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Summary

The main aim of this dissertation was to conduct a literature study on existence and conver-

gence theory for second-order hyperbolic type problems, implementation of the finite element

method to example problems, and so-called “locally linear” rod models.

The existence and convergence theory for second-order hyperbolic type problems from the

articles of van Rensburg and van der Merwe (2002) and of Basson, Stapelberg and van

Rensburg (2017) respectively, was introduced and analysed. This theory was derived by

writing the problem in an abstract variational form, using bilinear forms. The existence

theory was subsequently applied to the Timoshenko model with axial force and the multi-

dimensional wave equation, by showing that the assumptions necessary for the theory were

satisfied.

The finite element method (FEM) was applied to the two-dimensional wave equation on a

rectangle with Dirichlet boundary conditions, with both rectangle and triangle elements. It

was found in both cases that the approximations achieved by the method converge to the

exact solution of the initial value problem. The mixed FEM was applied to the Timoshenko

model with no axial force, to obtain approximations to be compared with the locally linear

Timoshenko (LLT) model.

The derivation of the LLT model and its variational forms was presented as in the article

of van Rensburg, du Toit and Labuschagne (2021). Further, the finite element algorithm

derived in a currently unpublished work of du Toit, Labuschagne and van der Merwe (2022)

was used to replicate some of the numerical results presented there. The results showed that
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the approximations using this algorithm and those of the mixed finite element method for a

cantilever rod were in agreement. Additionally, there is a critical value of initial compression,

after which a compressed pinned-pinned beam exhibits buckled states. Finally, the results

were extended by investigating the effects of a more slender rod on the outcomes of the

algorithm.

The possibility of deriving a locally linear theory was investigated for the Rayleigh beam

model, using the same ideas as for the LLT rod model, and the resulting model was compared

to that of Hegarty and Taylor (2012).

In this dissertation, valuable comparisons between the articles on the existence and conver-

gence theories mentioned above and the results of two earlier articles using the same abstract

form, but with different types of damping, are made. Simple illustrations of the theory and

examples of finite element implementation and convergence are presented. An additional

contribution is the confirmation of some of the results of the work on the LLT model.

3

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Contents

1 Introduction 8

1.1 Vibration of flexible structures . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 The Timoshenko beam theory . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 The original Timoshenko model . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Variational forms for the original Timoshenko model . . . . . . . . . 14

1.2.3 The Timoshenko model with axial force . . . . . . . . . . . . . . . . . 15

1.2.4 Variational forms for the Timoshenko model with axial force . . . . . 16

1.3 Euler-Bernoulli Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 The local linear Timoshenko rod . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.1 The LLT model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Variational Problems for the LLT model . . . . . . . . . . . . . . . . 23

1.4.3 Special cases of the LLT rod for small vibrations . . . . . . . . . . . . 24

1.5 The multi-dimensional wave equation . . . . . . . . . . . . . . . . . . . . . . 32

1.5.1 Variational form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



1.6 Nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Existence 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 The general linear vibration problem . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Main existence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Important results for the existence theorem . . . . . . . . . . . . . . 39

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.1 The multi-dimensional wave equation without damping . . . . . . . . 44

2.4.2 The multi-dimensional wave equation with viscous damping . . . . . 47

2.4.3 The Timoshenko model with axial force . . . . . . . . . . . . . . . . . 49

3 Convergence of Solutions of the General Linear Vibration Problem 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 The semi-discrete problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Error estimate for e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2 Error estimate for ep . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Error estimates for the semi-discrete problem . . . . . . . . . . . . . . . . . . 66

3.3.1 Initial estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.2 Error estimates and convergence for the semi-discrete approximation 75

3.4 The fully discrete approximation . . . . . . . . . . . . . . . . . . . . . . . . 77

5

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3.4.1 Stability result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.2 Convergence result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Applications of the Finite Element Method 84

4.1 The two-dimensional wave equation . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.1 Application of the convergence theory . . . . . . . . . . . . . . . . . . 84

4.1.2 Algorithm for the approximation . . . . . . . . . . . . . . . . . . . . 86

4.1.3 Numerical results - rectangle elements . . . . . . . . . . . . . . . . . 87

4.1.4 Numerical results - triangle elements . . . . . . . . . . . . . . . . . . 92

4.2 The Timoshenko beam with axial force . . . . . . . . . . . . . . . . . . . . . 95

4.2.1 Application of the convergence theory . . . . . . . . . . . . . . . . . . 95

4.2.2 Algorithm for the approximation . . . . . . . . . . . . . . . . . . . . 97

5 The Local Linear Timoshenko Theory 102

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 The Local Linear Timoshenko rod model . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Conservation of momentum and angular momentum . . . . . . . . . . 103

5.2.2 Model derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.3 Local Linear Timoshenko Model . . . . . . . . . . . . . . . . . . . . . 112

5.3 Finite Element Algorithm for the LLT beam . . . . . . . . . . . . . . . . . . 113

5.3.1 The cantilever case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



5.3.2 The pinned-pinned case . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.1 Small vibrations of the pinned-pinned LLT rod . . . . . . . . . . . . . 121

5.4.2 Forced vibrations of the cantilever LLT rod . . . . . . . . . . . . . . 122

5.4.3 Oscillations of the compressed LLT rod . . . . . . . . . . . . . . . . . 126

6 A Local Linear Rayleigh Model 132

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 The Local Linear Rayleigh rod model . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Non-linear Rayleigh model of Hegarty and Taylor . . . . . . . . . . . . . . . 137

7 Conclusion 140

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2 Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A Sobolev Spaces 145

7

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 1

Introduction

1.1 Vibration of flexible structures

Research on vibrations of flexible structures is ongoing in engineering and applied mathe-

matics fields. Flexible structures in practice can be considered as systems of interconnected

rod-like components. Mathematical models for these vibrating structures consist of systems

of partial differential equations, which are often complex and require numerical methods

to find approximations of solutions. Additionally, the derivation and analysis of both the

models and appropriate numerical methods can be a challenge [LA12].

The study of deformations of thin beams is of great practical importance in engineering

[DRS21]. Rod models, a subject of interest particularly in mechanics, lend themselves to

several applications in engineering, such as modelling of cables and steel strings [LA12], or

the study of fibres in synthetic braided ropes [VDD15]. In the book of Hodges [Hod06], the

author mentioned applications of slender beam theory in aerospace engineering, in particular

helicopter rotor blades. Moreover, in [TLK74], beam theory was used to study the dynamics

of spacecraft antennae. The article [MPW19] provides an extensive list of examples and

sources for applications of these models beyond mechanics, ranging from fibres in paper to

filaments involved in cell division. In [WT99], a beam model was used to analyse the vibration
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of railway tracks, and [ET14] used a beam model in the study of bending deformation in

high-rise buildings.

The practical applications of mathematical models for flexible structures are a motivation to

investigate existence and convergence theory of their solutions, as well as the implementation

of numerical methods. The book of Evans [Eva97] has dedicated sections on Sobolev theory

(see also Appendix A of this dissertation) and weak solutions, and provides some existence

results for second-order elliptic, parabolic and hyperbolic equations. The authors in [HT12]

proved existence of classical solutions for a nonlinear cantilevered beam model with forcing

at the free end. The main focus of this dissertation was second-order hyperbolic type prob-

lems. In [VV02], theorems for the existence of solutions of the general linear second-order

hyperbolic vibration model with general, weak and strong damping were proven. This work

was extended in [VS19], where slightly different assumptions were made on the symmetry of

bilinear forms.

The finite element method (FEM) is a well-known and widely used method to approximate

solutions of various mathematical models. Convergence of finite element approximations of

the general linear hyperbolic problem was investigated in [BV13] and later in [BSV17]. In

the former article, error estimates for the semi-discrete and fully discrete problems for the

general linear problem with weak damping were derived. In the latter article, these estimates

were obtained for general damping. An example of FEM application to flexible structures

is in [FL97], where a modified finite element method is used to study the flexible rod in

a quick-return mechanism, where the length of the rod is time-dependent. More recently,

a finite element formulation for a model for vibrating thin-walled beams was developed in

[SPS+22].

In some applications, the standard FEM with linear basis functions may lead to poor nu-

merical results due to “shear locking” [Sem94]. As the thickness of the beam decreases,

it is possible that the approximations diverge when linear elements are used [Arn81]. An

alternative method that still leads to reasonable numerical results is the mixed FEM, where

shear stress is also considered as a dependent variable [Arn81], [FXX99], [Sem94].
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This dissertation consists largely of a literature study on some mathematical models for flex-

ible structures and structural components, and includes existence theory and finite element

analysis of these models and their solutions. These models include beam models such as the

Timoshenko theory, Euler-Bernoulli theory, as well as recently published work on a so-called

locally linear Timoshenko rod. The multi-dimensional wave equation is also used to illustrate

the application of some of the theory in this dissertation.

In the following sections of this introduction, the models used throughout this dissertation are

introduced, and their variational forms are derived. In Chapter 2, the main existence results

from [VV02] are introduced, and compared to those in [VS19]. The chapter is concluded by a

section on application of the theory to practical examples. The following chapter features an

in-depth study of the results and proofs of the convergence theory from [BSV17]. Chapter 4

is dedicated to the implementation and convergence analysis of the finite element method to

example problems. This is followed by two chapters on locally linear models - one chapter

presents the derivation and numerical analysis of the locally linear Timoshenko model of

[VDL21] and [DLV22], while the second chapter is a brief investigation into the locally linear

Rayleigh model, also studied in [HT12].

1.2 The Timoshenko beam theory

Linear beam models are of significant interest in many applications in engineering and mathe-

matics. Simplified beam models have been used to simulate the oscillation of buildings under

the influence of earthquakes and wind, in a number of recent publications ([CH15], [TGA17],

[PTL19]). In general, structural components of vibrating structures can also be modelled

using these types of models. We consider two such models: the Timoshenko beam model,

which is considered to be fairly realistic [ZVV04], and the Euler-Bernoulli beam model (see

Section 1.3). In both models, it is assumed that cross sections remain undeformed after

beam deformation, but shear deformation is taken into account only in the Timoshenko

model, while it is ignored for the Euler-Bernoulli model [VV06], [NSH17], [SNH15], [II92].
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The Euler-Bernoulli beam model can be derived from the Timoshenko theory, and this will

be illustrated in Section 1.3.

1.2.1 The original Timoshenko model

The Timoshenko beam model is useful in many applications, and will serve as an example

application of the calculations and analyses done in this dissertation.

Consider the original Timoshenko beam model. The derivation of the model can be found for

example in [Tim37, p.337-338] and [Inm94, p.337-338]. The model comprises of two partial

differential equations for the deflection of the beam, w, and the angle of rotation of a cross

section, φ.

The equations of motion are

ρA∂2
tw = ∂xV + P, (1.2.1)

ρI∂2
t φ = V + ∂xM, (1.2.2)

with constitutive equations

M = EI∂xφ, (1.2.3)

V = AGκ2(∂xw − φ). (1.2.4)

In these equations, ρ is the density, A the area of a cross section, I is the area moment of

inertia, M the moment, and V and P are the shear force and load respectively. Further, κ2

is the shear correction factor, and E and G are elastic constants (see [Inm94, pp.337-338]

for more details).

The partial differential equations for the model can be derived by substituting the constitu-

tive equations into the equations of motion, and are as follows:

ρA∂2
tw = ∂x

(
AGκ2 (∂xw − φ)

)
+ P and

ρI∂2
t φ = AGκ2 (∂xw − φ) + ∂x (EI∂xφ) .
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Remark 1.2.1. For the Timoshenko model, the assumption is that ∂xw and φ are small

[LVV09]. As a result, the theory is only applicable for small deformations and rotations.

It is useful to consider the model in dimensionless form. To this end, denote the length of

the beam by `. Let

τ =
t

T
, ξ =

x

`
, w∗(ξ, τ) =

w(x, t)

`
and φ∗(x, t) = φ(x, t),

where the parameter T is chosen appropriately, and is given in Equation (1.2.5) below.

First we define the two (dimensionless) parameters α and β as follows:

α =
A`2

I
and β =

AGκ2`2

EI
.

To obtain the forces and moment in dimensionless form, set

V ∗(ξ, τ) =
V (x, t)

AGκ2
, M∗(ξ, τ) =

M(x, t)

AGκ2`
and P ∗(ξ, τ) =

P (x, t)`

AGκ2
.

Then we define the parameter T by

T = `

√
ρ

Gκ2
. (1.2.5)

We find the dimensionless problem using the above expressions. Using the original notation,

the problem is as follows:

The equations of motion are

∂2
tw = ∂xV + P, (1.2.6)

1

α
∂2
t φ = V + ∂xM, (1.2.7)

with constitutive equations

M =
1

β
∂xφ, (1.2.8)

V = ∂xw − φ. (1.2.9)
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Remark 1.2.2. The constant α is a measure of the length of the beam compared to its

thickness; that is, a larger value of α corresponds to a more slender beam. As a result, α

can vary greatly in size [ZVV04], as can β, since
β

α
=
Gκ2

E
. The parameter

β

α
depends only

on the shape of the cross section and the material of the beam [ZVV04], and realistic values

for a homogeneous beam are between
1

6
and

1

2
[LVV09]. Note that a beam may be tapered,

and consequently values of α and β can vary across the length of the beam.

Remark 1.2.3. The Timoshenko beam model can also be considered with several types

of damping, such as viscous or material damping, where damping terms are then added

to the equations of motion or the constitutive equations. The dimensionless forms can be

derived in much the same way as was done above. Damping is not considered in detail in

this dissertation.

Several boundary conditions may be considered for the model, but in this dissertation, the

focus was on the pinned-pinned and cantilever cases.

Problem T-P (Pinned-pinned)

The model consists of the equations of motion (1.2.6) and (1.2.7), with constitutive equations

(1.2.8) and (1.2.9), and boundary conditions

w(0, t) = w(1, t) = M(0, t) = M(1, t) = 0.

Problem T-C (Cantilever)

The problem is the same as Problem T-P above, except we consider instead the boundary

conditions

w(0, t) = φ(0, t) = V (1, t) = M(1, t) = 0.

For both problems, the initial conditions are

w(·, 0) = w0, φ(·, 0) = φ0, ∂tw(·, 0) = wd, ∂tφ(·, 0) = φd.
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1.2.2 Variational forms for the original Timoshenko model

We derive the variational forms for Problems T-P and T-C in Section 1.2.1 above. To

this end, multiply Equations (1.2.6) and (1.2.7) by arbitrary functions v and ψ in C1 [0, 1]

respectively, and integrate.

Using integration by parts, we obtain∫ 1

0

∂2
tw(·, t)v = V (1, t)v(1)− V (0, t)v(0)−

∫ 1

0

(V (·, t)v′ − P (·, t)v) and∫ 1

0

1

α
∂2
t φ(·, t)ψ = M(1, t)ψ(1)−M(0, t)ψ(0)−

∫ 1

0

(M(·, t)ψ′ − V (·, t)ψ) .

Define the class of test functions for the pinned-pinned case by

TP [0, 1] =
{
v ∈ C1[0, 1] : v(0) = v(1) = 0

}
.

For the cantilever case, define the class of test functions by

TC [0, 1] =
{
v ∈ C1[0, 1] : v(0) = 0

}
.

Then we can use the boundary conditions and constitutive equations to obtain the variational

problems.

Problem TV-P

Find 〈w, φ〉 such that for each t > 0, w(·, t) ∈ TP [0, 1], φ(·, t) ∈ C1[0, 1], and∫ 1

0

∂2
tw(·, t)v +

∫ 1

0

1

α
∂2
t φ(·, t)ψ = −

∫ 1

0

(∂xw(·, t)− φ(·, t)) v′ +
∫ 1

0

P (·, t)v

−
∫ 1

0

1

β
∂xφ(·, t)ψ′ +

∫ 1

0

(∂xw(·, t)− φ(·, t))ψ
(1.2.10)

for each pair 〈v, ψ〉 ∈ TP [0, 1]× C1[0, 1].

Problem TV-C

Find 〈w, φ〉 such that for each t > 0, w(·, t) ∈ TC [0, 1], φ(·, t) ∈ TC [0, 1], and Equation

(1.2.10) holds for each pair 〈v, ψ〉 ∈ TC [0, 1]× TC [0, 1].

For both problems, the initial conditions are

w(·, 0) = w0, φ(·, 0) = φ0, ∂tw(·, 0) = wd, ∂tφ(·, 0) = φd.
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1.2.3 The Timoshenko model with axial force

We also consider the Timoshenko beam model with an axial force due to gravity in the

first equation of motion. The model in dimensionless form is almost the same as Equations

(1.2.6)-(1.2.9) above. In this case, Equation (1.2.6) becomes

∂2
tw = ∂x(S∂xw) + ∂xV + P,

where P is the load density, and S denotes the axial force.

The resulting model then has the equations of motion

∂2
tw = ∂x(S∂xw) + ∂xV + P, (1.2.11)

1

α
∂2
t φ = V + ∂xM. (1.2.12)

The constitutive equations are

M =
1

β
∂xφ, (1.2.13)

V = ∂xw − φ, (1.2.14)

and a third constitutive equation for S, which depends on the application of the model.

The dimensionless form was derived in the same way as was done in Section 1.2.1. Note that

if S = 0, then the model above is the same as Equations (1.2.6)-(1.2.9).

The boundary conditions considered are for both the pinned-pinned and cantilever cases, as

in Section 1.2.1. The cantilever conditions here are slightly different from those introduced

in Problem T-C in Section 1.2.1.

Problem TM-P

The model consists of the equations of motion (1.2.11) and (1.2.12), with constitutive equa-

tions (1.2.13), (1.2.14) and a constitutive equation for S, and boundary conditions

w(0, t) = w(1, t) = M(0, t) = M(1, t) = 0.

15

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Problem TM-C

The problem is the same as Problem TM-P above, except we consider instead the boundary

conditions

w(0, t) = φ(0, t) = S(1, t)∂xw(1, t) + V (1, t) = M(1, t) = 0.

For both problems, we consider the initial conditions

w(·, 0) = w0, φ(·, 0) = φ0, ∂tw(·, 0) = wd, ∂tφ(·, 0) = φd.

1.2.4 Variational forms for the Timoshenko model with axial force

The process of deriving the variational forms for the two problems is the same as in Sub-

section 1.2.2. Multiply equations (1.2.11) and (1.2.12) by arbitrary functions v and ψ in

C1[0, 1] respectively, and integrate.

From integration by parts, we obtain∫ 1

0

∂2
tw(·, t)v = S(1, t)∂xw(1, t)v(1)− S(0, t)∂xw(0, t)v(0)−

∫ 1

0

S(·, t)∂xw(·, t)v′

+ V (1, t)v(1)− V (0, t)v(0)−
∫ 1

0

(V (·, t)v′ − P (·, t)v) and∫ 1

0

1

α
∂2
t φ(·, t)ψ = M(1, t)ψ(1)−M(0, t)ψ(0)−

∫ 1

0

(M(·, t)ψ′ − V (·, t)ψ) .

Define the class of test functions for the pinned-pinned case by

TP [0, 1] =
{
v ∈ C1[0, 1] : v(0) = v(1) = 0

}
.

For the cantilever case, define the class of test functions by

TC [0, 1] =
{
v ∈ C1[0, 1] : v(0) = 0

}
.

Remark 1.2.4. The classes of test functions defined here are the same as those in Subsec-

tion 1.2.2.

16

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



In this subsection, two approaches are used to derive the variational forms for Problems TM-P

and TM-C above. The first approach will be used in applications of existence theory (see

Chapter 2), while the second is convenient for applying the mixed finite element method to

approximate solutions of the problems (see Chapter 4).

In the first approach, the variational problems are derived in exactly the same way as in

Subsection 1.2.2. We use the constitutive equations and boundary conditions to obtain

the variational form. For both cases of boundary conditions, the variational problems look

the same, except for the definition of the test functions. To this end, let T denote either

TP [0, 1] × C1[0, 1] or TC [0, 1] × TC [0, 1]. Then we obtain the variational problem.

Problem T-V

Find 〈w, φ〉 such that for each t > 0, 〈w(·, t)φ(·, t)〉 ∈ T , and∫ 1

0

∂2
tw(·, t)v = −

∫ 1

0

S(·, t)∂xw(·, t)v′ −
∫ 1

0

(∂xw(·, t)− φ(·, t)) v′ +
∫ 1

0

P (·, t)v∫ 1

0

1

α
∂2
t φ(·, t)ψ = −

∫ 1

0

1

β
∂xφ(·, t)ψ′ −

∫ 1

0

(∂xw(·, t)− φ(·, t))ψ
(1.2.15)

for each pair 〈v, ψ〉 ∈ T , while

w(·, 0) = w0, φ(·, 0) = φ0, ∂tw(·, t) = wd, and ∂tφ(·, 0) = φd.

For the second approach, a slightly different method is used. We again use the boundary

conditions and constitutive equations, but instead of substituting Equation (1.2.14) after

integration by parts, we multiply it by an arbitrary function ξ ∈ C1[0, 1] and integrate.

Again, the variational problems look the same for both cases of boundary conditions, except

for the definition of the test functions. Here, let T denote either TP [0, 1]×C1[0, 1]×C1[0, 1]

or TC [0, 1] × TC [0, 1] × C1[0, 1]. To avoid confusion with notation later in the dissertation,

we will denote the shear force by F instead of V for this method.
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Problem TM-V

Find 〈w, φ〉 and a function F such that for each t > 0, 〈w(·, t), φ(·, t), F (·, t)〉 ∈ T and∫ 1

0

∂2
tw(·, t)v = −

∫ 1

0

S(·, t)∂xw(·, t)v′ −
∫ 1

0

F (·, t)v′ +
∫ 1

0

P (·, t)v∫ 1

0

1

α
∂2
t φ(·, t)ψ = −

∫ 1

0

(
1

β
∂xφ(·, t)ψ′ − F (·, t)ψ

)
∫ 1

0

F (·, t)ξ =

∫ 1

0

(∂xw(·, t)− φ(·, t)) ξ

(1.2.16)

for each triple 〈v, ψ, ξ〉 ∈ T , while

w(·, 0) = w0, φ(·, 0) = φ0, ∂tw(·, 0) = wd, and ∂tφ(·, 0) = φd.

1.3 Euler-Bernoulli Beam

As mentioned above, the Euler-Bernoulli beam is considered as an alternative to the Timo-

shenko beam. In [LVV09] and [ZVV04] it was noted that the Timoshenko model is consid-

ered to be more realistic. However, in many applications, the Euler-Bernoulli beam model

is completely sufficient. Sansour et. al. [SNH15], for example, noted that in applications

for spatial deformations and micro mechanics, where out-of-plane shear is not well defined,

it is preferred to use a beam model that considers only displacement, and it is ideal to use

Euler-Bernoulli type beams. We show in this section how the Euler-Bernoulli model can

be derived from the Timoshenko model, by making some additional assumptions. We also

derive the variational forms of the model.

Consider again the Timoshenko beam model, Equations (1.2.6)-(1.2.9).

First, we rewrite Equation (1.2.7) as

V =
1

α
∂2
t φ− ∂xM. (1.3.1)

Now substitute Equation (1.3.1) into Equation (1.2.6) to obtain

∂2
tw = ∂x

(
1

α
∂2
t φ− ∂xM

)
+ P.
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The assumption for the Euler-Bernoulli model is that cross sections remain plane after beam

deformation; that is, ∂xw = φ. As a result, we have the following equation of motion and

constitutive equation:

∂2
tw = ∂x

(
1

α
∂2
t (∂xw)− ∂xM

)
+ P, (1.3.2)

M =
1

β
∂2
xw. (1.3.3)

A further assumption is that the rotary inertia term
1

α
∂2
t (∂

2
xw) is ignored in Equation (1.3.2),

resulting in the equation of motion

∂2
tw = −∂2

xM + P. (1.3.4)

Remark 1.3.1. Equations (1.3.2)-(1.3.3) are referred to as the Rayleigh beam model [LVV09].

Remark 1.3.2. By substituting the constitutive equation (1.3.3) into the equation of motion

(1.3.4), the partial differential equation for the Euler-Bernoulli model can be obtained, and

is

∂2
tw = − 1

β
∂4
xw + P.

We consider the same boundary conditions as for the Timoshenko beam above. Using the

assumptions for this model as described above, the boundary conditions can be rewritten as

well.

Problem E-P (Pinned-pinned)

The model consists of the equation of motion (1.3.4) with constitutive equation (1.3.3) and

boundary conditions

w(0, t) = w(1, t) = M(0, t) = M(1, t) = 0.

Problem E-C (Cantilever)

The problem is the same as Problem E-P above, except we consider instead the boundary

conditions

w(0, t) = ∂xw(0, t) = M(1, t) = ∂xM(1, t).
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For both problems, the initial conditions are

w(·, 0) = w0, ∂xw(·, 0) = w0x, ∂tw(·, 0) = wd, ∂t∂xw(·, 0) = wdx.

For the variational form, multiply Equation (1.3.4) by an arbitrary function v in C1[0, 1] and

integrate. Using integration by parts twice, we obtain∫ 1

0

∂2
tw(·, t)v =− ∂xM(1, t)v(1) + ∂xM(0, t)v(0) +M(1, t)v′(1)−M(0, t)v′(0)

−
∫ 1

0

(M(·, t)v′′ − P (·, t)v) .

For the pinned-pinned case, define the class of test functions by

TP [0, 1] =
{
v ∈ C1[0, 1] : v(0) = v(1) = 0

}
.

For the cantilever case, the class of test functions is

TC [0, 1] =
{
v ∈ C1[0, 1] : v(0) = v′(0) = 0

}
.

Then we use the constitutive equation (1.3.3) and the boundary conditions to derive the

variational problems.

Problem EV-P

Find w such that for each t > 0, w(·, t) ∈ TP [0, 1] and∫ 1

0

∂2
tw(·, t)v = −

∫ 1

0

(
1

β
∂2
xw(·, t)v′′ − P (·, t)v

)
(1.3.5)

for each v ∈ TP [0, 1], while

w(·, 0) = w0, ∂xw(·, 0) = w0x, ∂tw(·, 0) = wd, ∂t∂xw(·, 0) = wdx.

Problem EV-C

Find w such that for each t > 0, w(·, t) ∈ TC [0, 1] and Equation (1.3.5) holds for each

v ∈ TC [0, 1], while

w(·, 0) = w0, ∂xw(·, 0) = w0x, ∂tw(·, 0) = wd, ∂t∂xw(·, 0) = wdx.
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1.4 The local linear Timoshenko rod

The study of large deformations of slender, flexible structures remains a challenging problem.

A rod is described in [VDL21] as a one-dimensional solid, for example a cable, string or beam.

In this section, the local linear Timoshenko (LLT) rod, introduced in [VDL21], is considered.

There, the authors refer to a rod model as local linear if “large deflections and rotations of

the rod are possible, but the rod strains are sufficiently small that linear elasticity theory still

applies for the constitutive equations”. The LLT rod model is based on the Simo-Reissner

theory for a rod (briefly mentioned in Section 1.6 below). It is restricted to shear, flexure

and extension, but not torsion; that is, the model considers only two-dimensional motion.

Its name is indicative of the nature of the constitutive equations, which are based on those

of the linear Timoshenko model, but are adapted for large deformations.

In this section, the LLT model in dimensionless form is introduced, and several special

cases for small vibrations are derived from it, under additional assumptions, as was done in

[VDL21]. Finally, the variational forms of the model are derived. Details on the derivation

of the model itself, as well as its finite element method implementation, are provided in

Chapter 5.

1.4.1 The LLT model

The model is presented here for reference, in dimensionless form.

The equations of motion are

∂2
t u = ∂xF1 + P1, (1.4.1)

∂2
tw = ∂xF2 + P2, (1.4.2)

1

α
∂2
t φ = (1 + ∂xu)F2 − ∂xwF1 + ∂xM, (1.4.3)
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where

F1 = Scosθ − V sinθ, (1.4.4)

F2 = Ssinθ + V cosθ, (1.4.5)

and ∂xs and θ are determined from

(∂xs)
2 = (1 + ∂xu)2 + (∂xw)2 , (1.4.6)

cosθ = (∂xs)
−1 (1 + ∂xu) , (1.4.7)

sinθ = (∂xs)
−1 ∂xw. (1.4.8)

The constitutive equations are

M =
1

β
∂xφ, (1.4.9)

V = θ − φ, (1.4.10)

S =
1

γ
(∂xs− 1) . (1.4.11)

We explain the notation here for completeness. The details are in Chapter 5. In the above

equations, u and w represent longitudinal and transverse displacements respectively, and φ

is the angle of a cross-section. The arc length function of the displacement curve is s, and

θ is the rotation of the tangent vector. The variables F1 and F2 are the components of the

force acting on a part of the rod, M is the moment, and V and S are the shear force and

axial force respectively. P1 and P2 are load forces.

Again we consider one of the following boundary conditions:

Pinned-pinned:

u(0, t) = w(0, t) = u(1, t) = w(1, t) = 0 and M(0, t) = M(1, t) = 0. (1.4.12)

Cantilever:

u(0, t) = w(0, t) = φ(0, t) = 0 and F1(1, t) = F2(1, t) = M(1, t) = 0. (1.4.13)

In each case, the initial conditions are

u(·, 0) = α0, ∂tu(·, 0) = αd, w(·, 0) = β0, ∂tw(·, 0) = βd, φ(·, 0) = γ0, ∂tφ(·, 0) = γd.
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Remark 1.4.1. In [VDL21], boundary conditions for a pivoted beam are also given, but

since the above-mentioned boundary conditions are the main ones considered throughout

this dissertation, the pivoted case was not studied in detail.

1.4.2 Variational Problems for the LLT model

In this section, the variational problems for the pinned-pinned and cantilever cases of the

LLT model, introduced in Section 1.4.1, are derived.

First, multiply Equations (1.4.1)-(1.4.3) by functions v, z, ψ ∈ C1[0, 1] respectively and inte-

grate. Then, using integration by parts, it follows that∫ 1

0

∂2
t u(·, t)v = F1(·, t)v|10 −

∫ 1

0

F1(·, t)v′ +
∫ 1

0

P1(·, t)v, (1.4.14)∫ 1

0

∂2
tw(·, t)z = F2(·, t)z|10 −

∫ 1

0

F2(·, t)z′ +
∫ 1

0

P2(·, t)z, (1.4.15)∫ 1

0

1

α
∂2
t φ(·, t)ψ =

∫ 1

0

(1 + ∂xu(·, t))F2(·, t)ψ −
∫ 1

0

∂xw(·, t)F1(·, t)ψ (1.4.16)

+M(·, t)ψ|10 −
∫ 1

0

M(·, t)ψ′.

The classes of test functions for the pinned-pinned and cantilever cases are TP and TC ,

defined in Section 1.2.2, respectively.

Finally, by substituting the boundary conditions, the variational forms are obtained.

Problem LLTV-P

Find 〈u,w, φ〉 such that for each t > 0, u(·, t), w(·, t) ∈ TP [0, 1], φ(·, t) ∈ C1[0, 1] and∫ 1

0

∂2
t u(·, t)v = −

∫ 1

0

F1(·, t)v′ +
∫ 1

0

P1(·, t)v,∫ 1

0

∂2
tw(·, t)z = −

∫ 1

0

F2(·, t)z′ +
∫ 1

0

P2(·, t)z,∫ 1

0

1

α
∂2
t φ(·, t)ψ =

∫ 1

0

(1 + ∂xu(·, t))F2(·, t)ψ −
∫ 1

0

∂xw(·, t)F1(·, t)ψ

−
∫ 1

0

M(·, t)ψ′

(1.4.17)
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for all 〈v, z, ψ〉 ∈ TP [0, 1]× TP [0, 1]× C1[0, 1].

Problem LLTV-C

Find 〈u,w, φ〉 such that for each t > 0, u(·, t), w(·, t), φ(·, t) ∈ TC [0, 1] and the equations in

(1.4.17) hold for all 〈v, z, ψ〉 ∈ TC [0, 1]× TC [0, 1]× TC [0, 1].

For both problems, the initial conditions are

u(·, 0) = α0, ∂tu(·, 0) = αd, w(·, 0) = β0, ∂tw(·, 0) = βd, φ(·, 0) = γ0, ∂tφ(·, 0) = γd.

Remark 1.4.2. These variational forms for the LLT model are only presented in the un-

published work [DLV22]. In [VDL21], variational forms are derived for the special cases of

the model.

1.4.3 Special cases of the LLT rod for small vibrations

As was noted in [VDL21], when small vibrations are considered, the assumption is usually

that ∂xu and ∂xw are small, or that θ is small enough that sin θ ≈ θ and cos θ ≈ 1.

Suppose first that θ is small enough that sin θ ≈ θ and cos θ ≈ 1. Then Equation (1.4.7) can

be replaced with

∂xs = 1 + ∂xu. (1.4.18)

In the other case, assume that ∂xu and ∂xw are small. We prove that the assumption

∂xs =

√
1 + 2∂xu+ (∂xu)2 + (∂xw)2

≈ 1 + ∂xu+
1

2
(∂xu)2 +

1

2
(∂xw)2 .

from [VDL21] is justified.

Suppose a variable y is small enough that

y2 ≈ 0.
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Then

1 + y ≈ 1 + y +
1

4
y2; that is, 1 + y ≈

(
1 +

y

2

)2

.

Since y is small, it is reasonable to assume that

1 + y ≥ 0 and 1 +
y

2
≥ 0,

and hence √
1 + y ≈ 1 +

y

2
.

Now, since we assume that ∂xu and ∂xw are small, it is justified to replace y with

2∂xu+ (∂xu)2 + (∂xw)2 above. Thus we have that

∂xs ≈ 1 + ∂xu+
1

2
(∂xu)2 +

1

2
(∂xw)2 ,

and since (∂xu)2 and (∂xw)2 can be neglected, we again arrive at

∂xs = 1 + ∂xu.

An alternative assumption, used for example in [SR79] and [WFH01], is that

∂xs = 1 + ∂xu+
1

2
(∂xw)2 , (1.4.19)

where the term
1

2
(∂xw)2 is used to account for large geometric transverse displacements

[WFH01].

In the following sections, these assumptions will be used to derive some special cases of the

LLT model. The naming convention for models from [VDL21] will be used for easy reference.

Note that in all cases, suitable initial conditions have to be chosen.

1.4.3.1 A nonlinear model for small vibrations

Under the above assumptions, sin θ ≈ θ and cos θ ≈ 1, and so we use θ and 1 in Equa-

tions (1.4.4) and (1.4.5). As a result we get

F1 = S − V θ and F2 = Sθ + V.

25

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Further, we assume that θ ≈ ∂xw, and hence replace θ to obtain

F1 = S − V ∂xw,

F2 = S∂xw + V.

Substituting the above two equations into Equations (1.4.1)-(1.4.3), we get

∂2
t u = ∂x (S − V ∂xw) + P1,

∂2
tw = ∂x (S∂xw + V ) + P2 and

1

α
∂2
t φ = (1 + ∂xu) (S∂xw + V )− ∂xw (S − V ∂xw) + ∂xM

= S∂xw + V + ∂xu∂xwS + ∂xuV − ∂xwS − V (∂xw)2 + ∂xM. (1.4.20)

Now, by assumption, ∂xu and ∂xw are small, so ∂xu∂xw and (∂xw)2 can be neglected. Further,

due to the scaling performed to arrive at the dimensionless form (details in Chapter 5), S

and V are also small. Therefore Equation (1.4.20) becomes

1

α
∂2
t φ = (1 + ∂xu)V + ∂xM.

Finally, we substitute one of Equation (1.4.18) or (1.4.19) into Equation (1.4.11), and use

the approximation θ = ∂xw in Equation (1.4.10). The model is then as follows:

Model SLLT

The equations of motion for the model are

∂2
t u = ∂x (S − V ∂xw) + P1, (1.4.21)

∂2
tw = ∂x (S∂xw + V ) + P2, (1.4.22)

1

α
∂2
t φ = (1 + ∂xu)V + ∂xM, (1.4.23)
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together with the constitutive equations

M =
1

β
∂xφ, (1.4.24)

V = ∂xw − φ, (1.4.25)

S =
1

γ
∂xu or (1.4.26)

S =
1

γ
∂xu+

1

2γ
(∂xw)2. (1.4.27)

We again consider one of the boundary conditions (1.4.12) or (1.4.13).

Remark 1.4.3. In [VDL21], it was noted that for the case of boundary conditions for a

pivoted beam, the solutions may exhibit large displacements, and the assumptions made in

this section, which are for small vibrations only, are no longer suitable.

Note that Model SLLT is non-linear. In the following sections, it is shown how simpler

models, which may be linear, can be derived with some additional assumptions. This reduces

the challenge of analysis of these models, and makes the simpler LLT models convenient for

the study of slender structures.

1.4.3.2 A model for transverse vibrations

A model for transverse vibrations can easily be derived from Model SLLT by neglecting the

term −V ∂xw in Equation (1.4.21). Then the model is as follows:

Model LLT-T

The equations of motion are

∂2
t u = ∂xS + P1, (1.4.28)

∂2
tw = ∂x (S∂xw + V ) + P2, (1.4.29)

1

α
∂2
t φ = (1 + ∂xu)V + ∂xM. (1.4.30)

The constitutive equations are Equations (1.4.24)-(1.4.26), and the boundary conditions are

as before.

27

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Note that if the boundary conditions for u and S do not contain other variables of the

model, and Equation (1.4.26) is used as the constitutive equation for S, then the system is

decoupled.

For example, for the cantilever rod, we have the boundary conditions

u(0, t) = S(1, t) = 0.

Using these together with the system

∂2
t u = ∂xS + P1,

S =
1

γ
∂xu,

u and S can be found.

The remaining system then has the equations of motion

∂2
tw = ∂x (S∂xw + V ) + P2,

1

α
∂2
t φ = (1 + ∂xu)V + ∂xM,

and constitutive equations

M =
1

β
∂xφ,

V = ∂xw − φ,

and since u and S are already known, this system is linear.

1.4.3.3 Adapted linear Timoshenko models

Consider Model LLT-T. Suppose ∂tP1 = 0. Then there is no boundary forcing, and hence

∂tS = 0 and Equation (1.4.28) becomes

0 = ∂xS + P1. (1.4.31)

As noted above, the model is decoupled, and the last two equations of motion form a linear

system. The resulting model is an adapted version of the linear Timoshenko beam model

with axial force introduced in Section 1.2.3.
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Model Tim-Ad1

The equations of motion are

0 = ∂xS + P1

∂2
tw = ∂x (S∂xw) + ∂xV + P2,

1

α
∂2
t φ = γSV + V + ∂xM. (1.4.32)

Note that Equation (1.4.26) was substituted into Equation (1.4.30). The constitutive equa-

tions and boundary conditions are as before.

Remark 1.4.4. As was noted in [VDL21], it may be justified to use the approximation

(1 + γS)V = V. (1.4.33)

If this is the case, then Equation (1.4.32) becomes

1

α
∂2
t φ = V + ∂xM,

and then Model Tim-Ad1 is the linear Timoshenko model with axial force from Section 1.2.3.

Another linear model can be obtained by instead assuming that F1 = S and F2 = V in

Equations (1.4.2) and (1.4.3). Equation (1.4.26) is still used as constitutive equation so that

the system is decoupled as before.

Model Tim-Ad2

The model has equations of motion

0 = ∂xS + P1,

∂2
tw = ∂xV + P2,

1

α
∂2
t φ = (1 + γS)V − S∂xw + ∂xM.

The constitutive equations and boundary conditions are the same as for Model SLLT.
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1.4.3.4 Nonlinear Timoshenko model of Sapir and Reiss

A nonlinear Timoshenko model similar to Model LLT-T is derived in [SR79]. To derive this

model in the same approach as was done above, some additional assumptions must be made.

Suppose that ∂2
t u and ∂xuV are neglected and assume that P1 = P2 = 0 and ∂xS = 0 in

Model LLT-T. The resulting equations of motion are

∂2
tw = S∂2

xw + ∂xV,

1

α
∂2
t φ = V + ∂xM.

Note that, as discussed for Model LLT-T, if Equation (1.4.18) is used, then the system above

is linear. However, since Equation (1.4.19) is used in [SR79] instead, it is necessary to use

the assumption ∂xS = 0 and the Fundamental Theorem of Calculus to obtain

S(t) = S(·, t)

=

∫ 1

0

∂xS(·, t)

=

∫ 1

0

1

γ
∂xu(·, t) +

1

2γ
(∂xw(·, t))2

=
1

γ
(u(1, t)− u(0, t)) +

1

2γ

∫ 1

0

(∂xw(·, t))2

for each t.

For the pinned-pinned case, [VDL21] uses the boundary conditions

w(0, t) = ∂xφ(0, t) = w(1, t) = ∂xφ(1, t) = 0.

1.4.3.5 Euler-Bernoulli model

Recall that in Section 1.3 it was shown how the linear Rayleigh and Euler-Bernoulli beam

models can be derived from the linear Timoshenko model. A similar approach can be taken

using Model SLLT introduced above.
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Note that from Equation (1.4.26) we have that Equation (1.4.23) becomes

1

α
∂2
t φ = (1 + γS)V + ∂xM.

Then, using Equation (1.4.33), we obtain

1

α
∂2
t φ = V + ∂xM.

Substitution into Equation (1.4.22) yields

∂2
tw = ∂x

(
S∂xw +

1

α
∂2
t φ− ∂xM

)
,

and together with Equation (1.4.24), we have

∂2
tw −

1

α
∂x∂

2
t φ = ∂x(S∂xw)− 1

β
∂3
xφ.

As before, assume that cross-sections remain plane after deformation, so that ∂xw = φ. Then

we obtain

∂2
tw −

1

α
∂2
t ∂

2
xw = ∂x(S∂xw)− 1

β
∂4
xw. (1.4.34)

The above equation is the Rayleigh beam model with axial force. Similar to the case of the

linear model, if the term
1

α
∂2
t ∂

2
xw is neglected, the above becomes the Euler-Bernoulli model

with axial force.

Suppose Equation (1.4.27) is used instead of (1.4.26) as above. Then Equation (1.4.23)

becomes
1

α
∂2
t φ =

(
1 + γS − 1

2
(∂xw)2

)
V + ∂xM.

As before, we neglect (∂xw)2 since ∂xw is small by assumption, and then the rest of the

derivation is the same, and we again arrive at Equation (1.4.34). However, note that in this

case, due to (1.4.27), the system is nonlinear.
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1.5 The multi-dimensional wave equation

Although the focus of the dissertation is on models concerning flexible structures, the multi-

dimensional wave equation is included in the study since it is a frequently considered problem

in publications on existence theory and convergence theory of the finite element method. In

applications, the multi-dimensional wave equation models the vibration of a membrane (in

the two dimensional case, see e.g. [Inm94]) or even the propagation of sound waves (in the

three-dimensional case, see e.g. [PR05]). In this dissertation, the multi-dimensional wave

equation will be considered as an illustrative example for the application of existence theory

and of finite element approximation convergence theory. For simplicity, the wave equation

is considered with Dirichlet boundary conditions over the whole boundary. In this section,

the variational form is derived.

Consider the following problem for the wave equation with viscous damping on a bounded

domain Ω with boundary ∂Ω.

Problem MWE

Given functions f , k, u0, and u1, find u defined on Ω× [0, T ] such that

∂2
t u = ∇2u− k∂tu+ f in Ω× (0, T ), (1.5.1)

u = 0 on ∂Ω,

while u(·, 0) = u0 and ∂tu(·, 0) = u1.

For simplicity, we use the following throughout this dissertation:

Assumption There exists a constant c∗ > 0 such that

0 ≤ k ≤ c∗.

In this case, the class of test functions, denoted by T (Ω), is the space of all functions in

C(Ω̄) that are zero on ∂Ω and have integrable partial derivatives.
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1.5.1 Variational form

We multiply both sides of Equation (1.5.1) by an arbitrary function v ∈ C(Ω̄) with integrable

partial derivatives, and integrate both sides. We also need Green’s formula,∫∫
Ω

−(∇2u)vdA =

∫∫
Ω

∂xu∂xv + ∂yu∂yvdA−
∫
∂Ω

v∇u · nds.

The boundary conditions and Green’s formula are used to obtain the problem in variational

form.

Problem MWE-V

Find u such that for each t > 0, u(·, t) ∈ T (Ω) and∫∫
Ω

∂2
t u(·, t)vdA = −

∫∫
Ω

∂xu(·, t)∂xv + ∂yu(·, t)∂yvdA−
∫∫

Ω

k∂tu(·, t)vdA+

∫∫
Ω

fvdA

for each v ∈ T (Ω), while u(·, 0) = u0 and ∂tu(·, 0) = u1.

1.6 Nonlinear models

While the models considered in this dissertation are those introduced in the above sections,

other theories and models exist. Geometrically exact beam theories are beam theories in

which “the relationships between the configuration and the strain measures are consistent

with the virtual work principle and the equilibrium equations at a deformed state regardless

of the magnitude of displacements, rotations and strains” [CJ99]. A very detailed survey

of geometrically exact beam models can be found in the introduction of [MPW19]. In this

section, we highlight a few key differences between the models that are most frequently used.

Cosserat and Kirchhoff models are ideal for modelling nonlinear deformation of slender beams

[LA12]. Extension, bending and torsion are just some examples of rod deformation, and can

be studied with classical geometrically exact Kirchhoff models, and shearing effects can

additionally be incorporated by using Cosserat models [Cos09].
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The Kirchhoff and Euler-Bernoulli theory models a beam with no shear strains. The Kirch-

hoff beam was the first model that allowed arbitrary initial curvature and bending and torsion

deformations [MPW19]. The theory was enhanced by Love to include axial strain [MPW19],

[CJ99]. Reissner later extended the theory to include shear deformation [MPW19]. Simo

finally extended the work of Reissner to a semi-induced beam theory [MPW19]. Note that

for Euler-type beams, cross-sections remain orthogonal to the axis of the beam after defor-

mation due to the exclusion of shear strain. Including shear deformation in the model means

that there is an angle between the center axis and the cross-sections, and these types of

beams are Cosserat- and Timoshenko-type beams [CJ99].

The Kirchhoff and Cosserat rod models are nonlinear generalisations of linear Euler–Bernoulli

and Timoshenko–Reissner beam models [LA12]. Mathematical analysis of these types of

models can become quite complex, and is beyond the scope of this dissertation. The focus

was on simpler models, for which existence theory and finite element applications are well-

known and can be studied in detail, as an initial investigation.
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Chapter 2

Existence

2.1 Introduction

Existence theory for models of vibration problems is an important research topic and also

has practical significance. These model problems do not necessarily have classical solutions.

However, so-called weak solutions are accepted, while regularity conditions could still be

restrictive. In a practical sense, researchers often approximate “solutions” to model problems

which are ill-posed and might not have a solution, but then attribute the numerical method’s

poor performance to the method, and not to the fact that there might not even be a solution

to approximate. For this reason, existence theory is an important topic to consider when

working with finite element approximations.

Additionally, a general existence theory that can be applied to a variety of problems, is im-

portant. Many articles (on convergence theory) cite existence results from [LM72] or [Eva97],

which are not general and are restricted to problems similar to the multi-dimensional wave

equation. In the book of Showalter [Sho77] and the article [AKS96], more general existence

theory is available, but is given in terms of linear operators, which could be inconvenient for

practical applications of the theory.
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In [VV02], a general theory for linear second order hyperbolic type problems is derived,

where the so-called general linear vibration problem is given in an abstract variational form.

This theory is convenient in applications, since methods such as the FEM already require

derivation of the variational form of the problem, which can then be used when applying

the existence theory. There are restrictions to this theory, namely that the problem has

to be linear, and that the bilinear form b, which contains the terms that have to do with

elasticity, has to be symmetric. This theory (and the follow up paper [VS19], where the

latter restriction is relaxed) is considered in this dissertation, since it is convenient to use

for the problems considered.

In this chapter, the results from [VV02] are summarised, and some comparisons are made

with [VS19]. As mentioned above, one restriction of [VV02] is that the bilinear form b in

the abstract variational form need to be symmetric; in [VS19] this assumption is relaxed,

and some proofs must be adapted to achieve the same results. The main existence theorem,

which is important in Chapter 3, is from [VV02]. These articles can be consulted for detailed

proofs of the results presented here.

In Section 2.2, the general linear second order hyperbolic problem in abstract form is pre-

sented, followed by the main existence theory in Section 2.3. The necessary theory to prove

the main result, as well as comparisons between [VV02] and [VS19], are in Subsection 2.3.1.

The chapter is concluded with a section on the application of some of this existence theory

to the Timoshenko model with axial force and to the multi-dimensional wave equation.

2.2 The general linear vibration problem

First, the general linear second-order hyperbolic equation, introduced in [VV02], which in-

volves different types of damping, is given. The notation to be used in the remainder of this

chapter and Chapter 3 is also introduced.

1. Let V be a Hilbert space with inner product b (·, ·) and norm ‖ · ‖V .
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2. Let W be a Hilbert space with inner product c (·, ·) and norm ‖ · ‖W .

3. Let X be a Hilbert space with inner product (·, ·) and norm ‖ · ‖X .

Here V , W and X are such that V ⊂ W ⊂ X.

Additionally, let a denote a bilinear form on V .

Remark 2.2.1. The above definitions were changed slightly in [VS19], where it was assumed

that b may be non-symmetric. It was still assumed that c is the inner product for W , but

the inner product for V was denoted by (·, ·)V , and b was merely a bilinear form on V . Note

that b(·, ·) = (·, ·)V may not be true, since b is not symmetric.

Also denote by J the interval of type [0, T ) or [0,∞), or an open interval containing 0, and

let Y denote a Hilbert space. We write u′(t) ∈ Y if the derivative of u exists with respect to

the norm of Y , and write u ∈ C(k)(J ;Y ) if u(k) ∈ C(J ;Y ).

The general linear vibration problem is Problem G:

Problem G

Given a function f : [0, T ]→ X, find a function u ∈ C([0, T );V ) such that u′ is continuous

at 0, and for each t ∈ (0, T ), u(t) ∈ V, u′(t) ∈ V, u′′(t) ∈ W and

c (u′′(t), v) + a (u′(t), v) + b (u(t), v) = (f(t), v)X (2.2.1)

for each v ∈ V , while u(0) = u0 and u′(0) = u1.

The following four assumptions (from [VV02]) are necessary for the theory in this chapter,

and will also play a role in convergence (discussed in Chapter 3):

E1 V is dense in W , and W is dense in X.

E2 There exists a constant κ1 > 0 such that ‖v‖W ≤ κ1‖v‖V for each v ∈ V .

E3 There exists a constant κ2 > 0 such that ‖w‖X ≤ κ2‖w‖W for each w ∈ W .

E4 The bilinear form a is symmetric, non-negative and bounded on V ; that is, there exists

a constant Ka > 0 such that |a (u, v) | ≤ Ka‖u‖V ‖v‖V for all u, v ∈ V .
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Remark 2.2.2. In [VS19], an additional assumption, which becomes necessary later, was

introduced to accommodate the fact that b may be non-symmetric. Note that we may write

b = b0 + b1, where b0 is the symmetric part, and b1 the non-symmetric part, of b. Then we

have the following assumption:

E5 The bilinear form b1 is bounded as follows: there exists a positive constant K1 <
1

κ2

such

that

|b1 (u, v)| ≤ K1 ||u||V ||u||W for all u, v ∈ V.

Remark 2.2.3. Assumption E4 has to be changed slightly for the case of weak damping.

The bilinear form a is then bounded on W instead of on V . The following is again from

[VV02]:

E4W The bilinear form a (·, ·) is non-negative, symmetric and bounded on W ; that is, there

exists a constant Ka > 0 such that |a (u, v) | ≤ Ka‖u‖W‖v‖W for all u, v ∈ W .

In the remaining sections of this chapter, assumptions E1 to E4 (and E5 where necessary

for the comparison with [VS19]) are assumed to be satisfied.

2.3 Main existence results

The existence theorem for general damping is given in [VV02], but the notation from [BSV17]

(where the existence theory is used for convergence of finite element approximations) will

be used in this section, for consistency of notation with Chapter 3. For easy reference, the

theorem is given as Theorem 2.3.1 below. The results required to prove it are from [VV02],

and are given in Section 2.3.1, where comparisons with [VS19] are made.

Theorem 2.3.1. Suppose assumptions E1, E2, E3 and E4 hold. If u0 ∈ V and u1 ∈ V and

there exists some y ∈ W such that

b (u0, v) + a (u1, v) = c (y, v) for each v ∈ V, (2.3.1)

then for each f ∈ C1([0, T ];X), there exists a unique solution

u ∈ C([0, T );V ) ∩ C1([0, T );W ) ∩ C1((0, T );V ) ∩ C2((0, T );W )
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for Problem G. If f = 0, then u ∈ C1([0,∞);V ) ∩ C2([0,∞);W ).

Remark 2.3.1. If b is not symmetric, then, assuming instead that assumptions E1 to E5

hold, together with Equation (2.3.1), the result of Theorem 2.3.1 still holds.

Remark 2.3.2. Note that in [VV02] there is a typo in this theorem (Theorem 1 in the

article), namely that u1 ∈ W . It should be u1 ∈ V , as above, which is also pointed out in

[VZV09].

Now define

Eb = {x ∈ V : there exists a y ∈ W such that c (y, v) = b (x, v) for all v ∈ V } .

Using assumption E4W instead of E4, we have the existence theorem for weak damping from

[VV02]:

Theorem 2.3.2. Suppose assumptions E1, E2, E3 and E4W hold. Then there exists a

unique solution u ∈ C1((−∞,∞);V ) ∩ C2((−∞,∞);W ) for Problem G for each u0 ∈ Eb,

u1 ∈ V and each f ∈ C1((−∞,∞);X).

If we assume in addition that assumption E5 holds, then we have the existence theorem for

weak damping from [VS19], for the case that b is not symmetric:

Theorem 2.3.3. Suppose assumptions E1, E2, E3, E4W and E5 hold. Then there exists a

unique solution u ∈ C1(J ;V ) ∩ C2(J ;W ) for Problem G for each u0 ∈ Eb, u1 ∈ V and each

f ∈ C1(J,X). If f = 0, then u ∈ C1((−∞,∞);V ) ∩ C2((−∞,∞);W ).

2.3.1 Important results for the existence theorem

In this subsection, the theory used to prove Theorem 2.3.1 is given.

First note that we can write Problem G as a first-order system. For each t ∈ (0, T ), let

w(t) = u′(t). Then we write

c (w′(t), v) + a (w(t), v) + b (u(t), v) = (f(t), v)X
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for each v ∈ V .

Define the Hilbert space H = V ×W . Denote an element x of H by x = 〈x1, x2〉, where

x1 ∈ V and x2 ∈ W . Define the inner product (·, ·)H on H by

(x, y)H = b (x1, y1) + c (x2, y2) for all x, y ∈ H.

The idea is to define an infinitesimal generator of a C0 semigroup in H, and then semigroup

theory can be used to prove Theorem 2.3.1.

The following results are the same in [VV02] and [VS19].

Lemma 2.3.1. Suppose λ ≥ 0. For each y ∈ H, there exists a unique x ∈ H such that

λx1 − x2 = y1, and (2.3.2)

b (x1, v) + a (x2, v) + λc (x2, v) = c (y2, v) for all v ∈ V. (2.3.3)

Definition. For λ = 0, define the operator Λ on H by Λy = −x, if Equations (2.3.2) and

(2.3.3) are satisfied.

Lemma 2.3.2. Λ is a bounded linear operator with trivial nullspace.

It follows from Lemma 2.3.2 that Λ−1 exists.

Definition. Operator A = Λ−1.

Lemma 2.3.3. A is a densely defined closed linear operator on H.

The proof of Lemma 2.3.3 differs in [VV02] and [VS19]. Note that in both cases, the proof

that A is closed is simple. However, if b is not symmetric, the proof that D(A) = R(Λ) is

dense in H is not as simple.

Outline of the proof of Lemma 2.3.3. Start by assuming that b is symmetric, and suppose

for a contradiction that R(Λ) is not dense in H. Then there exists w ∈ H such that w 6= 0

and (w, z)H = 0 for each z ∈ R̄, the closure of R(Λ) in H.
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In [VV02] it is shown that, if x = Λ〈w1, w2 + w1〉, then

b (w1, z1) + c (w2, z2) = 0 for each z ∈ R̄, (2.3.4)

and also

x2 = w1, and (2.3.5)

b (x1, v) + a (x2, v) = −c (w2 + w1, v) for all v ∈ V. (2.3.6)

From Equation (2.3.4) it follows that

b (w1, x1) + c (w2, x2) = 0 (2.3.7)

from the definition of (·, ·)H .

Equations (2.3.5) and (2.3.6) imply that

b (x1, w1) + c (w2, x2) = −a (x2, x2)− c (x2, x2) ,

and then the symmetry of b, that is, the fact that b (w1, x1) = b (x1, w1), and Equation (2.3.7)

can be used to prove that c (x2, x2) = 0 and hence x2 = w1 = 0.

This will no longer work if b is not symmetric. Assume again that R(Λ) is not dense in H,

i.e. there exists y ∈ H such that y 6= 0 and (y, z)H = 0 for each z ∈ R̄ (note here the change

of notation from w ∈ H above to y ∈ H, which is introduced for easy comparison between

the two proofs).

In [VS19] it is shown, using the Lax-Milgram Theorem, and the fact that for any z ∈ H, we

may write z = z0 + z⊥, where z0 ∈ R̄ and z⊥ ∈ R̄⊥, that there is a unique w ∈ H such that

b (z0
1 , w1) + c (z0

2 , w2) = (z0, y)H for every z0 ∈ R̄.

Since y ∈ R̄⊥ and z0 ∈ R̄, we have that (z0, y)H = 0, and thus there exists a w ∈ R̄⊥ such

that w 6= 0 and b (z1, w1) + c (z2, w2) = 0 for any z ∈ R̄. Using this instead of Equation

(2.3.4), the same procedure as above can now be followed to prove that w2 = 0, since the

symmetry of b is no longer required.
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The next part of the proof is the same in both articles:

It can be shown that c (v, w2) = c (w2, v) = 0 for any v ∈ W using that V is dense in W ,

and hence w2 = 0.

This proves that w = 0. In the case of [VV02], this is the contradiction. In the case of

[VS19], this can be used to show that y = 0, which is a contradiction.

The following four results can then be obtained.

Lemma 2.3.4. For any x ∈ D(A), Ax = y if and only if

x2 = y1 and

b (x1, v) + a (x2, v) = −c (y2, v) for all v ∈ V.

Corollary 2.3.1. For any λ ≥ 0, R(λI − A) = H.

Corollary 2.3.2. x ∈ D(A) if and only if there exists a y ∈ W such that

b (x1, v) + a (x2, v) = c (y, v) for all v ∈ V.

Lemma 2.3.5. (Ax, y)H = b (x2, y1)− a (x2, y2) for all x, y ∈ D(A).

Finally, this leads to the following result:

Lemma 2.3.6. A is the infinitesimal generator of a C0 semigroup of contractions in H.

The proof of this lemma differs for the cases that b is symmetric and not symmetric.

If b is symmetric, then we have the following:

Corollary 2.3.3. (Ax, x)H = −a (x2, x2) for all x ∈ D(A).

Corollary 2.3.3 implies that A is dissipative, i.e. (Ax, x)H ≤ 0 for every x ∈ D(A), from

the nonnegativity of a. Then, using Lemma 2.3.3 and Corollaries 2.3.3 and 2.3.1, it can be

shown that A is the infinitesimal generator of a C0 semigroup of contractions in H.
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If b is not symmetric, the approach in [VS19] must be taken. There, it is shown that

(λ− A)−1 is bounded for all real λ > 1
2
K1. Then∣∣∣∣∣∣((λI − A)−1)n∣∣∣∣∣∣ ≤ (λ− 1

2
K1

)−n
for each n ∈ N.

The fact that A is the infinitesimal generator of a C0 semigroup of contractions in H follows

from Lemma 2.3.3 and Corollary 3.8 p.12 in [Paz83].

Finally, we give the initial value problem for the first-order system defined at the beginning

of this subsection.

Problem G-IVP

Given a function G : J → H, find w ∈ C(J,H) such that for each t ∈ J, w(t) ∈ D(A),

w′(t) ∈ H and

w′(t) = Aw(t) +G(t), (2.3.8)

w(0) = w0. (2.3.9)

Remark 2.3.3. The problem is written as it is in [VS19], since it uses the same notation

as [BSV17] and Chapter 3 of this dissertation. Recall that J is of the form [0, T ) or [0,∞),

or an open interval containing 0. Thus, the initial value problem as it is given in [VV02] is

essentially the same.

We obtain the following from Lemma 2.3.4:

Lemma 2.3.7. Suppose G(t) = 〈0, g(t)〉 for each t ∈ J .

1. If u is a solution of Problem G, then w = 〈u, u′〉 is a solution of Problem G-IVP with

w0 = 〈u0, u1〉.

2. If w is a solution of Problem G-IVP with u0 = 〈u0, u1〉, then the first component

u = w1 of w is a solution of Problem G.

Finally, using the fact that A is the infinitesimal generator of a C0 semigroup in H, together

with Corollary 2.3.2 and Lemma 2.3.7, Theorem 2.3.1 can be proven.
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2.4 Applications

The theory of [VV02] (and [VS19]) can be used in a variety of applications. An example is

given in [DD20], where a model for the study of heat transfer in biological tissues is given.

Its variational form was derived, and Theorem 2 of [VV02] was applied to prove that the

problem has a unique solution. Further, the theory was also applied in [VVS21], to prove the

well-posedness of two models for heat transfer of short-pulse lasers. The theory of [VV02]

and [VS19] was also applied to the adapted Timoshenko models derived in [VDL21]. In

[VZV09], the theory of [VV02] was applied to the variational problem of a vibration model

for a plate-beam system consisting of a Reissner-Midlin plate and a Timoshenko beam. Such

a system was also analysed in [PRT14], but in this article, the authors derived their own

theory for existence of local and global weak solutions.

In this section, the multi-dimensional wave equation and the linear Timoshenko model with

axial force introduced in Chapter 1 are used as further illustrative examples of how the

theory introduced in Chapter 2 can be used in applications.

2.4.1 The multi-dimensional wave equation without damping

We first consider the multi-dimensional wave equation without damping, as it will be used

again in later sections of the dissertation in applications. Thus we ignore the term k∂tu in

Equation (1.5.1). The aim is to first write the wave equation in the form of Equation (2.2.1)

of Problem G.

Let X = L2(Ω) and let V be the closure of the class of test functions T (Ω) in the Sobolev

space H1(Ω) (see Appendix A for details on Sobolev spaces). The norm on H1(Ω) is denoted

by ||·||1, and the norm on L2(Ω) is denoted by ||·||.

For any u, v ∈ H1(Ω), define the bilinear form b by

b(u, v) =

∫∫
Ω

∂xu∂xv + ∂yu∂yvdA, (2.4.1)
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and for any u, v ∈ L2(Ω), define the bilinear form c by

c(u, v) =

∫∫
Ω

uvdA. (2.4.2)

Remark 2.4.1. A definition of a bilinear form a as given in Equation (2.2.1) is not necessary

here, as we do not consider damping.

Note that for any u ∈ H1(Ω),

b(u, u) =

∫∫
Ω

(∂xu)2 + (∂yu)2 dA ≥ 0

by properties of integrals, since (∂xu)2 ≥ 0 and (∂yu)2 ≥ 0.

Proposition 2.4.1. There exists a constant κ1 > 0 such that

||v||1 ≤ κ1

√
b(v, v) for each v ∈ V. (2.4.3)

Proof. Note that since ∂Ω is non-empty, the Poincaré-Friedrichs inequality (see for example

Theorem 2 pg.300 of [Eva97]) holds. That is, there exists a constant β > 0 such that

b(v, v) ≥ β ||v||21 for all v ∈ V. (2.4.4)

It follows from the definition of ||·||1 and Inequality (2.4.4) that for any v ∈ V , we have

||v||2W ≤ ||v||
2
1

≤ 1

β
b(v, v)

and hence

||v||W ≤ κ1

√
b(v, v) for all v ∈ V,

where κ1 =

√
1

β
> 0.

Proposition 2.4.2. The bilinear form b is an inner product on V .
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Proof. Let u, v, w ∈ V and let a1, a2 be positive constants.

Recall from above that b(u, u) ≥ 0. Further, by properties of bilinear forms, we know that

b(u, v) = b(v, u) and b(a1u+ a2v, w) = a1b(u,w) + a2b(v, w).

Finally, suppose b(u, u) = 0. Then it follows from Inequality (2.4.4) and the fact that

||u||21 ≥ 0, that we must have ||u||21 = 0. Properties of the norm then imply that u = 0.

Hence by definition, b(·, ·) is an inner product for V .

The norm on V is now defined as

||v||V =
√
b(v, v) for each v ∈ V.

Remark 2.4.2. From this definition, Inequality (2.4.3) can be written as

||v||1 ≤ κ1 ||v||V for each v ∈ V. (2.4.5)

The bilinear form c is just the inner product on L2(Ω), so W = X and consequently

||u||W = ||u|| for each u ∈ W.

To apply the existence theory, it must be shown that assumptions E1 to E3 are satisfied.

Remark 2.4.3. Assumption E4W is not required here since we do not consider damping,

and therefore do not have a bilinear form a (·, ·).

First note that since C∞0 (Ω) is dense in L2(Ω) and C∞0 (Ω) ⊂ V , it follows that V is dense in

W = L2(Ω). Since W = L2(Ω) = X, trivially W is dense in X.

Assumption E2 follows from Proposition 2.4.1, and Assumption E3 follows trivially since

W = X.

Recall that we defined J as an open interval containing 0, or an interval of the form [0, T ) or

[0,∞). Then we have the following problem for the wave equation on a multi-dimensional

domain, which is the weak variational problem of Problem MWE-V without damping.
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Problem MWE-W

Find u such that for each t ∈ J , u(t) ∈ V , u′′(t) ∈ X and

c (u′′(t), v) + b (u(t), v) = c (f(·, t), v) for each v ∈ V,

while u(0) = u0 and u′(0) = u1.

Recall also that we defined

Eb = {x ∈ V : there exists a y ∈ W such that c (y, v) = b (x, v) for all v ∈ V } .

Finally, since assumptions E1 to E3 are satisfied, it follows from Theorem 2.3.2 that there

exists a unique solution

u ∈ C1((−∞,∞);V ) ∩ C2((−∞,∞);W )

for Problem MWE-W for each u0 ∈ Eb, u1 ∈ V and each f ∈ C1 ((−∞,∞);X).

2.4.2 The multi-dimensional wave equation with viscous damping

We again investigate the application of the existence theory to the multi-dimensional wave

equation, but now with viscous damping included. Note that most of the argument remains

the same as in Section 2.4.1 above.

Recall that we defined X = L2(Ω) and V to be the closure of the class of test functions T (Ω)

in the Sobolev space H1(Ω). Also recall the definitions of the bilinear forms b and c from

Equations (2.4.1) and (2.4.2).

Now we additionally define for any u, v ∈ H1(Ω) the bilinear form a as follows:

a(u, v) =

∫∫
Ω

kuvdA.

We proved in Proposition 2.4.2 that b is an inner product for V , and defined its corresponding

norm ||·||V . Further, we had that the bilinear form c is just the inner product on L2(Ω), so
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W = X and

||u||W = ||u|| for each u ∈ W.

The proof that assumptions E1 to E3 are satisfied is the same as in Section 2.4.1. It remains

to prove that assumption E4W is satisfied. This is done in the following proposition.

Proposition 2.4.3. The bilinear form a is non-negative, symmetric and bounded on W .

Proof. It is clear from properties of integrals that for any u, v ∈ W ,

a(u, v) = a(v, u),

and that

a(u, u) ≥ 0,

since u2 ≥ 0 and k ≥ 0 from the assumption on k (see Section 1.5).

It remains to prove that a is bounded. Using the Cauchy-Schwarz inequality and since it is

assumed that 0 ≤ k ≤ c∗ on Ω, we have that

|a(u, v)| =
∣∣∣∣∫∫

Ω

kuvdA

∣∣∣∣
≤
∫∫

Ω

|k| |uv| dA

≤ c∗
∫∫

Ω

|uv| dA

≤ c∗ ||u|| ||v||

for any u, v ∈ W .

Since W = X, it follows that for any u, v ∈ W

|a(u, v)| ≤ c∗ ||u||W ||v||W .

Recall that we defined J as an open interval containing 0, or an interval of the form [0, T ) or

[0,∞). Then we have the following problem for the wave equation on a multi-dimensional

domain, which is the weak variational problem of Problem MWE-V with damping.
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Problem MWED-W

Find u such that for each t ∈ J , u(t) ∈ V , u′′(t) ∈ X and

c (u′′(t), v) + a(u′(t), v) + b (u(t), v) = c (f(·, t), v) for each v ∈ V,

while u(0) = u0 and u′(0) = u1.

Recall again that

Eb = {x ∈ V : there exists a y ∈ W such that c (y, v) = b (x, v) for all v ∈ V } .

Since assumptions E1 to E4W are satisfied, it follows from Theorem 2.3.2 that there exists

a unique solution

u ∈ C1((−∞,∞);V ) ∩ C2((−∞,∞);W )

for Problem MWED-W for each u0 ∈ Eb, u1 ∈ V and each f ∈ C1 ((−∞,∞);X).

2.4.3 The Timoshenko model with axial force

The aim is to first write Problem T-V in the form of Equation (2.2.1) of Problem G.

Some notation is introduced to facilitate the derivations. We denote the inner product on

L2(0, 1) by (·, ·), and its corresponding norm by ||·||. Recall that the inner product and norm

on the Sobolev space H1(0, 1) are denoted by (·, ·)1 and ||·||1 respectively (see Appendix A).

Let X = L2(0, 1) × L2(0, 1) and H1 = H1(0, 1) × H1(0, 1). An element y of X or H1 is

denoted by y = 〈y1, y2〉.

Define an inner product on X by

(x, y) = (x1, y1) + (x2, y2) .

The corresponding norm is denoted by ||·||X .

The inner product on H1 is

(x, y)H1 = (x1, y1)1 + (x2, y2)1 ,
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with corresponding norm ||·||H1 .

Also define the following bilinear forms: For any f, g ∈ X and any u, v ∈ H1,

c (f, g) = (f1, g1) +

(
1

α
f2, g2

)
b (u, v) =

(
1

β
u′2, v

′
2

)
+ (u′1 − u2, v

′
1 − v2) + (Su′1, v

′
1) ,

where the derivatives are weak derivatives. Note that these bilinear forms are symmetric.

Also denote

bT (u, v) =

(
1

β
u′2, v

′
2

)
+ (u′1 − u2, v

′
1 − v2) .

Note then that

b (u, v) = bT (u, v) + (Su′1, v
′
1) .

Remark 2.4.4. We do not consider damping in this case, and so there is no need to define

a bilinear form a as it appears in Equation (2.2.1).

For simplicity of notation, it is assumed that the area of a cross-section of the beam remains

constant. This does not affect the theory.

Proposition 2.4.4. The bilinear form c is an inner product for X.

Proof. Let u, v, w ∈ X and a1, a2 ∈ R.

First note that

c (u, u) = ||u1||2 +
1

α
||u2||2 ≥ min

{
1,

1

α

}
||u||2X ≥ 0. (2.4.6)

Since c is a bilinear form, we know that

c (u, v) = c (v, u) and c (a1u+ a2v, w) = a1c (u,w) + a2c (v, w) .

Finally, if c (u, u) = 0, then the Inequality (2.4.6) implies that ||u||2X = 0. Consequently

u = 0.

Hence by definition, c is an inner product for X.
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Definition. We denote the space X with the inner product c by W . The norm on W is

defined by

||u||W =
√
c (u, u) for each u ∈ W.

Proposition 2.4.5. The norms ||·||W and ||·||X are equivalent on W .

Proof. Let u ∈ W . From Inequality (2.4.6) we have that

||u||2W ≥ min

{
1,

1

α

}
||u||2X .

Further, it is easy to see that

||u||2W ≤ max

{
1,

1

α

}
||u||2X .

Since u is arbitrary, this holds for all u ∈ W , and the result follows.

Next, we aim to define the space V , which will depend on the boundary conditions used.

Recall that two sets of homogeneous boundary conditions were considered for the problem.

For the pinned-pinned case, let VP (0, 1) be the closure of TP [0, 1] in H1(0, 1), and define

VP = VP (0, 1) × H1(0, 1). For the cantilever case, let VC(0, 1) be the closure of TC [0, 1] in

H1(0, 1), and define VC = VC(0, 1)× VC(0, 1).

Remark 2.4.5. By definition, the spaces VP (0, 1) and VC(0, 1) are Hilbert spaces.

Proposition 2.4.6. The spaces VP and VC are dense subsets of W .

Proof. VP (0, 1) and VC(0, 1) are dense in L2(0, 1) since C∞0 (0, 1) is dense in L2(0, 1). Hence

VP and VC are dense subsets of X. The result then follows from the equivalence of the norms

||·||W and ||·||X .

Similar to the approach for the multi-dimensional wave equation in Section 2.4.1, we use a

Poincaré-type inequality to find an upper bound for bT (·, ·) in terms of ||·||X :

If f ∈ C1[0, 1] has a zero in [0, 1], then |f(x)| ≤ ||f ′|| for each x ∈ [0, 1].
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Using the definitions of VC(0, 1) and VP (0, 1) and the above inequality, we have the following

result, by taking limits:

Proposition 2.4.7. For any u ∈ VC(0, 1) or VP (0, 1),

||u|| ≤ ||u′|| . (2.4.7)

We will also need the following proposition:

Proposition 2.4.8. For any u ∈ VC or VP ,

||u1||2 ≤ ||u′1||
2 ≤ 2β

(
||u′1 − u2||2 +

1

β
||u2||2

)
.

Proof. Since u ∈ VC or VP , it follows from Proposition 2.4.7 that ||u1|| ≤ ||u′1||.

From the triangle inequality, and the fact that for any a1, a2 ∈ R, 2|a1a2| ≤ a2
1 +a2

2, it follows

that

||u′1||
2 ≤ 2 ||u′1 − u2||2 + 2 ||u2||2

≤ 2β

(
||u′1 − u2||2 +

1

β
||u2||2

)
.

Proposition 2.4.7 is also used to prove the following result.

Proposition 2.4.9. There exists a constant Cb > 0 such that

bT (u, u) ≥ C2
b ||u||

2
X for each u ∈ VP or VC . (2.4.8)

Proof. The case that u ∈ VC is simple.

Suppose u ∈ VC . From the definition of ||·||X and from Proposition 2.4.7 we have

||u||2X ≤ ||u
′
1||

2
+ ||u′2||

2

≤ 2
(
||u′1 − u2||2 + ||u′2||

2
)
.
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The result then follows from the definition of b, letting

C2
b =

1

2
min

{
1,

1

β

}
.

The proof for the case that u ∈ VP is more complicated. The idea of the proof is from the

appendix of [VZV09].

First note that if u = 0, then Proposition 2.4.9 holds trivially. The rest of the proof is done

by contradiction.

Assume that there is u ∈ VP such that

bT (u, u) < C2
b ||u||X (2.4.9)

for every constant Cb.

Note that for u 6= 0 we have that

bT (w,w) =
bT (u, u)

||u||2X
,

where w =
u

||u||X
. Then bT (w,w) < C2

b for each Cb by assumption, and w ∈ B(0, 1) ∩ VP .

Here B(0, 1) denotes the unit sphere in L2(0, 1).

It follows that there exists a sequence (wn) = (wn1 , w
n
2 ) in B(0, 1) ∩ TP [0, 1] × C1[0, 1] such

that

||wn1 ||
2 + ||wn2 ||

2 = 1 for every n ∈ N. (2.4.10)

Since Inequality (2.4.9) holds for every Cb, it follows form the definition of bT that we must

have

||(wn2 )′||2 + ||(wn1 )′ − wn2 ||
2 → 0 as n→∞. (2.4.11)

First we show that ||wn2 || >
1

2
for n sufficiently large. Note that since wn1 ∈ TP [0, 1] for each

n ∈ N, we have from Proposition 2.4.7 and the triangle inequality that

||wn1 || ≤ ||(wn1 )′||

≤ ||(wn1 )′ − wn2 ||+ ||wn2 ||
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for each n ∈ N.

Note that from (2.4.11) we know that

||(wn1 )′ − wn2 || → 0 as n→∞.

Then by definition, there exists n0 ∈ N such that

||(wn1 )′ − wn2 || <
1

4
for all n ≥ n0.

Then

||wn1 || <
1

4
+ ||wn2 || for all n ≥ n0.

From Equation (2.4.10) it follows that∣∣∣∣∣∣∣∣wn2 +
1

4

∣∣∣∣∣∣∣∣2 + ||wn2 ||
2 > 1.

It follows from property of norms that

||wn2 ||
2 +

1

2
||wn2 ||+

1

16
+ ||wn2 ||

2 > 1

and hence ||wn2 || >
1

2
for all n ≥ n0.

Next we show that

∫ 1

0

wn2 >
1

3
for sufficiently large n. First, suppose wn2 (x) = 0 for some

x ∈ [0, 1] for each n ∈ N. Then from Proposition 2.4.7 we have that

||wn2 || ≤ ||(wn2 )′|| for each n ∈ N.

From Equation (2.4.11) we know that

||(wn2 )′|| → 0 as n→∞, so ||wn2 || → 0 as n→∞.

But we showed that ||wn2 || >
1

2
for all n ≥ n0, a contradiction.

Thus we know that wn2 (x) 6= 0 for every x ∈ [0, 1], for all n ∈ N. Hence we assume without

loss of generality that wn2 > 0 for all n ∈ N.
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Using the Cauchy-Schwarz inequality and the fact that ||wn2 || ≤ 1 from Equation (2.4.10),

we have

∣∣(wn2 (b))2 − (wn2 (a))2
∣∣ =

∣∣∣∣∫ b

a

2wn2 (wn2 )′
∣∣∣∣

≤ 2

∫ b

a

|wn2 | |(wn2 )′|

≤ ||wn2 || ||(wn2 )′||

≤ 2 ||(wn2 )′|| ,

for every subinterval (a, b) of [0, 1].

Again, we know from (2.4.11) that

||(wn2 )′|| → 0 as n→∞,

so by definition there exists n1 ∈ N such that

||(wn2 )′|| < 1

10
for all n ≥ n1.

Let N = max {n0, n1}.

It then follows that w2
max−w2

min <
1

10
, where wmax and wmin are the maximum and minimum

values of wn2 respectively, for all n ≥ N . Then

w2
min =

∫ 1

0

w2
min

=

∫ 1

0

(wn2 )2 −
∫ 1

0

(wn2 )2 − w2
min

≥
∫ 1

0

(wn2 )2 −
∫ 1

0

w2
max − w2

min

>
1

4
− 1

10

>
1

9
.

Hence

∫ 1

0

wn2 >

∫ 1

0

wmin = wmin >
1

3
for all n ≥ N .
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Next, we show that

∫ 1

0

(wn1 )′ > 0 for sufficiently large n. Using the Cauchy-Schwarz inequal-

ity, we have that ∣∣∣∣(wn1 )′ −
∫ 1

0

wn2

∣∣∣∣ =

∣∣∣∣∫ 1

0

(wn1 )′ − wn2
∣∣∣∣

≤
∫ 1

0

|(wn1 )′ − wn2 |

≤ ||(wn1 )′ − wn2 ||

for all n ∈ N.

Again, since

||(wn1 )′ − wn2 || → 0 as n→∞,

by definition there exists n2 ∈ N such that

||(wn1 )′ − wn2 || <
1

3
for all n ≥ n2.

Then

∣∣∣∣∫ 1

0

(wn1 )′ −
∫ 1

0

wn2

∣∣∣∣ < 1

3
for all n ≥ n2.

Let N∗ = max {N, n2}. Since

∫ 1

0

wn2 >
1

3
for all n ≥ N , it follows that

∫ 1

0

(wn1 )′ > 0 for all

n ≥ N∗.

Finally, we have from the Fundamental Theorem of Calculus that for all n ∈ N,

wn1 (1)− wn1 (0) =

∫ 1

0

(wn1 )′ > 0.

Since wn1 (0) = 0, it follows that wn1 (1) > 0 for all n ≥ N∗. But wn1 ∈ TP [0, 1], so wn1 (1) = 0,

for all n ∈ N, a contradiction. Hence Inequality (2.4.8) holds for all u ∈ VP .

Now let K∗ = max
{
β, C−2

b

}
.

Proposition 2.4.10. If

1. S ≥ 0 or
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2. S < 0 and sup |S| ≤ 1

2K∗ + 1
,

then b is an inner product for VP or VC .

Proof. Let u, v, w ∈ VP or VC , and let a1, a2 ∈ R.

First note that since b is a bilinear form, we know that

b (u, v) = b (v, u) and

b (a1u+ a2v, w) = a1b (u,w) + a2b (v, w) .

1. Now suppose S ≥ 0.

From Proposition 2.4.9 we know that bT (u, u) ≥ 0. Then using the definition of b, it

follows that

b(u, u) = bT (u, u) + (Su′1, u
′
1) ≥ 0

by property of integrals.

Further, if b(u, u) = 0 then bT (u, u) = − (Su′1, u
′
1) = 0. Proposition 2.4.9 then implies

that ||u||2X = 0, and hence u = 0 by property of norms.

2. Next, suppose S < 0 and sup |S| ≤ 1

2K∗ + 1
.

Note that from Proposition 2.4.8 and the definition of K∗ we have

|(Su′1, u′1)| ≤ sup |S| ||u′1||
2

≤ 1

2K∗ + 1
2βbT (u, u)

≤ 2K∗

2K∗ + 1
bT (u, u).

Then

b(u, u) = bT (u, u) + (Su′1, u
′
1)

≥ bT (u, u)− 2K∗

2K∗ + 1
bT (u, u),
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and hence

b(u, u) ≥ 1

2K∗ + 1
bT (u, u).

Since bT (u, u) ≥ 0 from Proposition 2.4.9, it follows that b(u, u) ≥ 0, and if b(u, u) = 0,

then bT (u, u) = 0, implying u = 0 (in the same way as before).

It follows by definition that b is indeed an inner product for VP or VC .

Remark 2.4.6. We assume that either S ≥ 0 or S < 0, since for this model it is unrealistic

in practice for S to change sign in (0, 1).

Assumption. In the remainder of this section we assume that sup |S| ≤ 1

2K∗ + 1
if S < 0.

Definition. We define V as the space VP or VC in H1 with inner product b. The norm on

V is defined by

||u||V =
√
b(u, u) for each u ∈ V.

Proposition 2.4.11. The norms ||·||V and ||·||H1 are equivalent on V .

Proof. Let u ∈ V . Now

||u||2V = b(u, u) ≤ max

{
1,

1

β

}(
||u′2||

2
+ ||u′1 − u2||2

)
+ sup |S| ||u′1||

2

≤ K∗1 ||u||
2
H1

where K∗1 = max

{
1,

1

β
, sup |S|

}
.

Next, note that

||u||2H1 = ||u||2X + ||u′1||
2

+ ||u′2||
2

(2.4.12)

and that

||u′1||
2

+ ||u′2||
2 ≤ ||u′1 − u2||2 + ||u′1||

2
+ ||u′2||

2
,

since ||u′1 − u2||2 ≥ 0.

From the definition of b we have that

b(u, u) ≥ K∗2

(
||u′1||

2
+ ||u′2||

2
+ ||u′1 − u2||2

)
,
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where K∗2 = min

{
1,

1

β
, inf |S|

}
.

Hence

||u′1||
2

+ ||u′2||
2 ≤ (K∗2)−1 b(u, u). (2.4.13)

Further, recall from Proposition 2.4.9 that

bT (u, u) ≥ C2
b ||u||

2
X ,

and from what we showed in the proof of Proposition 2.4.10 above, we know that there is

some constant C∗ > 0 such that

b(u, u) ≥ C∗bT (u, u).

Hence

b(u, u) ≥ C∗1 ||u||
2
X ,

where C∗1 = C2
bC
∗.

It follows from this, Equation (2.4.12) and Equation (2.4.13) that

||u||2H1 = ||u||2X + ||u′1||
2

+ ||u′2||
2

≤ (C∗1)−1b(u, u) + (K∗2)−1b(u, u)

= Kb ||u||2V ,

where Kb = (K∗2)−1 + (C∗1)−1.

This concludes the proof.

Corollary 2.4.1. The space V is complete.

Finally, we can construct the weak variational problem. Let Q̃(t) = Q(·, t) for each t.
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Problem T-W

Find u such that for each t ∈ J , u(t) ∈ V , u′′(t) ∈ W and

c(u′′(t), v) + b(u(t), v) =
(
Q̃(t), v

)
for each v ∈ V,

while u(0) = u0 = 〈w0, φ0〉 and u′(0) = ud = 〈wd, φd〉.

Now we apply the existence theory from Chapter 2. To this end, it must again be shown

first that assumptions E1 to E3 are satisfied.

From Proposition 2.4.6 we know that V is a dense subset of W . Trivially W is a dense subset

of X. Further, from the equivalence of ||·||W and ||·||X , the equivalence of ||·||X and ||·||H1

and from the equivalence of ||·||V and ||·||H1 , it follows that there exists κ1 > 0 such that

||v||W ≤ κ1 ||v||V for each v ∈ V.

Further, from the equivalence of ||·||W and ||·||X it follows that there exists κ2 > 0 such that

||w||X ≤ κ2 ||w||W for each w ∈ W.

Hence assumptions E1 to E3 are satisfied. Now define f(t) = 〈Q̃(t), 0〉 for each t. Note that

f ∈ C1 ([0, T );X) if Q̃ ∈ C1 ([0, T );L2(0, 1)).

Then it follows from Theorem 2.3.2 that there exists a unique solution

u ∈ C1((−∞,∞);V ) ∩ C2((−∞,∞);W )

for Problem T-W for each u0 ∈ Eb, ud ∈ V and each Q̃ ∈ C1 ((−∞,∞);L2(0, 1)).
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Chapter 3

Convergence of Solutions of the

General Linear Vibration Problem

3.1 Introduction

The finite element method (FEM) can be used to approximate the solution of various prob-

lems. It is important to consider whether the approximate solutions converge to the exact

solution of the problem. It is often the case that solutions which are not ‘smooth’ may lead

to slow convergence of numerical methods, and especially in finite element applications, very

restrictive assumptions, such as existence of third or fourth order time derivatives for the

solution, are necessary [VS19]. In [Dup73] and [Bak76], estimates for the errors of the semi-

discrete and fully discrete problems for the undamped wave equation were derived, using

the standard FEM. In [Sem94] and [FXX99], such estimates were derived for a vibrating

Timoshenko beam model, but using mixed FEM. However, as pointed out in [BSV17] and

[BV13], the errors for the fully discrete problems were derived without making use of the

results obtained for the semi-discrete problem, at the expense of very restrictive regularity

assumptions on the exact solution. For example, the existence of the fourth order derivative

of the exact solution to the Timoshenko beam model was assumed to guarantee convergence.
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Such assumptions are not feasible in practice. The authors of [BSV17] and [BV13] therefore

introduced an alternative way of deriving error estimates, by using results already obtained

for the semi-discrete error estimate, the final result following easily from the triangle in-

equality. The results from the existence theory (discussed in Chapter 2) are needed for the

convergence theory. Some additional assumptions are also required, but these are much less

restrictive than those mentioned above.

In [BV13] and [BSV17], error estimates were derived for the semi-discrete problems of the

general linear second order hyperbolic problem. Error estimates for the fully-discrete problem

were also presented. In [BV13], the theory holds for weak damping while in [BSV17], general

damping was considered, under some additional assumptions. In the following sections, the

derivations of the error estimates in [BSV17] are reproduced and analysed. Naturally there is

some overlap with results from [BV13], as these papers complement each other. The general

linear model under consideration was introduced in Section 2.2. Section 3.2 introduces the

semi-discrete problem and derivation of the error estimates. The error estimates for the fully

discrete problem are considered in Section 3.4. Where appropriate, comparisons between

[BV13] and [BSV17] are made.

Remark 3.1.1. In the sections that follow, it is assumed that the assumptions E1 to E4,

as well as the additional assumption of Theorem 2.3.1 in Section 2.2, are satisfied. Thus we

assume that the solution u of Problem G exists and satisfies

u ∈ C([0, T );V ) ∩ C1([0, T );W ) ∩ C1((0, T );V ) ∩ C2([0, T );W ). (3.1.1)

Note that this is also assumed in [BSV17], though it is not explicitly mentioned.

3.2 The semi-discrete problem

In this section, some results from [BSV17] that will be useful in the other sections of this

chapter are proved. First it is necessary to introduce the semi-discrete problem, Problem

Gh, associated with Problem G.
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Let Sh be a finite-dimensional subspace of V .

Problem Gh

Given a function f : [0, T ]→ X, find a function uh ∈ C2[0, T ] such that for each t ∈ (0, T ),

c (u′′h(t), v) + a (u′h(t), v) + b (uh(t), v) = (f(t), v)X (3.2.1)

for each v ∈ Sh, while uh(0) = uh0 ∈ Sh and u′h(0) = uh1 ∈ Sh.

Now let u be the solution of Problem G, and uh the solution of Problem Gh. The aim is to

derive an estimate for the error eh(t) = u(t)− uh(t). As in [BSV17], we start by introducing

a projection operator.

Define the operator P by

b (u− Pu, v) = 0 for all v ∈ Sh.

Note here that (Pu)(t) = Pu(t) for each t ∈ (0, T ).

Then we can write

eh(t) = e(t) + ep(t),

where

e(t) = Pu(t)− uh(t) and ep(t) = u(t)− Pu(t),

for each t ∈ (0, T ). An estimate for eh can thus be obtained, by finding estimates for e and

ep.

3.2.1 Error estimate for e

Consider the following assumptions:

C1 The solution u of Problem G has the property that (Pu) ∈ C2(0, T ).

C2 The solution u of Problem G satisfies u ∈ C1([0, T );V ) ∩ C2((0, T );V ).

Remark 3.2.1. In the remainder of this subsection, only Assumption C1 is needed. As-

sumption C2 is only used later in this chapter, but to avoid confusion when comparing with

[BSV17], it is mentioned here for consistency.
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Remark 3.2.2. Assumption C2 was not necessary in [BV13], as will become evident in

Section 3.3.

Proposition 3.2.1. If u ∈ C2((0, T );W ) and u satisfies assumption C1, then ep ∈ C2((0, T );W ).

Proof. Note that ep(t) = u(t) − Pu(t) for each t ∈ (0, T ). Now, by definition, Pu ∈ Sh,

and by assumption C1, we have that Pu ∈ C2((0, T );V ). Since Sh is a finite-dimensional

subspace of V , all norms on Sh are equivalent. Then by definition, there exist constants

c1, c2 > 0 such that

‖x‖V ≤ c1‖x‖W ≤ c2‖x‖V for each x ∈ Sh.

Let t0 ∈ (0, T ). Then for each t ∈ (0, T ), we have that

‖Pu(t)− Pu(t0)‖V ≤ c1‖Pu(t)− Pu(t0)‖W ≤ c2‖Pu(t)− Pu(t0)‖V . (3.2.2)

Fix ε > 0. Since Pu ∈ C((0, T );V ), by definition there exists δ > 0 such that for t ∈ (0, T ),

if |t − t0| < δ, then ‖Pu(t) − Pu(t0)‖V <
c1ε

c2

. It follows from Equation (3.2.2) that if

|t− t0| < δ, then ‖Pu(t)− Pu(t0)‖W < ε, and hence by definition, Pu ∈ C((0, T );W ).

Further, since Pu ∈ C1((0, T );V ), by definition there exists δ1 > 0 such that for t ∈ (0, T ),

if 0 < |δt| < δ1, then

∣∣∣∣∣∣∣∣ 1

δt
(Pu(t+ δt)− Pu(t))− (Pu)′(t)

∣∣∣∣∣∣∣∣
V

<
c1ε

c2

. It follows that if

0 < |δt| < δ1, then

∣∣∣∣∣∣∣∣ 1

δt
(Pu(t+ δt)− Pu(t))− (Pu)′(t)

∣∣∣∣∣∣∣∣
W

< ε, and hence by definition,

(Pu)′ ∈ W . In the same way as above, we can prove that (Pu)′ ∈ C((0, T );W ). Hence

Pu ∈ C1((0, T );W ).

Repeating the above argument with (Pu)′ instead of Pu, it follows that Pu ∈ C2((0, T );W ).

Since u ∈ C2((0, T );W ) by assumption, it follows by properties of continuous functions that

ep ∈ C2((0, T );W ).

Finally, we reach the main result of this subsection, which is Lemma 3.1 in [BSV17]:

Lemma 3.2.1. If the solution u of Problem G satisfies assumption C1, then for all t ∈ (0, T ),

c
(
e′′p(t), v

)
+ a

(
e′p(t), v

)
+ c (e′′(t), v) + a (e′(t), v) + b (e(t), v) = 0 for all v ∈ Sh.
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Proof. Recall that u′(t) ∈ V and u′′(t) ∈ W . Now from assumption C1, (Pu) ∈ C2((0, T );V ).

Then (Pu) ∈ C1((0, T );V ), and it follows that e′p ∈ V . Further, in the proof of Proposi-

tion 3.2.1, we showed that Pu ∈ C2((0, T );W ), and hence e′′p ∈ W . By the same argument,

using uh instead of u, we find that e′ ∈ V and e′′ ∈ W .

It follows that for all v ∈ Sh,

c
(
e′′p(t), v

)
+ a

(
e′p(t), v

)
+ c (e′′(t), v) + a (e′(t), v) + b (e(t), v)

= c (u′′(t)− u′′h(t), v) + a (u′(t)− u′h(t), v) + b (u(t)− uh(t), v) + b (Pu(t)− u(t), v)

= (f, v)X − (f, v)X

= 0.

The second equality follows from the fact that u and uh are solutions of Problems G and Gh

respectively and since b(Pu− u, v) = 0 by definition of P .

Note here that in this version of the proof, the result of Proposition 3.2.1 was not used, as

is suggested in [BSV17], but only a part of its proof - Assumption C1 is sufficient to obtain

the result of Lemma 3.2.1. To satisfy the assumption u ∈ C2((0, T );W ) of Proposition 3.2.1,

note that the assumption that u satisfies (3.1.1) must be used. However, in the proof above,

we only needed the fact that u′′(t) ∈ W , i.e. u′′ exists with respect to || · ||W .

Remark 3.2.3. The result for weak damping corresponding to Lemma 3.2.1 is given as

Proposition 3.1 in [BV13].

3.2.2 Error estimate for ep

The error estimate for ep(t) = u(t)− Pu(t) is obtained exactly as in [BSV17]. To this end,

we require the following definition and assumption.

Definition. Πu =
n∑
k=1

φk(u)wk where wk is a basis for Sh and φk are linear functionals.

We refer to Πu as the generalised interpolation operator.
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Suppose that h is such that h→ 0 as n→∞. Then we formulate assumption C3:

C3 There exists a subspace H(V, k) of V , an interpolation operator Π and constants CΠ > 0

and α > 0, depending on V and k, such that for u ∈ H(V, k),

||u− Πu||V ≤ CΠh
α ||u||H(V,k) ,

where ||·||H(V,k) is a norm or semi-norm associated with H(V, k).

Then the following proposition follows immediately from assumption C3.

Proposition 3.2.2. There exists a subspace H(V, k) of V and constants CΠ > 0 and α > 0,

depending on V and k, such that for u ∈ H(V, k),

||u− Pu||V ≤ CΠh
α ||u||H(V,k) ,

where ||·||H(V,k) is a norm or semi-norm associated with H(V, k).

Remark 3.2.4. Note that in [BV13], the corresponding assumption is called Assumption C2.

The assumption there is slightly different, in that an upper bound is given for inf ||u− v||V
instead. In [BV13], it was shown how their Assumption C2 can be used to obtain the same

result as in Proposition 3.2.2, and it was noted that in applications, the interpolation error

is used to obtain the error estimate of the assumption. Thus, it is reasonable to use the

interpolation operator instead, as in C3 above, since the same estimates for the projection

errors are obtained.

3.3 Error estimates for the semi-discrete problem

In this section, an error estimate for the semi-discrete approximation is derived. Several

results are required, which are proven first, followed by the main results in Subsection 3.3.2.
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3.3.1 Initial estimates

The following expression will be useful throughout this section:

E(t) =
1

2
c (e′(t), e′(t)) +

1

2
b (e(t), e(t)) (3.3.1)

=
1

2
||e′(t)||2W +

1

2
||e(t)||2V , (3.3.2)

provided that e′ ∈ W .

The idea here is to obtain an estimate for E(t) in terms of the projection errors, and then

use the fact that ||e′(t)||2W + ||e(t)||2V = 2E(t) to obtain an estimate for e(t).

We start by obtaining an upper bound for E ′(t).

Lemma 3.3.1. If the solution u of Problem G satisfies assumption C1, then for any t ∈ (0, T ),

E ′(t) ≤ −c
(
e′′p(t), e

′(t)
)
− a

(
e′p(t), e

′(t)
)
. (3.3.3)

Proof. The solution uh of Problem Gh is in C2[0, T ], and (Pu) ∈ C2(0, T ) from assumption

C1, so e ∈ C2(0, T ). Further, uh and Pu are in Sh by definition, and so e(t) ∈ Sh. Hence

e′(t) ∈ Sh for each t ∈ (0, T ).

Now let t ∈ (0, T ). Since the result of Lemma 3.2.1 holds for all v ∈ Sh, it follows that

c
(
e′′p(t), e

′(t)
)

+ a
(
e′p(t), e

′(t)
)

+ c (e′′(t), e′(t)) + a (e′(t), e′(t)) + b (e(t), e′(t)) = 0. (3.3.4)

By property of the inner products b and c, it follows from Equation (3.3.1) that

E ′(t) =
1

2
c (e′′(t), e′(t)) +

1

2
c (e′(t), e′′(t)) +

1

2
b (e′(t), e(t)) +

1

2
b (e(t), e′(t))

= c (e′′(t), e′(t)) + b (e(t), e′(t)) .

Then, substituting Equation (3.3.4), we obtain

E ′(t) = −c
(
e′′p(t), e

′(t)
)
− a

(
e′p(t), e

′(t)
)
− a (e′(t), e′(t)) .
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Since a (e′(t), e′(t)) ≥ 0 by assumption E4, it follows then that

E ′(t) ≤ −c
(
e′′p(t), e

′(t)
)
− a

(
e′p(t), e

′(t)
)
.

Since t ∈ (0, T ) is arbitrary, this holds for any t ∈ (0, T ).

Equation (3.3.3) will be used to obtain an estimate for E(t). However, as pointed out in

[BSV17], the second term of the equation is problematic, since

a
(
e′p(t), e

′(t)
)
≤ Ka

∣∣∣∣e′p(t)∣∣∣∣V ||e′(t)||V
from assumption E4, and ||e′(t)||V is not bounded by E(t).

Instead, the following result will be used, and its use will become clear in the proof of

Lemma 3.3.3 below.

Proposition 3.3.1. If ep ∈ C1([0, T );V ) ∩ C2((0, T );V ), then for any t ∈ (0, T ),∫ t

0

a
(
e′p(·), e′(·)

)
= a

(
e′p(t), e(t)

)
− a

(
e′p(0), e(0)

)
−
∫ t

0

a
(
e′′p(·), e(·)

)
.

To prove this result, we use the following theorem and lemma. Note that Lemma 3.3.2 is

from [BV13].

Theorem 3.3.1. Let {a1, a2, . . . , ak} be a linearly independent set in the k-dimensional

vector space U . Then any x ∈ U can be written as
k∑
i=1

xiai, and the set of real numbers {xi}

is uniquely determined.

Lemma 3.3.2. If u ∈ C1(J ;V ), then (Pu) ∈ C1(J ;V ) and (Pu)′(t) = Pu′(t) for each t ∈ J .

Proof of Proposition 3.3.1. Recall that in the proof of Lemma 3.3.1 we showed that e(t) ∈ Sh.

Let {φ1, φ2, . . . , φn} be a basis for Sh. Then by Theorem 3.3.1, we can write

e(t) =
n∑
i=1

ei(t)φi (3.3.5)

for any t ∈ (0, T ).
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It follows from properties of the inner product a that

a
(
e′p(t), e(t)

)
=

n∑
i=1

ei(t)a
(
e′p(t), φi

)
(3.3.6)

for any t ∈ (0, T ).

Recall that e(t) = Pu(t) − uh(t). At this point, the proof in [BSV17] points out that

e ∈ C1(0, T ). It should be shown why this is the case. We assume that u satisfies Equa-

tion (3.1.1). Then by Lemma 3.3.2, we have that (Pu) ∈ C2((0, T );V ). Since uh ∈ C2[0, T ],

it follows that e ∈ C2(0, T ), and so e ∈ C1(0, T ).

Hence ei ∈ C1(0, T ) for each i = 1, 2, . . . , n. From Equation (3.3.5) it follows that

e′(t) =
∑n

i=1 e
′
i(t)φi, and hence we conclude, like above, that for any t ∈ (0, T ),

a
(
e′p(t), e

′(t)
)

=
n∑
i=1

e′i(t)a
(
e′p(t), φi

)
. (3.3.7)

Since ep ∈ C2((0, T );V ) we have by definition that

0 ≤
∣∣∣∣ 1

δt

(
a
(
e′p(t+ δt), φi

)
− a

(
e′p(t), φi

))
− a

(
e′′p(t), φi

)∣∣∣∣
≤ Ka

∣∣∣∣∣∣∣∣ 1

δt

(
e′p(t+ δt)− e′p(t)

)
− e′′p(t)

∣∣∣∣∣∣∣∣
V

||φi||V

→ 0 as δt→ 0

for any t ∈ (0, T ), where the second inequality follows from assumption E4.

Then

∣∣∣∣ 1

δt

(
a
(
e′p(t+ δt), φi

)
− a

(
e′p(t), φi

))
− a

(
e′′p(t), φi

)∣∣∣∣ → 0 as δt → 0 from the squeeze

theorem, and it follows by definition that a
(
e′p(·), φi

)
is differentiable on (0, T ), and

d

dt
a
(
e′p(t), φi

)
= a

(
e′′p(t), φi

)
for each t ∈ (0, T ) and for i = 1, 2, . . . , n. (3.3.8)

Finally, we can combine Equations (3.3.6), (3.3.7) and (3.3.8) to obtain

d

dt
a
(
e′p(t), e(t)

)
=

d

dt

n∑
i=1

ei(t)a
(
e′p(t), φi

)
=

n∑
i=1

e′i(t)a
(
e′p(t), φi

)
+

n∑
i=1

ei(t)a
(
e′′p(t), φi

)
= a

(
e′p(t), e

′(t)
)

+ a
(
e′′p(t), e(t)

)
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for each t ∈ (0, T ).

Integrating both sides, and using the Fundamental Theorem of Calculus, it follows that for

each t ∈ (0, T ),∫ t

0

a
(
e′p(·), e′(·)

)
=

∫ t

0

d

dt
a
(
e′p(·), e(·)

)
− a

(
e′′p(·), e′(·)

)
dt

= a
(
e′p(t), e(t)

)
− a

(
e′p(0), e(0)

)
−
∫ t

0

a
(
e′′p(·), e(·)

)
dt

Remark 3.3.1. It should briefly be pointed out why the Fundamental Theorem of Cal-

culus may be used above. We showed above that e ∈ C1(0, T ), and by assumption,

ep ∈ C2((0, T );V ). By continuity of the inner product, it follows that

a
(
e′p(t), e

′(t)
)

+ a
(
e′′p(t), e(t)

)
is continuous at each t ∈ (0, T ), and hence

d

dt
a
(
e′p(·), e(·)

)
is

continuous on [0, t] for any t ∈ (0, T ). Therefore
d

dt
a
(
e′p(·), e(·)

)
is integrable on [0, t] and

hence the requirement for the Fundamental Theorem of Calculus is satisfied.

Finally, we obtain the following useful result:

Lemma 3.3.3. If the solution u of Problem G satisfies assumption C2, then for any t ∈ (0, T ),

||e(t)||V + ||e′(t)||W ≤
√

24e3tKT ,

where

KT =

∫ T

0

∣∣∣∣e′′p(·)∣∣∣∣W + 3Kamax
∣∣∣∣e′p(t)∣∣∣∣V + 3Ka

∫ T

0

∣∣∣∣e′′p(·)∣∣∣∣V + ||e′(0)||W

+
√

1 +Ka ||e(0)||V +
√
Ka

∣∣∣∣e′p(0)
∣∣∣∣ .

To prove the lemma, the following two well-known results are used.

Theorem 3.3.2. Young’s inequality

If a and b are nonnegative real numbers and if p and q are real numbers such that p > 1,

q > 1, and
1

p
+

1

q
= 1, then ab ≤ ap

p
+
bq

q
.
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Theorem 3.3.3. Gronwall’s inequality

If α is a real constant, β(t) ≥ 0 and g(t) are continuous real functions for t ∈ [a, b] such that

g(t) ≤ α +

∫ t

a

β(·)g(·) for each t ∈ [a, b],

then

g(t) ≤ αe
∫ t
a β(·) for each t ∈ [a, b].

Proof of Lemma 3.3.3. First note that by assumption, u ∈ C1([0, T );V ) ∩ C2((0, T );V ).

Then so is Pu, from Lemma 3.3.2, and hence ep satisfies the assumption of Proposition 3.3.1.

Also note that u then satisfies assumption C1, and as a result we can show as in the proof

of Lemma 3.2.1 that e′ ∈ V and e′′p ∈ W . Let t ∈ (0, T ).

Now from the Cauchy-Schwarz inequality and Theorem 3.3.2, we have that

∣∣c (e′′p(t), e′(t))∣∣ ≤ ∣∣∣∣e′′p(t)∣∣∣∣W ||e′(t)||W
≤ 1

2

∣∣∣∣e′′p(t)∣∣∣∣2W +
1

2
||e′(t)||2W ,

and from Equation (3.3.1), we have

||e′(t)||2W ≤ 2E(t) and ||e(t)||2V ≤ 2E(t)

since ||e(t)||2V ≥ 0 and ||e(t)||2W ≥ 0.

Since u satisfies assumption C1, we substitute the above into Inequality (3.3.3) to obtain

E ′(t) ≤ 1

2

∣∣∣∣e′′p(t)∣∣∣∣2W + E(t)− a
(
e′p(t), e

′(t)
)
. (3.3.9)

Recall that E ′(t) = c (e′′(t), e′(t)) + b(e(t), e′(t)), as was shown in the proof of Lemma 3.3.1.

Since Pu, uh ∈ C2(0, T ), it follows that e ∈ C2(0, T ), and hence by the continuity of the

inner product, E ′(t) ∈ C2(0, T ). Thus E ′ is continuous, and hence integrable, on [0, t], and

thus by the Fundamental Theorem of Calculus, it follows that

∫ t

0

E ′(t) = E(t)− E(0).
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Then, integrating both sides of Equation (3.3.9) and using the above result with that of

Proposition 3.3.1, it follows that

E(t) ≤ E(0) +
1

2

∫ t

0

∣∣∣∣e′′p(·)∣∣∣∣2W +

∫ t

0

E(·)−
∫ t

0

a
(
e′p(·), e′(·)

)
= E(0) +

1

2

∫ t

0

∣∣∣∣e′′p(·)∣∣∣∣2W +

∫ t

0

E(·)−
[
a
(
e′p(t), e(t)

)
− a

(
e′p(0), e(0)

)
−
∫ t

0

a
(
e′′p(t), e(t)

)]
.

Now, using assumption E4 and Theorem 3.3.2, we have

∣∣a (e′p(t), e(t))∣∣ ≤ Ka

∣∣∣∣e′p(t)∣∣∣∣V ||e(t)||V
≤ Ka

1

ε2
∣∣∣∣e′p(t)∣∣∣∣2V +Kaε

2 ||e(t)||2V

≤ Ka
1

ε2
∣∣∣∣e′p(t)∣∣∣∣2V + 2Kaε

2E(t)

where ε > 0 is arbitrary.

Further, by similar argument,

∣∣a (e′′p(t), e(t))∣∣ ≤ ∫ t

0

∣∣a (e′′p(·), e(·))∣∣
≤ Ka

1

ε2

∫ t

0

∣∣∣∣e′′p(·)∣∣∣∣2V +Kaε
2

∫ t

0

||e(·)||2V

≤ Ka
1

ε2

∫ t

0

∣∣∣∣e′′p(·)∣∣∣∣2V + 2Kaε
2

∫ t

0

E(t).

Additionally, ∣∣a (e′p(0), e(0)
)∣∣ ≤ 1

2
Ka

∣∣∣∣e′p(0)
∣∣∣∣2
W

+
1

2
Ka ||e(0)||2V . (3.3.10)

Now

E(t) ≤ E(0) +
1

2

∫ t

0

∣∣∣∣e′′p(·)∣∣∣∣2W +

∫ t

0

E(·) + 2Kaε
2

∫ t

0

E(·)

+ 2Kaε
2

∫ t

0

E(·) + 2Kaε
2E(t) +Ka

1

ε2
∣∣∣∣e′p(t)∣∣∣∣2V

≤ E(0) +
1

2

∫ t

0

∣∣∣∣e′′p(·)∣∣∣∣2W +
3

2

∫ t

0

E(·) +
1

2
+ 4K2

a

∣∣∣∣e′p(t)∣∣∣∣2V + a
(
e′p(0), e(0)

)
+ 4K2

a

∫ t

0

∣∣∣∣e′′p(·)∣∣∣∣2V by choosing ε such that 2Kaε
2 =

1

2
.
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Combining this with Equation (3.3.10), we have

1

2
E(t) ≤ 3

2

∫ t

0

E(·) +
1

2

∫ t

0

∣∣∣∣e′′p(·)∣∣∣∣2W + 4K2
a

∣∣∣∣e′p(t)∣∣∣∣2V + 4Ka

∫ t

0

∣∣∣∣e′′p(·)∣∣∣∣2V + E(0)

+
1

2
Ka

∣∣∣∣e′p(0)
∣∣∣∣2
V

+
1

2
Ka ||e(0)||2V ,

which we rewrite as

E(t) ≤ 3

∫ t

0

E(·) +K∗T ,

where

K∗T =

∫ T

0

∣∣∣∣e′′p(·)∣∣∣∣2W + 8K2
amax

∣∣∣∣e′p(t)∣∣∣∣2V + 8K2
a

∫ T

0

∣∣∣∣e′′p(·)∣∣∣∣2V + ||e′(0)||2W (3.3.11)

+ (1 +Ka) ||e(0)||2V +Ka

∣∣∣∣e′p(0)
∣∣∣∣2
V
.

Above it was shown that E ′ ∈ C2(0, T ), so we know E is continuous on [0, t] for each

t ∈ (0, T ). Then, using Theorem 3.3.3 (with β(s) = 1 for s ∈ (0, t)), it follows that

E(t) ≤ e3tK∗T ,

and hence from the definition of E we get

1

2
||e′(t)||2W +

1

2
||e(t)||2V ≤ e3tK∗T . (3.3.12)

Using Equation (3.3.11) and the equality of norms, we have that

K∗T ≤ 6

[∫ T

0

∣∣∣∣e′′p(·)∣∣∣∣W +
√

8Kamax
∣∣∣∣e′p(t)∣∣∣∣V +

√
8Ka

∫ T

0

∣∣∣∣e′′p(·)∣∣∣∣V
+
∣∣∣∣e′p(0)

∣∣∣∣
W

+
√

1 +Ka ||e(0)||V +
√
Ka

∣∣∣∣e′p(0)
∣∣∣∣
V

]2

.

Finally, let

KT =

∫ T

0

∣∣∣∣e′′p(·)∣∣∣∣W + 3Kamax
∣∣∣∣e′p(t)∣∣∣∣V + 3Ka

∫ T

0

∣∣∣∣e′′p(·)∣∣∣∣V + ||e′(0)||W

+
√

1 +Ka ||e(0)||V +
√
Ka

∣∣∣∣e′p(0)
∣∣∣∣ .

73

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Since (A+B)2 ≤ 2A2 + 2B2 for any A,B ∈ R, it then follows from Equation (3.3.12) that

||e(t)||V + ||e′(t)||W

≤
√

2 ||e(t)||2V + 2 ||e′(t)||2W

≤
√

4e3tK∗T

=
√

24e3tKT .

Remark 3.3.2. The result of Lemma 3.3.3 is different from that obtained in Lemma 4.1 of

[BV13]. There, the result of Lemma 3.2.1 (which is Proposition 3.1 in [BV13]) is used to

obtain an expression for

d

dt

[
1

2
c (e, e)− 1

2
b (v, v)− c (e′h, v)− a (eh, v)

]
,

with v′(t) = e(t), whereas above, the result was used to obtain an upper bound for

d

dt
E(t) =

d

dt

[
1

2
c (e′, e′) +

1

2
b (e, e)

]
.

In both cases, integration and the Fundamental Theorem of Calculus were used to obtain

approximation errors. However in [BV13], the estimate is for ||e(t)||W , whereas above the

estimate is for ||e(t)||V + ||e′(t)||W . Note that in [BV13], the error estimate was only in terms

of the norm ||·||W . In the proof, assumption E4 (the boundedness of a on W ), was used. The

same result cannot be obtained here, since assumption E4 in this case is that a is bounded

on V .

Remark 3.3.3. As mentioned, assumption C2 was not necessary in [BV13], since upper

bounds for the terms on the right-hand side of equation (4.4) in the article could be obtained

using merely that e′p ∈ W . Here however, the assumption was necessary to use the result of

Proposition 3.3.1, which in turn was necessary to obtain the upper bound for E(t).
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3.3.2 Error estimates and convergence for the semi-discrete ap-

proximation

Lemma 3.3.4. Assume that the solution u of Problem G satisfies Assumption C2. Then

for any t ∈ (0, T ),

||u(t)− uh(t)||V +||u′(t)− u′h(t)||W ≤ ||u(t)− Pu(t)||V +||u′(t)− Pu′(t)||W +
√

24e3tKT ,

where

KT =

∫ T

0

||u′′ − (Pu)′′||W + 3Kamax ||u′(t)− Pu′(t)||V + 3Ka

∫ T

0

||u′′ − (Pu)′′||V

+
∣∣∣∣Pu1 − uh1

∣∣∣∣
W

+
√

1 +Ka

∣∣∣∣Pu0 − uh0
∣∣∣∣
V

+
√
Ka ||u1 − Pu1||V .

Proof. Substituting the expressions for e and ep, the result follows immediately from

Lemma 3.3.3.

Remark 3.3.4. An error bound for ||u(t)− uh(t)||W was obtained in [BV13] by using the

triangle inequality and the result of Lemma 4.1 in the article, which, as mentioned, was

obtained instead of Lemma 3.3.3.

Lemma 3.3.4 allows us to prove the following theorem.

Theorem 3.3.4. Suppose assumption C3 holds for the space V , and that the solution u

of Problem G satisfies assumption C2, and that u′′ ∈ L2([0, T ];H(V, k)). Then for any

t ∈ (0, T ),

||u(t)− uh(t)||V + ||u′(t)− u′h(t)||W ≤ CΠh
α
(
||u(t)||H(V,k) + Cb ||u′(t)||H(V,k)

)
+
√

24e3tCΠh
α

[∫ T

0

Cb ||u′′(·)||H(V,k) + 3Kamax ||u′(t)||H(V,k) + 3Ka

∫ T

0

||u′′(·)||H(V,k)

]
+
√

24e3t
[∣∣∣∣Pu1 − uh1

∣∣∣∣
W

+
√

1 +Ka

∣∣∣∣Pu0 − uh0
∣∣∣∣
V

+
√
Ka ||u1 − Pu1||V

]
Proof. Since u satisfies the given assumptions, it follows from Lemma 3.3.4 and assumption
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E2 that

||u(t)− uh(t)||V + ||u′(t)− u′h(t)||W

≤ ||u(t)− Pu(t)||V + ||u′(t)− Pu′(t)||W

+
√

24e3t

[∫ T

0

||u′′ − (Pu)′′||W + 3Kamax ||u′(t)− Pu′(t)||V + 3Ka

∫ T

0

||u′′ − (Pu)′′||V

+
∣∣∣∣Pu1 − uh1

∣∣∣∣
W

+
√

1 +Ka

∣∣∣∣Pu0 − uh0
∣∣∣∣
V

+
√
Ka ||u1 − Pu1||V

]
≤ ||u(t)− Pu(t)||V + κ1 ||u′(t)− Pu′(t)||V

+
√

24e3t

[∫ T

0

κ1 ||u′′ − (Pu)′′||V + 3Kamax ||u′(t)− Pu′(t)||V + 3Ka

∫ T

0

||u′′ − (Pu)′′||V

+κ1

∣∣∣∣Pu1 − uh1
∣∣∣∣
W

+
√

1 +Ka

∣∣∣∣Pu0 − uh0
∣∣∣∣
V

+
√
Ka ||u1 − Pu1||V

]
.

It follows, with Proposition 3.2.2, that

||u(t)− uh(t)||V + ||u′(t)− u′h(t)||W

≤ CΠh
α ||u(t)||H(V,k) + CΠκ1h

α ||u′(t)||H(V,k)

+
√

24e3tCΠh
α

[∫ T

0

κ1 ||u′′(·)||H(V,k) + 3Kamax ||u′(t)||H(V,k) + 3Ka

∫ T

0

||u′′(·)||H(V,k)

]
+
√

24e3t
[∣∣∣∣Pu1 − uh1

∣∣∣∣
W

+
√

1 +Ka

∣∣∣∣Pu0 − uh0
∣∣∣∣
V

+
√
Ka ||u1 − Pu1||V

]
≤ CΠh

α
(
||u(t)||H(V,k) + Cb ||u′(t)||H(V,k)

)
+
√

24e3tCΠh
α

[∫ T

0

Cb ||u′′(·)||H(V,k) + 3Kamax ||u′(t)||H(V,k) + 3Ka

∫ T

0

||u′′(·)||H(V,k)

]
+
√

24e3t
[∣∣∣∣Pu1 − uh1

∣∣∣∣
W

+
√

1 +Ka

∣∣∣∣Pu0 − uh0
∣∣∣∣
V

+
√
Ka ||u1 − Pu1||V

]
where we denote Cb = κ1 > 0.

Note that the above estimate depends on uh0 and uh1 , and thus these values must be chosen

carefully. As suggested in [BSV17], one may choose the interpolants of u0 and u1, and then

Corollary 3.3.1 follows.

Corollary 3.3.1. Suppose assumption C3 holds for the space V and that u0 and u1 are

in H(V, k). Let uh0 = Πu0 and uh1 = Πu1. Also assume that the solution u of Problem G
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satisfies assumption C2 and that u′′ ∈ L2([0, T ];H(V, k)). Then for each t ∈ (0, T ),

||u(t)− uh(t)||V + ||u′(t)− u′h(t)||W ≤ CΠh
α
(
||u(t)||H(V,k) + Cb ||u′(t)||H(V,k)

)
+
√

24e3tCΠh
α

[∫ T

0

Cb ||u′′(·)||H(V,k) + 3Kamax ||u′(t)||H(V,k) + 3Ka

∫ T

0

||u′′(·)||H(V,k)

+ 2Cb ||u1||H(V,k) + 2
√

1 +Ka ||u0||H(V,k) +
√
Ka ||u1||H(V,k)

]
.

Proof. The proof is exactly as in [BSV17].

Remark 3.3.5. Since Lemma 3.3.4 differs from Theorem 5.1 in [BV13], and assumption C3

was different, the results of Theorem 3.3.4 and Corollary 3.3.1 are not the same as those of

Theorem 5.2 in [BV13]. There, an upper bound for ||u(t)− uh(t)||W in terms of the norm of

H(V, k) was obtained. In both cases, the same general interpolation operator was used.

3.4 The fully discrete approximation

The fully discrete problem is derived as in [BSV17] and [BV13], following a similar approach

to [Bak76], using a finite difference scheme. In [Bak76], the finite difference approximation is

compared directly to the exact solution of Problem G. As mentioned in [BSV17] and [BV13],

an estimate of the error between the semi-discrete and fully discrete approximations was

derived instead, and the error estimate between the fully-discrete approximation and the

exact solution follows from the triangle inequality. This removes the need for unnecessary

and unrealistic regularity assumptions on the exact solution.

To derive the fully discrete problem, divide the interval [0, T ] into N subintervals of equal

length τ =
T

N
. Denote the approximation of uh(tk) by ukh. We use uk if no confusion is

possible. Consider also the following notation:
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For any sequence {xk} ⊂ Rn, denote

δtxk =
1

τ
(xk+1 − xk) ,

xk+ 1
2

=
1

2
(xk+1 + xk) and

vk as the approximation of u′h(tk).

Then we have the fully discrete problem, Problem Gh-D, in variational form as follows.

Problem Gh-D

Find a sequence
{
uhk
}
⊂ Sh such that for k = 0, 1, . . . , N − 1,

δtu
h
k = vk+ 1

2
(3.4.1)

c (δtvk, ψ) + a
(
vk+ 1

2
, ψ
)

+ b
(
uh
k+ 1

2
, ψ
)

=
1

2
(f(tk) + f(tk+1), ψ)X (3.4.2)

for each ψ ∈ Sh, while uh0 = uh(0) and v0 = u′h(0).

Problem Gh-D has a unique solution for each pair of vectors uh0 and v0 in Sh [BSV17].

In the following two subsections, the main results for the stability and convergence theory

of the fully discrete approximation are given. The proofs of these results are given in detail

in [BV13] and [BSV17]. Thus below, only the main steps and notation necessary to present

the results are provided, and differences between the two articles are pointed out. Note that,

with the current approach, the restrictive regularity assumptions on the exact solution, made

in [FXX99] and [Sem94] for example, are avoided.

3.4.1 Stability result

Let ek = uh(tk)−uk and qk = vh(tk)− vk, where vh(t) = u′h(t). Note that e0 = 0 and q0 = 0.

Now from Equation (3.2.1), we have

c (v′h(tk+1), ψ) + a (vh(tk+1), ψ) + b (uh(tk+1), ψ) = (f(tk+1), ψ)X
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and

c (v′h(tk), ψ) + a (vh(tk), ψ) + b (uh(tk), ψ) = (f(tk), ψ)X

for any ψ ∈ Sh.

Combining these, we obtain

c

(
1

τ
[vh(tk+1)− vh(tk)] , ψ

)
+

1

2
a (vh(tk+1) + vh(tk), ψ) +

1

2
b (uh(tk+1) + uh(tk), ψ)

=
1

2
(f(tk+1) + f(tk), ψ)X + c (ρk, ψ)

where

ρk =
1

τ
(vh(tk+1)− vh(tk))−

1

2
(v′h(tk+1) + v′h(tk)) .

Next, use the above equation together with Equations (3.4.1) and (3.4.2) to obtain

1

τ
(uh(tk+1)− uh(tk)) =

1

2
(vh(tk+1) + vh(tk)) + σk,

where

σk =
1

τ
(uh(tk+1)− uh(tk))−

1

2
(vh(tk+1) + vh(tk)) .

This, together with Equation (3.4.1), yields

δtek = qk+ 1
2

+ σk. (3.4.3)

It then follows that

en = τ
n−1∑
k=0

qk+ 1
2

+ τ
n−1∑
k=0

σk.

Let s0 = 0, sn = τ
∑n−1

k=0 ek+ 1
2

and εn =
τ

2
ρn + τ

∑n−1
k=0 ρk + σn for n = 1, 2, . . . , N − 1. Let

ν ∈ N such that 2 ≤ ν ≤ N .

It was shown in [BV13] that

||eν ||2W − ||e1||2W + ||sν ||2V − ||s1||2V ≤ 4Tτ
ν−1∑
n=1

||εn||2W +
τ

4T

ν−1∑
n=1

∣∣∣∣∣∣en+ 1
2

∣∣∣∣∣∣2
W

(3.4.4)
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and that

||e1||2W + ||s1||2V +
τ

2
a (e1, e1) =

τ 2

2
c (ρ0, e1) + τc (σ0, e1) +

τ 2

2
a (σ0, e1) . (3.4.5)

In [BSV17] it was further proven that

||e1||2W + ||s1||2V ≤ τ 4 ||ρ0||2W +
1

16
||e1||2W + 4τ 2 ||σ0||2W +

1

16
||e1||2W (3.4.6)

+ τ 4K2
a ||σ0||2V +

1

16
||e1||2V , (3.4.7)

using the Cauchy-Schwarz inequality and Theorem 3.3.2, assumption E4, and the fact that

a(e1, e1) ≥ 0 by property of a.

Equation (3.4.6) was combined with Equation (3.4.4), and then it was shown in [BSV17]

that

||eν ||2W ≤ 4Tτ
ν−1∑
n=1

||εn||2W +
1

2
max ||en||2W +

1

16
||e1||2V + τ 4 ||ρ0||2W (3.4.8)

+ 4τ 2 ||σ0||2W + τ 4K2
a ||σ0||2V .

The stability result finally follows from Equation (3.4.8).

Lemma 3.4.1. Stability

max ||en||2W ≤ 8Tτ
N−1∑
n=0

||εn||2W +
1

8
||e1||2V + 2τ 4 ||ρ0||2W

+ 8τ 2 ||σ0||2W + 2τ 4Ka ||σ0||2V . (3.4.9)

Remark 3.4.1. As already pointed out in [BSV17], the Inequalities (3.4.6) and (3.4.8) differ

from those in [BV13]. Inequality (3.4.6) is obtained using assumption E4, which differs

between the two articles due to the different types of damping. Note that in the above case,

the term with e1 remains on the right-hand side of (3.4.6) and (3.4.8), and there are terms

with ||σ0||W and ||σ0||V . Because a is bounded in terms of the norm on V and not W , the

right hand side of Inequality (3.4.6) is in terms of the norms on V and W , and not just the

norm on W , as was the case in [BV13]. This will affect the derivation of the convergence

result, as will be seen in Subsection 3.4.2 below.
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3.4.2 Convergence result

The result is derived using Lemma 3.4.1. It therefore remains to derive estimates for ρk,

σk and e1. Note that in [BV13], estimates for ||σ0||V and ||e1||V were not necessary, since

the lemma on stability (Lemma 6.1) only involved expressions of ||ρ0||W and ||σ0||W (as

explained in Remark 3.4.1).

The following inequalities are from [BV13]:

||ρk||2W ≤ τ 4max ||v′′′h ||
2
W and (3.4.10)

||σk||2W ≤ τ 4max ||u′′′h ||
2
W . (3.4.11)

Then

||εn||2W ≤ 5T 2τ 4max ||v′′′h ||
2
W + 4τ 4max ||u′′′h ||

2
W .

Using the same procedure used in [BV13] to derive Inequality (3.4.11), with an orthonormal

basis for V instead of W , it follows that

||σk||2V ≤ τ 4max ||u′′′h ||
2
V . (3.4.12)

This can be used to obtain the estimate for ||σ0||W .

Next, it is shown in [BSV17], using Equation (3.4.3) with k = 0, that

||e1||2V ≤ 2

(
τ 2

4
||q1||2V + τ 2 ||σ0||2V

)
.

Now an estimate for ||q1||2V is required. The main steps from [BSV17] are given below. Let

ψ ∈ Sh. Subtracting

c (v1, ψ) +
τ

2
a (v1, ψ) +

τ 2

4
b (v1, ψ)

= c (v0, ψ)− τ

2
a (v0, ψ)− τ 2

4
b (v0, ψ)− τb (u0, ψ) +

τ

2
(f(t0) + f(t1), ψ)X
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from

c (vh(t1), ψ) +
τ

2
a (vh(t1), ψ) +

τ 2

4
b (vh(t1), ψ)

= c (vh(t0), ψ)− τ

2
a (vh(t0), ψ)− τ 2

4
b (vh(t0), ψ)− τb (uh(t0), ψ)

− τ 2

4
b (σ0, ψ) + τc (ρ0, ψ) +

τ

2
(f(t0) + f(t1), ψ)X ,

we obtain

c (q1, ψ) +
τ

2
a (q1, ψ) +

τ 2

4
b (q1, ψ)

= c (q0, ψ)− τ

2
a (q0, ψ)− τ 2

4
b (q0, ψ)− τb (q0, ψ)− τ 2

4
b (σ0, ψ) + τc (ρ0, ψ)

= τc (ρ0, ψ)− τ 2

4
b (σ0, ψ) .

Letting ψ = q1 in the above equation and using the Cauchy-Schwarz inequality, Theo-

rem 3.3.2, and the fact that a (q1, q1) ≥ 0, it follows that

||q1||2W +
τ 2

4
||q1||2V ≤ ||q1||2W +

τ 2

4
||ρ0||2W +

τ 2

8
||σ0||2V +

τ 2

8
||q1||2V .

Then the estimate for ||e1||2V can be obtained, using the estimates for ρ0 and σ0:

||e1||2V ≤ τ 6max ||v′′′h ||
2
W +

5τ 6

2
max ||u′′′h ||

2
V . (3.4.13)

Finally, substituting Equations (3.4.12) and (3.4.13) into Inequality (3.4.9) of Lemma 3.4.1,

it follows that

max ||en||2W ≤ 40T 4τ 4max ||v′′′h ||
2
W + 32T 2τ 4max ||u′′′h ||

2
W +

1

8
τ 6max ||u′′′h ||

2
W +

5τ 6

16
max ||u′′′h ||

2
V

+ 2τ 8max ||v′′′h ||
2
W + 8τ 6max ||u′′′h ||

2
W + 2τ 8Kamax ||u′′′h ||

2
V .

If f ∈ C2([0, T ];X), then uh ∈ C4[0, T ] and from the inequality above we obtain the following

result:
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Theorem 3.4.1. If f ∈ C2([0, T ];X), then for each tk ∈ (0, T ),

∣∣∣∣uh(tk)− uhk∣∣∣∣W ≤ τ 2
(

7T 2max
∣∣∣∣∣∣u(4)

h

∣∣∣∣∣∣
W

+ 3(1 + 2T )max ||u′′′h ||W
)

+ 2τ 3
(
max

∣∣∣∣∣∣u(4)
h

∣∣∣∣∣∣
W

+max ||u′′′h ||V
)

+
√

2Kaτ
4max ||u′′′h ||W .

Finally, an estimate can be obtained for the fully discrete approximation by using the results

of Section 3.3, Theorem 3.4.1, and the fact that

∣∣∣∣u(t)− uhk
∣∣∣∣
W
≤ ||u(t)− uh(tk)||W +

∣∣∣∣uh(tk)− uhk∣∣∣∣W
from the triangle inequality.
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Chapter 4

Applications of the Finite Element

Method

4.1 The two-dimensional wave equation

Recall the multi-dimensional wave equation introduced in Section 1.5. The existence theory

from Chapter 2 was applied to Problem MWE in Section 2.4.1. In the following sections,

the wave equation on a two-dimensional domain is used to demonstrate the use of some of

the theory from Chapter 3. Then, a finite element central difference average acceleration

scheme is derived, to approximate the solution to the problem, followed by some numerical

results.

4.1.1 Application of the convergence theory

In Section 2.4.1 the existence theory was applied to the multi-dimensional wave equation.

Recall that we defined the spaces V , W and X, where V was the closure of the space of test

functions T (Ω) in H1(Ω), and W = X = L2(Ω). In that section, we also gave definitions of

the bilinear forms b, c and a.
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A detailed implementation of the finite element method is given in the sections below. For

the convergence theory, we consider for simplicity the two-dimensional wave equation, where

the domain Ω is a rectangle. Using piecewise linear basis functions and triangle or rectangle

elements, we construct the space Sh, which is the span of the basis functions that are in the

class of test functions, and is a finite dimensional subspace of V . Note that we assume h is

related to the dimension n of Sh, and that h→ 0 as n→∞.

Then we can find the Galerkin approximation of Problem MWE. Note that it is a special

case of Problem Gh from Section 3.2.

Problem MWEh

Find a function uh such that for each t ∈ (0, T ), uh(t) ∈ Sh and

c (u′′h(t), v) + a (u′h(t), v) + b (uh(t), v) = (f(t), v)X

for each v ∈ Sh, while uh(0) = uh0 ∈ Sh and u′h(0) = uh1 ∈ Sh.

It can be proven that assumptions C1 and C2 of Section 3.2.1 are satisfied, depending on

the properties of u0, u1 and f and on the properties of the boundary ∂Ω. The proofs are

beyond the scope of this chapter, and the focus is instead on the interpolation operator that

is used to derive error estimates.

The aim is to find an interpolation operator that depends on the space Sh to use instead of

assumption C3 of Section 3.2.2.

For this problem, define H(V, k) = Hk(Ω) ∩ V . Then we have the following result for

piecewise linear basis functions, which is a special case of a result from [OR76, p. 279].

If u ∈ Hk(Ω) for k ≥ 2, then

||Πu− u||V ≤ CΠh |u|2 ,

where

|u|k =
∣∣∣∣u(k)

∣∣∣∣ .
Finally, if we choose uh0 = Πu0 ∈ Hk(Ω)∩V and uh1 = Πu1 ∈ Hk(Ω)∩V , then we can obtain

an error estimate for the semi-discrete approximation from Corollary 3.3.1, provided that
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u′′ ∈ L2([0, T ];Hk(Ω) ∩ V ), and the error estimate for the fully discrete approximation is

obtained using Theorem 3.4.1, provided that f ∈ C2([0, T ];X).

4.1.2 Algorithm for the approximation

In this section, assume that Ω is the square {〈x, y〉 ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. For sim-

plicity we do not consider damping. For the finite element method, the domain Ω is divided

into N elements. Denote any node in the resulting grid by x̄k, where k = 1, 2, . . . , n. The

basis functions δi are constructed from binomials, and we choose those that are in our class

of test functions. Suppose Î is the set of all indices k such that x̄k is not on the boundary of

Ω. Let Sh denote the span of all functions δi where i ∈ Î. Then we write Problem MWEh

as follows.

Problem MWE-G

Find a function uh such that for each t ∈ (0, T ), uh(t) ∈ Sh, and∫∫
Ω

∂2
t u

h(·, t)v = −
∫∫

Ω

∂xu
h(·, t)∂xv + ∂yu

h(·, t)∂yv +

∫∫
Ω

fv

for each v ∈ Sh, while uh(·, 0) = u0 and ∂tu
h(·, 0) = u1.

Denote uh(·, t) =
∑
k∈Î

uk(t)δk, and define the matrices K and M by

Kij =

∫∫
Ω

δ′jδ
′
i and Mij =

∫∫
Ω

δjδi for i, j = 0, 1, . . . , n.

Then let

M∗
ij = Mij and K∗ij = Kij for i, j = Î

and

[M1]ij = Mij for i = Î , j = 1, 2, . . . , n.

In this case, also define the interpolant, fI , of the function f by

fI =
n∑
k=1

f(x̄k)δk
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and the vector

F = M1f̄ , where f̄ = [f(x̄1), f(x̄2), . . . , f(x̄n)]t

Further, we have vectors b̄ and ā, which are obtained from the interpolants of u0 and u1,

such that

b̄j = u0(x̄j) and āj = u1(x̄j) for j ∈ Î .

Then we obtain the system

M∗ū′′(t) = −K∗ū(t) + F (4.1.1)

for t > 0, with ū(0) = b̄ and ū′(0) = ā, where ūj(t) = uj(t) for j ∈ Î.

Finally, we use a central difference average acceleration scheme to approximate the solution

of the system (4.1.1). To this end, let m be the number of time steps, and suppose we

approximate the solution at a time point t∗. Let δt =
t∗

m
. We divide the interval [0, t∗] into

subintervals [tk, tk+1] of equal length δt, for k = 0, 1, . . . ,m − 1. We use ūk to denote the

approximations for ū(tk). Then we obtain the following system:

1

δt2
M∗ (ūk+1 − 2ūk + ūk−1) = −1

4
K∗ (ūk+1 + 2ūk + ūk−1) + F (4.1.2)

with ū0 = b̄ and
1

2δt
(ū1 − ū−1) = ā.

For example, at the first step, k = 1. Note that ū−1 = ū1 − 2δtā. This can be substituted

into system (4.1.2), together with ū0 = b̄. After rearranging, we obtain(
1

δt2
2M∗ +

1

2
K∗
)
ū1 =

(
1

δt2
2M∗ − 1

2
K∗
)
b̄+

(
1

δt
2M∗ +

1

2
δtK∗

)
ā+ F,

which can now be used to solve for ū1.

4.1.3 Numerical results - rectangle elements

Finally, the finite element central difference average acceleration method described in Sub-

section 4.1.2 above can be used to approximate the solution of the wave equation on a rect-

angular domain. N rectangular elements with width and height h =
1

N
are used. Here we

assume f = 0 and consider the initial conditions u0(x, y) = sin(πx) sin(πy) and u1(x, y) = 0.
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The formal series solution of the wave equation in this case, which can be obtained using

separation of variables, is

u(x, y, t) =
∞∑
j=1

∞∑
k=1

sin(kπx) sin(jπy)
(
Bkj cos

(√
(kπ)2 + (jπ)2t

)
+ B∗kj sin

(√
(kπ)2 + (jπ)2t

))
, (4.1.3)

where Bkj and B∗kj are constants.

Using the initial conditions, the exact solution to the problem is

u(x, y, t) = sin(πx) sin(πy) cos(
√

2π2t).

We can compare the exact solution to the approximations obtained by the scheme. To do

this, relative errors were calculated, using the maximum norm.

Table 4.1 gives the relative errors of the exact and approximate solutions at the time point

t =
π

2
for various numbers of elements N and time steps m. The number of time steps is

doubled each time the total number of elements is quadrupled. The relative errors are given

to ten significant digits. Note that, as the number of elements and time steps increases, the

relative error decreases, indicating that the approximation converges to the exact solution

as the number of elements and time steps is increased.

N m relative error

4 50 0.9736663712

16 100 0.2365688958

64 200 0.06930004110

256 400 0.02420949428

1024 800 0.009655514117

Table 4.1: Relative errors of the exact and approximate solutions of the wave equation at

the time point t =
π

2
for various numbers of elements N and number of time steps m.

To further compare the exact and approximate solutions, the surface plots of the exact and
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approximate solutions at t =
π

2
with 256 elements and 150 time steps were considered. Fig-

ures 4.1a and 4.1b depict the approximate and exact solutions on the rectangle respectively.

To make a better visual comparison, Figure 4.1c shows both plots on the same axes, “sliced”

at the point where x =
1

2
. Some accompanying numerical values are given in Table 4.2. Note

that the approximations seem to be less accurate at the nodes closer to the peak of the wave.

Further, the values of the exact solution are slightly larger than those of the approximations.

(a) Approximate solution of the wave

equation, using 256 elements and 150

time steps.

(b) Exact solution of the wave equation.

(c) Comparison of the approximate and

exact solution.

Figure 4.1: Surface plots of the exact and approximate solutions to the wave equation at the

time point t =
π

2
on a rectangle with width and height 1.
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(x, y) u(x, y, π
2
) approximation of u(x, y, π

2
)(

1
16
, 1

16

)
0.02921575 0.02779052(

1
2
, 1

2

)
0.75286919 0.71614208

Table 4.2: Some numerical values of the exact and approximate solutions of the wave equation

at the time point t =
π

2
for 256 elements and 150 time steps.

Although the results in Table 4.1 are indicative that the scheme suffices to approximate

the solution of the wave equation, it should be noted that the central difference average

acceleration scheme used above may not necessarily be stable, and may lead to some erratic

behaviour in numerical results. In general, about 10 times the number of elements should

be used for the number of time steps to ensure that the scheme is stable. This was done for

the same number of elements as in Table 4.1, and the relative errors are given in Table 4.3.

Results are again given to ten significant digits. Note that the errors are smaller than those

of Table 4.1 from N = 16 onwards, indicating that a larger number of time steps leads to

more accurate results.

N m relative error

4 40 1.012384088

16 160 0.2104587731

64 640 0.04814715534

256 2560 0.01173755880

1024 10240 0.002915415081

Table 4.3: Relative errors of the exact and approximate solutions of the wave equation at

the time point t =
π

2
for various numbers of rectangle elements N and number of time steps

m = 10N .

Consider again the surface plots of the exact and approximate solutions at 256 elements and

2560 time steps, at the time point t =
π

2
on the same axes, “sliced” at the point where

x =
1

2
. The plot is given in Figure 4.2. Contrary to Figure 4.1c, the plots appear almost

identical, again an indication that more time steps produce more accurate results.
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Figure 4.2: Comparison of the surface plots of the exact and approximate solutions to the

wave equation at the time point t =
π

2
on a rectangle with width and height 1.

As mentioned above, about 10 times the number of elements should be used for the number of

time steps to ensure that the scheme is stable, and the numerical results were given in Table

4.3. As a final comparison, we investigated the convergence of the finite element method

when the number of time steps is kept constant, to demonstrate the effects of the number

of elements on the convergence. To ensure the stability of the scheme, 1024× 10 time steps

were used for all calculations. Table 4.4 gives the relative errors (rounded to ten significant

digits) of the exact and approximate solutions at the time point t =
π

2
for the same numbers

of elements as above. The relative errors decrease as the number of elements is increased,

indicating that the finite element approximations converge for the semi-discrete problem.

N relative error

4 0.7951120889

16 0.1668002022

64 0.03910846099

256 0.01000486911

1024 0.002915415081

Table 4.4: Relative errors of the exact and approximate solutions of the wave equation at

the time point t =
π

2
for various numbers of rectangle elements N and 10240 time steps.
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4.1.4 Numerical results - triangle elements

Next, the finite element central difference average acceleration method described in Subsec-

tion 4.1.2 above was used to approximate the solution with 2N right-angled triangle elements

with vertical and horizontal sides of length h =
1

N
. An illustration of such a grid is given in

Figure 4.3. The formal series solution of the problem is still as in Equation (4.1.3).
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Figure 4.3: Illustration of a finite element grid for a rectangular domain, using 8 triangular

elements.

Table 4.5 gives the relative errors of the exact and approximate solutions at the time point

t =
π

2
for various numbers of elements 2N and time steps m, calculated using the maximum

norm. To ensure stability of the scheme, the number of time steps used was ten times the

number of elements. The relative errors are given to ten significant digits. Note that, as the

number of elements and time steps increases, the relative error decreases, indicating that

the approximation converges to the exact solution as the number of elements and time steps

is increased. Further, note that the relative errors are larger than those from Table 4.3 for

rectangle elements.
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2N m relative error

8 80 2.180211388

32 320 0.5910118528

128 1280 0.1253405896

512 5120 0.03001386653

2048 20480 0.007351744800

Table 4.5: Relative errors of the exact and approximate solutions of the wave equation at

the time point t =
π

2
for various numbers of triangle elements 2N and number of time steps

m.

As for the case of rectangle elements, we also compared the surface plots of the exact and

approximate solutions at 2N = 512 elements and 5120 time steps, at the time point t =
π

2
,

and also compared the plots on the same axes, “sliced” at the point where x =
1

2
. The plot

is given in Figure 4.4. As with Figure 4.2, the plots appear almost identical.

(a) Approximate solution of the wave

equation with triangle elements, using

512 elements and 5120 time steps.

(b) Exact solution of the wave equation.
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(c) Comparison of the approximate and

exact solution.

Figure 4.4: Surface plots of the exact and approximate solutions to the wave equation at the

time point t =
π

2
on a rectangle with width and height 1.

As for the case of rectangle elements above, we investigated the convergence of the finite

element method when the number of time steps is kept constant, to demonstrate the effects

of the number of elements on the convergence. In this case, 2 × 2048 × 10 time steps were

used for all calculations. Table 4.6 gives the relative errors (rounded to ten significant digits)

of the exact and approximate solutions at the time point t =
π

2
for the same numbers of

elements as above. The relative errors decrease as the number of elements is increased,

indicating that the finite element approximations converge for the semi-discrete problem.

2N relative error

8 2.118313892

32 0.5616056493

128 0.1203959343

512 0.02912234057

2048 0.007351744800

Table 4.6: Relative errors of the exact and approximate solutions of the wave equation at

the time point t =
π

2
for various numbers of triangle elements 2N and 20480 time steps.
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4.2 The Timoshenko beam with axial force

Recall the Timoshenko beam with axial force introduced in Section 1.2.3. The existence

theory for Problem T-V is given in Section 2.4.3. This section starts with a demonstration of

the application of some of the theory from Chapter 3 to the Timoshenko model. It should be

noted that according to this theory, the standard finite element method with piecewise linear

basis functions will give convergence. However, as mentioned in Section 1.1, it is possible that

the finite element approximations diverge due to “shear locking” when piecewise linear basis

functions are used, making them unsuitable for this model. An alternative would be to use

Hermite cubic basis functions, but we will instead consider the mixed finite element method

for the model, where shear stress is also considered as a dependent variable, and where

piecewise linear basis functions can still be used to obtain accurate results. The derivation

of a mixed finite element algorithm for the Timoshenko model is given in Subsection 4.2.2.

4.2.1 Application of the convergence theory

Existence of solutions of the Timoshenko model with axial force was discussed in Sec-

tion 2.4.3. The pinned-pinned and cantilever boundary conditions were considered. Recall

the definitions of the bilinear forms b and c from that section, and also that we defined

X = L2(0, 1) × L2(0, 1) and W as the space X with inner product c. We also defined the

two spaces VP = VP (0, 1)×H1(0, 1) and VC = VC(0, 1)× VC(0, 1) for the pinned-pinned and

cantilever cases respectively, where VP (0, 1) and VC(0, 1) denoted the closure of TP (0, 1) and

TC(0, 1) respectively, in H1(0, 1). For the purposes of this section, we will denote by V either

the space VP or VC .

A detailed description for the implementation of the finite element method is given in the

section below. For the convergence theory, we use piecewise linear basis functions to construct

finite dimensional spaces, which are spans of the set of basis functions which are in the class

of test functions. We then define the space Sh, which is a product space of these spaces

(so Sh depends on the boundary conditions), and is a finite dimensional subspace of V . For
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example, if Sh0 denotes the span of the set of basis functions without the first basis function,

then the set Sh for the cantilever case is Sh = Sh0 ×Sh0 , which is a finite dimensional subspace

of VC . Assume again that h is related to the dimension n of Sh, and that h→ 0 as n→∞.

Then we can find the Galerkin approximation of Problem TM-P or TM-C, which is a special

case of Problem Gh:

Problem TMh

Find a function uh = 〈wh, φh〉 such that for each t ∈ (0, T ), uh(t) ∈ Sh and

c (u′′h(t), v) + b (uh(t), v) = (f(t), v)X

for each v ∈ Sh, while uh(0) = uh0 = 〈wh0 , φh0〉 ∈ Sh and u′h(0) = uh1 = 〈wh1 , φh1〉 ∈ Sh.

As for the wave equation, we find an interpolation operator that depends on the space Sh

to use instead of assumption C3 of Section 3.2.2.

For u ∈ Hk ∩ V , define the operator Π by

Πu = 〈ΠLu1,ΠLu2〉,

where ΠL is the interpolation operator for piecewise linear basis functions.

Define H(V, k) = Hk ∩ V and again |u|k =
∣∣∣∣u(k)

∣∣∣∣. Also define

|u|2Hk = |u1|2k + |u2|2k .

We have the following estimate.

Proposition 4.2.1. There exists a constant K such that for each u ∈ H2 ∩ V ,

||Πu− u||V ≤ KCLh |u|H2 .

Proof. Let u ∈ H2 ∩ V . First note that by definition we have that

||Πu− u||2H1 = ||ΠLu1 − u1||21 + ||ΠLu2 − u2||21 .
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Note also that from a special case of the result from [OR76, p.279] that there exists a constant

CL such that for any v ∈ H2(0, 1),

||ΠLv − v||1 ≤ CLh |v|2 .

It follows that

||Πu− u||2H1 ≤ C2
Lh

2 |u1|22 + C2
Lh

2 |u2|22

= C2
Lh

2 |u|2H2 .

The final result then follows from the equivalence of the norms ||·||H1 and ||·||V .

Finally, as for the wave equation above, if we choose uh0 = Πu0 ∈ H2 ∩ V and

uh1 = Πu1 ∈ H2∩V , then we can obtain an error estimate for the semi-discrete approximation

from Corollary 3.3.1, provided that u′′ ∈ L2([0, T ];H2∩V ), and the error estimate for the fully

discrete approximation is obtained using Theorem 3.4.1, provided that f ∈ C2([0, T ];X).

4.2.2 Algorithm for the approximation

In this section, the Galerkin approximation using the mixed finite element method with

piecewise linear basis functions is derived for the Timoshenko model for both the pinned-

pinned and cantilever boundary conditions. In particular, the case where S = 0 (i.e. there

is no axial force) is considered, with the aim of obtaining results that can be compared to

those that will be presented in Section 5.4.2. Numerical results are therefore not given here,

but rather in that section. Recall that we denote the shear force by F instead of V in this

case.

For the mixed finite element method, we choose piecewise linear basis functions, and divide

the interval [0, 1] into n elements, i.e. n subintervals [xk−1, xk] of equal length h =
1

n
, where

k = 1, 2, . . . , n. We choose basis functions δi, where i = 1, 2, . . . , n, which are in our class of

test functions. For the pinned-pinned case, let Shw = span {δ1, δ2, . . . , δn−1} and

Shφ = span {δ0, δ1, . . . , δn} = ShF . For the cantilever case, we denote

Shw = span {δ1, δ2, . . . , δn} = Shφ and ShF = span {δ0, δ1, . . . , δn}.
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Then we can write the problem as follows.

Problem TM-G

Find 〈wh, φh〉 ∈ Shw × Shφ and F h ∈ ShF such that∫ 1

0

∂2
tw

h(·, t)v = −
∫ 1

0

F h(·, t)v′ +
∫ 1

0

P (·, t)v∫ 1

0

1

α
∂2
t φ

h(·, t)ψ = −
∫ 1

0

(
1

β
∂xφ

h(·, t)ψ′ − F h(·, t)ψ
)

∫ 1

0

F h(·, t)ξ =

∫ 1

0

(
∂xw(·, t)− φh(·, t)

)
ξ

(4.2.1)

for each triple 〈v, ψ, ξ〉 ∈ Shw × Shφ × ShF , while wh(·, 0) = w0, φ
h(·, 0) = φ0, ∂tw

h(·, 0) = wd

and ∂tφ
h(·, t) = φd.

Now, define the matrices K, M and L by

Kij =

∫ 1

0

δ′jδ
′
i,Mij =

∫ 1

0

δjδi and Lij =

∫ 1

0

δjδ
′
i for i, j = 0, 1, . . . , n.

For the pinned-pinned case

Denote wh(·, t) =
n−1∑
k=1

wk(t)δk, φ
h(·, t) =

n∑
k=0

φk(t)δk and F h(·, t) =
n∑
k=0

Fk(t)δk.

Then let

w̄(t) = [w1(t), w2(t), . . . , wn−1(t)]t ,

φ̄(t) = [φ0(t), φ1(t), . . . , φn(t)]t and

F̄ (t) = [F0(t), F1(t), . . . , Fn(t)]t .

Now let

M∗
ij = Mij and K∗ij = Kij for i, j = 1, 2, . . . , n− 1

and let

L̂ij = Lij for i = 1, 2, . . . , n− 1 and j = 0, 1, . . . , n and

L̃ij = Ltij for i = 0, 1, . . . , n and j = 1, 2, . . . , n− 1.
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Also let P̄ (t) =
[
P̄w(t), P̄φ(t), P̄F (t)

]t
where

P̄φ = 0̄,

P̄F = 0̄,

and
[
P̄w
]
i
(t) =

∫ 1

0

P (xi, t)δi for each i = 0, 1, . . . , n.

Further, let b̄ =
[
b̄w, b̄φ, b̄F

]t
where

b̄w = [w0(x1), w0(x2), . . . , w0(xn−1)] ,

b̄φ = [φ0(x0), φ0(x1), . . . , φ0(xn)] and

b̄F = [(w′0 − φ0)(x0), (w′0 − φ0)(x1), . . . , (w′0 − φ0)(xn)] ,

and let ā =
[
āw, āφ, φ̄F

]t
, where

āw = [wd(x1), wd(x2), . . . , wd(xn−1)] ,

b̄φ = [φd(x0), φd(x1), . . . , φd(xn)] ,

āF = [(w′d − φd)(x0), (w′d − φd)(x1), . . . , (w′d − φd)(xn)] .

Then we define the matrices

A =


M∗ 0 0

0
1

α
M 0

0 0 0

 and B =


0 0 L̂

0
1

β
K −M

−L̃ M M

 .

For the cantilever case

Denote wh(·, t) =
n∑
k=1

wk(t)δk, φ
h(·, t) =

n∑
k=1

φk(t)δk and F h(·, t) =
n∑
k=0

Fk(t)δk.

Then let

w̄(t) = [w1(t), w2(t), . . . , wn(t)]t ,

φ̄(t) = [φ1(t), φ2(t), . . . , φn(t)]t and

F̄ (t) = [F0(t), F1(t), . . . , Fn(t)]t .
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Let

M∗
ij = Mij and K∗ij = Kij for i, j = 1, 2, . . . , n

and let

L̂ij = Lij for i = 1, 2, . . . , n and j = 0, 1, . . . , n, and

L̃ij = Ltij for i = 0, 1, . . . , n and j = 1, 2, . . . , n.

Further, let

M̂ij = Mij for i = 0, 1, . . . , n and j = 1, 2, . . . , n, and

M̃ij = Mij for i = 1, 2, . . . , n and j = 0, 1, . . . , n.

Also let P̄ (t) =
[
P̄w(t), P̄φ(t), P̄F (t)

]t
where

P̄φ = 0̄,

P̄F = 0̄,

and
[
P̄w
]
i
(t) =

∫ 1

0

P (xi, t)δi for each i = 1, 2, . . . , n.

Further, let b̄ =
[
b̄w, b̄φ, b̄F

]t
where

b̄w = [w0(x1), w0(x2), . . . , w0(xn)] ,

b̄φ = [φ0(x1), φ0(x2), . . . , φ0(xn)] and

b̄F = [(w′0 − φ0)(x0), (w′0 − φ0)(x1), . . . , (w′0 − φ0)(xn)]

and let ā =
[
āw, āφ, φ̄F

]t
, where

āw = [wd(x1), wd(x2), . . . , wd(xn)] ,

āφ = [φd(x1), φd(x2), . . . , φd(xn)] and

āF = [(w′d − φd)(x0), (w′d − φd)(x1), . . . , (w′d − φd)(xn)] .

Then we define the matrices

A =


M∗ 0 0

0
1

α
M∗ 0

0 0 0

 and B =


0 0 L̂

0
1

β
K∗ −M̃

−L̃ M̂ M

 .
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In both cases, we obtain the following system:

A


w̄′′(t)

φ̄′′(t)

F̄ ′′(t)

 = −B


w̄(t)

φ̄(t)

F̄ (t)

+ P̄ (t). (4.2.2)

Finally, we obtain a central difference average acceleration scheme to approximate the solu-

tions w̄(·, t∗), φ̄(·, t∗) of the system (4.2.2) at a point t∗ > 0. To this end, let m denote the

number of time steps. Let δt =
t∗

m
. We divide the interval [0, t∗] into subintervals [tk, tk+1] of

equal length δt, for k = 0, 1, . . . ,m− 1. We use w̄y, φ̄k, F̄k and P̄k to denote approximations

for w̄(tk), φ̄(tk), F̄ (tk) and P̄ (tk) respectively, and denote z̄k = [w̄k, φ̄k, F̄k]
t. Then we obtain

the following system:

1

(δt)2
A [z̄k+1 − 2z̄k + z̄k−1] = −1

4
B [z̄k+1 + 2z̄k + z̄k−1] + P̄k (4.2.3)

with z̄0 = b̄ and (2δt)−1 [z̄1 − z̄−1] = ā, for k ≤ m− 1.

For example, at the first step, k = 1. Note that z̄−1 = z̄1 − 2δtā. This can be substituted

into system (4.2.3), together with z̄0 = b̄. After rearranging, we obtain(
1

δt2
2A+

1

2
B

)
z̄1 =

(
1

δt2
A− 1

2
B

)
b̄+

(
1

δt
2A+

1

2
δtB

)
ā+ P̄1,

which can now be used to solve for z̄1.

As mentioned, numerical results from applying this scheme are presented in Section 5.4.2.
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Chapter 5

The Local Linear Timoshenko Theory

5.1 Introduction

This chapter provides more details on the local linear Timoshenko (LLT) rod from [VDL21],

introduced in Chapter 1. In [VDL21], the equations of motion and constitutive equations for

the model were derived. The model was then used to derive special cases, such as LLT rod

models for small vibrations, and also adapted versions of the Timoshenko model. Variational

forms and weak variational forms were presented for the adapted models, for pinned-pinned,

cantilever and pivoted boundary conditions, as well as some existence results.

As a further investigation into the LLT rod model, a finite element algorithm for approximat-

ing possible solutions to the LLT rod model was introduced in the (currently unpublished)

work [DLV22]. In this chapter, this algorithm is investigated, and some of the results ob-

tained in this work were reproduced. In [DLV22], the variational forms are derived with the

same boundary conditions mentioned above for the original model, not just for the special

cases in [VDL21], with the intention of drawing comparisons between the LLT and linear

Timoshenko models. The variational problems were used to find semi-discrete problems

for the model. An algorithm, based on the mixed finite element method, was derived in

[DLV22] to solve these problems. Several numerical results are given in the article: for small
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vibrations, for LLT rods with beam-like properties, and for highly slender rods, showing the

applicability of this model to a wide variety of slender structures. A few problems were

considered where comparisons were made between results obtained for the LLT rod and

the (linear) Timoshenko beam models. For example, numerical simulations showed that for

a pinned-pinned beam with small vibrations, the approximations obtained from the LLT

algorithm corresponded to exact solutions obtained for the Timoshenko beam.

The full LLT model, some special cases, and the variational problems for the model were

derived in Section 1.4. In the following sections, the model is studied in more detail. In

Section 5.2, the derivation of the model from [VDL21] is given, followed by the finite element

algorithm for the model, suggested in [DLV22], in Section 5.3. Finally, in Section 5.4, some

of the numerical results from [DLV22] are reproduced, and some additional results using the

same algorithms are presented.

5.2 The Local Linear Timoshenko rod model

In this section, the model for the Local Linear Timoshenko rod is derived. The procedure is

as in [VDL21], but is presented in detail here. Some of the results given here will further be

used in Chapter 6.

5.2.1 Conservation of momentum and angular momentum

Before the model is derived, a brief introduction to some notation and concepts of mechanics

are provided for reference. The details of these assumptions are beyond the scope of this

dissertation.

Consider an elastic body with reference configuration denoted by B and let x̄ denote any

point in B. Let r̄(x̄, t) denote the position of the point at a time t. Then the velocity of the

point at time t is v̄(x̄, t) = ∂tr̄(x̄, t). Also let ρ denote the density, as before.
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Further, let R be an arbitrary part of B with boundary Σ, and let t̄R and b̄ denote the

traction and body force respectively. If ρ is constant, then the momentum of R is∫
R
ρv̄dV

and the angular momentum is ∫
R
R̄× ρv̄dV.

The following two assumptions form the basis for the theory:

Conservation of momentum

d

dt

∫
R
ρv̄dV =

∫
Σ

t̄RdS +

∫
R
b̄dV

Conservation of angular momentum

d

dt

∫
R

(r̄ − p̄)× ρv̄dV =

∫
Σ

(r̄ − p̄)× t̄RdS +

∫
R

(r̄ − p̄)× b̄dV

where p̄ is any fixed point. Without loss of generality, it may be assumed that p̄ = 0̄.

The following function convention is followed: F̄ (c, t) and M̄(c, t) denote the force and couple

acting at the part of the rod where x ≤ c respectively.

Finally, we choose the line segment in B such that every cross section perpendicular to it

has its centroid on the line to be the straight line y = z = 0. This line is referred to as the

axis of the rod.

5.2.2 Model derivation

As in [VDL21], we assume that the position of a point X(x, y, z) in B at time t is

R̄(X, t) = r̄0(x, t) + yēy(x, t) + zēz(x, t)

= r̄0(x, t) + r̄(X, t),
(5.2.1)
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where ēy and ēz are orthogonal unit vectors and r̄0 is the position of the point (x, 0, 0) at

time t.

Now let R be the part of B between x = a and x = b. Denote the distance between the

axis and the edge of the beam in the direction ēy by h and in the direction of ēz by k. The

velocity of a point X at time t is

v̄ = ∂tR̄

= ∂tr̄0 + ∂tr̄

= ∂tr̄0 + y∂tēy + z∂tēz.

Then the momentum of R is∫
R
ρv̄dV = ρ

∫ b

a

∫
D
∂tr̄0 + y∂tēy + z∂tēzdAdx

= ρ

∫ b

a

A(x)∂tr̄0dx+ ρ

∫ b

a

∫ h

−h

∫ k

−k
y∂tēydzdydx+

∫ b

a

∫ h

−h

∫ k

−k
z∂tēzdzdydx

= ρ

∫ b

a

A(x)∂tr̄0dx+ ρ

∫ b

a

ky2∂tēy|h−hdx+ ρ

∫ b

a

hz2∂tēz|k−kdx

= ρ

∫ b

a

A(x)∂tr̄0dx+ 0̄,

(5.2.2)

where D = D(x) denotes a cross-section. Note that it is assumed that D is symmetric with

respect to the y-axis and z-axis.
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Further, the angular momentum of R about 0̄ is∫
R
R̄× ρv̄dV =

∫
R

(r̄0(x, t) + r̄(X, t))× ρ (∂tr̄0(x, t) + ∂tr̄(X, t)) dV

= ρ

∫
R
r̄0(x, t)× ∂tr̄0(x, t)dV + ρ

∫
R
r̄(X, t)× ∂tr̄0(x, t)dV + ρ

∫
R
r̄0(x, t)× ∂tr̄(X, t)dV

+ ρ

∫
R
r̄(X, t)× ∂tr̄(X, t)dV

= ρ

∫ b

a

A(x)r̄0(x, t)× ∂tr̄0(x, t)dV + ρ

∫ b

a

∫
D
yēy(x, t)× ∂tr̄0(x, t)

+ zēz × ∂tr̄0(x, t)dAdx

+ ρ

∫ b

a

∫
D
yr̄0(x, t)× ∂tēy(x, t) + zr̄0(x, t)× ∂tēzdAdx

+ ρ

∫ b

a

∫
D
r̄(X, t)× ∂tr̄(X, t)dAdx.

(5.2.3)

Since ∫
D
ydA = ky2|h−h = 0 and

∫
D
zdA = hz2|k−k = 0,

it follows that ∫
R
R̄× ρv̄dV = ρ

∫ b

a

A(x)r̄0(x, t)× ∂tr̄0(x, t)dx

+ ρ

∫ b

a

∫
D
r̄(X, t)× ∂tr̄(X, t)dAdx.

From our function convention above, we have that the forces on R are F̄ (b, t) and −F̄ (a, t)

and the moments are M̄(b, t) and −M̄(a, t).

From the conservation of momentum and Equation (5.2.2) we then have

d

dt

∫ b

a

ρA(x)∂tr̄0(x, t)dx = F̄ (b, t)− F̄ (a, t) +

∫ b

a

P̄ (x, t)dx.

For convenience, introduce the following notation:

H̄(x, t) = ρ

∫
D
r̄ × ∂tr̄dA. (5.2.4)
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Then from the conservation of angular momentum and Equation (5.2.3) we have

d

dt

∫ b

a

ρA(x)r̄0(x, t)× ∂tr̄0(x, t)dx+
d

dt

∫ b

a

H̄(x, t)dx

= r̄0(b, t)× F̄ (b, t)− r̄0(a, t)× F̄ (a, t) + M̄(b, t)− M̄(a, t) +

∫ b

a

r̄0(x, t)× P̄ (x, t).

From the Fundamental Theorem of Calculus, it then follows that∫ b

a

ρA(x)∂2
t R̄0(x, t)dx =

∫ b

a

d

dx
F̄ (x, t)dx+

∫ b

a

P̄ (x, t)

and ∫ b

a

ρA(x)r̄0(x, t)× ∂2
t r̄0(x, t)dx+

∫ b

a

d

dt
H̄(x, t)dx

=

∫ b

a

d

dx
r̄0(x, t)× F̄ (x, t) +

∫ b

a

d

dx
M̄(x, t) +

∫ b

a

r̄0(x, t)× P̄ (x, t)dx.

Since [a, b] is arbitrary, it follows that these two equations must hold for any [a, b], and hence

we must have

ρA∂2
t r̄0 = ∂xF̄ + P̄ , (5.2.5)

ρAr̄0 × ∂2
t r̄0 + ∂tH̄ = ∂x(r̄0 × F̄ ) + ∂xM̄ + r̄0 × P̄ . (5.2.6)

Substituting Equation (5.2.5) into Equation (5.2.6), we obtain

r̄0 × (∂xF̄ + P̄ ) + ∂tH̄ = ∂x(r̄0 × F̄ ) + ∂xM̄ + r̄0 × P̄ ,

and hence

∂tH̄ = ∂xr̄0 × F̄ + ∂xM̄,

since ∂x(r̄0 × F̄ ) = ∂xr̄0 × F̄ + r̄0 × ∂xF̄ .

Hence we have the equations of motion

ρA∂2
t r̄0 = ∂xF̄ + P̄ , (5.2.7)

∂tH̄ = ∂xr̄0 × F̄ + ∂xM̄. (5.2.8)
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Now let {ē1, ē2, ē3} denote a right-hand orthonormal set fixed in space.

We assume that r̄0 has the form

r̄0(x, t) = r1(x, t)ē1 + r2(x, t)ē2,

and that ēz(t) = ē3(t).

Then the tangent vector to the deflection curve is

∂xr̄0(x, t) = ∂xr1(x, t)ē1 + ∂xr2(x, t)ē2.

Denote the angle between this tangent vector and the vector ē1 by θ(x, t). Note then that

cos (θ(x, t)) =
∂xr1

||∂xr̄0||

sin (θ(x, t)) =
∂xr2

||∂xr̄0||
.

Then the normalised tangent vector, denoted ēT , is

ēT (x, t) =
∂xr̄0(x, t)

||∂xr̄0(x, t)||

= cos (θ(x, t)) ē1 + sin (θ(x, t)) ē2.

Next, note that the angle of rotation, denoted by φ, is defined by

cos (φ(x, t)) = ēx(x, t) · ē1

sin (φ(x, t)) = ēy(x, t) · ē2,

and hence

ēy(x, t) = − sin (φ(x, t)) ē1 + cos (φ(x, t)) ē2 (5.2.9)

ēx(x, t) = cos (φ(x, t)) ē1 + sin (φ(x, t)) ē2. (5.2.10)
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From Equations (5.2.1) and (5.2.4), it then follows that

H̄(x, t) = ρ

∫
D
r̄(x, t)× ∂tr̄(x, t)

= ρ

∫
D

(yēy(x, t) + zēz(t))× (y∂tēy(x, t) + z∂tēz(t)) dA

= ρ

∫
D
y2ēy(x, t)× ∂tēy(x, t) + yzēy(x, t)× ∂tēz(t) + yzēz(t)× ∂tēy(x, t)

+ z2ēz(t)× ∂tēz(t)dA.

Now from Equations (5.2.9) and (5.2.10) we know that

∂tēy = −∂tφēx and ∂tēx = ∂tφ.

Then

∂tēz = ∂tēy × ēx + ēy × ∂tēx = 0̄.

Also note that

ēy × ēx = −ēz = −ē3.

Further, note that since D is symmetric with respect to the y-axis, then it follows as was

shown in Equations (5.2.2) that ∫
D
yzdA = 0̄.

Then it follows that

H̄(x, t) = ρ

∫
D
y2∂tφ(x, t)dAē3

= ρI∂tφ(x, t)ē3,

(5.2.11)

where I =

∫
D
y2dA.

Equations of motion

Finally, we are able to derive the equations of motion for our problem, using Equations

(5.2.7), (5.2.8) and (5.2.11). They are

ρA∂2
t r̄0 = ∂xF̄ + P̄ , (5.2.12)

ρI∂2
t φē3 = ∂xr̄0 × F̄ + ∂xM̄, (5.2.13)
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or, using the fact that

∂tr̄0 = ∂2
t r1ē1 + ∂2

t r2ē2,

we have

ρA∂2
t r1 = ∂xF1 + P1, (5.2.14)

ρA∂2
t r2 = ∂xF2 + P2, (5.2.15)

ρI∂2
t φ = ∂xr1F2 − ∂xr2F1 + ∂xM3. (5.2.16)

Constitutive Equations

To derive the final model, we require constitutive equations. We use the following equations,

as they are in [VDL21].

Firstly,

F1 = S cos θ − V sin θ,

F2 = S sin θ + V cos θ.

The following are similar to the constitutive equations used for the original Timoshenko

model in Chapter 1,

M = M3 = EI∂xφ, (5.2.17)

V = κ2AG(θ − φ). (5.2.18)

Finally, we have

S = AEεs (5.2.19)

from Hooke’s law, where

εs = ∂xs− 1 and (∂xs)
2 = ||∂xr̄0|| .

Here s is the arc length function.

Dimensionless form

As was done for the Timoshenko model in Chapter 1, it is convenient to derive the model in
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dimensionless form. We proceed in much the same way as before, and the main steps of the

derivation of the dimensionless form are given below.

To this end, let

u(x, t) = r1(x, t)− x and w(x, t) = r2(x, t).

Further, let

τ =
t

T
, ξ =

x

`
, u∗(ξ, τ) =

u(x, t)

`
, w∗(ξ, τ) =

w(x, t)

`
, φ∗(ξ, τ) = φ(x, t), and s∗(ξ, τ) =

s(x, t)

`
,

where T needs to be determined.

Also let

F ∗i (ξ, τ) =
Fi(x, t)

AGκ2
, P ∗i (ξ, τ) =

`Pi(x, t)

AGκ2
, M∗(ξ, τ) =

M(x, t)

AGκ2`
,

V ∗(ξ, τ) =
V (x, t)

AGκ2
, and S∗(ξ, τ) =

S(x, t)

AGκ2
,

where i = 1, 2.

It follows from Equations (5.2.14)-(5.2.16) that

ρA

T 2
∂2
τu
∗ =

AGκ2

`2
∂2
ξF
∗
1 +

AGκ2

`2
P ∗1 ,

ρA

T 2
∂2
τw
∗ =

AGκ2

`2
∂2
ξF
∗
2 +

AGκ2

`2
P ∗2 ,

ρI

T 2
∂ξφ

∗ = (1 + ∂ξu
∗)AGκ2F ∗2 − ∂ξw∗AGκ2F ∗1 + AGκ2∂ξM

∗,

or

ρ`2

Gκ2T 2
∂2
τu
∗ = ∂2

ξF
∗
1 + P ∗1 ,

ρ`2

Gκ2T 2
∂2
τw
∗ = ∂2

ξF
∗
2 + P ∗2 ,

ρI

AGκ2T 2
∂ξφ

∗ = (1 + ∂ξu
∗)∂ξF

∗
2 − ∂ξw∗F ∗1 + ∂ξM

∗.

Similarly, Equations (5.2.17)-(5.2.19) become

AGκ2`M∗ =
EI

`
∂xφ

∗,

AGκ2V ∗ = κ2AG(θ∗ − φ∗),

AGκ2S∗ = EA(∂ξs− 1).
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Then let T = `

√
ρ

Gκ2
and let

α =
A`2

I
, β =

AGκ2`2

EI
and γ =

β

α
=
Gκ2

E
.

The full model in dimensionless form is given in the next section, in original notation. It is

the same as the model in Section 1.4.1, but is given again for convenience and easy reference.

Remark 5.2.1. The dimensionless constants α and β are exactly the same as for the original

Timoshenko model in Section 1.2.1.

5.2.3 Local Linear Timoshenko Model

Consider again the model for the LLT rod in dimensionless form.

The equations of motion are

∂2
t u = ∂xF1 + P1, (1.4.1)

∂2
tw = ∂xF2 + P2, (1.4.2)

1

α
∂2
t φ = (1 + ∂xu)F2 − ∂xwF1 + ∂xM, (1.4.3)

where

F1 = Scosθ − V sinθ, (1.4.4)

F2 = Ssinθ + V cosθ, (1.4.5)

and ∂xs and θ are determined from

(∂xs)
2 = (1 + ∂xu)2 + (∂xw)2 , (1.4.6)

cosθ = (∂xs)
−1 (1 + ∂xu) , (1.4.7)

sinθ = (∂xs)
−1 ∂xw. (1.4.8)
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The constitutive equations are

M =
1

β
∂xφ, (1.4.9)

V = θ − φ, (1.4.10)

S =
1

γ
(∂xs− 1) . (1.4.11)

Recall also the boundary conditions:

Pinned-pinned: u(0, t) = w(0, t) = u(1, t) = w(1, t) = 0 and M(0, t) = M(1, t) = 0.

Cantilever: u(0, t) = w(0, t) = φ(0, t) = 0 and F1(1, t) = F2(1, t) = M(1, t) = 0.

5.3 Finite Element Algorithm for the LLT beam

Recall the variational problems derived for the LLT model in Section 1.4.2. In this section, it

is shown how a finite element algorithm for the LLT beam model is derived to obtain a linear

system whose solution is used to approximate solutions of the original model. The reader is

referred to [DLV22] for more details of the derivation of the algorithm, to complement the

main steps presented below. We choose piecewise linear functions δi as basis functions. De-

note Sh0 = span {δ0, δ1, . . . , δn}, Sh1 = span {δ1, δ2, . . . , δn} and Sh2 = span {δ1, δ2, . . . , δn−1}.

5.3.1 The cantilever case

Consider again Problem LLTV-C presented in Section 1.4.2. We write the problem as follows:

Find uh, wh, φh ∈ Sh1 such that for each t > 0,∫ 1

0

∂2
t u

h(·, t)v = −
∫ 1

0

F h
1 (·, t)v′ +

∫ 1

0

P1(·, t)v, (5.3.1)∫ 1

0

∂2
tw

h(·, t)z = −
∫ 1

0

F h
2 (·, t)z′ +

∫ 1

0

P2(·, t)z, (5.3.2)∫ 1

0

1

α
∂2
t φ

h(·, t)ψ =

∫ 1

0

(
1 + ∂xu

h(·, t)
)
F h

2 (·, t)ψ −
∫ 1

0

∂xw
h(·, t)F h

1 (·, t)ψ (5.3.3)

−
∫ 1

0

1

β
∂xφ

h(·, t)ψ′
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for all v, z, ψ ∈ Sh1 , where F h
1 , F h

2 ∈ Sh0 . Note that in Equation (5.3.3), the constitutive

equation (1.4.9) was used.

Now, since derivatives of piecewise linear basis functions are discontinuous at the nodes, we

introduce functions ghu(t) and ghw(t) to approximate ∂xu(·, t) and ∂xw(·, t) respectively. To

this end, define ∫ 1

0

ghu(t)δi =

∫ 1

0

∂xu
h(·, t)δi, (5.3.4)∫ 1

0

ghw(t)δi =

∫ 1

0

∂xw
h(·, t)δi (5.3.5)

for i = 0, 1, . . . , n.

Then we may approximate the function ∂xs in (1.4.6) with the function dhs , which is defined

by (
dhs
)2

=
(
1 + ghu

)2
+
(
ghw
)2
.

As in [DLV22], we assume that

dhs (xi, t) =

√
(1 + ghu(xi, t))

2 + (ghw(xi, t))
2 (5.3.6)

holds only at the nodes xi.

Furthermore, define

shθ (t) =
ghw(t)

dhs (t)
and (5.3.7)

chθ (t) =
1 + ghu(t)

dhs (t)
(5.3.8)

so that

sinθh = shθ and (5.3.9)

cosθh = chθ . (5.3.10)

Then we obtain

V h = θh − φh, (5.3.11)

Sh =
1

γ

(
dhs − 1

)
(5.3.12)
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from Equations (1.4.10) and (1.4.11).

Finally, we obtain expressions for F h
1 and F h

2 :

F h
1 = Shchθ − V hshθ and (5.3.13)

F h
2 = Shchθ + V hshθ . (5.3.14)

Now denote

Mij =

∫ 1

0

δjδi for i, j = 0, 1, . . . , n,

Kij =

∫ 1

0

δ′jδ
′
i for i, j = 0, 1, . . . , n,

Lij =

∫ 1

0

δjδ
′
i for i, j = 0, 1, . . . , n.

We also use the following notation:

T hx̄ =
n∑
i=0

xiδi ∈ Sh0 for any x̄ ∈ Rn+1,

T h1 x̄ =
n∑
i=1

xiδi ∈ Sh1 for any x̄ ∈ Rn,

and

A1 = [Aij] for i, j = 1, 2, . . . , n,

Ac = [Aij] for i = 0, 1, . . . , n, j = 1, 2, . . . , n,

where A represents matrices K, M or L.

Next, we use integration by parts and properties of the basis functions to write Equations

(5.3.4) and (5.3.5) as∫ 1

0

ghu(·, t)δi = uh(1, t)δi(1)−
∫ 1

0

uh(·, t)δ′i for i = 0, 1, . . . , n,∫ 1

0

ghw(·, t)δi = wh(1, t)δi(1)−
∫ 1

0

wh(·, t)δ′i for i = 0, 1, . . . , n.
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Then we can calculate ḡu(t) =
(
T h
)−1

ghu(t) and ḡw(t) =
(
T h
)−1

ghw(t) from

Mḡu(t) = −L∗c ū(t),

Mḡw(t) = −L∗cw̄(t)

where L∗ij = Lij but L∗nn = Lnn − 1.

From Equation (5.3.6) we define d̄s by

ds,i(t) =

√
(1 + gu,i(t))

2 + (gw,i(t))
2.

From Equations (5.3.7) and (5.3.8) we have then

sθ,i(t) =
gw,i(t)

ds,i(t)
and cθ,i(t) =

1 + gu,i(t)

ds,i(t)

so that θ̄ is defined by

sinθi(t) = sθ,i(t) and cosθi(t) = cθ,i(t)

from Equations (5.3.9) and (5.3.10).

To define V̄ and S̄ we first note that since θ̄ ∈ Rn+1 but φ̄ ∈ Rn, φ̄ is augmented by a first

zero component. Then

V̄ (t) = θ̄(t)− φ̄(t) and

S̄(t) =
1

γ

(
d̄s(t)− 1

)
from Equations (5.3.11) and (5.3.12).

Finally, Equations (5.3.13) and (5.3.14) imply that

F h
1 ≈

(
T hS̄

) (
T hc̄θ

)
−
(
T hV̄

) (
T hs̄θ

)
,

F h
2 ≈

(
T hV̄

) (
T hc̄θ

)
+
(
T hS̄

) (
T hs̄θ

)
.

Note that ū(t) =
(
T h1
)−1

uh(t), w̄(t) =
(
T h1
)−1

wh(t), and φ̄(t) =
(
T h1
)−1

φh(t).
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Define the vectors Ḡ1 and Ḡ2 by

G1,i(t) =

∫ 1

0

F h
1 (·, t)δ′i,

G2,i(t) =

∫ 1

0

F h
2 (·, t)δ′i

for i = 1, 2, . . . , n, define the vectors H̄u and H̄w by

Hu,i(t) =

∫ 1

0

F h
2 (·, t)

(
1 + ghu(t)

)
δi,

Hw,i(t) =

∫ 1

0

F h
1 (·, t)ghw(t)δi

for i = 1, 2, . . . , n, and define P̄1 and P̄2 by

P1,i(t) =

∫ 1

0

P1(·, t)δi,

P2,i(t) =

∫ 1

0

P2(·, t)δi

for i = 1, 2, . . . , n.

Then we obtain a linear system for ū, w̄ and φ̄:

M1ū
′′ = −Ḡ1 + P̄1,

M1w̄
′′ = −Ḡ2 + P̄2,

1

α
M1φ̄

′′ = H̄u − H̄w −
1

β
K1φ̄.

A central difference scheme is used to approximate solutions of this system. To this end, let

m be the number of time steps, and suppose we approximate the solution at time point t∗.

Let δt =
t∗

m
. Denote au,i = αd(xi) for i = 1, 2, . . . , n and bu,i = α0(xi) for i = 1, 2, . . . , n, and

similar notation for w and φ respectively. Then we obtain the following system,

1

δt2
M1 [ūk+1 − 2ūk + ūk−1] = −Ḡ1 + P̄1,

1

δt2
M1 [w̄k+1 − 2w̄k + w̄k−1] = −Ḡ2 + P̄2,

1

δt2
1

α
M1

[
φ̄k+1 − 2φ̄k + φ̄k−1

]
= H̄u − H̄w −

1

4β
K1

[
φ̄k+1 + 2φ̄k + φ̄k−1

]
where ū0 = b̄u, w̄0 = b̄w and φ̄0 = b̄φ and

1

2δt
[ū1 − ū−1] = āu,

1

2δt
[w̄1 − w̄−1] = āw and

1

2δt

[
φ̄1 − φ̄−1

]
= āφ.
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5.3.2 The pinned-pinned case

The procedure to derive the FEM algorithm in this section is similar to the one for the

cantilever case above. Consider Problem LLTV-P described in the previous section. We

rewrite the problem as follows:

Find uh, wh ∈ Sh2 and φh ∈ Sh0 such that for each t > 0, Equations (5.3.1)-(5.3.3) hold for all

v, z ∈ Sh2 and ψ ∈ Sh0 , where F h
1 , F

h
2 ∈ Sh0 .

Equations (5.3.4)-(5.3.14) remain exactly the same.

Again denote

Mij =

∫ 1

0

δjδi for i, j = 0, 1, . . . , n,

Kij =

∫ 1

0

δ′jδ
′
i for i, j = 0, 1, . . . , n,

Lij =

∫ 1

0

δjδ
′
i for i, j = 0, 1, . . . , n.

We also use the following notation:

T hx̄ =
n∑
i=0

xiδi ∈ Sh0 for any x̄ ∈ Rn+1,

T h2 x̄ =
n−1∑
i=1

xiδi ∈ Sh2 for any x̄ ∈ Rn−1

and

A2 = [Aij] for i, j = 1, 2, . . . , n− 1,

Ad = [Aij] for i = 0, 1, . . . , n, j = 1, 2, . . . , n− 1

where A represents matrices K, M or L.

Next, we use integration by parts and properties of the basis functions to write Equations

(5.3.4) and (5.3.5) as ∫ 1

0

ghu(·, t)δi = −
∫ 1

0

uh(·, t)δ′i for i = 0, 1, . . . , n,∫ 1

0

ghw(·, t)δi = −
∫ 1

0

wh(·, t)δ′i for i = 0, 1, . . . , n.
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Then we can calculate ḡu(t) =
(
T h
)−1

ghu(t) and ḡw(t) =
(
T h
)−1

ghw(t) from

Mḡu(t) = −Ldū(t),

Mḡw(t) = −Ldw̄(t).

From Equation (5.3.6) we again define d̄s by

ds,i(t) =

√
(1 + gu,i(t))

2 + (gw,i(t))
2.

Further, from Equations (5.3.7) and (5.3.8) we again have

sθ,i(t) =
gw,i(t)

ds,i(t)
and cθ,i(t) =

1 + gu,i(t)

ds,i(t)

so that θ̄ is defined by

sinθi(t) = sθ,i(t) and cosθi(t) = cθ,i(t)

from Equations (5.3.9) and (5.3.10).

In this case, θ̄ ∈ Rn+1 and φ̄ ∈ Rn+1, so we can define

V̄ (t) = θ̄(t)− φ̄(t) and

S̄(t) =
1

γ

(
d̄s(t)− 1

)
from Equations (5.3.11) and (5.3.12).

Finally, Equations (5.3.13) and (5.3.14) imply that

F h
1 ≈

(
T hS̄

) (
T hc̄θ

)
−
(
T hV̄

) (
T hs̄θ

)
,

F h
2 ≈

(
T hV̄

) (
T hc̄θ

)
+
(
T hS̄

) (
T hs̄θ

)
as before.

Note that here ū(t) =
(
T h2
)−1

uh(t), w̄(t) =
(
T h2
)−1

wh(t), and φ̄(t) =
(
T h
)−1

φh(t).

Define the vectors Ḡ1 and Ḡ2 by

G1,i(t) =

∫ 1

0

F h
1 (·, t)δ′i,

G2,i(t) =

∫ 1

0

F h
2 (·, t)δ′i
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for i = 1, 2, . . . , n− 1, define the vectors H̄u and H̄w by

Hu,i(t) =

∫ 1

0

F h
2 (·, t)

(
1 + ghu(t)

)
δi,

Hw,i(t) =

∫ 1

0

F h
1 (·, t)ghw(t)δi

for i = 0, 1, 2, . . . , n, and define P̄1 and P̄2 by

P1,i(t) =

∫ 1

0

P1(·, t)δi,

P2,i(t) =

∫ 1

0

P2(·, t)δi

for i = 1, 2, . . . , n− 1.

Then we obtain a linear system for ū, w̄ and φ̄:

M2ū
′′ = −Ḡ1 + P̄1, (5.3.15)

M2w̄
′′ = −Ḡ2 + P̄2, (5.3.16)

1

α
Mφ̄′′ = H̄u − H̄w −

1

β
Kφ̄. (5.3.17)

The central difference scheme is then derived exactly as for the cantilever case. To this

end, let m be the number of time steps, and suppose we approximate the solution at time

point t∗. Let δt =
t∗

m
. Denote au,i = αd(xi) for i = 1, 2, . . . , n − 1 and bu,i = α0(xi) for

i = 1, 2, . . . , n − 1, and similar notation for w and φ respectively. Then we obtain the

following system,

1

δt2
M2 [ūk+1 − 2ūk + ūk−1] = −Ḡ1 + P̄1,

1

δt2
M2 [w̄k+1 − 2w̄k + w̄k−1] = −Ḡ2 + P̄2,

1

δt2
1

α
M
[
φ̄k+1 − 2φ̄k + φ̄k−1

]
= H̄u − H̄w −

1

4β
K
[
φ̄k+1 + 2φ̄k + φ̄k−1

]
,

where ū0 = b̄u, w̄0 = b̄w and φ̄0 = b̄φ and
1

2δt
[ū1 − ū−1] = āu,

1

2δt
[w̄1 − w̄−1] = āw and

1

2δt

[
φ̄1 − φ̄−1

]
= āφ.
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5.4 Numerical results

5.4.1 Small vibrations of the pinned-pinned LLT rod

In this subsection, we briefly consider some numerical results for the free vibration of the

LLT rod with pinned-pinned boundary conditions. Here, suppose P1 = P2 = 0 in Equations

(1.4.1) and (1.4.2), suppose S = 0, and consider the boundary conditions for the pinned-

pinned case:

u(0, t) = w(0, t) = u(1, t) = w(1, t) = 0 and M(0, t) = M(1, t) = 0.

Note that for free vibration of the linear Timoshenko beam with pinned-pinned boundary

conditions, it was shown in [VV06] that a nonconstant eigenfunction corresponding to the

eigenvalue λk of the associated eigenvalue problem is given by

[wk, φk]
t = [sin(kφx), Ck cos(kπx)]t,

where

k2π2 − kπCk = λk

k2π2Ck
γ

− αkπ + αCk = λkCk.

It was shown in [VV06] that λ1 ≈ 0.3119 and C1 ≈ 3.042. For the following numerical results,

the first modal solution (i.e. where k = 1) was used to choose the initial conditions. Further,

for the linear Timoshenko beam, there is no axial displacement u. Hence we consider the

following initial conditions:

u(x, 0) = u0(x) = 0, (5.4.1)

w(x, 0) = w0(x) = c sin(πx), (5.4.2)

φ(x, 0) = φ0(x) = cC1 cos(πx), (5.4.3)

ud(x) = wd(x) = φd(x) = 0. (5.4.4)
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Finally, choose α = 1200, γ = 0.25 and c = 0.001. In [DLV22], pointwise convergence of the

LLT-FEM algorithm for this problem was investigated by calculating the error ratios

w4n − w2n

w2n − wn
and

φ4n − φ2n

φ2n − φn

at the time point t =
π

2
and at the points x = 0.5 and x = 1 for w and φ respectively, where

the largest values were expected to occur.

In [DLV22] it was noted that pointwise convergence was observed from the fact that all

ratios were approximately 0.25. Consider the following numerical values, calculated using

the algorithm, at the time point t =
π

2
and at x = 0.5 and x = 1 for w and φ respectively:

w8 = −0.00092509 and φ8 = −0.00281415

w16 = −0.00093103 and φ16 = −0.00283219

w32 = −0.00093251 and φ32 = −0.00283676.

Note that, indeed,

w32 − w16

w16 − w8

= 0.24916 and
φ32 − φ16

φ16 − φ8

= 0.25333.

5.4.2 Forced vibrations of the cantilever LLT rod

Next, we consider some results when using the LLT-FEM algorithm for the case of cantilever

boundary conditions,

u(0, t) = w(0, t) = φ(0, t) = 0 and F1(1, t) = F2(1, t) = M(1, t) = 0.

We again suppose S = 0, and in this case we suppose that the rod is set in motion by a

transverse load near the free endpoint. As a result, we use

P1 = 0,

P2 = cq(x) sin t,
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where c is constant and

q(x) =

x− 0.9 for x > 0.9,

0 for x ≤ 0.9.

It is assumed that the rod is initially at rest, with no deformation, and hence all initial

conditions are zero. Choose α = 4800, γ = 0.25 and c = 0.001.

In [DLV22] the L2-convergence of the LLT-FEM algorithm was investigated. There, the

algorithm was used for the time interval [0, 12π] with 3200 time steps, and spatially with 8,

16 and 32 elements. Errors were defined in terms of the difference between the approximate

solutions u, w and φ when doubling the number of subintervals, and finally taking the L2-

norm. For example, εwn,2n = ||w2n − wn||. Note that an approximation for the L2-norm has

to be used, since the terms w2n etc. are vector-valued. This was done by using the finite

element matrix M on R2n and using the approximation
∣∣∣∣f̄(t)

∣∣∣∣2 = f̄(t)tMf̄(t). It is also

necessary to project the approximate solutions un, wn and φn into R2n, which was done using

linear interpolation.

The authors used the relative difference
εw2n,4n
εwn,2n

to investigate the convergence of the LLT-FEM

algorithm, and it was found that while no clear order of convergence is immediately apparent,

the calculated ratios remain similar over the time interval [0, 12π], which is reassuring for

the algorithm’s performance.

Finally, the LLT cantilever rod was compared to the linear Timoshenko cantilever beam,

and plots for w and φ calculated using the LLT-FEM algorithm, at the three time points

6π, 9π, 12π were given, and compared to the results obtained when approximating the solu-

tion of the linear cantilever Timoshenko beam when using the mixed finite element method.

This comparison is replicated here. The central difference scheme derived for the mixed finite

element method was given in Section 4.2.2, and here the approximation of the solution to

the linear model is plotted together with the results from applying the LLT-FEM algorithm,

to compare the two models. The plots are given in Figure 5.1. The plots correspond to those

in [DLV22], and it can be seen that the results between the two methods are in agreement.
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(a) Transverse displacement of the cantilever LLT rod.

(b) Angle of rotation of the cantilever LLT rod.

Figure 5.1: Comparison of forced vibrations of the LLT cantilever rod with the linear Tim-

oshenko beam using mixed finite element method, with α = 4800, γ = 0.25 and c = 0.001.

As was mentioned in Remark 1.2.2, the value of α determines the length versus depth ratio

of the beam. We investigate how a change in α changes the shape of the LLT rod. Suppose

the value of α is doubled in the problem considered above, i.e. α = 9600, so a more slender

rod is considered. The resulting plots of applying the LLT-FEM algorithm are given in

Figure 5.2, together with the results obtained for the linear model when using the mixed
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finite element method. The resulting plots are quite different from those in Figure 5.1. For

both w and φ, the values are much larger. For the cases t = 6π and t = 9π, the plots of

w slant upwards much more for a larger α. This indicates that more angular deformation

takes place for a more slender rod, as would be expected. Further, for t = 6π for example,

the variation in values of φ is much larger. Thus we can see that changing the value of

α significantly changes the shape of the LLT rod. The comparison with the mixed finite

element approximation shows once more that the results coincide between the two methods.

(a) Transverse displacement of the cantilever LLT rod.
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(b) Angle of rotation of the cantilever LLT rod.

Figure 5.2: Comparison of forced vibrations of the LLT cantilever rod with the linear Tim-

oshenko beam using mixed finite element method, with α = 9600, γ = 0.25 and c = 0.001.

5.4.3 Oscillations of the compressed LLT rod

In this section, we consider another example of the pinned-pinned LLT rod. In the previous

sections, the assumption was that the distance between the two endpoints of the beam was

equal to the length of the undeformed beam. This may not be the case in applications,

where the beam could be under tension or compressed. In this section we consider the latter

case, where the endpoint of the beam where x = 1 is initially displaced to the left by a small

distance d > 0.

As such, the initial condition (5.4.1) becomes

u(x, 0) = −dx.

Additionally, it is assumed that d is small enough that the initial conditions (5.4.2)-(5.4.4)

can still be used. We consider the case where P1 = P2 = 0.
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As mentioned in [DLV22], the boundary condition

u(1, t) = −d (5.4.5)

is sufficient to model the compressed beam. Note that as a result, slight adjustments need

to be made to the variational forms in Sections 1.4.2 and to the algorithm in Section 5.3.

The main changes are highlighted below.

Recall the classes of test functions TP [0, 1] and TC [0, 1] and the variational problem LLTV-P

defined in Section 1.4.2. Note that since d > 0, the boundary condition (5.4.5) implies that

u is no longer in TP [0, 1], and we instead consider a space of trial functions. Define

TE[0, 1] =
{
y ∈ C1[0, 1] : y(0) = 0

}
.

Then we arrive at the following variational problem.

Problem LLTV-PC

Find 〈u,w, φ〉 such that for each t > 0, u(·, t) ∈ TE[0, 1], w(·, t) ∈ TP [0, 1], φ(·, t) ∈ C1[0, 1],

u(1, t) = −d and the equations in (1.4.17) hold for all 〈v, z, ψ〉 ∈ TP [0, 1]×TP [0, 1]×C1[0, 1].

In addition to Sh0 , S
h
1 and Sh2 defined in Section 5.3, we also define ShE = span {δ1, δ2, . . . , δn}.

Then we can write the problem as follows:

Find uh ∈ ShE, wh ∈ Sh2 and φh ∈ Sh0 such that for each t > 0, uh(1) = −d and Equations

(5.3.1) - (5.3.3) hold for all v, z ∈ Sh2 and ψ ∈ Sh0 , where F h
1 , F

h
2 ∈ Sh0 .

For this new problem, some additional notation is required. Denote

T hEx̄ =
n∑
i=1

xiδi ∈ Sh1 for any x̄ ∈ Rn

and

Ae = [Aij] for i = 0, 1, . . . , n, j = 1, 2, . . . , n,

Af = [Aij] for i = 1, 2, . . . , n− 1, j = 1, 2, . . . , n.

Remark 5.4.1. The definitions of TE[0, 1], ShE and T hE are the same as those of TP [0, 1], Sh1

and T h1 defined above respectively, but are kept separate here to avoid confusion with the

cantilever case.
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Using integration by parts and properties of the basis functions, Equation (5.3.4) in this case

is ∫ 1

0

ghu(·, t)δi = uh(1, t)δi(1)−
∫ 1

0

uh(·, t)δ′i for i = 0, 1, . . . , n.

Note that here ū(t) =
(
T hE
)−1

uh(t).

Then we can calculate ḡu(t) =
(
T h
)−1

ghu(t) from

Mḡu(t) = −L∗eū(t)

where L∗ij = Lij but L∗nn = Lnn − 1.

Note that since ūn(t) = −d, we can rewrite this system as

Mḡu(t) = −L∗dũ(t) + d[L∗e]n

where Ld is defined as before, ũi(t) = ūi(t) for i = 1, 2, . . . , n− 1 and [L∗e]n denotes the nth

column of L∗e.

Similarly, the first equation of (5.3.15) becomes

Mf ū
′′ = −Ḡ1 + P̄1,

and as a result, the first equation of the central difference scheme is

1

δt2
Mf [ūk+1 − 2ūk + ūk−1] = −Ḡ1 + P̄1.

Since ūn(tk) = −d for each k, this can be rewritten as

1

δt2
M2 [ũk+1 − 2ũk + ũk−1] +

1

δt2
[Mf ]n [d− 2d+ d] = −Ḡ1 + P̄1,

where M2 is defined as before, ũi(tk) = ūi(tk) for i = 1, 2, . . . , n − 1 and [Mf ]n denotes the

nth column of Mf .

This of course just simplifies to

1

δt2
M2 [ũk+1 − 2ũk + ũk−1] = −Ḡ1 + P̄1.
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The rest of the algorithm remains exactly the same.

Now, it was shown in [VDL21] that for the adapted linear Timoshenko model with pinned-

pinned boundary conditions and an axial load S, there is a critical load at which the corre-

sponding nonlinear model yields a buckled state, and was calculated to be Scrit = − π2

π2 + β
.

Then a critical value, dcrit can be calculated from dcrit = −γScrit. In [DLV22] it was shown

that for the case where α = 1200, the critical value was dcrit = 0.00796.

Figure 5.3 illustrates the displacement at the midpoint of the compressed beam over a period

of time, obtained by applying this altered algorithm, for various values of d. The results

agree with those presented in [DLV22]. As noted by the authors, there seems to be a critical

compression value, denoted d0, for the LLT rod, and for values d > d0, the rod exhibits

buckled states, which depend on the value of d. Note that for d > d0, the oscillations of the

midpoint are no longer around w = 0, as was the case when d < d0. Further, the numerical

results indicate that the critical value d0 here differs from the value dcrit calculated for the

adapted linear model mentioned above.

(a) Displacement w at the midpoint, with α = 1200 and d < d0.
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(b) Displacement w at the midpoint, with α = 1200 and d > d0.

Figure 5.3: Oscillations of the displacement w at the midpoint for the compressed LLT rod,

with α = 1200.

As mentioned above, the critical value dcrit for the adapted linear Timoshenko model is

calculated using γ and β. Since β = γα, a change in α would affect the value of dcrit. In

Section 5.4.2, it was reiterated that the value of α determines the length versus depth ratio

of the beam, and it was investigated how an increase in α affected the displacement and

angle of rotation of the cantilever LLT beam. It is interesting, then, to investigate how a

change in the slenderness of the compressed beam affects its buckled state.

For this investigation, α = 2400 is considered (i.e. α is doubled), and γ = 0.25 remains

as before. Then β = γα = 600, and as a result dcrit = −γ
(
− π2

π2 + β

)
≈ 0.00405 for

the adapted linear model. Figure 5.4 illustrates the displacements of the midpoint of the

compressed rod obtained using the algorithm described above, for various values of d around

this critical value, to investigate the buckled states of the more slender beam. The shapes

of the graphs are similar to those observed for α = 1200 above, but of course for smaller

values of d. Notice that, as was the case above, the oscillations of the midpoint are no longer

around w = 0, and the critical value d0 here is larger than that of the associated adapted
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linear model. These numerical results confirm that for a more slender beam, the critical

value at which buckled states occur is still close to that approximated for the adapted linear

model, but is smaller than that of a thicker beam of the same length.

(a) Displacement w at the midpoint, with α = 2400 and d < d0.

(b) Displacement w at the midpoint, with α = 2400 and d > d0.

Figure 5.4: Oscillations of the displacement w at the midpoint for the compressed LLT rod,

with α = 2400.
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Chapter 6

A Local Linear Rayleigh Model

6.1 Introduction

The derivation of the locally linear Timoshenko beam model was presented in Chapter 5.

It is interesting, then, to see if similar ideas can be used to derive a locally linear Rayleigh

or Euler-Bernoulli model. In Section 1.3, the original linear Rayleigh beam model, of which

the linear Euler-Bernoulli model is a special case, was derived from the Timoshenko beam

model, under specific assumptions. In Section 6.2 below, a locally linear Rayleigh model is

derived, and compared to the one given in [HT12]. The same ideas as in Section 5.2 were

followed, as opposed to the approach presented in [HT12], which is to use the total energy

of the system, and Hamilton’s principle.

6.2 The Local Linear Rayleigh rod model

The derivation of the equations of motion is exactly the same as in Section 5.2.2.
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Recall the resulting Equations (5.2.12) and (5.2.13):

ρA∂2
t r̄0 = ∂xF̄ + P̄ , (5.2.12)

ρI∂2
t φē3 = ∂xr̄0 × F̄ + ∂xM̄. (5.2.13)

Note that for the Rayleigh and Euler-Bernoulli beam models, the assumption is that cross

sections remain plane after deformation; that is, θ = φ.

For the constitutive equations, we again use

F1 = S cos θ − V sin θ,

F2 = S sin θ + V cos θ.

The following constitutive equation is similar to the one used in Section 1.3:

M = M3 = EI∂xθ
2.

Recall the definitions of {ē1, ē2, ē3}, θ, φ and ēy and ēx from Section 5.2.2.

Additionally, we had

ēT (x, t) = cos (θ(x, t)) ē1 + sin (θ(x, t)) ē2.

So let

ēθ(x, t) = − sin (θ(x, t)) ē1 + cos (θ(x, t)) ē2.

Then we have the following two lemmas.

Lemma 6.2.1. Consider ēT and ēθ as defined above. We have the following results:

∂xēT = ∂xθēθ, (6.2.1)

∂xēθ = −∂xθēT , (6.2.2)

∂tēT = ∂tθēθ, and (6.2.3)

∂tēθ = −∂tθēT . (6.2.4)
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Proof. We prove the first equation. The other three equations’ proofs follow similarly.

We have from the sum and chain rules for derivatives that

∂xēT = ∂x (cos (θ(x, t)) ē1 + sin (θ(x, t)) ē2)

= − sin (θ(x, t)) ∂xθ(x, t)ē1 + cos (θ(x, t)) ∂xθ(x, t)ē2

= ∂xθ(x, t) (− sin (θ(x, t)) ē1 + cos (θ(x, t)) ē2)

= ∂xθ(x, t)ēθ for each x, t.

Lemma 6.2.2. Consider ēT and ēθ as defined above. We have the following results:

∂3
xēT = ∂3

xθēθ − ∂2
xθ∂xθēT − ∂x(∂xθ)2ēT − (∂xθ)

2∂xēT , and

∂x∂
2
t ēT = ∂x∂

2
t θēθ − ∂2

t θ∂xθēT − (∂tθ)
2∂xēT − ∂x(∂tθ)2ēT .

Proof. We use Lemma 6.2.1 for both derivations.

For the first equation, note that

∂2
xēT = ∂2

xθēθ + ∂xθ∂xēθ

= ∂2
xθēθ − (∂xθ)

2ēT .

Then

∂3
xēT = ∂3

xθēθ + ∂2
xθ∂xēθ − ∂x(∂xθ)2ēT − (∂xθ)

2∂xēT

= ∂3
xθēθ − ∂2

xθ∂xθēT − ∂x(∂xθ)2ēT − (∂xθ)
2∂xēT .

For the second equation, we have that

∂x∂
2
t ēT = (∂x∂

2
t θ)ēθ + (∂2

t θ)∂xēθ − (∂tθ)
2∂xēT − ∂x(∂tθ)2ēT

= ∂x∂
2
t θēθ − ∂2

t θ∂xθēT − (∂tθ)
2∂xēT − ∂x(∂tθ)2ēT .
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Finally, we also assume in this case that there is no load, i.e. P̄ = 0̄.

Derivation of the Rayleigh Model

First note that

F̄ = F1ē1 + F2ē2

= SēT + V ēθ.

For convenience, we denote

ēT =
∂xr̄0

||∂xr̄0||
= ζ∂xr̄0,

where ζ = ||∂xr̄0||−1.

Then, since ēT × ēθ = ē3,

∂xr̄0 × F̄ =
1

ζ
ēT × (SēT + V ēθ)

=
1

ζ
V ē3.

Hence

ρI∂2
t φē3 =

1

ζ
V ē3 + ∂xM3ē3 from Equation (5.2.13), (6.2.5)

and thus

ρI∂2
t θ =

1

ζ
V + ∂xM

=
1

ζ
V + EI∂2

xθ, (6.2.6)

since θ = φ and M = M3 = EI∂2
xθ.
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It follows from Equation (5.2.12), Lemma 6.2.1 and Equation (6.2.6) that

ρA∂2
t r̄0 = ∂xF̄

= ∂x(SēT ) + (∂xV )ēθ + V ∂xēθ

= ∂x(SēT ) + (∂xV )ēθ − V ∂xθēT

= ∂x(SēT )−
([
ρζI∂2

t θ − ζEI∂2
xθ
]
∂xθ
)
ēT

+
([
ρζI∂x∂

2
t θ − ζEI∂3

xθ
])
ēθ

= ∂x(SēT ) +
(
−ρζI∂2

t θ∂xθ + ζEI∂2
xθ∂xθ

)
ēT

+
(
ρζI∂x∂

2
t θ − ζEI∂3

xθ
)
ēθ. (6.2.7)

Now, we simplify the expressions on the right-hand side of Equation (6.2.7) in the following

steps.

It follows from Lemma 6.2.2 that

ζEI∂2
xθ∂xθēT − ζEI∂3

xθēθ = ζEI∂2
xθ∂xθēT − ζEI

(
∂3
xēT + ∂2

xθ∂xθēT + ∂x(∂xθ)
2ēT + (∂xθ)

2∂xēT
)

= −ζEI∂3
xēT − ζEI∂x(∂xθ)2ēT − ζEI(∂xθ)

2∂xēT .

It furthermore follows from Lemma 6.2.2 that

−ρζI∂2
t θ∂xθēT + ρζI∂x∂

2
t θēθ = −ρζI∂2

t θ∂xθēT + ρζI
(
∂x∂

2
t ēT + (∂2

t θ)∂xθēT

+(∂tθ)
2∂xēT + ∂x(∂tθ)

2ēT
)

= ρζI∂x∂
2
t ēT + ρζI∂x(∂tθ)

2ēT + ρζI(∂tθ)
2∂xēT .

Now let

µ = −ζEI(∂xθ)
2 + ρζI(∂tθ)

2.

Then we have that

−ζEI∂x(∂xθ)2ēT + ρζI∂x(∂tθ)
2ēT = (∂xµ)ēT

and

−ζEI(∂xθ)
2∂xēT + ρζI(∂tθ)

2∂xēT = µ(∂xēT ).
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Finally, combining Equation (6.2.7) with the results above, we have

ρA∂2
t r̄0 = ∂x(SēT )− ζEI∂3

xēT + ρζI∂x∂
2
t ēT + (∂xµ)ēT + µ(∂xēT )

= ζ∂x(C∂xr̄0)− ζ2EI∂4
xr̄0 + ρζ2I∂2

t ∂
2
xr̄0

where C = S + µ.

Dimensionless form

For the dimensionless form, let

τ =
t

T
, ξ =

x

`
, r∗1(ξ, τ) =

r1(x, t)

`
, r∗2(ξ, τ) =

r2(x, t)

`
, and C∗(ξ, τ) = C(x, t),

and denote r̄∗0 = r∗1 ē1 + r∗2 ē2.

In this case a convenient choice for T is T =

√
ρA`4

EIζ2
. It then follows that

∂2
τ r̄
∗
0 =

T 2

ρA`
∂ξ(C

∗∂ξ r̄
∗
0)− ζ2EIT 2

ρA`4
∂4
ξ r̄
∗
0 +

ζ2I

`2A
∂2
t ∂

2
ξ r̄
∗
0.

In original notation, the equation of motion is then

∂2
t r̄0 = δ∂x(C∂xr̄0)− ∂4

xr̄0 + γ∂2
t ∂

2
xr̄0,

where γ =
ζ2I

`2A
and δ =

`3

EIζ2
.

Remark 6.2.1. Note that if the rotary inertia term γ∂2
t ∂

2
xr̄0 is ignored, then the above

equation is the equation of motion for the non-linear Euler-Bernoulli rod.

6.3 Non-linear Rayleigh model of Hegarty and Taylor

The derivation of the non-linear Rayleigh model in Section 6.2 was done using the same

approach as for the LLT model in Chapter 5. The approach by Hegarty and Taylor [HT12]

was to derive the total energy of the beam, and use Hamilton’s principle. Using the notation

used throughout the dissertation, their model is as follows.
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The equation of motion is

∂2
t r̄ = ∂x (τ∂xr̄)− ∂4

xr̄ + γ∂2
t ∂

2
xr̄, (6.3.1)

and the boundary conditions are

r̄(0, t) = (0, 0), ∂xr̄(0, t) = (1, 0) and (6.3.2)

γ∂2
t ∂

2
xr̄(1, t) + τ∂xr̄(1, t)− ∂3

xr̄(1, t) = −α∂tr̄(1, t), ∂2
xr̄(1, t) = β∂t∂xr̄(1, t). (6.3.3)

The initial conditions are

r̄(x, 0) = r̄c(x) and ∂xr̄(x, 0) = r̄d(x) (6.3.4)

for some functions r̄c and r̄d.

The model appears to be almost the same as the one derived in Section 6.2. Note that

what is denoted as r in [HT12] corresponds to the unit tangent vector ēT , the normalised

vector of what we defined as r̄0. Thus the dimensionless constants α, β and γ above do not

necessarily correspond to the same values as defined in previous sections. Further, note that

according to Equation (2.1) in [HT12], the value of T chosen to derive the dimensionless form

is T =

√
ρ`4

EI
, which differs slightly from what we derived. Finally, note that in Hegarty and

Taylor’s model, the axial force, denoted by τ , appears to be independent of θ. This could

not be achieved in our model, where the corresponding term was ∂x (C∂xr̄), and C = S + µ

clearly still depends on θ, since µ is a function of θ.

Based on their model, the authors derived a number of existence results. For completeness,

and in light of existence theory being a fundamental part of this dissertation, their results are

given below. The detailed proofs are in [HT12], but are beyond the scope of the dissertation.

Note that N̄0 below denotes the initial condition for the normal vector at (x, t), which

corresponds to our ēθ, and E0 denotes the total energy of the beam.

Theorem 6.3.1. Let α, β ≥ 0, γ > 0, and r̄c ∈ H4((0, 1);R2), r̄d ∈ H3((0, 1);R2) satisfy

r̄c(0) = r̄d(0) = ∂xr̄d(0) = (0, 0), ∂xr̄c = (1, 0),
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∂2
xr̄c(1) = −β∂xr̄d(1),

(
γ∂2

xr̄d(1)− αβr̄d(1) + β∂3
xr̄c(t)

)
· N̄0(1) = 0, and

∂xr̄c · ∂xr̄c = 1, ∂xr̄c · ∂xr̄d = 0.

Then the non-linear Rayleigh model (6.3.1)-(6.3.4) has a unique global classical solution

r̄ ∈ C2((0,∞);H2((0, 1),R2)) ∩ C1((0,∞);H3((0, 1);R2)) ∩ C((0,∞);H4((0, 1);R2)).

An existence result was also obtained for the non-linear Euler-Bernoulli model; that is, the

model (6.3.1)-(6.3.4) with γ = 0.

Theorem 6.3.2. Let α > 0, β ≥ 0, and r̄c ∈ H4((0, 1);R2), r̄d ∈ H2((0, 1);R2) satisfy

r̄c(0) = r̄d(0) = ∂xr̄d(0) = (0, 0), ∂xr̄c = (1, 0),

∂2
xr̄c(1) = −β∂xr̄d(1),

(
αr̄d(1)− ∂3

xr̄c(1)
)
· N̄0(1) = 0, and

∂xr̄c · ∂xr̄c = 1, ∂xr̄c · ∂xr̄d = 0.

For any T0 > 0 there exists a positive constant K0 such that if E0(0) < K0, then the

non-linear Euler-Bernoulli model (6.3.1)-(6.3.4) with γ = 0 has a local classical solution

r̄ ∈ L∞((0, T0);H4((0, 1);R2)) ∩W 1,∞((0, T0);H2((0, 1);R2)) ∩W 2,∞((0, T0);L2((0, 1);R1)).
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Chapter 7

Conclusion

7.1 Overview

Mathematical models for the vibration of flexible systems are of great importance in applied

mathematics and engineering. To approximate solutions to these systems numerically, the

finite element method (FEM) is an accurate and user-friendly approach. In order to apply

such numerical methods, existence of solutions, as well as convergence of the method, must

be considered.

This dissertation is mainly a literature study on models (both linear and “locally linear”) for

the vibration of flexible structures. The literature study includes work on existence theory

and convergence theory of finite element approximations. For the latter, model problems

are written in variational form. The main existence results for general linear second order

hyperbolic type problems from the articles of van Rensburg and Stapelberg (2019) and van

Rensburg and van der Merwe (2002) are written in terms of bilinear forms, making them

easy to apply to such problems. This theory goes hand in hand with the convergence theory

of Stapelberg and van Rensburg (2017) and of Basson and van Rensburg (2013), which

takes advantage of the already existing results obtained from the existence theory to derive

convergence results. A part of this dissertation is the application of this theory to well-known,
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simple mathematical models for real-world applications.

As mentioned, the FEM is particularly convenient for the types of problems studied in the

above literature. An objective of this dissertation was thus to illustrate convergence of the

method to problems for which the existence of solutions has already been established. A

further focus was to study the locally linear model in the article by van Rensburg, du Toit and

Labuschagne (2021) and a subsequent currently unpublished work by du Toit, Labuschagne

and van der Merwe (2022), where a new model for two-dimensional motion of a rod, the

Locally Linear Timoshenko (LLT) model, was developed, and the FEM was used to derive

an algorithm to approximate solutions.

An initial aim of the research was to investigate linear models. In the first chapter of

the dissertation, several second-order hyperbolic type problems are introduced, which are

used throughout the dissertation to illustrate application of the theory and the FEM. The

linear Timoshenko beam model was presented, and subsequently the Rayleigh and Euler-

Bernoulli models, which can both be derived from the former model. Further, the LLT

model (mentioned above) was introduced, as well as several of its special cases, one of which

was the original linear Timoshenko model. Finally, the multi-dimensional wave equation

was presented. For both the theory and application of the FEM, variational forms for these

problems are convenient, and were derived in this chapter.

In the following chapter, the existence theory from the articles by van der Merwe and van

Rensburg (2002), and by van Rensburg and Stapelberg (2019), mentioned above, was studied

and compared. The theory from these articles focused on deriving existence results for the

general linear second-order hyperbolic type problem written in terms of bilinear forms. In the

former article, two of the bilinear forms are symmetric; in the latter, only one is assumed to

be symmetric. The chapter highlights the main results, differences and similarities between

the two articles. Finally, the main existence theorem was applied to the linear Timoshenko

model and the multi-dimensional wave equation, to demonstrate use of the theory.

The introduction of the existence theory is followed by a chapter on the convergence theory

for the same type of problem, with general damping, in the Stapelberg and van Rensburg
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(2017) article, which makes use of the results already obtained in the existence theory. The

theory from the article was presented and proved, and where appropriate, comparisons were

made to another article by Basson and van Rensburg (2013), where the same model problem

was considered, but with weak damping.

Chapter 4 of the dissertation is dedicated to the implementation and convergence analysis

of the finite element method to model problems. In particular, a finite element algorithm

for the Timoshenko model and the two-dimensional wave equation on a rectangle, for which

existence was proved in a previous chapter, were derived.

For the Timoshenko model, both pinned-pinned and cantilever boundary conditions were

considered. In some applications, as was the case for this model, the standard FEM is

not appropriate, and may lead to poor numerical results. The mixed FEM proves to be

an effective alternative, and was therefore used in the numerical approximations for the

Timoshenko model. For the wave equation, Dirichlet boundary conditions were used, and the

standard FEM was applied with rectangle and then triangle elements. It was observed that

as the number of elements and time steps in the algorithm are increased, the approximations

converged to the exact solution. It was also noted that the relative errors were smaller for

the case of rectangle elements, and hence rectangular elements appear to be sufficient for

the approximation.

The LLT rod model takes up its own chapter. The derivations of the model and its finite

element algorithm for pinned-pinned and cantilever boundary conditions are presented. Se-

lected results from the currently unpublished article of du Toit, Labuschagne and van der

Merwe (2022) were reproduced, namely small vibrations of the pinned-pinned LLT rod, the

cantilever rod with a transverse load near the free endpoint, and the compressed LLT rod.

The numerical results indicate pointwise convergence for the pinned-pinned rod. Further,

comparison of the results obtained for the cantilever rod using the LLT finite element algo-

rithm with those obtained using the mixed FEM showed that these two methods were in

agreement. Investigation of the compressed rod showed that there is a critical value after

which the rod exhibits buckled states. For the latter two cases, a brief investigation was
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done on the effects of the slenderness of the rod on the numerical results.

Finally, a chapter is dedicated to a brief investigation into using the same ideas applied to

obtain the LLT model, to obtain “locally linear” Rayleigh and Euler-Bernoulli rod models.

The models are compared to those in [HT12], where existence results for these types of

models are proved.

7.2 Accomplishments

This dissertation provides a detailed comparison between the articles on existence theory by

van der Merwe and van Rensburg (2002), and by van Rensburg and Stapelberg (2019), for

the general linear second-order hyperbolic type problems with weak and general damping

respectively. The most noteworthy differences were in the preliminary assumption made on

the boundedness of one of the bilinear forms, the proof that the linear operator defined was

dense and closed in the Hilbert space, and the proof that the operator is an infinitesimal

generator of a C0 semigroup of contractions.

The results of the existence theory can be used to obtain convergence results. The article of

Stapelberg and van Rensburg (2017) was studied and proofs given in detail. An interesting

observation was that a proposition used to prove an important lemma in the article was found

to be unnecessary, and a slightly milder result than the one obtained from the proposition

was sufficient to prove the lemma. Differences between this article and the article by Basson

and Van Rensburg (2013) were also included.

This dissertation also provides simple illustrative examples of applications of the existence

and convergence theory from the literature, but also implementation and convergence of the

FEM.

Further, some numerical results using a proposed FEM algorithm for the approximation

of solutions of the LLT rod were replicated and confirmed. Being able to confirm these

results is promising for the validity of the proposed algorithm, especially the results where
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the LLT-FEM algorithm for small vibrations and the mixed FEM algorithm for the linear

Timoshenko model are in agreement.

Finally, the ideas of the LLT model were used to derive a possible locally linear Euler-

Bernoulli type model, which is new and not widely studied in the literature.

7.3 Future Work

The LLT rod model shows promising results for obtaining models for two-dimensional dis-

placement using linear constitutive equations that are simple to use. Future investigations

could include further investigation into extending this approach to obtain a locally linear

Euler-Bernoulli model; in particular, if similar existence results to those in the article by

Hegarty and Taylor (2012) can be achieved using the approaches considered in this disser-

tation. Further, an investigation could be taken into obtaining a finite element algorithm to

approximate the solution of such a model.
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Appendix A

Sobolev Spaces

This section provides some basic theory on weak derivatives and Sobolev spaces.

The one-dimensional case

Let I = (a, b) be an open interval in R. Denote Ī = [a, b]. The space L2(a, b) is the space of

all functions f such that f 2 is Lebesgue integrable on (a, b).

Definition (Support of a function)

The closure of the set {x ∈ I : f(x) 6= 0} is called the support of the function f on I.

Notation

1. Cm(I): The class of functions with continuous derivatives up to order m in I.

2. C0(I): The class of functions in C(I) with support contained in I.

3. C∞(I): The class of functions in Cm(I) for all m.

4. C∞0 (I): Functions in C∞(I) ∩ C0(I).

Definition (Weak Derivative)

Let m be any natural number. Suppose u ∈ L2(I) and there exists a v ∈ L2(I) such that

(u, φ(m)) = (−1)m(v, φ) for each φ ∈ C∞0 (I).
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Then v is called the m-th order weak derivative of u, and is denoted by Dmu.

Theorem A.0.1. The m-th order weak derivative Dmu of u is uniquely determined.

Notation The set of functions with weak derivatives up to order m is denoted by Wm(I).

Theorem A.0.2. Cm(Ī) ⊂ Wm(I) and if u ∈ Cm(Ī), then Dmu = u(m).

Theorem A.0.3. Wm(I) is a vector space.

Theorem A.0.4. The following are true.

1. If u ∈ Wm(I) and i, j ∈ N such that i+ j ≤ m, then Di(Dju) = Di+ju.

2. If Dku ∈ Wm(I), then u ∈ W k+m(I).

Definition. For functions u and v in Wm(I), define

(u, v)m = (u, v) + (Du,Dv) + · · ·+ (Dmu,Dmv).

Theorem A.0.5. (u, v)m is an inner product for Wm(I).

Definition. ||u||m = (u, u)
1
2
m is a norm for Wm(I).

Definition. The Sobolev SpaceWm(I) is the vector spaceWm(I) with inner product (u, v)m.

Theorem A.0.6. The space Wm(I) is complete.

Definition (The space Hm(I))

Hm(I) is the closure of Cm(I) in Wm(I) with respect to the form of Wm(I).

Theorem A.0.7. Hm(I) is a closed subspace of Wm(I).

Theorem A.0.8. If u ∈ Wm(I), then there exists a sequence (un) in Cm(Ī) such that

||u− un||m → 0 as n→∞.

Theorem A.0.9. Hm(I) = Wm(I).

Remark A.0.1. The result of Theorem A.0.9 is not always true in higher dimensions.
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The higher-dimensional case

Let Ω be an open subset of Rn. Let Ω̄ denote the closure of Ω. The space L2(Ω) is the space

of all functions f such that f 2 is Lebesgue integrable on Ω.

Definition (Support of a function)

The closure of the set {x ∈ Ω : f(x) 6= 0} is called the support of the function f on Ω.

Notation

1. Cm(Ω): The class of functions with continuous derivatives up to order m in Ω̄.

2. C0(Ω): The class of functions in C(Ω) with support contained in Ω.

3. C∞(Ω): The class of functions in Cm(Ω) for all m.

4. C∞0 (Ω): Functions in C∞(Ω) ∩ C0(Ω).

Notation Let n be any natural number.

∂α = ∂α1
1 ∂α2

2 . . . ∂αn
n and

|α| = α1 + α2 + · · ·+ αn

Definition (Weak Derivative)

Suppose u ∈ L2(Ω) and there exists a v ∈ L2(Ω) such that

(u, ∂αφ) = (−1)|α|(v, φ) for each φ ∈ C∞0 (Ω).

Then v is called the weak derivative Dαu of u.

Notation

The set of functions with weak derivatives of order |α| ≤ m is denoted by Wm(Ω).

Theorem A.0.10. The set Wm(Ω) is a vector space.

Theorem A.0.11. The following are true.
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1. If u ∈ Wm(Ω) and αi and αj are multi-indices such that |αi| + |αj| ≤ m, then

Dαi(Dαju) = Dαi+αju.

2. If Dαu ∈ Wm(Ω) where |α| ≤ k, then u ∈ W k+m(Ω).

Definition. For functions u and v in Wm(Ω), define (u, v)m =
∑
|α|≤m (Dαu,Dαv).

Theorem A.0.12. (u, v)m is an inner product for Wm(Ω).

Definition. ||u||m = (u, u)
1
2
m is a norm for Wm(Ω).

Definition. The Sobolev Space Wm(Ω) is the vector space Wm(Ω) with inner product

(u, v)m.

Theorem A.0.13. The space Wm(Ω) is complete.

Theorem A.0.8 above states that a function u ∈ Wm(I) can be approximated by functions in

Cm(Ī). In higher dimensions, restrictions on the set Ω are required. An example, Theorem

3 in Section 5.3.3 of [Eva97], is given below.

Definition. ∂Ω is Ck if for each point x0 ∈ ∂Ω there exist r > 0 and a Ck function

γ : Rn−1 → R such that

Ω ∩B(x0, r) =
{
x ∈ B(x0, r) : xn > γ(x1, x2, . . . , xn−1)

}
.

Theorem A.0.14. Suppose Ω is bounded and ∂Ω is C1. If u ∈ Wm(Ω), then there exists a

sequence (un) in Cm(Ω̄) such that ||u− un||m → 0 as n→∞.
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