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rosmarinic acid, and quercetin as inhibitors of α-glucosidase and pancreatic α-amylase and 

lipid accumulation in HepG2 cells, important type 2 diabetes targets 

 

Kadima Samuel TSHIYOYO1, Megan Jean BESTER2, June C. SEREM2 and Zeno APOSTOLIDES1 

 

1 Department of Biochemistry, Genetics and Microbiology at University of Pretoria, South 

Africa 

2 Department of Anatomy at University of Pretoria, Pretoria, South Africa 

 

Main/Corresponding Author: Kadima Samuel TSHIYOYO 

Master’s candidate – Department of Biochemistry, Genetics and Microbiology at University 

of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa 

ORCID ID: https://orcid.org/0000-0002-0258-0825 

Email: tshiyoyosamuel.ts@gmail.com 

Telephone number: +27 79 189 4198 

 

Co-author: Prof Megan Jean BESTER 

Professor - Department of Anatomy at University of Pretoria, Pretoria, South Africa 

Email: megan.bester@up.ac.za 

 

Co-author: Dr June C. SEREM 

Senior lecturer - Department of anatomy at University of Pretoria, Pretoria, South Africa 

Email: June.serem@up.ac.za  

 

Co-author: Prof Zeno APOSTOLIDES 

Professor - Department of Biochemistry, Genetics, and Microbiology at University of Pretoria, 

Private Bag X20, Hatfield, Pretoria, 0028, South Africa 

Email: zeno.apostolides@up.ac.za   

ORCID ID: http://orcid.org/0000-0002-4111-6777 

https://orcid.org/0000-0002-0258-0825
mailto:tshiyoyosamuel.ts@gmail.com
mailto:megan.bester@up.ac.za
mailto:June.serem@up.ac.za
mailto:zeno.apostolides@up.ac.za
http://orcid.org/0000-0002-4111-6777


2 
 

Abstract 

Introduction 

Several therapeutic targets have been identified for the management of type 2 diabetes (T2D), 
including the inhibition of α-amylase and α-glucosidase. The present study determined the ability of 
curcumin, 18α-glycyrrhetinic acid, quercetin and rosmarinic acid to inhibit α-amylase, α-glucosidase, 
and hepatic lipid accumulation. 

Methodology 

In-silico enzyme inhibitory abilities of the compounds were assessed using docking analysis with 
Maestro and AutoDock vina. In-vitro biochemical assays were used to confirm docking studies; 3.5-
dinitrosalicylic acid (DNSA) and p-nitrophenyl-α-D-glucopyranoside (pNPG) assays for α-amylase and 
α-glucosidase inhibition, respectively. The ability to reduce lipid accumulation in HepG2 cells for 
NAFLD was evaluated. 

Results 

The relationships between in-silico and in-vitro inhibition results correlated well; a more negative 
docking score correlated with a lower inhibition constant (Ki). For α-amylase, the Ki values of the 
compounds were significantly higher (p < 0.05) than acarbose. For α-glucosidase, the Ki values of 
curcumin, 18α-glycyrrhetinic acid (18α-GA), and quercetin were significantly lower (p < 0.05) than 
acarbose. The IC50 was determined for these compounds in HepG2 cells. At the concentrations used 
to evaluate OA-induced lipid accumulation, the compounds were not cytotoxic. All compounds and 
metformin significantly reduced (p < 0.05) lipid accumulation in HepG2 cells. 

Conclusion 

Herbs/spices are rich sources of these compounds, providing a cost-effective, easily cultivated, and 

readily available source of compounds that can alleviate T2D symptoms. Curcumin is found in turmeric 

and rosmarinic acid in rosemary, where a dose of 1.3 g of turmeric or 1.6 g of rosemary is equivalent 

to 50 mg acarbose per meal. 

• Keywords  

α-amylase, α-glucosidase, herbal compounds, hepatic lipid accumulation, in-vitro cytotoxicity, reverse 
molecular docking, type 2 diabetes. 
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1. Introduction 

Diabetes is a disease associated with hyperglycaemia [1], and develops as a consequence of deficient 

secretion and/or action of insulin [2]. A recent report from the International Diabetes Federation (IDF) 

estimated that in 2019, approximately 9.3% of adults worldwide were living with diabetes, and this 

number could increase to 10.2% and 10.9% in 2030 and 2045, respectively [3]. Type 2 diabetes (T2D) 

is the most common type of diabetes and accounts for approximately 90-95% of all diabetes patients. 

Obesity and lack of physical activity are factors associated primarily with T2D [2] and often can lead to 

other complications, such as non-alcoholic fatty liver disease (NAFLD) [4]. NAFLD is considered to be 

a major leading cause of liver disease globally and is linked with different factors, such as fatty acid 

accumulation, insulin resistance, and disruption of insulin sensitivity [4]. The presence of T2D leads to 

more severe forms of NAFLD while NAFLD contributes to the increased incidence of T2D [5] through 

increased glucose production and hepatic insulin resistance. 

Specific enzymes hydrolyse dietary carbohydrates into monosaccharide before entry into the 

appropriate cells for energy or storage [6]. The two primary enzymes responsible for the hydrolysis of 

carbohydrates in the digestive tract [7] are α-amylase and α-glucosidase. α-Amylase is found in saliva 

and pancreatic juice, and α-glucosidase in the small intestine [8]. These enzymes hydrolyse the α-1,4 

glycosidic linkage of oligosaccharides and disaccharides to release glucose into the bloodstream. 

Pharmacologically, both enzymes are important targets, as enzyme inhibition will delay glucose 

absorption and consequently reduce the development of hyperglycemia after a meal in T2D patients. 

Some drugs minimize glucose absorption by inhibiting these enzymes. These inhibitors are acarbose, 

miglitol, and voglibose [9, 10]. Although all these drugs are currently in use, searching for new 

potential treatments remains essential due to cost, drug interactions and side effects, such as 

abdominal pain, fatigue, flatulence and diarrhea [11, 12]. 

Plants are sources of bioactive compounds that have shown significant benefits in medicine. The 

different compounds found in plants are mainly phenolics and flavonoids, which have shown to have 

some therapeutic effects [13]. Some medicinal plants/herbs have been investigated for their ability to 

help in the management of T2D [14-16]. Several studies have shown that herbal compounds have 

antidiabetic effects and may cause fewer side effects [12, 19-22]. 

Curcumin, 18α-GA, rosmarinic acid, and quercetin were the compounds used in the present study, 

and these compounds have been identified in commercial herbs/spices [14]. Curcumin is a polyphenol 

found abundantly in turmeric (Curcuma longa) [23]; 18α-GA is a pentacyclic triterpenoid found in 

liquorice (Glycyrrhiza glabra); quercetin is a flavonoid abundantly present in almost all herbs and 

spices; rosmarinic acid is a phenolic acid found abundantly in rosemary (Salvia rosmarinus). The aim 

of this study was to identify new inhibitors of α-amylase and α-glucosidase using in-silico and in-vitro 

studies and to investigate the effects of the compounds on hepatic lipid accumulation. 

2. Materials and methods 

2.1. Chemicals 

The following reagents were obtained from Sigma Aldrich (Missouri, USA): starch, pNPG, acarbose, 

curcumin, 18α-GA, quercetin, quinic acid, nerolidol, rosmarinic acid, oleic acid, oil red O (ORO), porcine 

pancreatic α-amylase (EC 3.2.1.1), intestinal α-glucosidase (EC 3.2.1.20) from Saccharomyces 

cerevisiae, 3.5-dinitrosalicylic acid (DNSA), Dulbecco’s modified Eagle’s medium (DMEM) and 

sulforhodamine B (SRB). HepG2 hepatocarcinoma cells were purchased from ATCC, and Caco-2 

adenocarcinoma cells were obtained from CELLONEX Separation Scientific (Johannesburg, South 

Africa). 
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2.2. In-silico study 

2.2.1. Compound preparation 

Chemical structures of the compounds were imported from canvas to Maestro and were drawn as 

SMILES obtained from PubChem (www.pubchem.ncbi.nlm.nih.gov/). The LigPrep function in Maestro 

was used to prepare 3D structures from 2D structures, preprocess the structures, and generate 

multiple poses from each structure [24, 25]. This function ensured that the structures were ready for 

docking. 

2.2.2. Docking software  

The in-silico data of the compounds were obtained using Maestro and AutoDock Vina from the DIA-

DB (http://bio-hpc.eu/software/dia-db/). Maestro is a Schrödinger software that uses the Glide 

scoring function; this scoring function analyses the different interactions in the ligand–protein 

complex and minimizes any steric clashes to generate docking scores [26]. AutoDock Vina uses an 

empirical scoring function that focuses on simple contact terms and the contribution of lipophilic and 

metal-ligand interactions in the ligand–protein complex to estimate the Gibbs free binding energy 

between the ligand and the protein [27]. 

2.2.3. Enzyme preparation 

The crystal structures of the enzymes were downloaded to Maestro from the PDB (www.rscb.org) 

using the respective PDB IDs for pancreatic α-amylase (4GQR) and intestinal α-glucosidase (3L4Y). The 

protein preparation wizard in Maestro was used to prepare enzymes for molecular docking. All 

cofactors and water molecules were removed, and the structures were optimized. This wizard 

resolved structural issues and made the structures suitable for docking (structural-based virtual 

screening) [25, 28]. 

2.2.4. Molecular docking 

The grid file and the ligand file are needed to run a docking job. The grid file was generated using the 

receptor grid generation tool in Maestro, keeping the default parameters. Protein docking was 

performed using glide HTVS, and the prepared ligands were docked against the generated grid file of 

pancreatic α-amylase and intestinal α-glucosidase enzyme complex. The docking score is relative to 

the ΔG of the protein-compound interaction; a more negative score indicates stability, thus strong 

binding affinity of the compound to the protein. Interactions in the protein-compound complex 

contribute to the estimation of ΔG, including hydrophobic interactions and hydrogen bonds [26, 27]. 

2.2.5. Physiochemical properties 

Selected compounds were further analysed using Schrodinger’s canvas program and the online tool 

pkCSM to obtain pharmacokinetic and toxicity properties. The SMILES notations of the compounds 

were imported to pkCSM to calculate the physiochemical properties by using a series of databases 

and machine learning based on learning patterns to build predictive models [29]. This is based on 

pattern recognition and algorithm to link similarities such between known compounds and possible 

potential drugs. 

2.3. In-vitro study 

2.3.1. In-vitro α-amylase inhibition 

To assess the inhibitory activity of the compounds against α-amylase, the following procedure was 

followed using a colorimetric assay as described by previous literature [30] with modifications. In 

Eppendorf tubes, 100 µL of the inhibitor (0 to 1.5 mM) was mixed with 100 µL α-amylase (2 U/mL) and 

http://www.pubchem.ncbi.nlm.nih.gov/
http://bio-hpc.eu/software/dia-db/
http://www.rscb.org/
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preincubated at approximately 25°C for 10 min before adding 100 µL of substrate starch (0, 2, 4, 5, 6, 

8, 9 and 10 mg/mL). After incubation at approximately 25°C for 10 min, 100 µL of DNSA colour reagent 

(96 mM) was added. After 10-min incubation at 85°C on a heating block, the solution was cooled and 

diluted with ddH2O before transferring a 200 µL volume to a 96-well plate, and the absorbance was 

measured at 540 nm. 

2.3.2. In-vitro α-glucosidase inhibition 

To assess the inhibitory activity of the compounds against α-glucosidase, a colorimetric assay was used 

following a previous study [30] with slight modifications. Working directly in a 96-well microplate, 

50 µL of 0.2 U/mL enzyme in phosphate buffer (100 mM, pH 6.9) and 100 µL of the compound or 

acarbose (0 to 8 mM) were preincubated at 37°C for 10 min before adding 50 µL of pNPG at different 

concentrations (0, 0.3, 0.6, 0.8, 1.25, 2.5 and 4 mM) in phosphate buffer (100 mM, pH 6.9). Next, the 

reaction was incubated at 37°C for 30 min before adding 50 µL of a 1 M NaOH solution. The addition 

of the base led to the deprotonation of p-nitrophenol, which becomes basic and generates a dark 

yellow colour that can be read at 405 nm. 

2.3.3. In-vitro cytotoxicity 

The in vitro cytotoxicity of the compounds was assessed using the sulforhodamine (SRB) assay. This 

method was performed similarly to the method used in the following study [31], with slight 

modifications. In a 96-well plate, a 100 µL cell suspension representing 1 × 105 cells was added to every 

well and then incubated overnight at 37°C with 5% CO2 to allow cell attachment. A volume of 100 µL 

compounds in (0.01, 0.1, 1, 10 and 100 µM) was added, and then the plate was incubated at 37°C with 

5% CO2 for 72-hours. Wells containing only cells and media were used as the negative control and 

Saponin was used as the positive control. After the 72-hours incubation period, the cells were fixed 

with 50 µL of 50% (w/v) trichloroacetic acid solution and incubated overnight at 4°C. The plates were 

then washed with water and dried in an oven overnight before adding 100 µL of 0.057% w/v SRB 

solution. After incubation for 30 min, the wells were washed with 1% v/v acetic acid and then dried 

overnight in an oven. Once dry, 200 µL Tris buffer (10 mM, pH 10.5) was added to each well, followed 

by gentle shaking at 550 rpm for an hour. The absorbance of the extracted dye was measured at 540 

nm, and the IC50 representing the concentration that induces 50% cell death was calculated for each 

compound. 

2.3.4. Hepatic lipid accumulation 

The effect of the compounds on inhibiting hepatic lipid accumulation was assessed in-vitro using the 

ORO staining method with OA as the stimulant for lipid stimulation. The experiment was carried out 

according to previous studies [32] [33] with some modifications. HepG2 cells were seeded on 96-well 

plates at a density of 5 × 104 cells per well and incubated overnight for attachment. The cells were 

then treated with the compounds and 1 mM OA for 48 hours before fixing the cells with 2% formalin 

for 30 minutes at 37°C. The medium was discarded, and then 100 µL of the ORO working solution 

(ratio 3:2 of 0.5% ORO dissolved in H2O) was added and incubated for 1 hour at room temperature. 

The staining solution was removed, and the plate was washed with tap water until the water was 

clear. Then, the plate was blotted dry. Microscopic images were taken to visualize ORO-stained lipid 

droplets in HepG2 cells. Then, the lipids were extracted with 100 µL of 60% isopropanol solution, and 

the absorbance was measured at 405 nm. The results are expressed as the percentage lipid 

accumulation relative to HepG2 cells exposed only to OA using the formula below: 

 

% 𝒍𝒊𝒑𝒊𝒅 𝒂𝒄𝒄𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 =  
(𝑨𝒃𝒔.  𝒕𝒆𝒔𝒕 𝒔𝒂𝒎𝒑𝒍𝒆)

(𝑨𝒃𝒔.  𝒐𝒍𝒆𝒊𝒄 𝒂𝒄𝒊𝒅 𝒐𝒏𝒍𝒚)
× 𝟏𝟎𝟎% 
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2.4. Herbs/spices dose-related to acarbose dose 

Online databases such as Phenol-Explorer [34] and previous studies, were used to find the amount of 

each compound in several herbs and spices. The herb or spice with the highest amount of the 

compound (mg of compound/100 g dry weight of the herb) was used to calculate the dose of each 

herb related to the dose of acarbose taken per meal, which is 50 mg. 

2.5. Statistical analysis 

All experiments were performed in triplicate with at least three independent repeats, and the results 

are expressed as the mean ± standard error of the mean (SEM). Excel from Windows 10 was used to 

analyse the data before exportation to other software for further analysis. The IC50 of the compounds 

was calculated using GraphPad Prism version 8.3.0 (San Diego, California, USA). Kinetic parameters of 

the compounds were calculated on Excel from Windows 10, and the graphs were generated using R 

Studio and Python 3.9. (Delaware, USA) on virtual studio code from Microsoft (Redmond, Washington, 

USA). The Ki values were obtained from the Lineweaver-Burk plot and by plotting secondary plots, and 

the data were analysed with a one-sided unpaired Student’s t test. Significance was considered at 

p<0.05 and is indicated either with * or a different letter of the English alphabet. 

3. Results 

3.1. In-silico studies 

3.1.1. Chemical structures 

Many herbs and spices, such as oregano, turmeric, rosemary, and liquorice, are known to have 

antidiabetic activity [14] [17]. These effects were attributed to the inhibition of carbohydrate 

hydrolysing enzymes and/or insulin action. Compounds that were the most abundant in these herbs 

and spices were selected (Figure 1), and these compounds were curcumin, 18α-GA, quercetin and 

rosmarinic acid with nerolidol and quinic acid as negative controls based on the docking scores. 

Acarbose a drug widely used in the treatment of T2D was also included  as a control.  
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Name: Acarbose 
Structure: Saccharide 

 
Name: 18α-glycyrrhetinic acid 
Structure: Triterpenoid 

 

 
Name: Curcumin 
Structure: Polyphenol 

 

 
Name: Nerolidol 
Structure: Terpene 

 
Name: Quercetin 
Structure: Polyphenol flavonoid 

 
Name: Quinic acid 
Structure: Cyclitol 

 
Name: Rosmarinic acid 
Structure: Phenolic acid 

Figure 1. Chemical structures of the selected compounds 
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3.1.2. Molecular docking 

For molecular docking studies, the PDB structures of the human pancreatic α-amylase (PDB ID: 4GQR) 

and intestinal α-glucosidase (PDB ID: 3LY4) from Saccharomyces cerevisiae were used (see Figure S1). 

Docking was performed using glide functions in Maestro, and the docking scores were then compared 

to those obtained from DIA-DB using the AutoDock Vina algorithm. The compounds, including 

acarbose as the positive control, were docked in the active site of both α-amylase and α-glucosidase 

(see Figures S2 and S3). 

Table 1. Docking scores of the compounds and acarbose docked to amylase and glucosidase. 

 Docking score (Kcal/mol) 

 α-Amylase α-Glucosidase 

Compound Glide AutoDock Glide AutoDock 

Acarbose -6.5 -7.5 -3.1 -6.5 

Curcumin -6.3 -8.2 -3.3 -7.5 

18α-GA -4.1 -9.8 -2.1 -7.4 

Nerolidol -2.5 -5.9 0.4 -5.9 

Quercetin -6.5 -8.1 -4.6 -7.2 

Quinic acid -5.2 -5.4 -4.7 -4.5 

Rosmarinic acid -6.0 -8.3 -4.1 -7.3 

 

Tables 1 shows the docking scores of the compounds. Curcumin, quercetin and rosmarinic acid had 

more negative scores than acarbose for α-glucosidase for Maestro and DIA-DB. These compounds 

were identified as promising compounds for further in-vitro studies. On the other hand, nerolidol had 

a more positive score than acarbose in α-glucosidase for Maestro and DIA-DB; therefore, it was used 

as a negative control for in-vitro studies. Figure 2 shows graphs illustrating the relationship between 

the two docking algorithm. 

 

Figure 2. Graph of AutoDock scores vs Glide scores showing the relationship between the Glide and 

AutoDock docking scores against α -amylase (Right) and α -glucosidase (Left) 

Table 2. Spearman’s and Pearson’s correlation coefficients between Glide and AutoDock Vina 

 Spearman’s coefficient ρ Pearson’s coefficient r 

α-Amylase 0.51 0.57 
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α-Glucosidase 0.46 0.31 

Spearman and Pearson’s correlation coefficients were used to determine the relationship between 

the two algorithms; positive coefficients were obtained for the two algorithms in α-amylase and α-

glucosidase. A positive coefficient between 0 and 1 indicates a positive relationship between the 

algorithms in predicting the affinity of the compounds for α-amylase and α-glucosidase (Table 2). 

Curcumin, 18α-GA, quercetin, and rosmarinic acid were identified as promising compounds for further 

analysis based on the positive in-silico enzyme docking interactions. In contrast, nerolidol and quinic 

acid were identified as negative controls due to poor inhibition of both enzymes in-silico. 

3.1.3. Physiochemical properties 

The physiochemical properties of selected compounds were obtained using Canvas a Schrödinger 

software and pkCSM, and the properties of each compound were compared to acarbose.  

Table 3. Predicted physiochemical properties of  acarbose and the compounds 

 HERG inhibitor #Stars Bioavailability score Lipinski #violation 

Acarbose No 13 0.17 3 

Curcumin No 0 0.55 0 

18α-GA No 0 0.85 1 

Nerolidol No 2 0.55 0 

Quercetin No 0 0.55 0 

Quinic acid No 0 0.56 0 

Rosmarinic acid No 2 0.56 0 

 

From Table 3, all compounds have a higher bioavailability score than acarbose, indicating that these 

compounds are absorbed and enter the systemic circulatory system which is not ideal as the targeted 

enzyme are in the lumen of the small intestine. However, these compounds may be multifunctional 

and have additional systemic targets.  In addition, all the compounds, including acarbose are not 

inhibitors of the HERG potassium channel. The promising compounds did not violate the Lipinski rules 

compared to acarbose, which violated three rules. Acarbose had more stars, suggesting that acarbose 

is less drug-like than compounds with fewer #stars. 

3.2. In-vitro studies 

3.2.1. Kinetics of the in-vitro enzyme inhibition 

The ability of the compounds to inhibit the enzymes was assessed by determining their Ki values 

compared to acarbose, the positive control. A lower value indicates more potent enzymatic inhibition. 

For α-amylase inhibition (Table 4), the Ki value of acarbose was significantly lower (p < 0.05) than the 

tested compounds. Of the compounds tested, curcumin had the second-lowest Ki value for the 

inhibition of α-amylase, indicating that it is a more potent inhibitor than the other tested compounds. 

The mode of inhibition for acarbose, curcumin, 18α-GA, rosmarinic acid, and quinic acid exhibited 
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mixed-type inhibition. Inhibition by quercetin was competitive, while nerolidol’s type inhibition was 

uncompetitive. Lineweaver burk plot were used to identify the mode of inhibition (Figures S8 and S9). 

Table 4. Ki values and types of inhibition of amylase by acarbose and the compounds 

Compound Ki ± SEM (μM) Type of inhibition 

Acarbose 31 ± 4 Mixed 

Curcumin 154 ± 17a Mixed 

Quercetin 465 ± 61a Competitive 

18α-glycyrrhetinic acid 723 ± 180a Mixed 

Rosmarinic acid 1082 ± 216a Mixed 

Quinic acid 2948 ± 169a Mixed 

Nerolidol 3044 ± 100a Uncompetitive 

Note: a Mean values with different letters are significantly different (p < 0.05) (n = 3) 

Table 5. Ki values and types of inhibition of glucosidase by acarbose and the compounds 

Compound K
i
 ± SEM (μM) Type of inhibition 

18α-GA 27 ± 4
b
 Non-competitive 

Curcumin 33 ± 2
b
 Mixed 

Quercetin 45 ± 6
b
 Mixed 

Rosmarinic acid 94 ± 13
a
 Mixed 

Acarbose 130 ± 10
a
 Competitive 

Nerolidol 1075 ± 132
c
 Competitive 

Quinic acid 2642 ± 394
c
 Competitive 

Note: Mean values with different letters are significantly different (p < 0.05) (n = 3) 

 

For α-glucosidase inhibition (Table 5), there was a significant difference (p < 0.05) between the Ki value 

of acarbose and those of 18α-GA, curcumin, and quercetin. These values were also significantly lower 

(p < 0.05) than acarbose, suggesting more potent inhibition of α-glucosidase. Only rosmarinic acid had 

a Ki value not significantly different (p > 0.05) from acarbose. The remaining two compounds, nerolidol 

and quinic acid, had Ki values significantly higher (p < 0.05) than acarbose, indicating weaker inhibition 

of α-glucosidase. The type of inhibition differed. Acarbose, nerolidol and quinic acid exhibited a 

competitive type of inhibition in which these compounds compete with the substrate pNPG to bind to 

the active site of α-glucosidase. In contrast, 18α-GA exhibited a non-competitive type of inhibition 

where binding is at a site other than the active site. Curcumin, quercetin and rosmarinic acid exhibited 

mixed-type inhibition a mixture of competitive and non-competitive inhibition. 
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Table 6. Spearman's and Pearson's correlation coefficients between in-vitro and in-silico studies for 

α-amylase and glucosidase 

 Spearman’s coefficient ρ Pearson’s coefficient r 

 α-Amylase α-Glucosidase α-Amylase α-Glucosidase 

AutoDock 0.32 0.93 0.32 0.93 

Glide 0.62 0.43 0.88 0.26 

 

Correlation studies between docking scores and Ki values were conducted by plotting a graph of 

docking scores (Glide and AutoDock) against the Ki value of each compound. Spearman’s and 

Pearson’s correlation coefficients were used to determine the relationship between the two studies. 

Positive coefficients were obtained for both α-amylase and α-glucosidase. A positive coefficient 

between 0 and 1 indicates a positive relationship between the in-vitro and in-silico study of the 

inhibition of α-amylase and α-glucosidase (Tables 7 and 8). 

3.2.2. In-vitro cytotoxicity 

Cytotoxicity was tested against HepG2 hepatocarcinoma, and Caco-2 adenocarcinoma cells (Table 7). 

The concentration range used for the evaluation of toxicity included the concentration used for 

hepatic lipid accumulation. Caco-2 adenocarcinoma cells represent cells of the human intestine and 

represent the site of α-amylase and α-glucosidase activity. 

Table 7. IC50 (in µM) of acarbose and the compounds on HepG2 and Caco-2 cells 

Compound HepG2 Caco-2 

Acarbose > 100 > 100 

Curcumin 41 ± 2* 15 ± 1* 

18α-GA 28 ± 8* > 100 

Nerolidol > 100 > 100 

Quercetin 54 ± 2* > 100 

Quinic acid > 100 > 100 

Rosmarinic acid > 100 83 ± 3* 

 

In the HepG2 cell line, 18α-GA, curcumin, and quercetin had significantly lower (p < 0.05) IC50 values 

than acarbose. In contrast, no cytotoxicity in this cell line was observed for rosmarinic acid, quinic acid 

and nerolidol at concentrations up to 100 µM. 

In the Caco-2 cell line, the IC50 of curcumin and rosmarinic acid was significantly lower than the IC50 of 

acarbose. Quercetin, nerolidol, quinic acid and 18α-GA were not cytotoxic at any of the concentrations 

evaluated. 

3.2.3. Hepatic lipid accumulation 

Oleic acid induces lipid droplet accumulation in HepG2 cells, treatment with the compounds were 

compared to the control with OA added and the vehicle control (DMSO) with no OA added after 48 
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hours exposure (Figure 3). Quantification of lipid droplets after treatment with metformin at 1 and 

10 µM indicated a significant decrease in lipid accumulation (Figure 3). At 1 µM, curcumin, quercetin, 

and quinic acid caused a significant decrease in lipid accumulation. At 10 µM, all compounds except 

curcumin caused a significant decrease in lipid accumulation. Metformin and quercetin showed a 

significant dose-dependent decrease in lipid accumulation. 18α-GA and rosmarinic acid at 10 µM 

induced the greatest decrease in lipid droplet accumulation compared with the other compounds. 

 

Figure 3. Lipid accumulation in HepG2 cells. Cells were exposed for 48 hrs to oleic acid (OA) only or a 

combination of OA and 1 and 10 µM of the following compounds: metformin (control), curcumin, 18α-

GA, (GA), nerolidol, quercetin, quinic acid (QA) and rosmarinic acid (RA). Data are represented as Mean 

± SEM. * p < 0.05 compared to OA only treatment. 

Microscopic images (Figure 4) show the lack of ORO staining for the vehicle control, which contrasts 

with the red staining observed for cells exposed to OA. Although some staining was observed for all 

cells exposed to OA in combination with the tested compounds, the intensity of staining was reduced 

and was confirmed following the extraction of ORO (Figure 4). 
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Figure 4. Light microscopy images showing the lipid accumulation in HepG2 cells after staining with Oil 

Red O solution. The controls were HepG2 cells alone and exposed to DMSO, (vehicle control), oleic acid 

(OA) (positive control) and 10 µM metformin (Met), curcumin (Curc), 18α-GA (GA), nerolidol (Ner), 

quercetin (Quer), quinic acid (QA) and rosmarinic acid (RA). Images were captured at 40 x original 

magnification. 
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3.3. Herbs/spices dose-related to acarbose dose 

The herbs and spices with the highest contents of curcumin, glycyrrhizin, quercetin, quinic acid and 

rosmarinic acid were identified from previous studies and their equivalent relating to acarbose per 

meal was calculated. Table 18 is showing a small amount of Turmeric, 1.3 g dry weight may be required 

to match the dose of acarbose per meal. Green tea, Peppermint and Rosemary have also shown small 

amount, 1.9, 1.6, and 1.8 g dry weight, respectively. This relates to the moles of selected compounds 

to approximately match the moles in the dose of acarbose per meal. 

Table 8. Herb/spice dosage required relative to acarbose 

Compound 
Herb or spice 

(Species) 
Amount in herb/spice 
(mg/100 g dry weight) 

Amount (g) of herb 
relative to acarbose 

per meal 

Curcumin 

Turmeric 
(Curcuma longa) 

2213 1.30 

Curry powder 
(Murraya koenigii) 

285 10.0 

Glycyrrhizin 
Liquorice 
(Glycyrrhiza glabra) 

239 27.0 

Quercetin 

Oregano 
(Lippia graveleones) 

42.0 56.0 

Green tea 
(Camelia sinensis) 

2.80 845 

Quinic acid 
Green tea 
(Camelia sinensis) 

795 1.90 

Rosmarinic acid 

Peppermint 
(Mentha piperita) 

1620 1.60 

Rosemary 
(Salvia rosmarinus) 

1534 1.80 

 

Curcumin and rosmarinic acid, which are potent inhibitors of α-glucosidase and reduce hepatic lipid 

accumulation, were present in turmeric as well as peppermint and rosemary, respectively. These 

results indicate that these herbs have antidiabetic properties. 

4. Discussion 

In-silico studies were used as a step in the selection of the compounds to be used. Compounds were 

selected based on the docking scores compared with acarbose. The compounds were docked in the 

active site of α-amylase and α-glucosidase to generate binding energy (ΔG), where a more negative 

binding energy indicates a spontaneous interaction and a stronger affinity between the ligand and 

protein, thus more potent inhibition. 

For pancreatic α-amylase in-silico inhibition (Table 1), the order of affinity was as follows: acarbose > 

quercetin > curcumin > rosmarinic acid > quinic acid > 18α-GA > nerolidol when docked with glide; and 

18α-GA > rosmarinic acid > curcumin > quercetin > acarbose > nerolidol > quinic acid when docked 

with AutoDock vina. Compared to acarbose, curcumin, 18α-GA, quercetin, and rosmarinic acid are 

considered potential inhibitors of α-amylase and α-glucosidase. Nerolidol was considered to be a weak 

inhibitor of both enzymes.  
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For α-glucosidase in-silico inhibition (Table 1), the order of affinity was as follows: quinic acid > 

quercetin > rosmarinic acid > curcumin > acarbose > 18α-GA > nerolidol when docked with glide; and 

curcumin > 18α-GA > rosmarinic acid > quercetin > acarbose > nerolidol > quinic acid when docked 

with AutoDock vina. Similar to these findings, Jhong et al. [37] reported a higher in-silico binding 

affinity to α-glucosidase for curcumin with docking scores more negative than acarbose. However, 

they used PDB ID 2ZE0 while we used PDB ID 3L4Y, and the authors used AutoDock for their scoring 

function. A study by Tolmie et al. [30] reported that rosmarinic acid has a higher in-silico binding 

affinity to α-glucosidase than acarbose, and as in the present study, the same PDB ID and the glide 

algorithm were used. These results were used as motivation to perform in-vitro enzyme inhibition to 

further investigate the potential inhibitory activities of these compounds against pancreatic α-amylase 

and intestinal α-glucosidase. 

For systemic applications, it is important to determine the ADMET properties of the compounds. This 

was generated in-silico using Schrödinger software known as QikProp and an online free tool, pkCSM. 

All compounds, including acarbose, were predicted not to be inhibitors of the HERG potassium (K+) 

channel. 

A bioavailability score close to 1 indicates that these drugs are absorbed into the circulation before 

reaching their target [38]. The bioavailability of the compounds was assessed and compared to 

acarbose, which mediates its effect in the gastrointestinal tract and had a lower bioavailability score 

of 0.17. 18α-GA had the highest bioavailability score of 0.85. Curcumin, nerolidol, quercetin, quinic 

acid, and rosmarinic acid had a bioavailability score of 0.5, showing that almost half of these 

compounds are absorbed into the circulation. The target enzymes are located at the lumen of the 

small intestine; hence it is important to have a lower bioavailability score indicating that more of the 

compound remained at the target site. However, if absorbed, these compounds may well have 

systemic targets and as multifunctional molecules preventing T2D.  

The Lipinski rule of five is used to determine the parameters associated with 90% of orally 

administered drugs that have passed the phase II clinical stage trial [40, 41]. The results from Table 3 

show that acarbose violated three rules, while the remaining compounds did not violate more than 

one of five rules. 

The inhibitory concentrations of the compounds were obtained from Lineweaver-Burk double 

reciprocal plots and secondary plots. None of the selected compounds showed stronger in-vitro 

inhibition of pancreatic α-amylase than acarbose. The increasing order of Ki values was as follows 

(Table 4): acarbose < curcumin < quercetin < 18α-GA < rosmarinic acid < quinic acid < nerolidol. Like 

in the present study, Jhong et al. [37] showed that curcumin more potently inhibited pancreatic α-

amylase than quercetin, with the IC50 of curcumin being lower than that of quercetin. In the latter 

study, curcumin and quercetin more potently inhibited pancreatic α-amylase than acarbose, with IC50 

values being lower than that of acarbose. Although some compounds showed mild inhibition of α-

amylase, this may be preferred, as it may help prevent excessive bacterial fermentation that can lead 

to adverse gastrointestinal side effects [30, 42]. 

The increasing order of the Ki values in the inhibition of α-glucosidase was as follows: 18α-GA < 

curcumin < quercetin < rosmarinic acid < acarbose < nerolidol < quinic acid (Table 5). The compounds 

18α-GA, curcumin, and quercetin showed stronger in vitro inhibition of α-glucosidase than acarbose, 

the positive control. In contrast, the efficacy of rosmarinic acid was similar to that of acarbose for the 

inhibition of α-glucosidase, with a Ki value not significantly different (p > 0.05). Jhong et al. [37] also 

reported more potent inhibition of α-glucosidase by curcumin and quercetin compared to acarbose. 

In this study, the IC50 values were used for comparison, with the IC50 values of curcumin and quercetin 
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being lower than that of acarbose. No data have previously been reported for the inhibition of α-

glucosidase by 18α-GA, although Ko et al. [43] reported some antidiabetic properties for 18α-GA 

related to insulin-stimulated glucose uptake in adipocytes. 

Cytotoxicity in the Caco-2 cells was used to predict the effect of the tested compounds in the small 

intestine where both carbohydrate hydrolysing enzymes are located. For curcumin and rosmarinic 

acid, IC50 values of 15 and 83 µM, respectively, could be determined, while for the remaining 

compounds at the highest concentration of 100 µM, 50% toxicity could not be determined. A study by 

Sueki et al. [44] showed that Caco-2 cells are more resistive to curcumin, where at 50 µM, only 16.2% 

toxicity was observed in Caco-2 cells after 24 hours of exposure. 

Rosmarinic acid, acarbose, quinic acid, and nerolidol were not cytotoxic in the HepG2 cell line. The IC50 

values for 18α-GA > curcumin > quercetin was 28 ± 8, 41± 2, 54 ± 2 μM, respectively. This confirms the 

findings of Tolmie et al. [30], who reported limited toxicity in the same cell line even at concentrations 

as high as 500 µM. 

The different cell lines responded differently to the compounds and may be related to the doubling 

times and cellular metabolism related to cellular ADMET, with HepG2 cells being more sensitive than 

Caco-2 cells. For the lipid accumulation studies, the HepG2 cells were exposed to 10 µM of the 

compounds for 48 hours, where these compounds would have limited toxicity. Microscopy images of 

HepG2 cells exposed to OA and the compounds also show the lack of cellular features associated with 

toxicity. 

Metformin and the compounds evaluated significantly decreased OA-induced lipid accumulation in 

HepG2 cells. No significant difference was observed between the promising compounds and 

metformin. Rosmarinic acid caused the highest decrease in hepatic lipid accumulation at 10 µM 

compared with the other compounds. A study by Balachander et al. [47] showed a similar result to the 

present study, where both rosmarinic acid and metformin significantly reduced OA-induced lipid 

accumulation in HepG2 cells and can be considered potential compounds in the management of 

NAFLD. Curcumin reduced lipid accumulation in OA-induced HepG2 cells after 24 hours of exposure 

[48]. Likewise, previous studies [49, 50] also found a reduction in hepatic OA-induced lipid 

accumulation by quercetin, and the proposed mechanisms were the downregulation of the levels of 

sterol regulatory element-binding protein-1c (SREBP-1c) and the enhancement of tyrosine 

phosphorylation which are important signals in fat accumulation. 

In the present study, the promising compounds improved hepatic lipid accumulation and can be used 

as a potential treatment in NAFLD by decreasing OA-induced lipid accumulation while also taking into 

consideration the bioavailability scores. The present study confirms the findings of previous studies 

for curcumin, rosmarinic acid and quercetin, but the beneficial effects of 18α-GA, quinic acid and 

nerolidol have not yet been reported. 

Several different herbs and spices can be a source of these compounds, and screening of herbs and 

spices identified turmeric as a rich source of curcumin and rosemary as a rich source of rosmarinic 

acid. Including herbs or spices in the diet may be beneficial. 

5. Conclusion 

With the increased prevalence of diabetes and its effect on NAFLD, a search for natural compounds 

to manage hyperglycemia is ongoing. In the present study, compounds found in commercially 

available herbs and spices are reported to possess antidiabetic activities with the ability to inhibit α-

amylase and α-glucosidase. To determine the potential activity of the selected compounds, in-silico 
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and in-vitro studies were conducted and compared. The two studies correlated well with positive 

Pearson and Spearman correlation coefficients. The results showed that curcumin, 18α-GA, quercetin, 

and rosmarinic acid inhibited α-glucosidase well and decreased hepatic lipid accumulation, indicating 

the potential of these compounds to alleviate prolonged hyperglycemia and potentially manage 

NAFLD. Many of these compounds are found in herbs and spices that are cost-effective, easily 

cultivated, and readily available. Related to the levels of curcumin in turmeric and rosmarinic acid in 

rosemary, a dose of 1.3 g and 1.6 g dry weight of turmeric and rosemary respectively, are equivalent 

to 50 mg acarbose per meal. Furthermore, synergism between compounds may have further 

beneficial effects, and future research can focus on these aspects. 
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