparatively lower overall fold change. 
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Figure 4.8: Comparisons of differentially expressed proteins between control and induced spheroids from the same time points for A) Paired unsupervised clustering of 

top 50 most variable proteins groups at day 14 and B). Volcano plot of D14C vs D14I spheroids. 
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Figure 4.9: Comparisons of differentially expressed proteins between control and induced spheroids from the same time points for A) Paired unsupervised clustering of 

top 50 most variable proteins groups at day 21 and B). Volcano plot of D21C vs D21I spheroids. 
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Figure 4.10: Comparisons of differentially expressed proteins between control and induced spheroids from the same time points for A) Paired unsupervised clustering of 

top 50 most variable proteins groups at day 28 and B). Volcano plot of D28C vs D28I spheroids. 
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Figure 4.11:Venn diagram showing the overlap of top 50 variably expressed proteins when comparing 

spheroid control vs drug treated groups over the time course  

 

4.3.4. Protein Set enrichment analyses of differential expression patterns between 

control and induced spheroid groups 

As is the case for many omics-centric experiments, large scale proteomic experiments 

produce increasingly large datasets of candidate proteins. Data from these 

experiments are notoriously challenging to analyse for functional implications 

without the use of various computational approaches. A typical approach for the 

analysis of large biological data sets is to investigate the enrichment of gene or protein 
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sets against various curated datasets. This reduces the high dimensionality of datasets 

and assigns multiple data features to one or more enrichment term(s) which are 

associated with a biological pathway, function or structure of interest [287, 288]. 

Inferences are made using statistical methods, such as hypergeometric testing or 

Fisher’s exact tests, to compare the proportion of genes or proteins within a global or 

curated list against those present within an associated annotation. Common tools used 

in this regard are PANTHER [314], GOnet [315], Ontologizer [316], FatiGO [317] and 

GOrilla [318]. These tools assign a p-value according to the probability that an equal 

to or greater than enrichment could be observed by chance. This approach has several 

limitations and inaccuracies as genes and proteins are co-expressed in the majority of 

organisms. Additionally, with proteomics data, these algorithms consider the proteins 

matched to an annotation term to be binary in the context of their contribution to the 

enrichment and does not account for each protein’s relative abundance.  

 

While these methods are useful for the identification of pathways or enrichments of 

interest when the data are curated strategically, as was done in Chapter 3, successful 

identification often relies on manual investigation which is highly labour intensive 

and tedious. An alternative approach is to use the popular approach of Gene Set 

Enrichment Analyses (GSEA) [294, 297, 319, 320] or, in the case of proteomics datasets, 

Protein Set Enrichment Analysis (PSEA) [321]. Unlike the classical GO enrichment 

analyses strategies, GSEA and PSEA do not require arbitrary threshold values to 

assign genes or proteins to a feature but instead, generate ranked lists of all gene or 

protein ID’s based on a feature of interest, such as their relative fold change values. 

These ranked sets are then assigned a weighted enrichment score (ES) in an annotation 

set derived from the MSigDB [288], based on the clustering of the pathways matching 

features on the ranked list. Statistical significance is then assigned using a calculated 

weighted and normalized enrichment score and a p- or q value is assigned. 

Enrichment clusters (Top 5 per group) were compared by sub-setting the most 

significantly enriched pathway term within fold change order lists of significantly 



131 

 

differentially regulated proteins. Enriched terms were plotted as dot plots indicating 

enrichment terms identified between groups and Cnet plots indicating the proteins 

involved with each enriched pathway term as well as identifying protein groups 

shared between enriched terms. The results from the PSEA analyses are presented in 

Figures 4.12-4.15 below.  

PSEA analysis was useful for confirmation of the trends observed between the control 

and induced spheroids as observed in the previous analyses of the data. Ranked 

protein lists were enriched and revealed phenotypic differences between control and 

induced spheroid groups, which became progressively more functionally adapted 

over the time course. Indeed, DEPs identified within control spheroids were 

associated with spheroid growth and architecture, as demonstrated by the enriched 

terms exogenous protein binding, integrin binding, collagen binding and 

carbohydrate binding. Conversely, the terms enriched from upregulated proteins in 

drug treated groups were related to enzymatically driven processes (oxidoreductase 

activity), suggestive of functional changes in the cell. Even though exposed to a drug 

cocktail constantly for 14 to 28 days in these induced groups and a significant increase 

in general metabolic enzyme expression is noted, the repertoire of clinically relevant 

CYP450 drug metabolising mono-oxygenase enzymes were still essentially absent 

from the observed proteome, even prior to filtering of datasets. This was despite the 

capacity for induction of CYP 450 enzymes, at gene transcription level in HepG2 cells, 

which has previously been reported by others [227, 262, 272, 304]. Interestingly, the 

CYP450 enzymes have not been detected in the proteome at significant levels in 

cultured HepG2 cells at any point during this research project. 



132 

 

 

Figure 4.12: Protein set enrichment analyses of differentially enriched proteins between control and induced spheroid groups at Day 14 in culture. A) Dot plot 

indicating terms significantly enriched between groups, coloured according to adjusted p-value. B) Cnetplot indicating proteins associated with respective enriched 

terms 
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Figure 4.13: Protein set enrichment analyses of differentially enriched proteins between control and induced spheroid groups at Day 21 in culture. A) Dot plot 

indicating terms significantly enriched between groups, coloured according to adjusted p-value. B) Cnetplot indicating proteins associated with respective enriched 

terms 
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Figure 4.14: Protein set enrichment analyses of differentially enriched proteins between control and induced spheroid groups at Day 28 in culture. A) Dot plot 

indicating terms significantly enriched between groups, coloured according to adjusted p-value. B) Cnetplot indicating proteins associated with respective enriched 

terms 
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The dissimilar expression profiles of control verses induced spheroids cultured for the 

same time course can be further examined using a more targeted analysis. For 

example, HepG2 spheroids without drug treatment was previously shown to 

progressively upregulate protein involved in the extracellular matrix [182]. This was 

not observed to the same extent in the case of drug induced spheroid groups. To 

investigate this in more detail, another useful analyses method was used, pathway 

analysis [198, 289, 296, 320].  The expression of proteins involved in the extracellular 

matrix were compared using the PathView package in R and searched against the 

KEGG pathway term for ECM-Receptor Interaction (hsa04512). In Figure 4.9, 

comparisons are made between control and induced spheroids, as done previously 

where higher fold changes in favour of control groups are expressed with negative 

values and positive fold changes are representative of upregulated in induced groups.  

In general, higher expression of ECM-Receptor binding proteins persist most strongly 

in the latter part of the culture time-course, however when comparing spheroid 

groups directly, control spheroids show a consistently higher expression of most ECM 

proteins which is amplified in later timepoints in culture. It should be noted that, 

relative to monolayer groups, both control and drug treated spheroids upregulate 

ECM proteins, but the extent of these changes differs.
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Figure 4.15: Pathway analysis for ECM-Receptor proteins for D14C vs D14I. Convention: red = higher in I 

groups, green = higher in C groups. Grey = no change and white blocks = protein missing from data 
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Figure 4.16: Pathway analysis for ECM-Receptor proteins for D21C vs D21I. Convention: red = higher in I 

groups, green = higher in C groups. Grey = no change and white blocks = protein missing from data 
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Figure 4.17: Pathway analysis for ECM-Receptor proteins for D28C vs D28I. Convention: red = higher in I 

groups, green = higher in C groups. Grey = no change and white blocks = protein missing from data. 

Immunohistochemistry identifies evidence for differential nuclear localisation of transcriptional regulator 

HNF4α 
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Successful clearing and immunohistochemistry labelled confocal microscopy resulted 

in spheroids with a normalised refractive index and greater laser penetration into 

deeper cell layers. Figure 4.18 shows a representative image for a HepG2 spheroid 

before and after clearing using the FOCM method [301]. Minimal distortions were 

seen with regards to overall spheroid shape and structure sparing a small haze which 

is observable surrounding the FOCM cleared spheroid, not present around the 

uncleared. This is possibly due to dissociating cells resulting from either mechanical 

damage due to handling or degradation due to exposure to the clearing reagent. 

 

 
Figure 4.18: Uncleared HepG2 spheroid (left), HepG2 spheroid cleared using the FOCM method (right). 

Scale bar = 100 µm. 

 

As discussed in previous sections, HNF4α is a transcriptional regulator which is 

required for both hepatic lineage specification and maturation. Post-developmental 

HNF4α is expressed within mature hepatocytes for maintenance of function. While 

the expression of HNF4α was shown to be upregulated in comparison to monolayer 

cultures but maintained relatively stable throughout spheroid cultures here (Figure 

4.19) we are able to see its differential abundances with regards to nuclear localisation 

with seemingly higher nuclear localisation seen in induced spheroid groups. 
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Figure 4.19: Confocal images of A) Control spheroid at day 28 in culture and B) Drug treated spheroid at 

day 28 in culture. Both immunohistochemically labelled with HNF4α (orange) and DAPI (blue). Scale bar= 

100 µm 

 

These changes were quantifiable by measuring fluorescent signal from captured 

images using the “Measure” tool built into the Zeiss Zen Blue software package. 

Relative fluorescent intensities were recorded and normalised to DAPI as done 

previously in Chapter 3 with the analysis expanded to include comparisons to drug 

treated spheroid groups. Figure 4.20 indicates progressive expression of these marker 

proteins as recorded by confocal microscopy analyses. 

  

A B
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Figure 4.20: Relative quantitation of hepatic marker protein expression in control and induced spheroid 

groups. Error bars as mean ± SEM, significance relative to day 14 control as * for p < 0.05, ** p < 0.01, *** 

p < 0.001. Determined according to multiple comparisons t-test with 1% FDR correction, n=5-8. 

 

Though, in general the protein expression trends recorded using semi-quantitative 

confocal microscopy analyses matched those observed within curated proteomic 

datasets, the pattern of expression for HNF4α did not recapture the significant 

increase seen within D28 induced groups here. This may be due to several reasons. 

The first is that, since HNF4α is predominantly localised to the intra-nuclear 

compartments where it is able to exact its biological functions, it may have been lost 

during pelleting of cell membranes during the sample collection phases of proteomic 

sample preparation. The second is that the observed changes in expression are due an 

experimental artifact. 

To further investigate these theories, we employed PSEA to monitor the relative 

normalised enrichment scores (NES) for protein sets identified as downstream targets 

for HNF4α between the similar pairing of D28C vs D28I spheroid groups. These 

signature sets were obtained from MSigDB in transcriptomic experiments conducted 

by others[322]. Figure 4.21 indicates the relative N S for downstream HNF4α targets. 
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Figure 4.21: PSEA generated NES for differentially expressed protein groups matching gene sets of 

downstream targets of HNF4α in D28I vs D28C spheroids. Positive value for NES is indicative of enrichment 

towards induced groups, negative NES is enriched in favour of controls 

 

While clear trends were observed for targets upregulated downstream of HNF4α 

activation, PSEA enrichment for ¾ of the pathways were not able to reach statistical 

significance. This is possibly due to coverage differences between transcriptomics and 

proteomics datasets where proteomics is not able to cover gene set enrichments with 

enough protein:gene matches to confer statistically significant enrichment. However, 

in keeping with the central dogma of molecular biology, it is reasonable to predict that 

transcription and protein expression are at least somewhat correlated. To further 

visualise the usefulness of this method. Proteins which were successfully identified 

within curated proteomics data that were matched to the most significant PSEA 

enrichment (SUMI_HNF4A_TARGETS). In total 11 proteins were able to be matched 

to the pathway gene dataset (11 out of 30). The DESeq2 log2 foldchanges for the 

identified proteins are presented in Table 4.6 below. 
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Table 4.6:List of proteins identified against signature gene set for HNF4α activation 

Gene name Uniprot Accession log2FoldChange lfcSE stat padj 

ACSM2B Q68CK6 1.014 0.123 8.222 0.000 

AKR1D1 P51857 0.450 0.068 6.584 0.000 

BDH1 Q02338 0.881 0.063 14.086 0.000 

BHMT Q93088 1.401 0.225 6.239 0.000 

FABP1 P07148 1.666 0.286 5.836 0.000 

KANK4 Q5T7N3 -0.173 0.052 -3.347 0.001 

LGALS2 P05162 1.023 0.085 11.998 0.000 

PLA2G12B Q9BX93 0.211 0.095 2.232 0.035 

RBP2 P50120 2.608 0.570 4.578 0.000 

SLC13A5 O75897 -0.240 0.063 -3.819 0.000 

SULT1C2 O00338 0.193 0.090 2.147 0.043 

 

 

4.3.5. Evaluation of the capacity for drug metabolism in HepG2 spheroids 

The proteomic transitions and potential benefits conferred on HepG2 cells, by virtue 

of extended three-dimensional culture, has been explored extensively above and in 

Chapter 3. However, despite proteome changes apparently indicating trends toward 

a cell status more representative of the in vivo tissue as a result of the culture process, 

these are arguably meaningful in the context of a hepatocyte model, if their principal 

utility relating to xenobiotic metabolism does not mimic the in vivo reality. To assess 

metabolic competence, an LC-MS/MS based metabolomic study using a targeted 

MRM based method and a validated phenotyping drug cocktail was performed.  

Figure 4.10 shows an extracted ion chromatogram (XIC) demonstrating the separation 

of probe analytes achieved using the method. Figure 4.11 is a representative 

calibration curve demonstrating method linearity for one of the probe analytes 

(midazolam). 
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Figure 4.22: Representative XIC for separation of probe drug analytes  

 

 

Figure 4.23: Representative calibration curve for Midazolam (MDZ) 
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The capacity for the liver to upregulate metabolic pathways in response to drug 

exposure is well established. HepG2 spheroids, when investigated for their ability to 

recapitulate this response, have shown variable results. Some studies report no 

detectable metabolic activity at all, while others infer this activity from upregulation 

of gene expression [227]. The metabolomic profiling of HepG2 spheroid cultures in 

this study gave mixed results with some probe drugs showing expected metabolic 

products at high enough concentrations to calculate a metabolite-parent drug ratio, 

while others did not produce any detectable expected metabolic products. This is 

especially true in the cases of drugs with a tendency to be spontaneously chemically 

modified such as the conversion of caffeine to paraxanthine (facilitated by CYP1A2) 

resulting in any potential metabolic formation of paraxanthine to not be resolved 

against the background (data not shown). In the case of flurbiprofen (CYP2C9) 

reduction of ionisation efficacy may have been a contributing factor causing a 

relatively lower overall sensitivity due to negative mode ionisation. This is in contrast 

to bupropion (CYP2B6) which despite having good sensitivity and low background 

was not detectable at all.  Figure 4.12 shows the observed conversion of probe drug to 

the expected metabolite, expressed as a ratio of metabolite to parent drug. Overall, the 

conversion of parental drug to metabolite ratios were low. While some probes had a 

consistent increase in the metabolite-parent compound ratio for induced versus 

control spheroids, other probes produced inconsistent high metabolite-probe drug 

ratios in either control or induced spheroid groups over time. These results could be 

due to the fact that the initial concentration of the probe drug may have been at a 

concentration that was excessive when considering the total protein present in the 

spheroid samples and the flux rate across the cell membranes. Parent drugs which did 

not show a detectable metabolic conversion resulting in a metabolite which was 

quantifiable against the background were not shown here. In general, metabolite-

probe drug ratios were highest in the Day 21 induced spheroid groups compared to 

other culture time points. Conversion of omeprazole (CYP2C19) was ambiguous and 
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did not exclusively favour the induced spheroid groups, with the Day 28 group 

showing increased metabolic activity within control spheroids. Metabolism of 

midazolam (CYP3A4) showed the most robust increases in induced groups and 

showed the highest relative difference at Day 21. Metabolic conversion of 

dextromethorphan (CYP2D6) showed a similar trend to that of midazolam but was 

not statistically significant except for the 3 h incubation of the Day 21 induced 

spheroid. 
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Figure 4.24: Probe drug to metabolite conversion by induced and control spheroid groups by time. Error bars as mean ± SEM, significance relative to day 14 control as * 

for p < 0.05, ** p < 0.01, *** p < 0.001. Determined according to multiple comparisons t-test with 1% FDR correction.

Time course metabolite generation for induced and control spheroids 
at various incubation time points
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4.4. Conclusion 

Quantitative proteomics, using isobaric tagging, was successful for the identification and 

quantitation of over 4800 proteins in biological replicates across the 7 experimental 

conditions surveyed in this study. As reported above (Chapter 3), the major changes in 

the spheroid proteome could be linked to the time in culture, and there appears to be a 

shift to a phenotype that is less orientated towards proliferation and shows more 

interaction with the extracellular matrix and potentially metabolic functionality. This part 

of the study expanded on the concept that the proteomic changes were related to time 

course that the spheroids were in culture and was investigated alongside the effect of 

long-term exposure to an induction drug cocktail added into the culture media. 

Perturbations to the proteome differed between the control and induction conditions 

compared to both the initial monolayers from which the spheroids were grown and to 

equivalent spheroids from the same paired timepoint. A potential mechanism by which 

drug exposed spheroid groups further change protein expression profiles is by 

modulation of HNF4α transcriptional activity as shown by the differential expression of 

downstream elements of HNF4α activation which were evident even at a protein level 

The adoption of cross-omic bioinformatics analysis methods have proven useful in the 

elucidation of the underlying mechanisms for the proteomic changes observed and have 

further served to characterize these changes in an objective and simplified manner. The 

differential expression of proteins that are involved in metabolic pathways in drug 

treated spheroid groups, was supported by the increase in drug metabolism seen within 

these groups. Though these differences are undoubtedly present, without a 

representative control for in vivo counterparts, the value of these changes is difficult to 

validate, and their relative representativeness is likely still insufficient for accurate 

recapitulation of hepatocyte xenobiotic metabolism. 
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Chapter 5. Global discussion and acknowledgment of limitations 

5.1. Overview and contextualisation 

Scientifically robust, clinically representative, and functionally translatable preclinical 

models have become increasingly required within pharmaceutical research. Regulatory 

bodies are constantly adapting the minimum requirements for approval and providing 

new mandates to the pharmaceutical industry. Mandates such as the FDA [323] requiring 

biotechnology companies to rethink and revisit preclinical studies and clinical trial 

designs. This shift occurred naturally though the industry and markets progressive 

adoption of targeted therapies for oncology indications. Historically, cytotoxic oncology 

agents were granted approvals utilising the widely adopted 3+3 dose escalation study 

design geared to find the maximum tolerated dose (MTD) that in the case of cytotoxic 

agents is also conventionally the most efficacious dose. However, in the context of 

targeted agents, the MTD may be well above the minimally efficacious dose as successful 

treatment is more reliant on receptor occupancy rather than attaining the highest dose 

possible. Consequently, this prompted a shift from a MTD informed approach to a model 

informed approach that is based on both pharmacokinetic and pharmacodynamic 

endpoints, which ultimately spares patients needless toxicity. Similarly, in the fields of 

preclinical modelling researchers are becoming more informed on the appropriate 

utilisation of biological models and realising the limitations of models currently in use. 

Preclinical models need to pivot from simply matching a cell type to a model to 

addressing and characterising function related the underlying biological mechanisms 

and questions at hand.  

This study set out to answer several questions related to better characterising HepG2 

spheroid cultures within the context of preclinical hepatic models for drug screening and 

metabolomic applications. Firstly, proteomic implications of spheroidal cell culture on 

HepG2 cells were characterised. Secondly, the temporal aspect of spheroid culture was 
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assessed to determine whether culture time further contribute to these altered proteome 

states. The analyses were then expanded to establish if these potential modulations could 

be manipulated towards more metabolically active states, as in the case of the metabolic 

adaptations which occur in vivo. Lastly, to measure if the proteomic shifts observed 

within both control and drug induced cultures were functionally translatable as clinically 

relevant. 

 

5.2. The use of quantitative proteomics to determine and characterise phenotypic changes 

Generation of robust biological data can be innately confounded by selection of 

inappropriate quantitative methodologies for endpoint assessments. Similarly, technical 

and processing workflows can introduce intrinsic biases. In the case of the labelled 

proteomics experiments conducted within this study, TMT labelling and MS based 

proteomics were able to, with reasonably high coverage and reproducibility, identify and 

show relative quantitative global proteomic changes undergone by HepG2 cultured as 

spheroids in the context of answering biologically relevant questions as highlighted 

above. However, it should be noted that workflow limitations were still present. Sample 

collection and lysis may bias the proteomic coverage which would be transferred to all 

downstream assays. When extracting proteins into aqueous solutions, lipophilic and 

other water-insoluble proteins may be discarded or pelleted during the removal of debris. 

These biases may be further compounded during the multiple sample transfer and clean-

up steps involved in the TMT labelling protocol. The use of high pH reverse phase 

chromatography using C18 stationary phase, while being widely adopted and 

appropriate for many proteomic applications, may result in the retention of certain 

protein groups [324], several of which could be of high interest in the context of this study, 

like the predominantly membrane bound CYP450 enzymes [325]. Proteins of interest may 

have been lost during the fractionation and recombination or during solid phase 
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extraction, where both strategies utilised reverse phase C18 elution. Additional sources 

of bias may be from large changes in pH causing peptide degradation or precipitation, 

loss of ionisation capacity or poor tryptic cleavages/miss-cleavages due to detergent or 

lipid binding. 

Capacity for identification of highly resolved biological pathways is greatly dependent 

on instrument capabilities.  

Orbitrap mass spectrometers are known for their high mass resolution, accuracy, and 

sensitivity, making them useful for a wide range of applications in fields such as 

proteomics, metabolomics, environmental analysis, and drug discovery. They are also 

used in imaging mass spectrometry, which allows researchers to map the distribution of 

molecules in a sample. Orbitrap mass spectrometers make use of Higher-energy 

Collisional Dissociation (HCD) which is useful when paired with TMT labelled samples. 

The HCD allows for more robust fragmentation of reporter tags which is essential for 

high resolution and robust relative quantitation.  

Selection of analysis software and search engines for protein identification assignments 

are also important. The use of differing methods for sample processing may yield 

different endpoint datasets which, when not carefully validated can lead to study 

limitations. 

In this study, the differences between two mainstream stochastic models for differential 

expression profiling were employed. While the current industry convention supports the 

use of multiple comparison t-tests with paired FDR corrections other methodologies such 

DESeq2s population size factor normalized negative binomial generalized linear model 

for the identification of differential expression may serve useful, especially when 

introducing FDR corrections, such as the Benjamini-Hochberg method. DESeq generated 

dataset objects may also be directly inputted into established downstream analyses 

pipelines with a greater number of comparative datasets than those making use of strictly 

proteomic based reference data. Naturally, new methodologies cannot be adopted 
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without considering potential limitations, such as the disparity in coverages across 

transcriptomic and proteomic datasets, although with the progressive improvement of 

mass spectrometers, sample preparation techniques and bioinformatics pipelines, these 

differences may become progressively smaller as proteomics technologies evolve. 

 

5.3. The use of alternative methods for measuring protein expression 

Throughout the sciences, there are very few instances where a single form of analysis is 

universally suitable especially for large data sets. The same can be said for proteomic 

analyses, where the adoption of multiple endpoint experiments may prove useful for the 

appropriate characterisation of proteomic signatures. While MS based proteomics is 

strongly preferred for large scale quantitation of differential protein expression, simpler 

methods, such as immunohistochemistry, may be employed when there are fewer 

measurable endpoints or a targeted approach is required, or where application of 

conventional proteomic assays are limited due to sample processing biases. Simpler 

assays can also be informative for go/no-go decisions for larger proteomic studies or to 

inform a preferred experimental design. 

 

5.4. Study findings 

Spheroids were characterized with respect to their relative expression of hepatic marker 

proteins relative to monolayers as well as across spheroid treatment conditions and time 

points. The high-level detection of differences in protein expression between groups as 

shown by differential growth kinetics, progressively different expression profiles as 

global proteomic adaptations are important considerations within the context of the 

translational aspects of this study. HepG2 cells, cultured as spheroids, display a wider 

array of structural and biological variances compared to their monolayer counterparts, 

including the much longer time for which they can be maintained in culture compared to 

conventional monolayer cultures These differences are also generally noted across 
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methods of spheroid culture techniques. Hanging drop models, while beginning with 

higher seeding densities, reach a growth plateau between 14 and 21 days in culture, a 

feature not observed in the equivalent culture time frame for micro mould cultures that 

generate smaller spheroids and are seeded with much lower cell numbers. In general, 

HepG2 cells did not display evidence of cytotoxicity in response to the induction drug 

exposure, even at the high 200 µM doses administered to monolayer cultures during dose 

response curve assays, a concentration at which some level of cytotoxic activity would 

typically be expected. Similar observations were made in the case of spheroid cultures 

where long term exposure of a (relatively) high concentration of 5 µM resulted in no 

significant cytotoxicity profiles, while exposure to far-lower concentrations were able to 

generate robust and significant changes at the level of the proteome. Additionally, 

qualitative changes to the proteomes of HepG2 cells between monolayer and spheroid 

cultures are evident even in relatively insensitive qualitative measurements such as SDS-

PAGE.  

 

This study also provides insight into the previously uncharacterised, dynamic nature of 

3D culture systems and highlights important considerations essential to the application 

of biological models in general. Previous reports have indicated that these changes were 

not robust in spheroids at 10 days in culture [229] . Here it was demonstrated that 

increased culture time allowed for a continual divergence of the proteome of spheroid 

cultured cell replicates from starting equivalent monolayer cultures. There is a 

continuous, reproducible, divergent temporal proteome profile with regards to proteins 

associated with hepatic phenotype, cell junctions, extracellular matrix, and cell-adhesion 

molecules. Taken together, these data demonstrate how highly dynamic the proteome of 

spheroid cultures are and provides a resource for assessing proteomic changes based on 

cell culture modulation.  
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Experimentation using quantitative proteomics, was successful in identifying and 

quantitating in relative terms, over 4800 proteins in biological replicates across the 7 

experimental conditions surveyed in this study. The major changes in the spheroid 

proteome could be coerced further by addition of a low dose drug cocktail, which shows 

rudimentary evidence of a shift to a phenotype that is less orientated towards 

proliferation and shows lower priority for the deposition of ECM proteins and potentially 

some degree of adaptation to metabolic functionality. Perturbations to the proteome 

differed between the control and induction conditions compared to both the initial 

monolayers from which the spheroids were grown and to equivalent spheroids from the 

same paired timepoint. A potential mechanism by which drug exposed spheroid groups 

further change protein expression profiles is by modulation of HNF4α transcriptional 

activity as shown by the differential expression of downstream elements of HNF4α 

activation which were evident at a protein level 

This study also demonstrated the presence of drug exposure driven metabolism in the 

case of CYPA4 with variable activity in CYP’s 2D6 and 2C1 . However metabolic activity 

was not detected for CYP’s 1A2, 2B6 and 2C , which may be related to the “high” 

concentrations of the probe drugs used in the assay protocol.  

The adoption of cross-omics assays and bioinformatics analysis methods have proven 

useful in the elucidation of the underlying mechanisms for the proteomic changes 

observed and have further served to characterize these changes in an objective and 

simplified manner. The differential expression of proteins that are involved in metabolic 

pathways in drug treated spheroid groups, was supported by the increase in drug 

metabolism seen within these groups. Though these differences are undoubtedly present, 

without a representative control for in vivo counterparts, the value of these changes is 

difficult to validate, and their relative representativeness is likely still insufficient for 

accurate recapitulation of hepatocyte xenobiotic metabolism. 

 



155 

 

5.5. Study limitations 

The requirement to adapt ones established strategies in light of new data can become a 

source of error and ultimately result in the inability to extrapolate one’s findings within 

the context of the larger experimental question. This study was no exception, and the 

limitations associated with its design will be discussed below. 

 

For the characterisation of hepatic models in the context of PHH it would have been 

highly beneficial to include a positive control for primary hepatocyte proteomes to serve 

as a frame of reference for the observed changes within HepG2 cultures as without these, 

observation can only be made with respect to other HepG2 cultures, thereby limiting the 

translational power of the study. 

 

For the establishment of true induced spheroid cultures, it may have been more beneficial 

to include a set of HepG2 spheroid which were cultured in the presence of a prototypical 

broad spectrum CYP inducer such as carbamazepine or phenytoin rather than the multi 

drug substrate cocktail, as it still remains uncertain as to whether these cultures would 

be able to become even more metabolically adapted, perhaps to the extent that CYP 

enzymes may be quantifiable within proteomic experiments 

 

The use of TMT labelled proteomics, while generally successful within the context of this 

study incurs great financial costs and time investment. This limited the possibility for 

further experimentation, or optimisation in terms of protein extraction methods and 

differing biological or mass spectrometer contexts. 

 

The use of gradient assisted subcellular fractionation may have been useful in the 

enragement of cellular fractions which are likely to contain CYP enzymes, such as the 

microsomal fractions. 
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The use of reverse phase C18 chromatography at all steps may have biased the protein 

subsets identifiable within this study, leading to selective removal of highly lipophilic 

peptides that would be representative of membrane binding domains of intrinsic 

membrane proteins, like the CYP4 0’s.
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