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Summary 

Sugarcane is a large, perennial, tropical grass which accumulates sucrose (sugar) in 
stem tissues.  Breeding of sugarcane cultivars follows a traditional approach of 
crossing parent genotypes (Gs) and assessing progeny over multiple selection stages.  
This is time-consuming, resource intensive and costly.   

Crop growth simulation models have the potential to assist sugarcane breeding, by 
characterising environments (Es) meaningfully to improve selection efficiencies; by 
identifying breeding targets via dissection of complex traits (such as yield) into simpler 
component traits; and, by predicting yields in target Es from simple phenotypic trait or 
genotypic information.   

For credible application in breeding, crop model users should have confidence in the 
models’ abilities to predict effects, on important traits such as yield, of differences in 
Es, Gs and interactions between Es and Gs (GxE).  Many general-purpose sugarcane 
crop models have been developed, but none have been rigorously evaluated for their 
capabilities to predict E, G and GxE interaction effects. 

The broad objective of this study was to evaluate and improve sugarcane crop models 
for supporting breeding of irrigated sugarcane.   Using data from an international multi-
environment trial (three Gs at four sites), the suitability of key sugarcane crop model 
concepts and input parameter definitions was assessed; three leading sugarcane crop 
models were then critically assessed for their abilities to predict E, G and GxE 
interaction effects.  Findings from these assessments, along with insights gleaned from 
literature, informed the development of a new sugarcane crop growth model.  The value 
of the new model was demonstrated in a case study exploring the impacts of genotypic 
adaptations to temperature sensitivity, canopy development and canopy senescence 
on radiation interception and yield accumulation at each of the four sites. 

The assessment of model concepts and input definitions revealed that solar radiation 
intensity, in addition to temperature, needed to be considered in predicting tillering 
rates and date of onset of stalk growth.  The thermal time model of predicting the 
duration of the germination phase was found to be inadequate.  The three models 
assessed gave satisfactory performance for predicting E and G effects, but could not 
predict GxE effects accurately.  

The new model developed, CaneGEM, makes use of a relative canopy growth rate 
concept, links canopy development with biomass accumulation, simulates a transition 
from tillering to stalk growth in response to radiation interception, and uses this 
transition to regulate canopy development and biomass partitioning; biomass 
partitioning of above-ground parts of the crop is determined according to relative sink 
strengths driven by structural growth, and the accumulation of stalk sugars is a passive 
consequence of source and sink strengths.   

Evaluation of the new model revealed similar performance to the DSSAT-Canegro 
model in general, and improved abilities to predict GxE interaction effects in radiation 
interception and biomass yields at harvest.  However, this improvement required the 
specification of dates of emergence, as the germination timing algorithm remains 
inadequate.  Furthermore, date of emergence was found to be a powerful determinant 
of GxE interactions in biomass yields.  The case study revealed that genotypic 
temperature adaptations can increase biomass yields, especially in cooler Es, but can 
also present a risk of penalising sucrose yields, particularly for late-season crops. 
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1.1 Introduction 

Sugarcane (interspecific hybrid of Saccharum spp.) is a large, perennial tropical/sub-
tropical grass, that accumulates sucrose in stem tissues (Moore et al., 2013).  
Approximately 26.7 million ha of sugarcane were harvested worldwide in 2019 (FAO, 
2021), primarily for the production of sugar and bioethanol.  The largest producers are 
Brazil, India, Thailand and China, with sugarcane forming important parts of the local 
economies of smaller industries such as South Africa, Zimbabwe, the USA and French 
overseas territories.   

Expected increases in demand for food, biofuels and fibre in future, especially where 
climate change threatens yields in current production regions, requires increases in the 
rate of improvement of genetic potential of crop species (Diepenbrock et al., 2021).   

Many sugarcane industries worldwide, including those of South Africa, Zimbabwe, USA 
and France, have well-developed sugarcane breeding programmes (Baucum and 
Rice, 2009; Dumont et al., 2021; M. Zhou, 2013; Zhou, 2005).  Sugarcane is 
predominantly bred using traditional methods of crossing and selection (Balsalobre et 
al., 2017; Yadav et al., 2020), taking 10-15 years for the development of a new released 
cultivar.  Sugarcane cultivars are bred to give superior performance for target 
environments, formally termed “target populations of environments” (TPEs, Hammer & 
Jordan (Hammer and Jordan, 2007)). 

The performance of new sugarcane genotypes (Gs) is assessed in multi-environment 
trials (METs, (Hammer and Jordan, 2007; Ramburan, 2012)), which are intended to be 
representative of the corresponding TPEs.  Where the ranking of Gs is stable across 
environments (Es), those Gs are considered broadly-adaptable; conversely, where the 
relative performance of Gs changes between Es, genotype-by-environment (GxE) 
interactions are present (de Leon et al., 2016).   

The resource-intensive nature of sugarcane breeding necessarily results in the annual 
release of small numbers of broadly-adaptable cultivars (Ramburan, 2012).  This “one 
size fits all” approach implies potential for genetic improvement, to develop niche-bred 
cultivars optimised to more narrowly-defined TPEs.  Genetic gain in sugarcane is 
reported to have plateaued over the last 20 years in many countries (Yadav et al., 
2020), while genetic yield potentials have improved in other crops (Grassini et al., 2013; 
Rizzo et al., 2022; Xu et al., 2017; Yadav et al., 2021).  The development of 
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technologies to reduce the costs and time requirements of sugarcane breeding will 
help to close these potential yield gaps and raise sugarcane productivity overall. 

Crop growth simulation modelling is one such technology that has been used in other 
crops to assist plant breeding, in the following ways (Hammer and Jordan, 2007): 

• to characterise environments in TPEs and METs, allowing appropriate selection 
weighting of Es; 

• to dissect complex traits (such as yield), leading to enhanced understanding of 
the mechanisms by which adaptability to Es is conferred, and thus informing 
breeding by providing genotypic or phenotypic targets for breeders; and, 

• to predict yield and other complex trait outcomes for the range of Es in the TPE, 
using low-level genotypic or phenotypic information, potentially allowing early 
screening of genotypic suitability to Es. 

If G and E effects on yield and other complex traits of interest were entirely additive, it 
would be sufficient to use linear statistical models to achieve these insights.  The 
presence, however, of non-linear GxE interaction effects requires the use of 
mechanistic crop growth models that embed knowledge of crop physiology and 
respond dynamically to E conditions (Cooper et al., 2020a).  Such models should: 
emulate, in biologically-realistic ways, the development and growth of the plant; predict 
complex phenotypes as emergent outcomes, the consequences of lower-level 
processes responding to E drivers and regulated by stable (across Es) G trait 
parameters; and be as simple and computationally-undemanding (“parsimonious”) as 
possible (Boote et al., 2021; Hammer et al., 2019b; Hammer and Jordan, 2007; 
Singels, 2014).  In order for crop models to support trait dissection and phenotypic 
prediction applications, the models must be able to predict GxE interactions in yields 
and other important agronomic traits accurately. 

Several process-based sugarcane crop growth simulation models have been 
developed.  Of these, the DSSAT-Canegro (Inman-Bamber, 1991; Jones and Singels, 
2018; Singels et al., 2008), APSIM-Sugar (Dias et al., 2019; Inman-Bamber et al., 
2016; Keating et al., 1999) and Mosicas (Martiné and Todoroff, 2004) models are 
amongst the most widely-used.  These models follow a broadly similar framework of 
simulating on a daily basis, integrated over the duration of the crop, (1) the growth of 
the crop canopy in order to determine the daily leaf area index; (2) the daily fraction of 
solar radiation intercepted by green leaves (FI), via a canopy radiation extinction 
coefficient (Ke); (3) accumulation of dry biomass yield via photosynthesis, calculated 
as the product of solar radiation, FI, and radiation use efficiency (RUE); (4) dividing 
accumulated dry biomass between roots (RDM), and above-ground parts of the crop 
(ADM); (5) dividing ADM between leaves (LDM) and stalks (SDM), based on a stalk 
partitioning fraction (SKPF); and (6) dividing SDM between sucrose (SUC), fibre and 
other sugars.  This is illustrated in Figure 1-1. 
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Figure 1-1.  Flowchart illustrating the basic daily calculations made during each day 
of sugarcane crop growth simulation.  Rectangles indicate processes and rounded 

rectangles are variables.  Solid lines indicate the flow of data calculated on the same 
day, while dashed lines indicate input from values calculated the previous day.  All 
masses are dry masses.  Acronyms: Fi is ‘fractional interception of radiation’, and 

‘ADM’ is ‘Above-ground dry biomass’. 
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Applications of these models have included harvest management (Inman-Bamber, 
1991; Singels et al., 2005c), irrigation scheduling (Inman-Bamber et al., 2007; Singels, 
2007; Singels and Donaldson, 2000), yield forecasting (Bezuidenhout and Singels, 
2007; Pagani et al., 2017), estimating yield gaps (Jones and Singels, 2015; Van den 
Berg and Singels, 2013), and assessing climate change impacts (Everingham et al., 
2015; Jones et al., 2015; Marin et al., 2011; Singels et al., 2013).  Only a small number 
of studies have considered cultivar differences in sugarcane crop models (Dias et al., 
2020; Hoffman et al., 2018; Sexton et al., 2017).   These models provide G-specific 
model input parameters for many of their constituent simulated plant processes, such 
as germination, leaf development, tillering, photosynthesis, and biomass partitioning.  
Nevertheless, no studies prior to this project had set out to evaluate models’ abilities 
to predict GxE interactions in yields or their component processes.  It is also not known 
how appropriate existing model input parameters are in representing G differences. 

In recognition of these knowledge gaps, and the potential value of suitable crop models 
for supporting sugarcane breeding, the International Consortium for Sugarcane 
Modelling (ICSM) launched and funded the “International GxE modelling project” 
(IGEP).  A fully-irrigated multi-environment, multi-genotype trial was conducted as part 
of this project, before the start of this PhD study.  This ICSM IGEP dataset, which 
consists of growth analysis data for four sites (Pongola, South Africa; Chiredzi, 
Zimbabwe; La Mare, Reunion Island; and Belle Glade, USA) and three common 
cultivars (N41, R570 and CP88-1762), forms the foundation for the research work 
conducted in this study. 

1.2 Problem statement  

It is not known if sugarcane crop growth models exist that are capable of credible 
application in supporting plant breeding, as none have been evaluated for, or improved 
in respect of, their abilities to predict GxE interaction effects in complex traits such as 
biomass yields. 

1.3 Research questions and hypotheses 

The research questions posed at the outset of this study are as follows: 

1. Are observed genotypic differences adequately captured by process concepts 
and their respective G-specific input parameters in existing sugarcane models, 
and what are the shortcomings in these respects? 

2. To what extent are existing sugarcane crop growth models suitable for 
supporting plant breeding applications, as evidenced by their ability to predict 
GxE interaction effects on seasonal radiation interception, radiation use 
efficiency and above-ground biomass yields accurately, and what conceptual 
shortcomings prevent existing models from predicting these GxE interactions 
more accurately? 

3. To what extent can the prediction of these GxE interaction effects be improved 
if the identified shortcomings are addressed in a revised or new sugarcane 
model? 

4. How would such an improved model deliver value to sugarcane breeding?  

It was hypothesised that crop simulation modelling capacity to support breeding of 
irrigated sugarcane could be enhanced by: 
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• evaluating the strengths and weaknesses of existing sugarcane models and/or 
their constituent process-level concepts for predicting GxE interaction effects, 
observed in the ICSM IGEP trials, on radiation interception, radiation use 
efficiency and biomass yields; and 

• if necessary, developing an improved (new or revised) sugarcane crop model to 
address identified weaknesses 

1.4 Objectives 

The broad objective of this project was to improve the ability to model sugarcane crop 
growth and development for application in sugarcane breeding. The specific objectives 
were to address the research questions, as follows: 

• to explore and assess the adequacy of process-level concepts and input 
parameter definitions from existing sugarcane models for predicting genotypic 
differences, using the ICSM IGEP dataset; 

• to evaluate existing sugarcane models for their abilities to predict E, G and GxE 
interactions in seasonal radiation interception, radiation use efficiency and 
biomass yields observed in the ICSM IGEP dataset ; 

• to develop and evaluate an improved sugarcane model, capable of accurate 
prediction of biomass, stalk and sucrose yields, and more accurate prediction of 
GxE interactions in seasonal radiation interception and biomass yields 
compared to existing sugarcane models, while also fulfilling other requirements 
for models to support plant breeding, such as biological realism, emergent 
prediction of complex traits and model parsimony; 

• to apply the model in a case study to demonstrate its value in sugarcane 
breeding; and, 

• to make recommendations for further research. 

The envisaged outcomes of this project were: 

• an improved understanding of the capability of existing sugarcane models for 
supporting irrigated sugarcane breeding; 

• improved understanding of the physiological bases for GxE interactions in 
irrigated sugarcane yields; 

• an improved crop growth simulation model for supporting irrigated sugarcane 
breeding; 

• An improved understanding of prospects for practically incorporating crop 
modelling into sugarcane breeding programmes. 

1.5 Thesis structure 

This thesis is divided into seven chapters.   

• A literature review (Chapter 2) follows this introductory chapter, in order to 
provide the scientific context and background for this work, in terms of 
sugarcane physiology and management, sugarcane modelling approaches, and 
the use and nature of crop growth models in supporting plant breeding. 

• The third chapter addresses the first research question: it provides an analysis 
of the ICSM IGEP dataset, assesses common plant process simulation 
concepts (and their G parameters) from several sugarcane crop growth models 
against observations, and makes recommendations for addressing apparent 
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shortcomings in these concepts.  This work was published as a scientific paper 
(Jones et al., 2019) and is presented as such. 

• Chapter 4 addresses the second research question.  It provides a detailed 
evaluation of three sugarcane models for their abilities to predict E, G and GxE 
interaction effects, and in so doing provides insight into their value as tools for 
supporting plant breeding.  Recommendations for model improvements are 
made.  This is also presented as a published scientific paper (Jones et al., 
2021). 

• Chapter 5 addresses the third research question, and describes a new 
sugarcane model, CaneGEM, that sets out to achieve improvements in 
predictions of GxE interactions in seasonal radiation interception, and, 
consequently, biomass yields, by implementing the recommendations identified 
in Chapters 3 and 4. 

• Chapter 6 addresses the final research question by providing a case study 
demonstrating the value of the improved model for plant breeding.  The case 
study methodology is applied at the each of the sites included in the original 
ICSM IGEP dataset. 

• Chapter 7 provides discussion that addresses the research questions posed in 
this introductory chapter, and provides recommendations for future work. 

• Finally, Chapter 8 presents a summary and conclusion. 

 

Two appendices are included for additional data. 
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2.1 Introduction 

The ultimate goal of this work was to improve the ability to model sugarcane crop 
growth and development for application in sugarcane breeding. The broad objective of 
this review is to report on science relevant to breeding/crop improvement, sugarcane 
crop models, and how crop models (in sugarcane and other crops) have been used to 
support crop improvement.  This informed the exploration of the ICSM IGEP multi-
environment trial dataset, the evaluation of existing sugarcane models for predicting 
G, E and GxE interaction effects, and the development of an improved model to support 
sugarcane breeding.   

The specific objectives of this literature review were to: 

• describe the sugarcane plant and the physiological processes that sugarcane 
crop models emulate; 

• introduce the concepts of crop improvement and genotype-by-environment 
(GxE) interaction effects; 

• report on the state of the science regarding the use of crop growth models to 
support crop improvement; and 

• describe commonly-used sugarcane models, their underlying concepts and 
genotype-specific trait parameters, and identify knowledge gaps, shortcomings 
and opportunities with respect to the application of models for crop improvement 
applications. 

This study focussed on irrigated sugarcane, and the sugarcane-specific aspects of this 
review are accordingly mostly limited to reporting on previous work relevant to irrigated 
sugarcane production and breeding. 

The information presented in this chapter provides the scientific context and 
background to the research activities reported on in the following chapters.   

• The assessment of model concepts and input parameter definitions reported in 
Chapter 3 draws on Sections 2.3 and 2.5;  

• Sections 2.2, 2.3 and 2.5 inform the work presented in Chapter 4, which 
provides a critical evaluation of existing sugarcane crop growth models for 
predicting E, G and GxE interaction effects on seasonal radiation interception 
and biomass yields; 

• Sections 2.4 and 2.5 provide the scientific basis for the aims and approaches 
for the development of a new sugarcane crop growth model, intended to support 
breeding of irrigated sugarcane, described in Chapter 5; 

• Context for the case study presented in Chapter 6 is presented in Sections 2.3 
and 2.4  

2.2 Sugarcane 

Sugarcane (interspecific hybrid of Saccharum spp.) is a large, perennial tropical/sub-
tropical grass, that accumulates sucrose in stem tissues (Moore et al., 2013).  
Approximately 26.7 million ha of sugarcane were harvested worldwide in 2019 (FAO, 
2021), primarily for the production of sugar and bioethanol.  The largest producers are 
Brazil, India, Thailand and China, with sugarcane forming important parts of the local 
economies of smaller industries such as South Africa, Zimbabwe, the USA and French 
overseas territories.    
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Sugarcane is established with stalk cuttings in “plant” crops; following harvest, the crop 
regrows from the root stubble, termed “ratoon” crops.  The number of ratoon crops per 
replant cycle ranges from zero (in Hawaii, Anderson et al. (2015)) to ten or more (e.g. 
Reunion island, Dumont et al. (2021)) depending on industry conventions in different 
parts of the world. 

Ten developmental phases are defined for sugarcane by Bonnett (2014): germination, 
leaf development, tillering, stem elongation, development of harvestable parts, 
emergence of inflorescence, flowering, fruit development, seed ripening and 
senescence.  Germination is the process of underground bud swelling and the 
subsequent elongation of coleoptiles (which begins on the date of “sprouting”) toward 
the soil surface, leading to “emergence”.  These phases often overlap to some extent.  
Flowering, which is generally not desirable in commercial situations, requires specific 
environmental conditions, and is usually sporadic (and is not further discussed in this 
review).  Ramburan (2012) considered three development/growth phases in an 
analysis of sugarcane cultivar trial data: establishment, elongation and ripening, 
although no clear definition for these phases was provided. From an agronomic 
perspective, sugarcane can be considered to have three key development/growth 
phases: germination, tillering (the development of shoots and leaves to build a 
complete canopy) and stalk growth (which includes stalk elongation and sucrose 
accumulation) (e.g. Liu & Bull (2001)). 

The early growth dynamics of plant and ratoon crops are different.  Sugarcane primary 
shoots develop from underground buds.  The emergence of primary shoots takes place 
over time (usually several weeks) (Poser et al., 2019).  Plant crops take longer to 
germinate and emerge (‘sprout’), and the bud density of ratoon crops is usually higher 
(Bezuidenhout et al., 2003).  Not all buds successfully germinate and those that do 
produce shoots that emerge; sett/bud germination is determined by soil temperature 
and soil moisture content (Keating et al., 1999; Poser et al., 2019; Smit, 2010).  
Although plant crops are slower to develop canopy cover (due to the smaller number 
of buds at crop start), plant crops often yield higher than ratoon crops, due to the build-
up of pathogens and damage during harvest prior to ratooning of the subsequent crop. 

Rooting fronts penetrate rapidly and can reach depths of several meters, although the 
greatest density of roots is generally found in the top 50 cm of the soil profile.  
Sugarcane is generally not tolerant of waterlogged conditions, although some cultivars 
(e.g. NCo310) are noted for their ability to withstand waterlogging.  Sugarcane roots 
are also considered to be intolerant of high soil acidity. 

Leaf tips appear at increasing thermal time “phyllocron” intervals as the shoot ages, 
explained by increasing lamina length for the first 15 leaves; reasons for further 
increases in phyllocron intervals are not known.  Leaf appearance rate is understood 
to be driven by temperature and restricted by water stress, and is strongly genetically-
determined.  (Bonnett, 1998).   

Secondary shoots develop from the primary shoots, a process termed ‘tillering’.  Each 
shoot supports leaves, and the combination of expanding leaf area and increasing tiller 
population contributes to the development, over several months, of a large canopy (in 
the absence of growth-limiting stresses).  Tillering is strongly influenced by 
temperature.   

The combination of leaf area index and leaf angle determine canopy-level radiation 
interception.  Radiation interception is in turn a major determinant of photosynthesis 
and biomass accumulation rates, and therefore yield.  Leaf size tends to increase with 
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the age of the shoot.  Leaf elongation is understood to be driven by temperature 
(thermal time) and limited by water availability (Inman-Bamber, 1994; Robertson et al., 
1998; Singels and Inman-Bamber, 2011), and to a lesser extent (due to variation in 
specific leaf area) carbohydrate availability (Keating et al., 1999; Singels et al., 2005c).  
Expansive growth of leaves is relatively  sensitive to water stress (Singels et al., 
2010b). 

After a vegetative canopy has developed, shoots start to form above-ground fibrous 
stalk material; this occurs at approximately the time of peak population in a well-
watered crop (Inman-Bamber, 1994), and is termed, the “onset of stalk elongation” 
(Dias et al., 2019), or the “stem elongation” stage (Bonnett, 2014).  After this point, 
weaker (shaded) shoots begin to senesce (Bonnett, 2014), until a stable final stalk 
population is reached (Bell and Garside, 2005; Inman-Bamber, 1991).  Final stalk 
population density has been shown to be sensitive to peak population (Singels and 
Smit, 2009), and peak population increases with narrower row-spacing and increased 
bud density within the row; environmentally, greater shoot population density is 
permitted by less-limiting soil moisture conditions (Smit and Singels, 2006).   

Leaf senescence is driven by thermal time (Bonnett, 1998; Inman-Bamber, 1991), 
water stress (Smit and Singels, 2006), frost (Keating et al., 1999) and/or the leaf’s 
carbon balance (photosynthetic income vs respiration costs) (Liu and Bull, 2001). 

Photosynthetically-active radiation is intercepted and absorbed by green leaves, and 
this drives photosynthesis (Inman-Bamber and Thompson, 1989; Muchow et al., 1994; 
Robertson et al., 1996).  Shading, and changes to the red-far red radiation ratio, affect 
tiller development and senescence, and the number of green leaves per stalk 
(Bezuidenhout et al., 2003; Donaldson, 2009; Singels and Smit, 2009).  Leaves are 
capable of adapting/acclimatising to different radiation environments, via plasticity in 
specific leaf area (Keating et al., 1999).  Photosynthesis rates are closely correlated 
with transpiration: as leaf stomata open to facilitate gas exchange for photosynthesis, 
water is lost (Bezuidenhout and Singels, 2007; Singels and Paraskevepoulos, 2017; 
Steduto et al., 2009). 

Internode elongation creates capacity for sucrose storage.  When growth conditions 
are less favourable for expansive growth (during cool and/or moderately dry conditions, 
or if flowering is initiated), photo-assimilate is stored as sucrose in the stalk rather than 
being synthesised into stalk and leaf fibre (Singels and Bezuidenhout, 2002; Singels 
and Inman-Bamber, 2011).  Stalk growth requires warmth (daily average temperature 
generally above 16 °C (Lingle, 1999; Smit and Singels, 2007)), abundant soil moisture, 
and a healthy canopy intercepting photosynthetically-active radiation and thus 
supplying photoassimilate.  Mild water stress signals the plant to reduce stalk 
elongation rates (Singels et al., 2010b), and water stress reduces cane yields 
(Basnayake et al., 2012; Singels et al., 2010b).   

Sugarcane converts stored sucrose in buried setts and stools to leaf and root tissue 
during germination.  During early growth, relatively more biomass is partitioned to roots 
than above-ground organs.  Young shoots consist mostly of leaf sheath and leaves, 
and biomass is allocated to fibrous stalks after the shoot reaches that stage. (Bonnett, 
2014; Robertson et al., 1996; van Dillewijn, 1952).  Sucrose is converted into hexoses 
(mostly fructose and glucose) as part of the fibre synthesis process (Singels and 
Inman-Bamber, 2011), although the ratio of sucrose and hexoses changes dynamically 
(Inman-Bamber et al., 2005).  It is understood that the partitioning of biomass is 
determined by dynamic and competitive source (supply of photoassimilate) and sink 
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(demand for carbohydrates) processes (Inman-Bamber et al., 2010, 2009; Singels and 
Inman-Bamber, 2011).  Under favourable growth conditions, sink strengths for leaf and 
stalk fibre are high, leaving little excess available for sucrose accumulation.  As 
photosynthesis is less sensitive to water stress and low temperatures than expansive 
growth, excess source can accumulate during periods of mild water stress and/or low 
temperatures (Inman-Bamber, 2004; van Heerden et al., 2013).  This excess source 
can be stored as sucrose in the stalk.  Sucrose content at harvest averages 13 % on a 
fresh mass basis (Cursi et al., 2022; Jackson, 2005; Zhou and Gwata, 2015) but can 
reach 17-18% (Jackson, 2005), and up to about 50% on a dry mass basis (Inman-
Bamber et al., 2002; Waclawovsky et al., 2010)).  Other significant stalk components 
include water, hexoses (glucose and fructose) and stalk fibre (cellulose, hemicellulose 
and lignin).  Commercial millable stalk yields average 84 t/ha/an (fresh weight, about 
20 t/ha dry mass), with commercial maximum yields of 148 t/ha across South Africa, 
Australia and Columbia (Waclawovsky et al., 2010), although commercial rainfed yields 
are generally lower (e.g. in South Africa, 40-70 t/ha on average, Van den Berg and 
Singels (2013)); in Brazil, yields recently (2019/20) averaged 76 t/ha (Cursi et al., 
2022). 

The allocation of biomass to different organs is controlled genotypically (e.g. some 
cultivars are noted to be ‘high-sucrose’ types, while others are noted for being relatively 
low in sucrose but produce greater biomass) (Singels and Inman-Bamber, 2011), but 
is also understood to have management and environmental influences (e.g. applying 
nitrogen near to harvest affects the ratio of sucrose to hexoses, and if water is withheld 
for a few weeks before harvest in an irrigated crop (‘drying-off’), sucrose content tends 
to increase (Dias and Sentelhas, 2018; Robertson and Donaldson, 1998; Van Heerden 
et al., 2015a)). 

Sugarcane grows throughout the year.  Water use is dependent on the environments 
in which it is grown, but sugarcane potential evaporation is higher than a reference 
short grass (≈ 25% higher, e.g. McGlinchey & Inman-Bamber (2002)).  Although the 
species is drought-tolerant in the sense that total crop failure due to drought is very 
rare, medium to high rainfall (> 1000 mm) and/or irrigation is required to produce 
economical high biomass crops.  Sugarcane appears to be subject to maximum 
transpiration rates of about 8 mm/day, and has been shown to exhibit transient midday 
water stress even under generous soil water conditions when vapour pressure deficit 
is very high (Inman-Bamber et al., 2016).  Mild water stress results in reductions in 
expansive growth rates, while more severe water stress also limits photosynthesis 
rates (Singels et al., 2010b).  Water availability affects biomass partitioning (Singels 
and Bezuidenhout, 2002). 

The ideal climate for sugarcane is one where abundant water is available to support 
structural growth during warm periods, and where conditions are cooler (but not 
freezing) and drier prior to harvest.  This allows the crop to develop its canopy 
(photosynthetic apparatus) and sucrose storage capacity, and then use the canopy to 
produce sucrose which is then stored in the stalk.  Sugarcane does not tolerate frost – 
leaves can be damaged by frost, and the growing point can be killed in the case of a 
severe frost; this results in a loss of apical dominance, followed by a rapid decrease in 
cane quality as the plant starts to use stored sucrose to build side shoots that develop 
from buds on the stalk.  Apart from the loss of sucrose and reduced sucrose content, 
side shoots make harvesting difficult and transport to the mill inefficient.  Sugarcane 
generally thrives under warmer conditions (as long as soil moisture is available), but 
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extreme high temperatures are likely to be damaging.  (Singels et al., 2021; Van 
Heerden, 2014; Van Heerden et al., 2015b). 

Very large (high biomass) crops can lodge (fall over), especially if there are strong 
winds and if the soil/canopy are wet (Van Heerden et al., 2015b).  This interferes with 
the harvesting process and can result in side-shooting, which reduces cane quality (i.e. 
the fraction of sucrose in dissolved solids in the stalk juice). 

Harvest age is usually between 12 and 24 months.  Plant crops are in some cases 
grown for longer periods than ratoon crops as canopy development can be slower in 
plant crops.  Irrigated cane is normally harvested at 12 months.  In high-altitude 
regions, such as the KwaZulu-Natal Midlands in South Africa, rainfed cane is grown on 
15-24 month cycles.  The production system in Hawaii is somewhat unique, being 
characterised by 24-month irrigated cane that is not ratooned but replanted every 
season.   

Sucrose content is lowest in warm and wet times of year, so sugarcane mills generally 
have a milling season that avoids these periods.  The length of milling season (LOMS) 
in South Africa, for example, is usually about 9 months, starting in autumn (March) and 
completing in late spring/early summer (November/December).  The actual LOMS 
each season is determined by estimated total crop size and by delays due to mill 
breakdowns and excessive rain interrupting harvesting.  Harvest age needs to be 
managed such that harvesting occurs during the milling season and that cane is 
supplied by growers to the mill at a consistent rate, to avoid deterioration of cane due 
to excessive harvest-to-crush delays.  Cane that cannot be harvested before mill 
closure is ‘carried over’ and harvested at the start of the following milling season (Moor 
and Wynne, 2001). 

2.3 Crop improvement and G, E and GxE interaction effects 

2.3.1 Introduction 

Crop improvement refers to the breeding of superior cultivated varieties (cultivars).  
Hammer and Jordan (2007) summarise crop improvement as a ‘search strategy on a 
complex adaptation or fitness landscape, which consists of the phenotypic 
consequences of genotype (G) and management (M) combinations in target 
environments (E)’ with the objective of producing superior genotypes (varieties) for the 
‘target population of environments’, or TPE (Hammer and Jordan, 2007; Ramburan, 
2012).  Superiority is defined usually as either (high) yield or yield stability (Cooper and 
Byth, 2002), or a selection index based on economic value (Jackson et al., 2021).   

Different production environments have different yield potentials, due to characteristics 
of soil and climate.  The influence of the environment on yield, i.e. the variation in yield 
due to E characteristics, can be considered the “E effect”.  Different Gs, on average 
across Es, can produce higher or lower yields; the variation in yield explained by G is 
termed the “G effect”.  In some cases, however, genotype G1 might out-yield genotype 
G2 in environment E1, but not in E2.  This is termed the “GxE interaction effect”. 

Genotype-by-environment (GxE) interaction is a term that formally refers to ‘a statistical 
decomposition of variance and provides a measure of the relative performance of 
genotypes grown in different environments’ (de Leon et al., 2016, p. 2082).  In some 
cases, and in the context of this project, management (M) is generally considered part 
of E.  G, E and GxE interaction effects are assessed for multi-environment trials (METs) 
using statistical techniques.  In cases where GxE interaction effects are insignificant, 
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high-ranking genotypes are said to be ‘broadly adaptable’.  In cases with significant 
GxE interaction effects, the ranking of genotypes changes depending on the 
environment, permitting the identification of genotypes that are specifically-adapted 
(‘niche-bred’) for particular Es (Cooper and Byth, 2002).   

GxE interaction can alternatively be considered conceptually as a ‘measurement of the 
relative plasticity of genotypes in terms of the expression of specific phenotypes [e.g. 
yield] in the context of variable environmental influences’ (de Leon et al., 2016, p. 
2082).  Phenotypes refer to physical traits of the plant when grown – e.g. yield, sucrose 
yield, maximum leaf area index – and so represent the outcome of the genotype 
responding to the environment in which it is grown over the duration of the season.   

Values for a given trait (such as cane yield at harvest) for two genotypes might: 

• be completely unaffected by a change in environment (no E effect, so no GxE 
interaction effect);  

• change similarly for the change in environment (i.e. changes in the same 
direction and of similar magnitude) (no GxE interaction effect); 

• show unequal changes for the change in environment, but the ranking 
remains unchanged (i.e. the direction of change is the same, but the 
magnitudes of the change differ) (GxE interaction effect evident); 

• respond in opposite directions, so-called ‘crossover interactions’ – where the 
ranking of genotypes in terms of trait value changes – when moving from one 
environment to another. (de Leon et al., 2016; Ramburan, 2012) (GxE 
interaction effect evident) 

Using ANOVA (analysis of variance) techniques, it possible to express yield (Yij for 
genotype i and environment j) in terms of additive main effects, determined by G and 
E, and non-additive effects due to interactions between G and E (i.e. GxE): 

𝑌𝑖𝑗 = 𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝐺𝐸𝑖𝑗 + 𝑒𝑖𝑗 (2-1) 

  

where μ represents the grand mean (over all genotypes and environments), and Gi, Ej 
and GEij represent the effects of the genotype, environment and GxE interaction 
respectively.  The error term (capturing influences not accounted for by G, E or GE) is 
eij.  (Ramburan, 2012).  Other statistical techniques for evaluating GxE interactions in 
MET datasets are described by Ramburan (2012), and include stability analysis 
(whereby yield means per G are regressed against marginal environmental yield 
means as a surrogate for the environmental influences on yield), and various analyses 
based on principal component analyses (PCA, whereby high-dimensional data are 
projected into a (usually) 2-dimensional sub-space orthogonal to the eigenvector 
calculated by minimising the sums of squares of data points along each axis) combined 
with analysis of variance.   

2.3.2 Sugarcane breeding programmes and selection strategies 

An overview of sugarcane breeding is provided by Yadav et al. (2020).  The “vast 
majority” of sugarcane breeding programmes worldwide make use of a fairly standard 
approach of selecting parents, creating genetic variability through cross-pollination, 
then assessing progeny through three (or more) stages of assessment and selection, 
followed by cultivar release (and possible inclusion of that cultivar as a parent in future 
crosses).  The selection of parents is based on identified desirable agronomic traits 
(e.g. cane yield, estimated recoverable sucrose, disease resistance).  The first stage 
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of selection is undertaken at family level, with subsequent phenotypic assessment 
(based on selection indices) being undertaken at individual genotype level; 
approximately 5-10% of the top-performing families or genotypes are selected for 
consideration at the next stage.  This breeding approach was effective in the 20th 
century, driving significant genetic gain in sugar industries around the world.  Although 
sugarcane genotypes are pure hybrids (as each is clonally propagated from a single 
plant after growing from seed following crossing), this approach is nevertheless 
extremely costly and time-consuming (requiring in excess of 10 years per released 
cultivar).  These resource constraints suggest that breeders aim to release broadly-
adaptable varieties with good performance across all Es in the TPE, and so with 
minimal GxE interaction effects.  GxE interaction effects can however reduce the rate 
of genetic improvement in sugarcane, by decreasing trait heritability. 

Short descriptions of sugarcane breeding programmes in three industries (South 
Africa, Zimbabwe and Reunion) are presented below. 

The South African Sugarcane Research Institute’s breeding programme consists of 
crossing of parent sugarcane varieties performed under artificial environmental 
conditions, after which seed is germinated in a glasshouse and then sent to seven 
locations representing different agro-climatic regions of the South African sugar 
industry, for selection.  Approximately 250 000 seedlings are assessed, from which 
one or two cultivars are released each year, 10-14 years later.  In early stages, 
selection is based on visual inspection of disease symptoms and yield estimated from 
stalk length and diameter.  Selection in later stages is based on “Recoverable Value” 
(RV) yield, based on a formula that considers juice purity, fibre and ash contents, and 
pest/disease resistance.  An extensive post-release cultivar evaluation programme is 
in place, which includes trials on commercial farms.  (Ramburan, 2011). 

The objective of the Zimbabwe Sugar Association Experiment Station’s breeding 
programme is to develop adaptable, smut-tolerant/resistant varieties with high cane 
and sucrose yields, and reliable ratooning abilities (Zhou, 2005) for an industry that 
produces cane almost exclusively under irrigation.  After early-stage selection, stools 
are planted into single lines, then selected lines are assessed in replicated cultivar 
observation trials up to the third ratoon crop, as well as Smut inoculation trials (SITs).  
Selected genotypes are then planted to advanced cultivar trials for a further three 
ratoon crops, after which they are divided between four locations (with differing 
representative soil types) for pre-release evaluation up to the third ratoon.  Evaluation 
includes yield, sucrose content, Smut and Eldana (stalk borer) and ratooning ability 
assessments. (Zhou, 2005). 

Sugarcane breeding in Reunion is conducted by eRcane (Dumont et al., 2021).  
Reunion is characterised by widely-varying environmental conditions (including 
irrigated production) across a relatively small area, and so after conducting crosses 
and generating 100 000 seedlings at the hybridisation facility at La Bretagne, genotype 
selection is conducted at seven locations representing different agro-climatic 
production zones on the island.  Agronomic trait priorities include high sugar 
productivity (cane yield x sucrose content), disease resistance, low propensity to 
flower, and high ratoonability (with 10-12 ratoon crops typically harvested per replant 
cycle).  Selection is undertaken over five stages in a 14-year period and includes 
inoculated disease resistance assessments.  

Sugarcane breeding is time-consuming (10-14 years per cultivar) and resource-
intensive.  The annual budget for the South African breeding programme is ≈ ZAR60 
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million (US$4million at the time of writing), so at a rate of 1-2 cultivars released per 
year, the cost of single N cultivar is US$2-4million.  Considerable genetic gains have 
been achieved since 2000 in most TPEs in South Africa (Zhou, 2017; M. M. Zhou, 
2013), although worldwide sugarcane yields have plateaued (Yadav et al., 2020) and 
the rate of genetic gain in sugar yields from genetic improvement has declined 
(Acreche et al., 2015), driving interest in model-assisted sugarcane breeding. 

2.4 Applications of crop modelling to support crop improvement 

2.4.1 Crop growth simulation models 

Crop growth simulation models (CGMs) are computer programs that represent 
simplified mathematical analogues of cropping systems.  Crop models can be used as 
research tools for testing hypotheses relating to crop physiology, genetic effects, 
environmental influences and management approaches (Singels, 2014).  They can 
also be used in a more tactical, applied manner, such as for developing irrigation 
schedules (Inman-Bamber et al., 2007; Singels, 2007) or forecasting yields 
(Bezuidenhout and Singels, 2007).  Some crop models attempt simply to describe 
relationships between inputs (generally descriptions of management, soil and climate) 
and desired outputs (yield, water use, etc), and such models are often based wholly or 
partially on empirical relationships.  These models are often fit for purpose – they can 
provide accurate results for the regions and environments for which they have been 
calibrated.  More sophisticated crop models are described as ‘mechanistic’ or ‘process-
based’ (Jones and Luyten, 1998).  These models attempt to emulate the internal 
functioning of a plant, in a physiologically-realistic manner.   

Process-based crop modelling emerged in the mid-1960s, with discipline-based 
quantitative theories of radiation interception and photosynthesis, crop water relations, 
evaporation and transpiration, and plant phenology eventually becoming integrated 
into general purpose simulation models in the 1980s – examples include the CERES-
Maize (Jones et al., 1986), Canegro (Inman-Bamber, 1991) and CropGro (Boote et al., 
1998) models.  Many of these models were included in modular software suites offering 
simulation capacity for multiple crops and cropping systems (e.g. sequences and 
rotations) in the late 1990s (e.g. Decision Support System for Agro-technology Transfer 
(DSSAT, Jones et al. (2003), Agricultural Production Simulator (APSIM) (McCown et 
al., 1996)). 

2.4.2 Crop modelling as part of an integrated system of crop improvement 

Hammer & Jordan (Hammer and Jordan, 2007) outlined an integrated systems 
approach to crop improvement, in which crop modelling can assist in three broad ways: 
(i) characterisation of environments; (ii), understanding and dissecting complex trait 
physiology and genetics; and (iii) predicting complex phenotypes (such as yield) in the 
TPE.  One of the core tenets of this approach is changing the breeding paradigm from 
a search for superior genotypes to a search for superior combinations of genetic 
regions and packaging these as released cultivars. 

In reviewing model-assisted breeding, several themes emerge, as the development 
and ongoing improvement of: 

• the representation of genetic effects in crop growth models (CGMs), and the 
use of crop models as gene-to-phenotype translation functions; 

• the application of CGMs for characterising environments to increase the 
precision of selection; 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

18 
 

• the use of crop models to dissect complex traits, and the use of sub-trait 
phenotypic values to assist breeding; 

• techniques for predicting sub-trait and complex phenotypic values from DNA 
sequence data; 

• defining breeding targets for TPEs; 

• using genomic selection techniques in breeding; and 

• recognising the importance of crop management-by-genotype interactions and 
addressing yield gaps as part of the breeding process 

There is a degree of overlap between these themes due to the presence of shared 
technologies.  Each of these is explored in the sections that follow. 

This review concludes with an exploration of characteristics of crop models suited for 
different applications of crop modelling in breeding/crop improvement.  

2.4.3 Representing genetic traits in CGMs 

White & Hoogenboom (2003) defined six levels of genetic detail that can be 
accommodated in crop growth models: 

1. Generic plant model not representing any one species 
2. Plant model representing a species (no notion of cultivars) 
3. Genetic differences represented with cultivar-specific parameters 
4. Genetic differences captured with specific alleles, with the actions and effects of 

these genes represented with linear effects on model parameter values 
5. Genetic differences represented by genotypic information, with gene actions being 

simulated on the basis of knowledge of gene expression and gene product effects 
6. Genetic differences represented by genotypic information, with gene actions 

simulated at a metabolic level. 

Most crop models represent genetic effects via cultivar-specific parameters (level 3) 
(Wang et al., 2019).  Most sugarcane crop models (including DSSAT-Canegro (Inman-
Bamber, 1991; Jones and Singels, 2018; Singels et al., 2008), APSIM-Sugar (Inman-
Bamber et al., 2016; Keating et al., 1999), Mosicas (Martiné and Todoroff, 2004) and 
Canesim (Singels and Donaldson, 2000; Singels and Paraskevepoulos, 2017)) 
represent genetic effects in this manner. Most simulation studies conducted with 
sugarcane models have used the models’ default cultivars (Q117 for APSIM-Sugar, 
NCo376 for Canegro and Canesim, R570 for Mosicas), rather than calibrating these 
models for other cultivars (Dias and Inman-Bamber, 2020).  In this sense, relatively 
little use has been made of the models’ abilities to simulate different cultivars.  Where 
models are applied to represent systems containing many cultivars using a single 
cultivar parameter set, the models serve to explore the ExM landscape.  Some 
examples of such studies have included yield gap analysis (Jones et al., 2015; Van 
den Berg and Singels, 2013), irrigation scheduling (Inman-Bamber et al., 2007; Singels 
et al., 1998), yield forecasting (Bezuidenhout and Singels, 2007), and exploring climate 
change impacts (Jones et al., 2015; Knox et al., 2010; Marin et al., 2013).  Dias & 
Inman-Bamber (2020) provide a comprehensive review of historical applications of 
sugarcane models, most of which do not explore cultivar differences.   

A key application of crop growth models at this level of genetic representation (i.e. 
without specific genotypic effects), to support breeding, is environmental 
characterisation.  This is reviewed in Section 2.4.4. 
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The DSSAT system divides genetic parameters into “species”, “ecotype” and “cultivar” 
parameters.  Species parameters are the same for all cultivars, cultivar parameters can 
be different for each cultivar, and ecotype parameters are those genetic parameters 
which have the same values for groups of related cultivars.  For the CropGro template 
model (Boote et al., 1998) that runs within DSSAT, each (Boote et al., 2021) a crop 
species is represented by a set of parameters which configure the model to represent 
that species, and with the ecotype and cultivar parameters to represent cultivar 
differences.  Several other modelling systems, such as AquaCrop (Steduto et al., 2009) 
and STICS (Brisson et al., 2003; Buis et al., 2011), use a similar concept of configuring 
a generic model of plant growth to represent different species and cultivars. 

Some exploration of the level 4 representation of genetic effects in CGMs has been 
conducted.  White & Hoogenboom (1996) developed the “GeneGro” model, which used 
linear combinations of input gene presence/absence and coefficient values to calculate 
parameter values internally for processes such as photosynthesis and photothermal 
time to flowering, for deterministic crops like wheat and soybean.  The same gene input 
value is used in several process rate equations, capturing pleiotropic effects, where 
one gene affects multiple processes, and epistatic effects, where the 
presence/absence of one gene can affect the actions of another.  Zheng et al. (2013) 
modified the APSIM-Wheat model to predict vernalisation date and photoperiod 
sensitivity from the presence/absence of several genes known to effect control over 
these processes.  Oliveira et al. (2021) demonstrated the inclusion of a gene-based 
module in a traditional process-based CGM: associated QTL are used in a linear mixed 
model to predict time to flowering for in a modified version of the DSSAT CROPGRO-
Drybean model.  This hybrid model was able accurately to predict E, G and GxE 
interaction effects on time to flowering, as well as yields and other consequent outputs 
from the original Drybean model.   The effectiveness of this modelling approach is 
limited by availability of knowledge of gene actions and quantified phenotypic 
responses (White and Hoogenboom, 2003).   

An alternative, and far more common, framing of the level 4 representation is the use 
of Quantitative Trait Loci (QTL) rather than known gene actions.  QTL are molecular 
markers, the presence or absence of which can be correlated via linear regression 
with, and significantly explain, variation in a quantitative phenotype, either a complex 
trait such as yield or a simpler sub-trait such as leaf elongation rate (White and 
Hoogenboom, 2003).  This is discussed further in Section 2.4.5.  Where sub-trait 
phenotypic values can be used as, or translated into, CGM input parameter values, the 
QTL predictions of these values can be used as CGM input parameter values and the 
CGM then used to predict complex phenotype outcomes for that genotype in the TPE 
(see Section 2.4.6). 

No current crop growth models have achieved genetic representation at levels 5 and 6 
(Boote et al., 2021).  The current “Crops in silico” initiative is to develop a multi-scale 
simulation platform capable of simulating plant growth from gene-level to ecosystem 
scale (Marshall-Colon et al., 2017).  Tardieu et al. (2020) do however argue that natural 
selection has constrained combinations of metabolic processes to ‘meta-mechanisms’ 
that can be adequately modelled at the higher integrated levels used by crop growth 
models. 

2.4.4 Environmental characterisation using CGMs 

Environmental characterisation is critical to understanding GxE interactions: in order to 
build a physiological understanding of E effects on G, which might lead via indirect 
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selection to improved G, the E must be defined sufficiently distinctly (Cooper and Byth, 
2002).  The term “Enviromics” (Cooper and Messina, 2021) collectively refers to 
techniques for characterising and clustering environments into categories 
(“envirotyping”).  Ramburan (2012) reports on the use of approaches ranging from 
relatively simple models for characterising environments (such as seasonal soil water 
satisfaction, a measure of seasonal water availability; and seasonal transpiration 
relative to potential evapo-transpiration), to approaches making use of fully-fledged 
crop growth simulation models.  An example of the latter is the CGM-based 
identification of categories of water-limited environments for sorghum in Australia 
(Chapman, 2000).  By weighting genotype performance according to the extent to 
which the selection environments matched the target environments, greater breeding 
efficiencies could have been achieved.  Chenu et al. (2009a) used a CGM to simulate 
wheat growth over a 100-year period for representative sites, soils and management 
systems in North Eastern Australia; the growth environments were characterised into 
five types based on the simulated patterns of crop water stress around flowering.  
Cultivars with different maturation characteristics were simulated at each environment 
type and their performance analysed; simulated yields were consistent with observed 
outcomes.  Further analysis on this basis yielded insights into low-level traits (flowering 
date and pre-/post-anthesis water use) that conferred favourable yield performance in 
each environment type.  Ramburan (2012) used growth phase-linked water stress 
indices derived from Canesim model simulations to assist with the characterisation of 
environments in sugarcane MET datasets in South Africa. This information was used 
to attribute causes of GxE interactions in post-release METs in South Africa.  Hammer 
and Jordan (2007) suggest that many conventional crop growth models are sufficient 
and appropriate for characterising environments, particularly abiotic stress patterns 
experienced by crops. 

2.4.5 Trait dissection 

CGMs can be used in breeding to dissect traits – to identify and characterise process-
level mechanisms that explain complex phenotypes (Hammer and Jordan, 2007), 
which can then provide insights into breeding priorities.   

Hammer et al. (2010) used the APSIM model to explain G variation in sorghum grain 
yield as consequence of G control over plant height: compared to shorter plants, taller 
plants partitioned more N into immobilisable stem tissues; during grain filling, more N 
was consequently translocated from the leaves to support grain fill, which led to faster 
leaf senescence and reductions in photosynthesis rates, which resulted in lower grain 
yields.  In a more recent study, Hammer et al. (2019a) showed that the “stay-green” 
trait in sorghum, which is associated with delayed canopy senescence in the post-
anthesis period and higher yields in water-stressed Es, was not itself a G trait, but a 
consequence of G-regulated low-level processes: increased transpiration efficiency 
(with limited maximum transpiration rate), and reduced tillering; both of these traits 
reduced pre-anthesis water use (by directly or indirectly reducing water uptake) and 
retained sufficient water in the soil profile to maintain green leaf area for longer, with 
yield consequences consistent with observations of the “stay-green” cultivars.  This 
trait is advantageous in water-stressed situations but incurs a yield penalty – by 
reducing photosynthesis rates per unit intercepted radiation, or reducing radiation 
interception – in non-stressed Es.  Where mechanisms like these are not understood, 
considerable GxE interaction might lead to inefficient selections.  Tsutsumi-Morita et 
al. (2021) dissected tomato yield traits using two very simple static yield component 
models, and associated QTL with these component traits as well as associating QTL 
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directly with yield.  Although prediction performance for QTL associated with 
component yield traits was similar to when yields were predicted directly from QTL, 
heritability of the component traits was considered to be greater.  Additionally, some of 
the component traits could be determined well before harvest, potentially leading to 
faster breeding. 

Although the majority of sugarcane model applications have explored E and M issues, 
some work has focussed using sugarcane CGMs to explore genetic effects on complex 
traits.  Sexton et al. (2017) analysed the APSIM-Sugar model’s sensitivity to cultivar 
input parameters for two environments in Australia.  Inman-Bamber et al. (2012) used 
the APSIM-Sugar model to explore emergent drought tolerance traits in sugarcane, 
finding that increased transpiration efficiency, increased rooting depth and reduced 
stomatal conductance lent adaptation advantages to sugarcane genotypes under most 
mild to moderately water-stressed environments, and could be used as selection 
indices for breeding for such environments. This was followed up with work to adapt 
the APSIM-Sugar to accommodate directly the physiological mechanisms explored, 
essentially adapting the model to support breeding for drought adaptation in sugarcane 
(Inman-Bamber et al., 2016).    Zhou et al. (2003) calculated Canegro model parameter 
values for four southern African cultivars grown under irrigation in Zimbabwe, indicating 
that tillering parameters had a greater bearing on PAR interception than leaf 
parameters.  Ngobese et al. (2018) assessed several Canegro model tillering and stalk 
elongation-related process parameters for 12 South African sugarcane cultivars for 
irrigated and rainfed conditions, and highlighted stable parameters that could be used 
in breeding.  Hoffman et al. (2018) found significant differences in leaf-level 
photosynthesis rates, thermal time from primary shoot emergence to the onset of stalk 
growth, and stalk partitioning fraction for 14 genotypes in a well-watered pot trial.  
These were used as the basis for parameter values for the Canesim model, which was 
then used to simulate cultivar differences in yield for a field trial; emergent simulated 
yield rankings matched observations, confirming the role of sub-traits in regulating yield 
(Singels et al., 2016).  Singels & Inman-Bamber (2011) used data from four clones and 
a modelling framework to conclude that stalk biomass partitioning to sucrose is a 
consequence of source strength and sink demands for structural growth of leaf and 
stalk fibre. 

Chenu et al. (2009b) demonstrated how a process-based CGM (a modified version of 
the APSIM Maize model) could be used to translate QTL controlling leaf elongation 
rate (and known to co-localise with anthesis-to-silking interval under drought) to predict 
yield under different stress environments, for a simulated recombinant inbred line.  A 
key finding was that traits increasing leaf elongation rate increased yield under low-
stress environments, but decreased yield under water-stressed environments; these 
yield effects were entirely emergent outcomes rather than explicitly-programmed 
behaviours in the model.  Gu et al. (2014) estimated QTL for seven trait input 
parameters for the GECROS rice model, for 94 introgression lines from parents varying 
in their drought response characteristics.  Five QTLs significantly affected yield.  The 
model-based trait dissection approach was then applied to 251 recombinant inbred 
lines from the same parents, and more significant markers were found for the sub-traits 
than for yield.  Following model sensitivity analysis, sub-trait based ideotypes were 
defined that predicted yields 10-36% higher than ideotypes defined on basis of markers 
for yield only. 

For sugarcane, Singels et al. (2010a) found stable QTLs for fully-expanded leaf area 
per leaf and a leaf-level photosynthetic capacity based on chlorophyll-a fluorescence 
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measurements, across three fully-irrigated field experiments for a mapping population 
of 80 sugarcane clones.  This work did not include crop growth modelling, but the 
intention was to determine QTL for sub-traits that could be transformed into more 
complex phenotypes using a sugarcane CGM.  Other QTL studies in sugarcane have 
generally focussed on predicting complex traits directly, e.g. Pastina et al. (2012) who 
found QTL for sugarcane yield, sucrose yield, sucrose content and fibre content, using 
novel methodologies for accommodating the interspecific polyploid nature of 
sugarcane as well as harvest year (as sugarcane is perennial crop grown over several 
harvests) in the supporting statistical analyses. 

Genomic selection (Lorenz et al., 2011; Meuwissen et al., 2001) uses genotypic and 
phenotypic data to train statistical models, which can then predict phenotypic 
outcomes.  In this approach, field trials are used for generating model training datasets 
rather than for selection; crosses are genotyped and this information used as input to 
the statistical models to predict yields; and selection is based on these predicted yields 
(Lorenz et al., 2011).  Statistical models that predict yields from complete sequence 
data are termed “Whole-Genome Prediction” (WGP) models.  Once trained, and where 
parents have been genotyped, WGP models can be used to evaluate crosses 
performed in silico (on computer), because frequency distributions of allelic 
combinations can be predicted statistically and WGP used to estimate phenotypic 
outcomes.  The development of new statistical techniques (Heslot et al., 2012), rapid 
phenotyping techniques, and significant reductions in the cost of sequencing has 
resulted in dramatic change in plant breeding over the last 20 years: for most crop 
species some form of WGP approach is used, and only a small proportion of crosses 
are physically evaluated in METs (Messina et al., 2018).  The genetic complexity 
(highly polyploid and aneuploid, with ≈ 120 chromosomes, Moore et al. (2013)) of 
sugarcane, along with the high cost of sequencing chips for sugarcane, however, 
means that applications of genomic tools in sugarcane breeding are delayed compared 
to other crops (Balsalobre et al., 2017; Yadav et al., 2020). 

Where gene effects are additive, WGP methods can predict yields accurately; where 
gene effects are non-additive, or where there are GxE interaction effects, however, 
prediction with WGP methods is more challenging (Technow et al., 2015).  Given the 
challenges associated with GxE interactions within the TPE, WGP models require 
enormous and prohibitively expensive training datasets in order to be accurate 
(Diepenbrock et al., 2021).  If WGP models are combined with CGMs, where WGP 
outcomes predict sub-trait values that can be represented as CGM input parameter 
values, the CGM can be used to augment the training dataset with knowledge of 
physiological processes embedded in the CGM, and also unravel some of the more 
challenging GxE interaction effects and non-additive gene effects.  The yield prediction 
accuracy for a biparental diploid maize inbred lines study was considerably higher for 
a WGP-CGM than for WGP alone in a simulation experiment (Technow et al., 2015).  
For sugarcane, Yadav et al. (2020) recommend applying genomic selection methods 
to simple traits, determined via high-throughput precision phenotyping and then 
associated with QTL, given GxE interactions in complex traits.  The integration of newer 
enviromics techniques has the potential further to assist model-assisted breeding 
(Crossa et al., 2021). 

Yield gaps measure the difference between actual yields, attainable yields and climatic 
potential yields (Van Ittersum et al., 2013).  Yield gaps are attributed to agronomic 
management quality, for a given G and E.  Co-selection of G and agronomic 
management characteristics has the potential to discover not only the optimal G for the 
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TPE, but also the optimal GxM.  This is possible using WGP-CGM frameworks because 
the CGMs can account mechanistically for management approaches, complementing 
the WGP’s determination of the genetic control of plant processes for that E-M 
combination.  (Cooper et al., 2020b; Diepenbrock et al., 2021).  The MET network in a 
breeding programme needs to be representative of the TPE, which is characterised by 
variation in soils and climate.  Generally, rainfall is more variable that temperature and 
solar radiation.  It is possible that the particular combination of Es (where an E is a site-
year combination) encountered during selection and evaluation in METs is not properly 
representative of the TPE in terms of the progression of water stress.  The use of 
managed stress Es, that impose particular stress patterns on selected Gs, can 
elucidate stress responses for selection or for training the WGP model in a 
representative manner. (Cooper et al., 2014; Diepenbrock et al., 2021).  Cooper et al. 
(2021) describe a framework for managing the complexity of GxExM interactions in 
crop improvement, particularly in the context of climate change.   

2.4.6 Phenotypic prediction in the TPE 

Determining phenotypic performance – i.e. yield – of a new genotype in the TPE is of 
prime interest to a breeder (Hammer et al., 2019b).  In traditional sugarcane breeding, 
the process of assessing  and selecting candidate genotypes takes 10-15 years.  If it 
were possible to predict final yields accurately from genotypic information, the time 
taken to breed new cultivars would be greatly reduced.  This would free up resources 
to breed cultivars more optimally-adapted for smaller, ‘niche’, TPEs, which would likely 
increase overall yields.  CGMs have great utility acting as gene-to-phenotype (Cooper 
et al., 2020a; Technow et al., 2015) “multi-trait link functions” for translating genetic 
information into complex phenotypic information, where the mechanistic process-level 
crop physiology embedded in the CGM can account for GxE interactions and non-
linear effects more accurately than pure statistical methods. 

The development of ‘ideotypes’ (Donald, 1968) is a key breeding application of robust 
phenotypic prediction in the TPE.  The complex phenotypic outcomes of different sets 
of model trait parameters, representing genetic traits, can be evaluated using a CGM.  
Combinations of trait parameters that maximise [simulated] yield across the TPE, or 
trait parameters that consistently result in increased yield in the TPE, can provide 
breeders with sub-trait phenotypic targets for the TPE.  This could inform the selection 
of parents, as well as assist in selection.  It can also direct phenotyping resources to 
focus on specific traits.  (Hammer and Jordan, 2007).  Peng et al. (2008) reported on 
the development of highly-productive “super” rice varieties, based in part on ideotyping 
of physiological and morphological traits over a period of two decades.  Tao et al. 
(2017) designed barley ideotypes for future environments, using ensembles of climate 
projection models for managing uncertainty in future climate and barley CGMs for 
managing uncertainty in understanding of crop physiology. 

As described in previous sections, phenotypic prediction is a key component 
supporting several pathways to model-assisted plant breeding.  To summarise:  

• in the simplest cases, phenotyping in terms of low-level traits can be translated 
into model inputs, and the CGM used to estimate the complex phenotypic 
consequences (e.g. yield) of these traits across the TPE;   

• ideotyping via iterative CGM runs with different trait parameter combinations can 
identify desirable phenotypes, and with QTL, desirable combinations of genetic 
regions; 
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• if QTLs can be robustly associated with sub-trait values, crosses can be 
sequenced and CGMs used to predict yield in the TPE, potentially accelerating 
selection; and, 

• crosses conducted in silico can predict new genotypes, which in WGP-CGM 
hybrid frameworks can be translated into phenotypic low-level model input trait 
parameters (via WGP) and then into complex phenotypes with emergent 
GxE(xM) interaction effects (via the CGM). 

2.4.7 The nature of crop models to support crop improvement 

The requirements for ‘credible’ (Singels, 2014) gene impact models are described by 
Hammer and Jordan (2007), Hammer et al. (2019b) and Hammer (2020).  The user 
must have confidence in the model in terms of its abilities to separate genetic, 
environmental and management influences on complex traits (i.e. to simulate GxE 
interactions accurately, Boote et al. (2021)), and environmental inputs (soil and 
climate) must be accurately specified.  Model and dataset capabilities must be 
evaluated (Stöckle and Kemanian, 2020) in this regard.  The models need to emulate 
biological systems in a realistic, ‘biologically robust’ manner, and generate accurate 
qualitative responses to key factors (such as N and irrigation) (Hammer, 2020).  They 
need to capture important physiological linkages and interactions, and should be 
implemented as a hierarchy of physiological processes and input variables (following 
Tardieu (2003)); the simulation of complex phenotypes should be the ‘emergent 
consequence’ of lower-level processes and their differential responses to 
environmental stimuli and hazards (Hammer and Jordan, 2007), to facilitate better 
connection of complex traits with their genetic regulation (Hammer et al., 2010).  
Singels (2014) and Zhou et al. (2003) suggested that genetic parameters in the models 
should have clear physiological meanings, and defined such that they are stable across 
environments (i.e. determined primarily by genetic factors with either minimal or very 
predictable environmental plasticity); they should be easily measured or derived from 
measurements (Parent and Tardieu, 2014); and definitions should cater for the 
interdependence of genes (capturing epistatic and pleiotropic effects).  Trait parameter 
values should be estimated objectively and should be limited to realistic ranges (e.g. 
by using Bayesian approaches with a-priori distributions of parameter values, such as 
in Generalised Likelihood Uncertainty Analysis (GLUE), Jones et al. (2011)).  Hammer 
et al. (2010) advised in favour of model parsimony, advocating the simplest possible 
modelling approaches.  Hammer et al. (2019b) reiterated this view in exploring what 
might initially appear as a trade-off between biological realism and parsimony.  Model-
assisted genomic selection frameworks require biological realism to capture 
physiological mechanisms that drive GxE interaction effects, but also need to be as 
computationally undemanding as possible and require the fewest input data for 
operation as possible.  The authors advocate multi-scale modelling platforms built on 
an hierarchical basis that allows simple algorithms to be replaced with more complex 
algorithms operating at a lower organisational level where necessary and/or possible. 

The simulation performance of sugarcane models has been reported for individual 
cultivars (e.g. Keating et al. (1999)).  The only study identified where the ability of a 
sugarcane model to differentiate between Gs in a multi-environment trial was described 
by Dias et al. (2020).  In this study, the APSIM-Sugar model was used to predict G 
yield differences arising from canopy development traits for 21 Brazilian varieties 
grown at two sites in Brazil.  Salmerόn et al. (2017) used a stability index to assess the 
DSSAT CropGro-Soybean model’s ability to predict GxE interaction effects.  Rotili et 
al. (2020) evaluated the APSIM-Maize model for four hybrids across nine on-farm sites 
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in the Northern Grains region of Australia, and found that the model captured 88% of 
the variability across Gs and Es; no attempt was made to assess GxE interaction effect 
predictions specifically, however. The literature is more richly endowed with reports of 
model modifications better to support plant breeding applications (and by implication, 
prediction of GxE interaction effects), where the modifications are driven by 
hypotheses regarding modes of action rather than poor GxE prediction performance 
per se.  For example, Inman-Bamber et al. (2016) modified the APSIM-Sugar model to 
support drought tolerance traits such as transpiration efficiency; Chenu et al. (2009b) 
modified the APSIM Maize model to use parameter values derived from QTL to 
regulate leaf elongation rate and anthesis-to-silking interval in response to drought, as 
well as kernel development.  Wang et al. (2019) recommended more generic 
improvements to crop models for predicting GxExM interactions to support plant 
breeding, with a view to increasing the representation of genetic effects to levels 4 and 
5.  These include: improving physiological understanding of key plant processes; 
linking model input parameters to effects of allelic variation in genes, determined via 
QTL identification; and modifying model structures to account for gene expression on 
physiological processes.  These recommendations are partly based on the recognition 
of uncertainties in physiological process understanding, where the model 
intercomparisons conducted within the Agricultural Model Intercomparison and 
Improvement Project, AgMIP, (Rosenzweig et al., 2012) revealed considerable 
uncertainties with respect to crop physiology in crops such as wheat.  Boote et al. 
(2021) also make the point that models must be realistically sensitive to the types of 
breeding issues under exploration; the exploration of genetic factors controlling N use 
efficiency, for example, would require a model with well-proven N dynamics simulation 
capabilities.  Models ought to be evaluated for their sensitivity to the required G and E 
factors and simulation capability in this regard before application in breeding. 

2.5 Sugarcane crop models 

2.5.1 Introduction 

Singels (2014) provides a comprehensive review of several sugarcane simulation 
models (APSIM-Sugar, DSSAT-Canegro, QCane (Liu and Bull, 2001), Mosicas, 
Casupro (Villegas et al., 2005) and Canesim.  Sugarcane crop simulation capacity is 
also offered by the STICS, AquaCrop and other generic crop models, and modified 
versions of standard models are frequently used for specific applications (e.g. GTP-
Canegro, Jones et al. (2011)).  To avoid confusion, “DSSAT-Canegro” is used to refer 
to various versions of the Canegro model, even versions prior to it being incorporated 
into the DSSAT framework. 

The sections that follow describe simulation approaches for key plant processes, their 
known or likely GxE interactions, strengths and weaknesses of relevant simulation 
approaches, and their abilities to accommodate genetic differences.  The analysis 
focusses mainly on three models: DSSAT-Canegro, APSIM-Sugar and Mosicas. 

2.5.2 Germination 

Germination involves swelling of underground buds on the sugarcane sett (plant crops) 
or stool (ratoon crops), followed by coleoptile elongation towards the soil surface, 
culminating in the emergence of primary shoots.  The date of emergence is generally 
defined as the date when the 50th percentile viable bud emerges.  Germination rate is 
most commonly (e.g. DSSAT-Canegro, APSIM-Sugar, Mosicas, Canesim) simulated 
on the basis of thermal time (calculated from air temperatures), with plant crops 
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requiring more thermal time than ratoon crops (Keating et al., 1999) from crop start to 
primary shoot emergence.  APSIM-Sugar and DSSAT-Canegro consider thermal time 
delay from crop start to the start of the linear coleoptile elongation phase (i.e. 
sprouting), followed by a depth-dependent thermal time period for the shoot to reach 
the soil surface.  In APSIM-Sugar, this elongation can be delayed due to insufficient 
soil moisture: in APSIM v7.8 (2017), germination is inhibited below 0.05 mm/mm plant-
available soil moisture content, and reaches a maximum germination rate at 0.70 
mm/mm soil moisture content.  DSSAT-Canegro simulates the appearance of primary 
shoots over a thermal time window, while APSIM-Sugar, Mosicas and Canesim 
assume a single date of primary shoot emergence, defined as the date at which 50% 
of viable buds have emerged.  APSIM-Sugar, Casupro and DSSAT-Canegro are 
sensitive to planting density in addition to bud depth. 

Genetic trait parameters controlling germination include the thermal time from crop 
start to primary shoot emergence for plant and ratoon crops separately.  The DSSAT-
Canegro and Mosicas models permit setting of G-specific cardinal temperatures for 
germination thermal time accumulation, while APSIM-Sugar uses fixed values (across 
all cultivars and most plant processes).   

Many simplifications are made in the simulation of germination in these models – most 
models assume a single date of emergence, some do not take into account planting 
depth or planting density (other than the implications of changing row-spacing), and 
only APSIM-Sugar considers soil moisture content.  Air, rather than soil, temperatures 
are used to drive germination; soil temperatures are not routinely measured, although 
soil temperature is often simulated.  These weaknesses detract from the biological 
realism of model operation and may have a negative impact on simulation accuracy. 

Singels & Bezuidenhout (2002) forced the DSSAT-Canegro model to use 
predetermined observed dates of primary shoot emergence in order that their 
calibration and assessment of biomass partitioning algorithms were not confounded by 
errors in simulated date of emergence. 

2.5.3 Root development and growth 

The rooting front deepens either at a fixed rate per day (APSIM-Sugar) or per unit 
thermal time (DSSAT-Canegro, Casupro).  Root density distribution with depth is an 
input parameter in DSSAT-Canegro.  DSSAT-Canegro considers soil hydraulic 
conductivity (k) and root length density (L) separately (soil and species parameters 
respectively), while until recently APSIM-Sugar considered a combined soil-specific kL 
value as this is a more pragmatic, and more easily-determined, value.  Root density is 
simulated as functions of root mass and root length density parameters (APSIM-Sugar, 
DSSAT-Canegro, Casupro).  Root senescence is either not simulated or is simulated 
as a constant fraction of root mass (DSSAT-Canegro, QCane) or root length density 
and water stress (Casupro).  Roots are not simulated directly by Canesim, Mosicas or 
QCane.   

Simulation work by Inman-Bamber et al. (2012) using APSIM, and Singels et al. (2016) 
using DSSAT-Canegro, suggests that additional investment in root systems generally 
did not noticeably improve the fitness of genotypes under most water-limited 
environments.  Inman-Bamber et al. (2016) developed a version of the APSIM-Sugar 
model, in which the soil k and G-specific L parameters are separated to support 
exploration of G and GxE effects in drought adaptation. 
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2.5.4 Leaf appearance 

The APSIM-Sugar model predicts primary shoot leaf number based on leaf phyllocron 
intervals and accumulated thermal time.   The phyllocron intervals change as a function 
of leaf number, using linear interpolation between leaf number-phyllocron pairs 
provided as input trait parameters.  The DSSAT-Canegro and Casupro models predict 
leaf number using two leaf phyllocron intervals, a shorter interval for young shoots and 
a longer interval for older shoots, where the phyllocron interval changes at a certain 
leaf number.  G-specific phyllocron intervals can be specified.  Cardinal temperatures 
for thermal time accumulation driving leaf appearance can be specified in DSSAT-
Canegro and Mosicas, but not in APSIM-Sugar.  Canesim, QCane and Mosicas do not 
simulate individual leaves.  Bonnett (1998) presented a continually variable power-law 
model of leaf appearance as a function of leaf appearance (base temperature 9 °C), 
with calibrated parameters for nine sugarcane cultivars.  Sinclair et al. (Sinclair et al., 
2004) reported biphasic model phyllocron interval values for four USA cultivars, with a 
base temperature of 10 °C.  Leaf phyllocron intervals are considered stable across Es, 
implying G control over this trait. 

2.5.5 Tiller development and senescence 

Tiller development in DSSAT-Canegro (Inman-Bamber, 1991) was originally described 
by a parabolic equation of thermal time defined descriptively for each genotype.  
Bezuidenhout et al. (2003) developed a process-based tillering model for the DSSAT-
Canegro model, which considered bud population and light competition above a 
radiation interception threshold.  DSSAT-Canegro v4.6 (Jones and Singels, 2018) uses 
similar principles to calculate tiller development based on a G-specific maximum 
tillering rate per unit thermal time per primary stalk , with new tillers appearing at 
thermal time-determined intervals (based on Singels et al., 2005), and with the interval 
increasing in response to increasing radiation interception and/or water stress.  The 
radiation interception effect is meant as a proxy for the red:far-red radiation ratio which 
is understood to have a controlling effect on tillering rates (pers. comm. Inman-Bamber, 
2010).  Tillering is not related in any way to source or sink strengths, and is insensitive 
to radiation intensity.  Alam et al. (2014) found that E variation in tillering in sorghum, 
also a graminaceous C4-photosynthesis species, was determined by a photosynthetic 
supply/demand ratio, implying that tillering is also a growth process .  Sorghum Gs 
were however also found to differ in their propensity to tiller, indicating G control as 
well. 

Leaf phenology in DSSAT-Canegro is calculated independently for each tiller cohort.   

APSIM-Sugar simulates a ‘tillering factor’, which increases (mimicking tiller 
development) and then decreases (mimicking tiller senescence) leaf area index as a 
function of leaf number, but secondary shoots are not simulated as such.  The set of 
values defining the tillering factor in response to leaf number is considered G-specific.  
Stalk density at harvest is determined by the bud density at crop start (M input). 

Other models (e.g. Canesim, QCane, Mosicas) do not simulate shoots/stalks at all, 
opting instead to simulate canopy cover directly.   Canesim and Mosicas consider only 
temperature (via thermal time) for describing canopy development under non water-
stressed conditions. 

Tiller senescence in DSSAT-Canegro starts after a predetermined thermal time period 
(G trait input), with shoot population decreasing by a fraction each degree day 
thereafter to a predetermined (G input) final shoot population value; senescence rate 
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is increased with water stress.  The extinction rate parameter is a G trait input value.  
APSIM-Sugar is very similar – the tillering factor is reduced according to leaf number, 
and leaf number is determined by thermal time; the tillering factor is G-specific.  
Ngobese (2018) found that the thermal time to peak population was not consistent 
between Es and Gs, in a study of 11 South African cultivars grown for plant and ratoon 
crops.  This parameter was, on average, also smaller for ratoon crops – a dynamic also 
not generally reflected in model parameter values. 

No sugarcane models simulate tiller senescence in a truly mechanistic manner.  
Bezuidenhout et al. (2003) defined a ‘minimum sustainable leaf area’ (MSLA) with the 
concept of senescing tillers whose leaf area fell below this threshold.  This did not 
however consider source and sink strengths, and was calibrated empirically.  Smit & 
Singels (2006) reported clear G differences in tiller senescence rate response to water 
stress.  

All sugarcane CGMs essentially treat tillering as a developmental process, determined 
by temperature and (in the case of DSSAT-Canegro) the light environment via shading.  
Tillering could be viewed instead (or in addition) as a growth process, driven (or limited) 
by temperature and carbon availability, and subject to G control.  Kim et al. (2010) 
found that tillering rates in sorghum were greater under high source:sink conditions.   
Tardieu et al. (1999) asserted that leaf expansion is largely independent of the carbon 
budget, suggesting that sugarcane source-strength responses in canopy cover are 
manifested as changes in tillering rates. 

2.5.6 Leaf expansion and canopy formation 

DSSAT-Canegro, APSIM-Sugar and Casupro estimate leaf area per leaf, driven by 
temperature and limited by water stress, and scale this to canopy level using shoot 
population (DSSAT-Canegro) or the primary stalk population and tillering factor 
(APSIM-Sugar).  In DSSAT-Canegro, the number and size of leaves is calculated 
independently for each shoot cohort, and so total leaf area index reflects this 
heterogeneous population of shoots.  In models that simulate individual leaves, G 
parameters determine the maximum leaf size profile.  The DSSAT-Canegro model 
scales this internally according to a maximum leaf area G trait parameter value, while 
APSIM-Sugar reads in a series of leaf area per leaf number combinations and 
interpolates linearly between these.    Leaf area expansion is calculated by translating 
leaf elongation (driven by temperature) into area using a shape factor (typically 0.71). 

Casupro and APSIM-Sugar couple leaf expansion rate to carbon (photo-assimilate) 
availability; APSIM-Sugar restricts leaf expansion if the daily allocation of biomass to 
the leaf is insufficient for full expansion at the maximum permitted specific leaf area 
(SLA; the SLA range is not considered G-specific).  Marin & Jones (2014) developed 
a simple process-based model of sugarcane growth, which uses a quadratic function 
of leaf number to vary SLA between 6 (units not specified) at crop start, a peak of 9.3 
at 15 leaves, and 4 after 35 leaves have appeared.  These are fixed due to “a lack of 
sufficient evidence of how other factors affect SLA”.  In both their model and APSIM-
Sugar, SLA is not considered a G-specific parameter.  Limited published SLA data for 
sugarcane are available (Sebastião de Oliveira Maia Júnior et al., 2019; Terauchi and 
Matsuoka, 2001; Venkataramana et al., 1984).  Robertson et al. (1998)  reported SLA 
of 70-130 cm2/g under field conditions, while in a controlled environment facility SLA 
decreased consistently from ≈ 160 cm2/g at crop start to between 50 and 100 cm2/g at 
25-40 leaf age depending on temperature treatment (26 °C produced the most leaves 
and highest SLA; 14 °C the fewest leaves and lowest SLA).  The APSIM-Sugar model 
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permits SLA in the range 85-115 cm2/g.  In Maize, SLA has been found to decrease 
with cumulative thermal time (Zhou et al., 2020). 

Canesim, Mosicas and QCane simulate the canopy directly, rather than dividing 
canopy development into separate shoot population and leaf growth/senescence 
processes.  Canesim simulates canopy cover (fractional interception of 
photosynthetically-active radiation) as a function of thermal time and water stress, 
while Mosicas estimates leaf area index in a similar manner.  QCane estimates leaf 
area index as a function of biomass partitioned to leaves and specific leaf area. 

Singels et al. (2005c) found that for crops grown under irrigation, fully-expanded leaf 
size was correlated with the green leaf area index of the canopy at the time of leaf 
appearance.  They hypothesised that leaf size is determined by source strength: when 
the canopy is larger, source strength is higher (all else being equal).  Gs with larger 
initial leaf size would then develop canopy cover faster; Sinclair et al. (2004) reached 
a similar conclusion, adding that early leaf size could be used as a phenotypic marker 
for high yield potential.  Leaf size was consistently larger for summer-start crops 
compared to winter-start crops, perhaps as a result of higher temperatures and solar 
radiation during the partial canopy period in the summer-start crop.  These 
relationships were consistent across the two Gs tested (NCo376 and CP66/1043), 
although leaf sizes were different between the Gs.  Singels et al. (2005c) conclude by 
suggesting that the absence of coupling between biomass accumulation and canopy 
growth processes in sugarcane models is a shortcoming that hinders application of the 
models for optimising  radiation interception.  Zhou et al. (Zhou et al., 2003) however 
noted in a study of four southern-African cultivars (NCo376, N14, ZN6 and ZN7) grown 
under irrigation in Zimbabwe that tiller development and senescence traits were more 
important in determining PAR interception than leaf size and canopy architecture. 

Relative growth rate (rate of mass increase per unit time, expressed as a fraction of 
the existing mass) is considered an important parameter for characterizing plant growth 
(Hoffmann and Poorter, 2002; Hunt, 1982).  A similar concept could be applied to 
characterize dynamics of green leaf area index (GLAI, m2/m2).  GLAI increases with 
net availability of biomass (from photosynthesis); but increasing GLAI – particularly in 
a young crop with a relatively sparse canopy – also increases radiation interception 
and therefore the biomass available to support leaf expansion.  

In a young sugarcane crop, the relative rate of growth of leaf area is high; this rate 
slows as light competition restricts the marginal photosynthetic benefit to additional leaf 
area (as the crop nears canopy closure), and then slows further as the crop starts 
partitioning above-ground biomass to stalks in addition to leaf blades.  The daily 
increase in leaf area under well-watered conditions will be restricted by (i) temperature 
and (ii) availability of source photo-assimilate (Singels et al., 2005b). 

2.5.7 Leaf senescence 

Leaf senescence in APSIM-Sugar is driven by frost, light competition, maximum 
number of green leaves, and water stress.  The daily reduction in GLAI due to frost 
starts at 10% loss if the air temperature falls below 0 °C to 100% loss at -5 °C.  The 
light competition effect is based on the extent to which current GLAI exceeds a 
threshold value at which light-induced senescence starts.  Parameters controlling 
these drivers of senescence are not G-specific.  The green leaf number restriction limits 
the number of green leaves on the shoot to a maximum number, which is also the 
approach to leaf senescence used in DSSAT-Canegro.  The maximum number of 
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green leaves per shoot is specified as a trait parameter in DSSAT-Canegro and 
APSIM-Sugar.  The findings of Singels & Smit (2009) suggest that maximum green 
leaf number is not stable, varying with row-spacing.  Maximum green leaf number is 
probably also determined by canopy architecture, so is not independent of the radiation 
extinction coefficient (discussed in Section 2.5.8).  DSSAT-Canegro does not simulate 
frost or light competition effects on leaf senescence.  The QCANE model simulates 
layered canopy radiation interception and leaf senescence is based on shading: when 
the photosynthesis rate of leaves in a canopy layer decrease below the maintenance 
respiration rate, leaves in that canopy layer are senesced by an amount proportional 
to the daily increase in stalk mass.  This reflects the observation that green leaf number 
is determined by radiation intensity (more green leaves in summer) and light 
penetration into the canopy (more green leaves on field edges).  The linkage to stalk 
mass increment is based on the concept that leaf senescence occurs when its 
internode has matured; the faster the cane grows, the faster the rate of senescence. 
(Liu and Bull, 2001). 

The Canesim model does not simulate senescence as such: green canopy cover 
reaches a maximum value and does not increase further, although it can decrease 
transiently in response to water stress (Singels and Paraskevepoulos, 2017). 

A significant G effect controlling the acceleration of leaf senescence rate under water 
stressed conditions has been reported (Smit and Singels, 2006).  Faster leaf 
senescence in cultivar N22 (compared with NCo376) was coordinated with faster tiller 
senescence as well.   The G effects of water stress on tiller senescence rate and leaf 
senescence rate are independent of each other in the DSSAT-Canegro and APSIM 
sugar models, but it is  likely that a single trait input parameter for controlling canopy 
senescence response to water stress would be appropriate.    

2.5.8 Radiation interception, photosynthesis and respiration 

The interception of radiation (either global or photosynthetically-active) drives 
photosynthesis, directly or indirectly, in all sugarcane models.  Radiation interception 
is either calculated directly (as in the Canesim and AquaCrop models) or is estimated, 
using a Beer’s Law equation and a radiation extinction coefficient (Ke), from GLAI.  The 
radiation extinction coefficient is G-specific in DSSAT-Canegro (minimum and 
maximum values linked to leaf number) and Mosicas, and is fixed in APSIM-Sugar.  Ke 
reflects the canopy architecture (leaf area and angle, specifically (Luo et al., 2013)), 
and has an influence on radiation interception especially during the partial canopy 
phase.  Ke values for PAR are higher than for SRAD; 0.65 (for PAR) provides an 
equivalent interception fraction to 0.48 (for global radiation) (Jovanovic and Annandale, 
1998), although it is noted that this equivalence is limited to interception fraction and 
not to the conversion of intercepted radiation in biomass. 

Dias et al. (2020) calibrated APSIM-Sugar Ke values (on a global shortwave radiation  
(SRAD) basis) for 27 Brazilian sugarcane varieties at two sites.  Ke values differed 
(within narrow ranges, 0.45-0.59 and 0.55-0.77) at each of the sites, and were very 
well correlated between the sites (R2 = 0.99), but were about 20% higher at the second 
site compared to the first, indicating a significant E effect on Ke (not considered in any 
sugarcane models).  Luo et al. (2013) reported Ke values for 17 Chinese cultivars 
grown in an irrigated plant crop in south-eastern China, and found no significant 
differences between the Gs; Ke was found to be ≈0.65 overall.   De Silva and de Costa 
(2012) reported Ke values in the range 0.22-0.28 for eight cultivars grown as a plant 
crop under irrigation in Sri Lanka, corresponding with leaf angles in the range 66-76°.  
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The water-stressed rainfed treatment had higher leaf angles (presumably due to 
shorter leaves as a consequence of water stress) and higher Ke values (0.31-0.47).  
Water stress effects on Ke have not been taken into account with sugarcane models.  
Zhi et al. (2021) found that leaf angle in sorghum has G control, and explains 36% of 
variation in Ke.  Ke appears to be somewhat dynamic, which may play a role in 
determining GxE interactions in yield.  Default Ke values for different models are: 
DSSAT-Canegro, 0.58-0.86 (PAR basis, cultivar NCo376); Mosicas, 0.48 (PAR basis, 
cultivar R570); APSIM-Sugar (SRAD basis, 0.38).  Although DSSAT-Canegro and 
Mosicas models permit G-specific Ke values, none of the models attempt any kind of 
dynamic prediction of Ke.  Ke was not measured or calculated in the experiments 
reported-on in this thesis.  It should be noted that errors in Ke values can be 
compensated (in a misleading manner) by equivalent errors in specific biomass 
accumulation rates (see following paragraph).  Also, mistakenly recording interception 
of radiation by stalks and dead leaves, with little or no photosynthetic capacity, can 
lead to unintentional variation in reported Ke values.  

The simulation of photosynthesis is conducted broadly in two ways: radiation-use 
efficiency (RUE) and transpiration efficiency (TE) approaches.  In the RUE approach, 
photosynthesis rate (P, g/m2/d) is a function of intercepted radiation intensity:  

𝑃 = 𝑃𝐴𝑅 ∗ 𝐹𝐼𝑃𝐴𝑅 ∗ 𝑅𝑈𝐸𝑑 (2-2) 

where PAR is incident daily photosynthetically-active radiation (MJ/m2/d), FIPAR is the 
daily fractional interception of PAR, and RUEd is the daily radiation use efficiency 
(g/MJ)), and factors that affect conversion efficiencies: 

𝑅𝑈𝐸𝑑 = 𝐹𝑇 ∗ 𝐹𝑊 ∗ 𝑅𝑈𝐸0 (2-3) 

where FT and FW reflect the temperature and water influences on photosynthesis, with 
values between 0 (fully-limiting) and 1 (not-limiting), and RUEo is a maximum 
theoretical gross photosynthetic conversion efficiency parameter defined for ideal 
conditions of temperature, water and nutrient availability for a healthy fully-canopied 
crop (Inman-Bamber, 1991; Inman-Bamber and Thompson, 1989; Jones and Singels, 
2018; Singels et al., 2005b). 

Considering the TE approach, biomass accumulation is function of plant water uptake 
and atmospheric vapour pressure deficit (VPDd, kPa):   

𝑃 = 𝑇𝑑 ∗
𝑇𝐸𝑜

𝑉𝑃𝐷𝑑
 

(2-4) 

where Td is daily transpiration rate (mm/d) and TEo is a transpiration efficiency 
coefficient (g/kg/kPa) (Keating et al., 1999; Sinclair, 2012). 

DSSAT-Canegro, APSIM-Sugar, Mosicas, Canesim, QCane, and Casupro make use 
of the RUE approach to calculate photosynthesis rates.  APSIM-Sugar uses the TE 
approach to calculate transpiration rate (see Section 2.5.11).  The AquaCrop model 
uses a TE-type approach (Vanuytrecht et al., 2014), basing biomass accumulation rate 
on a water productivity coefficient (effectively TEo) normalised with respect to reference 
potential evapotranspiration (a proxy for VPDd) and atmospheric CO2 content. 

Inman-Bamber et al. (2012) found that TEo was likely to be genetically-controlled and 
strongly determined environmental fitness (in terms of yield at harvest), but that high 
TEo values were favourable across most mild- to moderately water-stressed 
environments.  This suggests that a high TEo value would contribute to broad 
adaptability for cultivars bred for a range of rainfed environments.  The sugarcane TE 
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parameter in APSIM-Sugar was not (as at v7.10) considered G-specific, although 
Inman-Bamber et al. (2016) described changes to APSIM-Sugar including G-specific 
TEo.  Basnayake (2015) found G variation in canopy-level stomatal conductance.  
Jackson et al. (2014) found considerable G variation in TEo, and presented a 
framework for including TE as a basis for selection in sugarcane breeding 
programmes. AquaCrop considers the water productivity parameter “conservative” (not 
G-specific).   

RUEo values are highly dependent on specific definitions for different models.  DSSAT-
Canegro v4.5 (Singels et al., 2008) assumes a maximum gross  (i.e. before losses to 
respiration) theoretical value of 9.9 g of dry biomass per MJ of photosynthetically-active 
radiation (PAR), while the DSSAT-Canegro v4.6 (Jones and Singels, 2018), which has 
slightly different respiration and photosynthesis algorithms, assumes RUEo values of 
approximately 5 g/MJ.  Canesim uses an RUEo parameter that reflects net above-
ground biomass accumulation rate per unit of intercepted PAR (G-specific).  APSIM-
Sugar assumes 1.8 g/MJ for plant crops and 1.6 g/MJ for ratoon crops, defined in terms 
of above-ground biomass, after deductions by growth and maintenance respiration, on 
the basis of global shortwave radiation (SRAD, approximately double PAR).  RUEo is 
G-specific in DSSAT-Canegro, but not in APSIM-Sugar. 

Anderson et al. (2015) reported seasonal average above-ground SRAD RUE of 1.15-
1.24 g/MJ for two fully-irrigated commercial plant crops (cultivar H65-7052) grown over 
24-month period in Hawaii.  Biomass accumulation in this case was determined using 
eddy-covariance flux towers, which can have some limitations, e.g. difficulty in 
accounting for night-time respiration.  SRAD RUE was reported for an irrigated plant 
crop in Sri Lanka in the range 1.63-2.09 g/MJ, for eight cultivars (six Sri Lanka, one 
Indian and one Mauritian) (De Silva and De Costa, 2012).  RUE was reported to be 
consistent (i.e. no G differences) across a set of 13 cultivars (seven Argentinian, five 
USA and one South African) grown in rainfed plant (RUE ≈ 1.0 g/MJ) and first ratoon 
(RUE ≈ 1.7 g/MJ) crops, although water-use efficiencies differed (Acreche, 2017).  Dias 
et al. (2020) calibrated APSIM-Sugar for 27 Brazilian varieties without changing RUEo, 
suggesting that RUE is not G-specific.  Marin et al. (2011) and Coelho et al. (2020) 
calibrated RUEo values for several Brazilian cultivars nearly 25-50% higher than 
NCo376 values for the DSSAT-Canegro model.  Singels & Inman-Bamber (2011) 
argued in favour of G-specific RUEo, and recommended this for crop modelling, based 
on a glasshouse experiment with four clones.  Small (≈1-8%, statistical significance not 
shown) differences in RUE were reported by Donaldson (2009) for varieties N25, N26 
and NCo376.  Hoffman et al. (2016) demonstrated that leaf-level photosynthetic 
efficiency rankings amongst a set of 14 sugarcane cultivars grown in a pot trial were 
robust across sampling events.  They also showed that the ranking of simulated yield 
of a field trial, using Canesim calibrated with (canopy-level) radiation use efficiency 
(RUE) values based on the leaf-level photosynthetic rate values determined in the pot 
trial, closely matched observed yield rankings.  This suggests that RUE may be G-
specific. 

DSSAT-Canegro, QCane and Casupro simulate growth (Rg) and maintenance 
respiration (Rm), where RUE reflects gross rather than net photosynthetic efficiency.  
Different versions of DSSAT-Canegro have assumed: a fixed Rm rate of 0.004 g/g total 
crop dry mass and a Rg rate of 0.242 g/g (Inman-Bamber, 1991);  Rm rate as a function 
of temperature and total crop biomass (Singels and Bezuidenhout, 2002); and Rm  
calculated using different reference rates to each respirable C pool (leaves, roots and 
sucrose) (Jones and Singels, 2018).  Gifford (2003) argued against the concept of Rm, 
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preferring that all respiration be calculated as part of growth respiration.  This is 
corroborated by Anderson et al. (2015), who found that average observed RUE did not 
decrease over the course of 24-month plant crops grown in Hawaii, where 
temperatures varied in the range 20-27 °C throughout the growing season.  On the 
other hand, Dias et al. (2019) developed a ‘high biomass slowdown’ feature for APSIM-
Sugar, which reduces net relative biomass accumulation rates linearly from 100% at 
20 leaves to 50% from 50 leaves onward, to accommodate observed productivity 
dynamics at high-potential sites in Brazil.  The empirical nature of this slow-down 
feature is acknowledged by the authors, but reflects the ‘reduced growth phenomenon” 
(RGP) in high-potential sugarcane (Park et al., 2005).  Causes of RGP are not yet fully 
determined, although lodging, declining leaf N content, and negative feedback 
inhibition of photosynthesis by high stalk sucrose content are suspected (Van Heerden 
et al., 2010). 

2.5.9 Stalk growth 

The date of onset of stalk growth (OSG) in sugarcane crop models is generally 
determined for the single purpose of partitioning above-ground biomass increments 
towards stalks (Inman-Bamber, 1991; Keating et al., 1999; Martiné and Todoroff, 
2004).  The transition from the tillering to stalk growth phases is simulated in DSSAT-
Canegro and APSIM-Sugar as a single event, after a predetermined G-specific thermal 
time period has elapsed since primary shoot emergence.  This is supported by Singels 
& Inman-Bamber (2011), who showed that internode elongation, the appearance of 
which is coordinated with leaf appearance, occurs after the appearance of 4-5 
immature leaves and 4-5 fully-expanded leaves; and leaf appearance appears to be 
very well-predicted by thermal time accumulation (Bonnett, 1998; Inman-Bamber, 
1994).  In Mosicas, the crop transitions from tillering to stalk growth as a function of 
aerial dry mass accumulation above a threshold value.   

In unstressed crops, OSG occurs at approximately 70% inter-row FIPAR (measured 
across the space between two adjacent cane rows), 90% intra-row FIPAR (measured 
underneath the canopy, between the outer edges of the canopy column), and coincides 
with peak shoot population (Allison et al., 2007; Inman-Bamber, 1994; Singels and 
Smit, 2009).  No sugarcane models simulate OSG this way.  Cessation of tillering has 
been attributed to radiation interception in sorghum (Kim et al., 2010).  Singels & Smit 
(2009) showed that tillering ceases at 90% intra-row PAR interception, and the date of 
cessation (i.e the date of peak shoot population) was insensitive to row-spacing.  OSG 
date was not reported, directly, but may be imputed from the SDM/ADM fractions; these 
are consistent with the hypothesis that OSG is linked to the date of peak population 
and 90% intra-row PAR interception.  The authors also showed that 90% intra-row PAR 
interception coincided with the achievement of maximum number of green leaves, 
implying that leaf/shoot senescence also starts at or near to OSG.  Inman-Bamber 
(1994) reported that the phyllocron interval lengthened for cultivar NCo376 after 14 
leaves had appeared, at a total thermal time age very similar to the thermal time delay 
from primary shoot emergence to OSG, suggesting a physiological linkage. It is 
speculated that this could be a response to increased sink strength from elongating 
stalks following OSG, and therefore lower assimilate availability for leaf growth.  
Bonnett (1998) reported continually variable PI but with a similar shape to the broken 
stick – short PIs when young, long when old – implying a gradual transition from tillering 
to stalk growth rather an abrupt event. 
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Stalk growth itself receives little attention in sugarcane models.  Singels (2014) does 
not even list stalk growth as a process in his comparison of sugarcane models.  Stalks 
are considered a biomass pool, so receive attention in the biomass partitioning 
processes of sugarcane models.  DSSAT-Canegro simulates stalk height as an output 
(regulated by a genotype parameter), but this has no bearing on yield simulations.  The 
GTP-Canegro model, however, simulates source-sink processes at a stalk level 
considering structural demands (sink strength) for leaf and stalk fibre based on 
elongation rates in response to temperature and water status combined with specific 
densities, and partitions biomass accordingly.  Ngobese (2018) reported that stalk 
elongation rate G rankings were consistent across Es, suggesting that this is a stable 
G trait, while Hoffman (2017) reported a wide and statistically significant genetic range 
in the parameter SERo, defined as the stalk elongation rate per unit thermal time, for 
a pot phenotyping trial with 14 southern African cultivars. 

2.5.10 Biomass partitioning 

Biomass partitioning is simulated in most sugarcane models via allometric fractions 
(Singels, 2014).  The fractions are either fixed for different phenological phases 
(O’Leary, 2000), or described in terms of environmental conditions (e.g. low 
temperatures favour partitioning to stalks rather than leaves in the Canegro and QCane 
models).  This is at odds with reports that base temperatures for leaf expansion are 
lower than those for stalk expansion.  APSIM-Sugar and Casupro consider structural 
demands (sink strengths) in some biomass partitioning processes.   

The DSSAT-Canegro model sucrose partitioning model (Singels and Bezuidenhout, 
2002), which is also used in Canesim (Singels and Paraskevepoulos, 2017) uses an 
empirical source:sink approach.  Under irrigated conditions, a temperature factor FT is 
used to determine the daily partitioning between sucrose and fibre+hexose, with a G-
specific model input temperature sensitivity parameter.  When air temperatures 
decrease below this parameter value (calibrated as 25 °C for NCo376), more stalk 
biomass to be partitioned to sucrose than fibre and hexose; and vice versa.  Earlier 
versions of DSSAT-Canegro relied on empirical relationships (of stalk dry mass and 
day of year) to predict sucrose yield (Inman-Bamber et al., 2002). 

APSIM-Sugar partitions biomass to sucrose based on water, nitrogen and temperature 
stress factors (O’Leary, 2000; Singels and Inman-Bamber, 2011), although if the 
biomass allocation to leaves exceeds the maximum sink strength (determined by the 
daily change in green leaf area and the minimum specific leaf area parameter value), 
excess biomass allocated to leaves is transferred to the sucrose pool (Keating et al., 
1999); nevertheless, sucrose accumulation in APSIM-Sugar is primarily source-driven. 

The GTP-Canegro model calculates sink strengths for leaf and stalk fibre and 
necessary hexose demands, and bases the partitioning of above-ground biomass on 
these; a source deficit results in a proportional decrease in growth rates of both stalks 
and leaves, and excess source is stored as sucrose, subject to sucrose storage 
capacity being available.  The GTP-Canegro model has not proceeded beyond 
prototype stage, and has some clear shortcomings which need to be addressed.  This 
source-sink approach to biomass partitioning nevertheless shows promise as a 
physiologically-sound algorithm that is anticipated to be useful for accurate exploration 
of GxE interactions, with a key challenge being the determination of sink strengths for 
expanding stalks.  Inman-Bamber et al. (2010) found, in a glasshouse experiment, that 
sucrose content and mass were higher in the cool (15-25 °C) treatment compared to a 
warm (24-31 °C) treatment and attributed this behaviour to differential structural sink 
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strengths.  Singels & Inman-Bamber (2011) compared four clones (two high-sucrose 
and two low-sucrose Gs) and showed that biomass partitioning to sucrose in the stalks 
appears to be a consequence of source and sink strengths: generally, the low-sucrose 
Gs partitioned more biomass to leaves, leaving less available for sucrose; additionally, 
high-sucrose Gs had shorter leaf phyllocron intervals, meaning that structural internode 
development was completed faster and so allowed sucrose accumulation to start 
sooner.  This is supported in broad terms by Lingle (Lingle, 1999) who reported that at 
a metabolic level, sucrose content was related to sucrose synthase activity (in the 
cleavage direction) during internode elongation, and declined thereafter.  

2.5.11 Water relations 

APSIM-Sugar uses the transpiration efficiency (TE) approach to calculate water 
uptake: transpiration is calculated from daily biomass accumulation rate, TEo and 
VPDd, and limited by root water supply.  DSSAT-Canegro and Casupro use FAO-56 or 
Priestley-Taylor reference evapotranspiration methods, and the Canesim model reads 
in daily ET values calculated using a Penman-Monteith equation parameterised for 
sugarcane.  DSSAT-Canegro, APSIM-Sugar, Casupro, and Mosicas use CERES-style 
(Jones et al., 1986) ‘tipping bucket’ layered soil water balances.  Early versions of 
Canesim had a single-layered water balance, while the current version has a multi-
layered soil profile (Singels and Paraskevepoulos, 2017). 

Water stress is either calculated as a function of leaf and soil water potentials, or some 
analogue of these – soil water content and vapour pressure deficit or reference 
evaporation rate, or even just soil water content by itself.  There is little scope for easily 
capturing G-specific water uptake / stress characteristics in existing models.  The 
DSSAT-Canegro v4.5 model permits G-specific values for the fraction of biomass 
allocated to roots; other parameters (such as root length per unit of root biomass, root 
conductivity, and the CERES water uptake model parameter values) are considered 
‘species’ parameters.  The version of APSIM published by Inman-Bamber et al. (2016) 
allows G-specific specification of parameters that affect the TE response to water 
stress, atmospheric CO2 concentration, root hydraulic conductivity, and maximum 
hourly transpiration rate.   Singels et al. (2010) identified shortcomings with CERES-
based water uptake model in DSSAT-Canegro, and made recommendations for 
improved approaches.  A version of the DSSAT-Canegro model1 (Jones and Singels, 
2018) uses the AquaCrop model’s concept of relative soil depletion concept and 
reference evaporative demand to calculate soil water satisfaction indices for 
photosynthesis and expansive growth; a G parameter controls the relative soil water 
depletion fraction at which photosynthesis stress starts, at a reference evaporative 
demand of 5 mm/day.  Although empirical in nature, this approach permits very easy 
per-G specification of water stress sensitivity; it is an integrated measure, however, 
summarising the effects of a set of lower-level processes, and may be subject to GxE 
interactions in itself unless these are generally genetically-coordinated.  Zhao et al. 
(2017) however reported that main G effects were much stronger that GxE interaction 
effects when comparing Gs under irrigated and mild/moderately water-stressed Es.   

2.5.12 Soil temperature 

The DSSAT system calculates soil temperature using an approach based on CERES-
Maize (Jones et al., 1986), while APSIM uses a more sophisticated approach, whereby 

 
1 The AquaCrop water uptake feature in DSSAT-Canegro is not yet publicly available. 
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heat fluxes between the atmosphere and soil surface, and between soil layers, are 
solved numerically.   

2.5.13 Nutrition 

DSSAT-Canegro, Canesim, Mosicas and Casupro do not simulate nitrogen dynamics.  
APSIM-Sugar uses the CERES-N approach (Godwin and Jones, 1991), with plant 
component-specific critical N-contents considered for modifying process rates in 
response to N.  A similar approach was implemented in DSSAT-Canegro (van der Laan 
et al., 2010) but has not been released publicly.  Critical N content values can be 
specified for different genotypes, to capture genetic differences in N-use dynamics.  N 
can be translocated from senescing leaves.  QCANE uses an empirical approach to 
modelling N effects. 

Accurate, mechanistic simulation of N is probably very important for accurately 
simulating GxExM interactions in final yield, because of G variation in N-use efficiency, 
water uptake (affecting N uptake via mass flow) and root growth patterns.  
Improvements to N modelling in sugarcane is limited by availability of suitable data.  

2.5.14 Discussion and key challenges 

Sugarcane CGMs have several points in common: germination is driven by thermal 
time calculated from air temperature; canopy development is (directly or indirectly) a 
function of thermal time and water status; the onset of stalk elongation is not 
mechanistically linked to canopy development; biomass accumulation is driven by a 
radiation use efficiency approach (at least under unstressed conditions) with sensitivity 
to radiation interception fraction, temperature and water status; biomass is partitioned 
on the basis of predetermined allometric fractions or prescribed responses to 
temperature and water stress.  

The simulation approaches followed by the different models have their strengths and 
weaknesses.  DSSAT-Canegro is strong on tiller dynamics and phenology, but leaf 
size is not linked to carbon availability; APSIM links carbon dynamics to canopy 
development by calculating leaf sink strength and potentially limiting leaf expansion to 
biomass partitioned to the canopy, but has a weaker simulation of tillering. Canesim, 
Mosicas and QCane provide elegantly simple approaches to simulating canopy cover 
/ leaf area index, but these approaches are less compatible with dynamic, competitive 
source-sink biomass partitioning, which is likely to be necessary for a model that is to 
be used for exploring and understanding GxE interactions in sugarcane.   APSIM has 
a mature nitrogen model, and is therefore able to accommodate N-use efficiency traits 
in unravelling GxE interactions.  QCANE simulates radiation interception, 
photosynthesis and respiration in a layered fashion and so has very sophisticated 
prediction of green leaf number and leaf area index, but relies heavily on empirical 
relationships. 

Leaf and tiller senescence appear to be poorly understood under unstressed 
conditions, with evidence of G and potentially GxE interaction effects; other than 
QCANE, sugarcane CGMs rely on simplistic empirical descriptions for these.  
Radiation extinction coefficients (Ke) appear to vary between Gs and Es, but there has 
been little effort to account for these in model applications.  No models attempt to 
predict Ke dynamically.  Despite evidence that stalk elongation rate is a stable G trait, 
sink strengths from stalk elongation have not been used to drive biomass partitioning 
in mainstream sugarcane CGMs.  Indeed, the use of source:sink relations in 
determining biomass partitioning has been very limited.  APSIM-Sugar considers 
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source and sink strengths for leaf expansion.  The DSSAT-Canegro model simulates 
sucrose partitioning using an approach based on source:sink principles, but ignore sink 
strengths from the canopy and has independent temperature parameters from those 
controlling stalk elongation.  These omissions, in the DSSAT-Canegro and Mosicas 
models, limit their biological realism.  None of the models consider tillering a growth 
process, or link onset of stalk growth to canopy cover.  Specification of G controls over 
water stress sensitivity in crop models is or has been generally difficult: partly because 
the model user cannot change the values all of the relevant parameters in a G-specific 
way, and partly because water stress itself is a complex outcome of many traits 
controlling canopy development, root water uptake and stomatal control, with strong 
interactions with the hydraulic characteristics of the soil itseld. A recent development 
in the DSSAT-Canegro model allows the user to modify a G-specific photosynthesis 
reference soil moisture depletion threshold parameter (Jones and Singels, 2018)).  A 
relatively recent change to the APSIM-Sugar model also allows a G-specific TE 
parameter values (Inman-Bamber et al., 2016)).  These changes make crop model-
based exploration of G control over water stress responses more accessible. 

Recommendations from a sugarcane trait modelling workshop held at SASRI in 2017 
(Singels, 2017) were that crop modelling to support breeding ought to focus on 
transpiration efficiency, radiation use efficiency, stomatal conductance and canopy 
development. 

Considering these, and the recommended characteristics of CGMs for supporting plant 
breeding, the following areas should be explored for potentially improving sugarcane 
crop growth models for such applications for irrigated sugarcane: 

• Assessing the value of transpiration efficiency as an explanatory trait for rainfed 
production scenarios. 

• Assessing the role of leaf-level stomatal conductance.   For irrigated cane, it 
might be informative to relate directly to biomass yields.  For rainfed production 
scenarios, it might be more useful to include a physiological photosynthesis 
model (von Caemmerer, 2021), capable of upscaling from leaf stomatal 
conductance to canopy conductance and then predicting photosynthesis and 
transpiration rates, into an existing sugarcane crop model to explore the impacts 
of this trait in its interaction with water stress. 

• Exploring maximum radiation use efficiency as a trait for explaining variation in 
biomass yields. 

• Quantifying genotypic influences of canopy development (leaf and tiller 
development and senescence characteristics) and linking the development of 
canopy components with biomass accumulation. 

• Ensuring that model parameters have clear physiological meanings that reflect 
independent genotypic traits whose values are stable across Es.  This may ease 
phenotyping, and may improve the chances of linking back to QTLs. 

• Replacing allometric biomass partitioning fractions with dynamic emergent 
consequences of source and structural sink strengths.   

• Linking the onset of stalk elongation with radiation interception. 

• Exploration of tillering as a growth process in addition to a developmental 
process, responsive to source:sink ratio. 
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2.6 Summary and Conclusion 

The past 20 years has seen unprecedented development of plant breeding techniques, 
driven by rapid advances in and decreasing costs of genetic sequencing, phenotyping 
and modelling.  Breeding programmes for many crops are now based on statistical 
prediction from genetic sequence data rather than traditional evaluation and selection.  
Value from including process-based crop growth models into breeding programmes 
has been clearly demonstrated for crops such as maize, rice and sorghum.  
Development of model-assisted breeding in sugarcane has however lagged behind 
due to its genetic complexity; sugarcane breeding programmes around the world still 
rely on traditional crossing and selection approaches where the development of new 
cultivars takes 10-14 years, requires large areas of land, is labour-intensive, and is 
practically limited to development of cultivars for broadly-defined Es.   Nevertheless, 
considering the progress made in other crops, the application of crop modelling in 
sugarcane breeding has potential for increasing the cost-effectiveness of sugarcane 
breeding, shortening the time from crossing to release, and possibly developing 
cultivars bred for niche environments.  

Process-based crop growth models (CGMs) that operate in biologically realistic ways 
represent crop physiology mechanisms.  These can predict non-linear G and GxE 
interaction effects as emergent consequences of process-level responses to 
environmental drivers.  CGMs can be used to translate low-level (sub-) trait phenotypes 
into complex phenotypic outcomes, such as yield, across the target population of 
environments (TPE).  Such models can be used for environmental characterisation to 
improve the efficiency of breeding by weighting environments (Es) during selection to 
be more representative of the TPE.  They can also be used to identify breeding 
priorities or even ideal low-level phenotypic trait combinations.  If molecular markers 
(Quantitative Trait Loci, QTL) in genetic sequence data can be statistically associated 
with low-level phenotypes, CGMs can predict yield outcomes from genotypic data, on 
which selection can be based.   

CGMs to support model-assisted breeding need to have simple trait parameters that 
are strongly linked to genetics and are stable across Es, and should predict higher 
level, complex trait phenotypes as the emergent consequences of low-level processes 
responding to environmental drivers.  Such models should be biologically robust, 
realistically emulating biological processes rather than simply describing outcomes.  
Models ought to be as appropriately simple, “parsimonious”, as possible while still 
being fit for purpose.  Users must be confident in the abilities of the CGM to account 
for G and E differences and predict GxE interaction effects with sufficient accuracy. 

Several mature, process-based sugarcane models have been developed and are 
potentially available to breeders.  Many of these models – APSIM-Sugar, DSSAT-
Canegro and Mosicas, for example – can be used for environmental characterisation 
to improve the efficiency of selection.  Although these models provide support for 
simulating different cultivars by being able to read G-specific model input parameters, 
they have not been comprehensively tested in a multi-environment trial (MET), and 
understanding their strengths and weaknesses with respect to predicting G and GxE 
effects needs to be determined before they can be confidently applied to trait dissection 
and phenotypic prediction in the TPE.  

Recommendations for addressing identified weaknesses or gaps include replacing 
allometric biomass partitioning fractions with dynamic emergent consequences of 
source and structural sink strengths, linking canopy development (leaf appearance and 
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growth, and tillering) with biomass accumulation, linking the onset of stalk elongation 
with radiation interception, and treating tillering as growth process rather than simply a 
phenological developmental process.  A sugarcane model that includes these features 
would likely operate in more biologically-realistic ways.  With appropriate and realistic 
calibration, such a model may be able to predict GxE interaction effects sufficiently 
accurately to support sugarcane breeding, via: (1) more accurate environmental 
characterisation, (2) trait dissection to understand causes of GxE interactions, (3) 
development of robust linkages with QTL, and (4) yield prediction in the TPE from 
genotypic data (i.e. derived from genetic sequence analysis) or phenotypic data (i.e. 
derived from measurements of plant dimensions).   

Implementing such a model is expected to achieve the broad objective of developing 
an improved sugarcane crop growth model capable of accurate prediction of GxE 
interaction effects on yield; this is presented in Chapter 5.  The necessity of doing so, 
however, requires that existing models be evaluated first; this is described in Chapter 
4.  Existing models represent collections of process-level simulation approaches, and 
the performance and appropriateness of individual processes for predicting GxE 
outcomes might vary.    An evaluation of process-level concepts and input parameter 
definitions, from existing models, for their abilities to capture E, G and GxE interaction 
effects, also needs to be conducted; this analysis is presented in Chapter 3.  Finally, 
the value of the new model needs to be demonstrated, particularly with an application 
that goes beyond the capabilities of existing CGMs; such a case study is described in 
Chapter 6. 
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3. EXPLORING PROCESS-LEVEL GENOTYPIC AND 
ENVIRONMENTAL EFFECTS ON SUGARCANE YIELD USING AN 

INTERNATIONAL EXPERIMENTAL DATASET 

Abstract 

Crop improvement aims to produce high yielding genotypes for target environments. 
Crop models simulate yield formation as the outcome of a series of low-level 
processes, driven by environmental (E) variables and regulated by genetic (G) traits. 
There is potential for crop models to aid sugarcane breeding, by identifying desirable 
genetic traits for target environments. The objective of this study was to evaluate 
existing concepts of G and E control of plant processes for explaining crop 
development, growth and yield, using an international growth analysis dataset. Crop 
development, growth and yield were monitored in the plant and 1st ratoon crops for 
seven cultivars (N41, R570, CP88-1762, HoCP96-540, Q183, ZN7 and NCo376) 
grown under well-watered conditions at La Mare (Reunion Island, France), Pongola 
(South Africa (RSA), Chiredzi (Zimbabwe), and Belle Glade (Florida, USA). Weather 
data were collected and environmental conditions characterized for each experiment. 
Derived process-level phenotypic parameters, based on concepts from four sugarcane 
growth simulation models (DSSAT-Canegro, Mosicas, APSIM-Sugar and Canesim), 
were calculated from observations and used to (1) evaluate current understanding of 
E drivers of sugarcane growth and development processes, and (2) identify and 
quantify G control at a process level. Final yields showed significant E and GxE 
variation; dry above-ground biomass and stalk yields were highest in La Mare and 
lowest in Pongola. Cultivar rankings in stalk dry mass for the common cultivars (N41, 
R570, CP88-1762) varied significantly between Es. Significant E variation in 
phenotypic parameters describing germination, tillering and timing of the onset of stalk 
growth (OSG) revealed shortcomings in the underlying simulation concepts. Significant 
G variation was found for germination rate, leaf appearance rate and canopy 
development rate per unit thermal time (TT), and maximum radiation use efficiency, 
indicating strong G control of the associated underlying processes. Solar radiation was 
found to influence tillering rate per unit TT, and TT to OSG, challenging the current 
theory of TT as the sole driver of these processes. By explaining more of the E 
variation, more stable and accurate G-specific model parameters can be defined and 
evaluated. This is anticipated to lead to less GxE confounding of modelled processes, 
and hence crop models that are better-equipped for supporting sugarcane crop 
improvement. 
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4. EVALUATING PROCESS-BASED SUGARCANE MODELS FOR 
SIMULATING GENOTYPIC AND ENVIRONMENTAL EFFECTS 

OBSERVED IN AN INTERNATIONAL DATASET 

Abstract 

Crop modelling has the potential to assist plant breeding by identifying favourable 
genotypic (G) traits for specific environments (Es). Sugarcane crop models have not 
been rigorously evaluated against a factorial GxE dataset. It is imperative that models 
are evaluated in this way before they are applied to plant breeding problems. Our 
objectives were to (1) calibrate, (2) assess, and (3) identify weaknesses and 
recommend improvements to, three sugarcane models, DSSAT-Canegro, Mosicas 
and APSIM-Sugar, in relation to their predictions of observed E, G and GxE interaction 
effects in response to abiotic factors (temperature and solar radiation). Data from an 
international GxE growth analysis trial were used; these consisted of five irrigated 
experiments at four sites (Belle Glade, Florida, USA; Chiredzi, Zimbabwe; La Mare, 
Reunion Island; and Pongola, South Africa), with cultivars N41, R570 and CP88-1762. 
Observed G and E effects on final above-ground dry mass (ADM) yields were 
explained in terms of seasonal radiation interception (FIPARa) and seasonal average 
radiation use efficiency (RUEa). Calibration was undertaken where possible by 
translating phenotypic parameters derived from observations into model input trait 
parameter values representing genetic traits. E and G effects on FIPARa were 
generally simulated satisfactorily, while GxE interaction effects were poorly predicted 
due to inadequate responses to temperature. E, G and GxE effects on RUEa were 
poorly predicted by all models, although data shortcomings (arising from uncertainty 
regarding date of primary shoot emergence and impacts of lodging) prevented us from 
making strong conclusions in this regard. Models accurately predicted G differences in 
RUEa during mid-season biomass sampling periods where data confidence was 
greater. Although the models were able to predict final ADM yield per G and per E 
reasonably well, none of the models predicted GxE interaction effects well. All models 
also under-estimated the variation in RUEa and ADM. Recommendations for 
experimental protocols for exploring RUEa are made. Our key recommendations for 
future work to improve models for sugarcane breeding applications are to explore G-
specific thermal time base temperatures for germination and canopy development 
processes, and to improve linkages between carbon availability and canopy 
development. 

 

Published as a journal article: 
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5. A SUGARCANE MODEL FOR IMPROVED SIMULATION OF GXE 
INTERACTIONS OF CANOPY COVER AND BIOMASS 

ACCUMULATION 
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5.5.4 Differential temperature responses appear to drive remaining GxE 
interactions, and can be inferred from germination rate ................................... 104 
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5.1 Introduction 

Three widely used sugarcane crop growth models, DSSAT-Canegro, APSIM-Sugar, 
and Mosicas were reviewed in Chapter 4 (Jones et al., 2021) for their abilities to 
simulate E, G and GxE interaction effects on seasonal canopy development (fractional 
interception of photosynthetically-active radiation, FIPARa), radiation use efficiency 
(RUEa) and above-ground dry biomass accumulation (ADMh, t/ha), for a multiple-E, 
multiple-G dataset (Jones et al., 2019).  This dataset was collected by the International 
Consortium for Sugarcane Modelling (ICSM) in the International Genotype-by-
Environment Project (IGEP).  While the models assessed gave satisfactory and similar 
performance for predicting E and G effects, they had essentially no ability to predict 
GxE interaction effects in that study.   

Recommendations made in Chapter 4 for improving sugarcane models to support 
irrigated sugarcane breeding include: (1) simulating germination rate on the basis of 
simulated soil temperature, rather than observed air temperature, and (2) regulating 
the onset of stalk growth (OSG) according to radiation intensity in addition to 
temperature, described in Chapter 3 (Jones et al., 2019); as well as (3) regulating 
germination and canopy development with temperature factors based on G-specific 
cardinal temperatures and (4) including realistic linkages between carbon availability 
and canopy growth, as described in Chapter 4 (Jones et al., 2021). 

The second part of the hypothesis stated in Section 1.3 asserted that crop simulation 
modelling capacity to support breeding of irrigated sugarcane could be enhanced by 
(if necessary) developing an improved (new or revised) sugarcane crop model to 
address identified weaknesses arising from evaluating existing models and their 
process-level concepts. 

The overall aim of this phase of the work was to develop a parsimonious crop growth 
simulation model capable of improved predictions of GxE interaction effects on 
seasonal radiation interception (and dry biomass yields, by implication), that could be 
of value to irrigated sugarcane crop improvement. 

The specific objectives were to: 

1. Develop a new sugarcane model with the following features: 
a. an improved germination algorithm, making use of simulated soil 

temperatures; 
b. a carbon-linked canopy development algorithm, sensitive to temperature 

and radiation intensity,  
c. an OSG algorithm that is responsive to radiation intensity in addition to 

temperature, and 
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2. calibrate and validate the new model using existing detailed growth analysis 
experiment data for cultivar NCo376; 

3. calibrate the new model with respect to canopy development for cultivars CP88-
1762, N41 and R570 and evaluate its ability to predict G, E and GxE interaction 
effects on seasonal radiation interception,  biomass and stalk mass using data 
from the ICSM IGEP experiments. 

5.2 Model description 

5.2.1 Introduction 

The model description starts with an overview, followed by details of the following 
processes and calculations: 

• Phenological phases 

• Temperature control over plant processes 

• Canopy (leaf) expansion and senescence 

• Biomass accumulation (net photosynthesis) 

• Biomass component growth 

Genotype-specific model input parameters are termed “trait parameters” in this text.   

5.2.2 Overview 

A new sugarcane crop growth model was developed to address shortcomings 
identified in Jones et al. (2019) and Jones et al. (2021), to incorporate concepts 
identified in previous research (as outlined in Chapter 2), and to reflect features of 
models appropriate for model-assisted crop improvement (parsimony, biological 
realism and emergent complex phenotypes (Hammer et al., 2019b; Hammer and 
Jordan, 2007)).  The model is named “CaneGEM” (sugarcane genotype-by-
environment model).   

The decision was made to implement the new concepts as a new model, rather than a 
modification to an existing model, for several reasons.   Using an existing codebase 
might have biased the implementation of concepts towards those that operate more 
comfortably within that framework.  In some cases the development and evaluation of 
new concepts would have been hindered by the need to disconnect or disable 
functionality in existing models in order to permit a new feature to operate.  The R 
environment chosen for implementation integrates more easily with data analysis and 
visualisation tools compared with the Fortran-based codebases of the existing models 
considered.  

The key features differentiating CaneGEM from DSSAT-Canegro, APSIM-Sugar and 
Mosicas are summarised as follows, with details provided in Section 5.2.3-5.2.7: 

• Canopy development is a source-limited growth process in addition to a 
developmental process 

In the DSSAT-Canegro model, unstressed canopy development is determined 
by temperature.  Tillering, leaf appearance and leaf elongation are driven 
prescriptively by temperature, and then combined to determine canopy cover 
each day. 

In the CaneGEM model, canopy cover expansion (leaf area growth) is 
determined by source and sink strengths.  The canopy can potentially increase 
in size each day by a fraction of the existing size of the canopy – linking source 
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capacity with canopy development rates.  Effective temperature (with G-specific 
base and other cardinal temperatures) regulates the potential growth rate. 

Detailed developmental processes, such as the emergence and senescence of 
individual tillers and leaves, are not simulated (as they are in DSSAT-Canegro), 
in the interests of parsimony.   

The size of the canopy depends on the availability of carbohydrates from 
photosynthesis.  In this way, biomass accumulation and canopy development 
processes are linked, introducing realistic trade-offs between trait parameter 
values and greatly enhancing the biological realism of the model.  (Note: this 
feature exists in APSIM-Sugar). 

Canopy development rate is therefore an emergent complex trait, governed by 
lower-level, simpler trait parameters. 

A simplified diagram of how the daily increase in green leaf area index is 
calculated in the CaneGEM model each day is shown in Figure 5-1.   
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Figure 5-1.  Simplified representation of CaneGEM model canopy development. Note that the calculation of source strength from 
reserves is not detailed in this diagram.  
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• Onset of stalk growth is determined by radiation interception, and 
indirectly by source:sink balance 

A transition from the tillering to stalk growth phases is simulated, rather than this 
be treated as a single event, capturing the idea that the population of shoots of 
different ages and developmental stages reach OSG over a period of time.  OSG 
is a function of photosynthetically-active radiation (PAR) interception rather than 
elapsed thermal time (DSSAT-Canegro, APSIM-Sugar) or an above-ground dry 
biomass threshold (Mosicas).   

The time to OSG is therefore dependent on canopy growth rate, which is highly 
dynamic with respect to E conditions and trait parameters controlling canopy 
development.  OSG is therefore an emergent complex phenotype, and not 
controlled directly by a trait parameter. 

 

• Leaf senescence is driven by leaf area index 

Leaf senescence has in previous models been driven by maximum green leaf 
number per stalk, but maximum green leaf number is not stable across Es 
(Singels and Smit, 2009).   

In the new CaneGEM model, leaf senescence starts at a GLAI threshold and 
senescence rate is a function of the difference between current and target GLAI 
(these parameters are described in Section 5.2.5).  GLAI each day is therefore 
the emergent consequence of green canopy growth and senescence.  
Senescence can also occur in response to frost. 

 

• Partitioning of above-ground biomass is governed by onset of stalk 
growth 
 
The extent of transition from tillering to stalk growth phases (onset of stalk 
growth – OSG) determines the partitioning of above-ground biomass between 
leaves and stalks.  This process is therefore dynamic and emergent with respect 
to source:sink drivers of canopy development. 

 

• Sucrose accumulation is a passive consequence of source:sink balance 

Canopy growth and stalk elongation (driven by effective temperature and 
controlled via G-specific specific elongation rate and density parameters, and 
cardinal temperatures) drive sink demand for structural fibre; any remaining 
source is stored as sucrose or reserves.  Sucrose can only be stored when the 
plant is physiologically able to do so, and the capacity to accumulate sucrose is 
linked to internode number, offset from OSG.   

Although this model depends on empirical relationships, it is asserted that the 
fundamental mechanism is more realistic than the approaches used in DSSAT-
Canegro, Mosicas and APSIM-Sugar.   

Sucrose accumulation is also an emergent and highly-complex consequence of 
E conditions and trait parameters controlling other plant processes. 
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The descriptions of the CaneGEM model processes in the sections that follow define 
several model input parameters (whose values are determined before running the 
model), as well as rate/state variables (whose values are determined daily during the 
simulation of an individual cropping season).  For reference, these parameters are 
listed and defined in the present section, although they are relevant to, and defined in 
context, in the sections that follow. 

• Model input parameters and their values are listed in Table 5-1.   

• Rate and state variables used in the model are listed in Table 5-2 for reference.   

 

Table 5-1.  CaneGEM model input parameters and their values for calibrated for 
the standard reference cultivar NCo376.  Explanations of how values were 

derived are provided in the text in the following sections. 

Acronym Units Description Standard 
value 

(NCo376) 

Source of 
value 

Temperature responses 

Tb_germ_P °C Base temperature for 
germination (plant crops) 

16.0 (Jones and 
Singels, 2018) 

Tb_germ_R °C Base temperature for 
germination (ratoon crops) 

10.0 (Jones and 
Singels, 2018) 

Tb_lai °C Base temperature for leaf area 
index expansion 

13.00 Calibrated 

Tb_lfapp °C Base temperature for leaf 
appearance 

9.00 (Bonnett, 1998) 

Tb_photo °C Base temperature for 
photosynthesis 

10.00 (Jones and 
Singels, 2018) 

Tb_sk °C Base temperature for stalk 
expansion 

16.00 Calibrated 

Tf_germ °C Ceiling temperature for 
germination 

41.0 (Jones and 
Singels, 2018) 

Tf_lai °C Ceiling temperature for leaf area 
index expansion 

45.00 (Jones and 
Singels, 2018) 

Tf_lfapp °C Ceiling temperature for leaf 
appearance 

40.00 (Jones and 
Singels, 2018) 

Tf_photo °C Ceiling temperature for 
photosynthesis 

45.00 (Jones and 
Singels, 2018) 

Tf_sk °C Ceiling temperature for stalk 
expansion 

48.00 (Jones and 
Singels, 2018) 

To_germ °C Optimal temperature for 
germination 

28.0 (Jones and 
Singels, 2018) 

To_lai °C Optimal temperature for leaf 
area index expansion 

35.00 Calibrated 

To_lfapp °C Optimal temperature for leaf 
appearance 

28.00 (Jones and 
Singels, 2018) 

To_sk °C Optimal temperature for stalk 
expansion 

35.00 (Jones and 
Singels, 2018) 

To1_photo °C Lower bound of optimal 
temperature range for 
photosynthesis 

20.00 (Jones and 
Singels, 2018) 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

49 
 

Acronym Units Description Standard 
value 

(NCo376) 

Source of 
value 

To2_photo °C Upper bound of optimal 
temperature range for 
photosynthesis 

40.00 (Jones and 
Singels, 2018) 

Phenology 

FI_OSG1.5  FI_OSG value at a reference 
row-spacing of 1.5 m. 

0.80 Calibrated 

LFPI1 °Cd Short (young crop) leaf 
phyllocron interval 

70 (Singels et al., 
2008) 

LFPI2 °Cd Long (mature crop) leaf 
phyllocron interval 

170 (Singels et al., 
2008) 

OSGfracc1  Slope parameter controlling the 
rate at which the crop transitions 
from tillering to stalk growth as a 
function of radiation interception 

20 Calibrated 

TTem_P °Cd Thermal time from crop start to 
start of primary shoot 
emergence, plant crops 

150 Calibrated 

TTem_R °Cd Thermal time from crop start to 
start of primary shoot 
emergence, ratoon crops 

43 Calibrated 

Canopy expansion 

GLAIinitial m2/m2 Starting green leaf area index for 
a reference crop (1.5 m rows-
spacing) 

0.15 Calibrated 

GLAIst m2/m2 GLAI at which senescence 
starts. 

3.2 Calibrated 

Kemax  Maximum PAR interception 
extinction coefficient 

0.86 (Singels et al., 
2008) 

Kemin  Minimum PAR interception 
extinction coefficient 

0.58 (Singels et al., 
2008) 

LAIsenc1  Slope parameter relating relative 
senescence rate with GLAI 
above the GLAIst threshold 

0.003 Calibrated 

LfnoKemax l/shoot Leaf number at which Ke is 
maximised 

20.00 (Singels et al., 
2008) 

RGRlaimax  Maximum relative GLAI growth 
rate 

0.250 Calibrated 

RGRlaimin  Minimum relative GLAI growth 
rate 

0.014 Calibrated 

SLAmax cm2/g Maximum specific leaf area 60 Calibrated 

SLAmin cm2/g Minimum specific leaf area 20 Calibrated 

Biomass accumulation 

RESexfrac g/g Maximum fraction of 
underground reserve that can be 
used to support structural growth 
each day. 

0.10 Calibrated 

RTPFavg g/g Growing period average daily 
partitioning fraction of 
photoassimilate to root dry 
mass. 

0.19 DSSAT-
Canegro and 
APSIM-Sugar 
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Acronym Units Description Standard 
value 

(NCo376) 

Source of 
value 

RUEadm g/MJ Theoretical maximum radiation 
use efficiency, for a young, 
healthy, unstressed crop, 
defined for above-ground dry 
biomass per unit intercepted 
photosynthetically-active 
radiation. 

2.90 Calibrated 

Biomass partitioning: roots 

RTPFc1 g/g Maximum allocation fraction of 
photosynthetic source to root dry 
mass 

0.95 (Singels et al., 
2008) 

RTPFc2 g/g Minimum allocation fraction of 
photosynthetic source to root dry 
mass 

0.88 (Singels et al., 
2008) 

RTPFc3  Exponential parameter 
controlling the rate at which 
RTPF decreases as a function of 
TDM 

0.60 (Singels and 
Bezuidenhout, 
2002) 

Biomass partitioning: canopy 

SKPFmax g/g Maximum  partitioning fraction of 
the daily change in ADM to stalk 
dry mass 

0.76 Calibrated 

Biomass partitioning: stalk fibre 

SKexpo cm3/m2/d Maximum daily stalk expansion 
rate 

215.0 Calibrated 

Biomass partitioning: stalk sugars 

LFNOsksmax  Number of leaves that must 
appear after LFNOsksmin before 
stalk sugar accumulation 
capacity is maximised 

7.0 Calibrated 

LFNOsksmin  Number of leaves that must 
appear after start of OSG before 
stalk sugars can accumulate 

3.0 Calibrated 

SFHXR g/g Stalk fibre synthesis:hexose 
ratio, i.e. mass of stalk hexoses 
required to synthesise a unit 
mass of stalk fibre 

30.0 Calibrated 

 

Table 5-2.  Rate and state variables used in the description of the CaneGEM 
model in the sections that follow. 

Acronym Units Description 

  Temperature responses 

FT  Temperature control factor 

FTlai  Temperature control factor for leaf area expansion 

FTlfno  Temperature control factor for leaf appearance rate 

FTphoto  Temperature control factor for photosynthesis 

FTsk  Temperature control factor for stalk expansion 

  Phenology 

CTTem °Cd Cumulative thermal time since crop start, for driving 
germination rate 
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Acronym Units Description 

CTTemd-1 °Cd Previous day’s thermal time since crop start 

dEmFrac  Daily change in the fraction of primary shoot emergence 
completed 

FI_OSG  Fractional radiation interception value at which 50% of shoots 
have transitioned from tillering to stalk growth. 

LFNO leaves/ 
shoot 

Number of leaves per shoot of reference primary shoot. 

OSGfrac  Fraction of shoots that have commenced stalk growth 

PI °Cd Daily leaf phyllocron interval 

TTem_X °Cd Thermal time from crop start to start of primary shoot 
emergence, for crop type X (plant or ratoon) 

TTlfno °Cd Cumulative thermal time for leaf appearance 

  Canopy expansion 

dGLAI m2/m2/d Daily change in green leaf area index 

dLAIem m2/m2/d Daily change in green leaf area index due to emergence of 
primary shoots 

dLAIexp m2/m2/d Daily expansion in GLAI 

dLAIsen m2/m2/d Daily senescence of GLAI 

dLDMsinkmax t/ha/d Maximum leaf sink strength, calculated with SLAmin 

dLDMsinkmin t/ha/d Minimum leaf sink strength, calculated with SLAmax 

FIinter  Inter-row fractional interception of photosynthetically-active 
radiation 

GLAI m2/m2 Green leaf area index 

RSP1  Slope coefficient regulating FI_OSG response to row-spacing 

RSP2V  Intercept coefficient regulating FI_OSG response to row-
spacing 

RGRlai   Daily source-unlimited relative canopy growth rate 

RSRlai  Relative GLAI senescence rate 

SLA cm2/g Specific leaf area for leaf expansion on a given day 

SLAvar cm2/g An internal model variable representing an intermediate value 
of specific leaf area, unbounded by the input minimum or 
maximum input specific leaf area values. 

  Biomass accumulation 

ADM t/ha Above-ground dry biomass 

dRES t/ha/d Daily underground reserve dry mass available to support 
structural growth 

Ke  Daily PAR interception extinction coefficient 

PAR MJ/m2 Daily incident photosynthetically-active radiation, estimated 
from SRAD. 

PHOTO t/ha/d Daily photo-assimilate production 

RUEo g/MJ Theoretical maximum radiation use efficiency, for a young, 
healthy, unstressed crop, defined for whole-crop biomass per 
unit intercepted photosynthetically-active radiation.   

SOURCE t/ha/d Daily dry biomass increase, consisting of photo-assimilate and 
remobilised underground reserve dry mass. 

  Biomass partitioning: roots 

dRDM t/ha/d Daily allocation of photosynthetic source to root dry mass 

   

RTPF g/g Daily photosynthetic source allocation fraction to root dry mass 

TDM t/ha Total crop dry mass 

  Biomass partitioning: canopy 
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Acronym Units Description 

dADMsource t/ha/d Daily photosynthetic source allocated to above-ground plant 
components (green leaf canopy and stalks) 

dLAIpot m2/m2/d Potential daily expansion in  green leaf area index 

dLDM t/ha/d Daily change in green leaf  dry mass, including leaf blades, leaf 
sheaths and meristems 

dLDMres t/ha/d Daily mass of reserve used to supplement photosynthetic 
source to support structural leaf  growth  

dLDMsf t/ha/d Daily photo-assimilate shortfall limiting leaf expansion 

dLDMsource t/ha/d Source available to support daily leaf area expansion 

LDM t/ha Green leaf dry mass, including leaf blades, leaf sheaths and 
meristems 

  Biomass partitioning: senescence 

dSEN t/ha/d Daily change in senesced material dry mass 

SEN t/ha Dry mass of senesced plant material 

  Biomass partitioning: stalk fibre 

dSKF t/ha/d Daily change in stalk fibre dry mass 

dSKres t/ha/d Daily reserve dry mass used to supplement stalk fibre 
expansion 

dSKsf t/ha/d Stalk fibre biomass allocation shortfall 

dSKsink t/ha/d Sink strength for stalk fibre 

dSKsource t/ha/d Daily photo-assimilate partitioned to stalks 

SDM t/ha Stalk dry mass 

dSKpot cm3/m2/d Daily potential stalk volume expansion rate 

  Biomass partitioning: stalk sugars 

dSKS t/ha/d Daily change in stalk sugars mass 

dSKSsource t/ha/d Photo-assimilate available for storage as stalk sugars 

SKH t/ha Stalk hexose mass 

SKHfrac g/g Hexose fraction of stalk sugars 

SKHfracd-1 g/g Previous day’s hexose fraction of stalk sugars 

SKS t/ha Stalk sugars (sucrose and hexose) mass 

SKSC t/ha Stalk sucrose mass 

SKSPFpot  Relative stalk sugars storage capacity, a linear function of leaf 
number between LFNOsksmin and LFNOsksmax 

  Biomass partitioning: underground reserve 

dRESmax 

 
t/ha/d Daily maximum mass of reserves that can be used to support 

expansive growth 

RES t/ha Dry mass stored in underground reserve 

 

5.2.3 Phenological phases 

Three broad growth phases stages are considered in this model: 

• Germination: this is the development phase from the date of crop start until 
primary shoot emergence.  The date of emergence (DoE, d) is usually defined 
as the date when the 50th percentile primary shoot appears.  In this model 
emergence is represented as the appearance of a certain small initial green leaf 
area index (parameter GLAIinitial, m2/m2).  A gradual transition from germination 
to tillering is simulated. 

• Tillering: this is the phase of canopy and root growth before the onset of stalk 
growth.  It is characterized by horizontal growth of the canopy.  Biomass is 
allocated to roots, the green canopy and underground reserve, and not to stalk 
fibre or sucrose. 
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• Stalk growth phase: following the gradual onset of stalk growth, biomass is 
allocated to structural stalk fibre and stalk sucrose, in addition to root and leaf 
fibre. 

Shoot emergence starts after TTem_P or TTem_R thermal time (°Cd, calculated using 
cardinal temperatures Tb_germ_P or Tb_germ_R, To_germ, Tf_germ, see Section 
5.2.4) has elapsed after crop start, for plant/ratoon crops respectively.  Crop start is set 
by the user.  For ratoon crops, this is the date of the previous harvest.  For plant crops, 
it is recommended that the date of the first irrigation or significant rainfall event after 
planting is specified as the crop start date.  The daily change in leaf area due to 
emergence of underground shoots, dLAIem (m2/m2/d) is calculated as: 

𝑑𝐿𝐴𝐼𝑒𝑚 = {
0, 𝐶𝑇𝑇𝑒𝑚 < 𝑇𝑇𝑒𝑚_𝑋

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐺𝐿𝐴𝐼 ∗ 𝑑𝐸𝑚𝐹𝑟𝑎𝑐
 (5-1) 

where GLAIinitial is the starting green leaf area index when fully-emerged, CTTem 
(°Cd) is the thermal time from crop start to date of primary shoot emergence, TTem_X 
is TTem_P or TTem_R, and dEmFrac represents the daily change in the fraction of 
emergence completed, calculated as: 

𝑑𝐸𝑚𝐹𝑟𝑎𝑐 = (1 − 𝑒𝑥𝑝(−0.025 ∗ max(0, 𝐶𝑇𝑇𝑒𝑚 − 𝑇𝑇𝑒𝑚_𝑋)))

− (1 − 𝑒𝑥𝑝(−0.025 ∗ max(0, 𝐶𝑇𝑇𝑒𝑚𝑑−1 − 𝑇𝑇𝑒𝑚_𝑋))) 

(5-2) 

where CTTemd-1 is the previous day’s cumulative thermal time value.  The underlying 
exponential equation used in Eq. (5-2) is from the DSSAT-Canegro model (Eq. (7) from 
Jones & Singels (2018)), which describes the cumulative distribution of primary shoot 
emergence as a function of thermal time.  The coefficient (0.025) is an empirical 
parameter fitted to this DSSAT-Canegro primary shoot emergence function.  

dLAIem is integrated with total green leaf area index each day (see Section 5.2.5). 

The transition from tillering to stalk growth (referred to as the “onset of stalk growth”, 
OSG) is implemented as a gradual transition (over physiological development period) 
rather than a single event, in order to take account of the range in developmental 
stages of tillers and stalks. 

OSGfrac is the fraction of shoots that have commenced stalk growth.  A logistic function 
(Eqn. (5-3); Figure 5-3) defines the relationship between fractional interception of 
photosynthetically-active radiation (FIinter) and OSGfrac:   

𝑂𝑆𝐺𝑓𝑟𝑎𝑐 =
1

1 + 𝑒−1∗𝑂𝑆𝐺𝑓𝑟𝑎𝑐𝑐1∗(𝐹𝐼𝑖𝑛𝑡𝑒𝑟−𝐹𝐼_𝑂𝑆𝐺)
 

(5-3) 

where OSGfracc1 is a slope parameter and FI_OSG is the FIinter value at which 50% 
of shoots have transitioned to stalk growth.  It is understood however that the light 
environment within the stool – i.e. within-row (“intra-row”) radiation interception – 
determines OSG (Singels and Smit, 2009).  For this reason, OSG occurs earlier in 
FIinter terms for crops with wide row-spacing (RowSpc, m) and vice versa.  FI_OSG is 
estimated from row-spacing and a trait parameter, FI_OSG1.5, defined as the inter-row 
radiation interception value at which 50% of shoots have transitioned to stalk growth, 
for a reference crop grown at 1.5 m row-spacing.  Based on analysis of row-spacing 
trial data from Singels and Smit (2009), the model assumes that a narrow row-spacing 
(0.75 m or less) will have FI_OSG = 0.85; and that this will decrease curvilinearly with 
increasing row-spacing 

𝐹𝐼_𝑂𝑆𝐺 = 𝑅𝑆𝑃2 + 0.85 ∗ 𝑅𝑜𝑤𝑆𝑝𝑐𝑅𝑆𝑃1 (5-4) 
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where RSP1 is a coefficient regulating the change in FI_OSG with row-spacing.  Slope 
and intercept coefficients RSP1 and RSP2 are calculated dynamically by fitting a curve 

to cardinal points {(0.75, 0.85); (1.5, FI_OSG1.5), and (3.0, 𝐹𝐼_𝑂𝑆𝐺1.5 − (0.9 ∗

(0.85 −  𝐹𝐼_𝑂𝑆𝐺1.5)))}.   

 

Figure 5-2.  Relationship between the FI_OSG (the inter-row fractional radiation 
interception value at which 50% of shoots have transitioned to stalk growth) and row-

spacing. 

Typical values for FI_OSG1.5 and OSGfracc1 are 0.75 and 20.0 respectively, derived by 
fitting Eqn. (5-3) to observations of SDM/ADM (a measurable proxy for OSGfrac; Figure 
5-4) and FIinter to estimate a value for FI_OSG for that row-spacing (1.5 m), and then 
applying the inverse of Eqn (5-4) to calculate FI_OSG1.5.   

 

 

Figure 5-3.  Onset of stalk growth fraction (OSGfrac) as a logistic function of 
fractional interception of photosynthetically-active radiation (PAR).  Parameter values 
are explained in the text; parameter values FI_OSG and OSGfracc1 are 0.70 and 20 

respectively in this example. 
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Figure 5-4.  Example of fitting values for parameters OSGfracc1 and FI_OSG, used in 
the model equation for calculating the transition from tillering to stalk growth.  The 

data shown are for cultivar R570 at five irrigated sites, 1.5 m row-spacing.  The “Belle 
Glade” crops included leaf sheath dry mass with stalk dry mass observations, 

resulting in overestimated values at low fractional radiation interception values. 

Although this model does not consider individual leaves or shoots, a nominal number 
of leaves (LFNO, l/shoot) for a representative 50th-percentile primary shoot is 
maintained and used as a measure of physiological age to regulate two process 
parameter values: radiation extinction coefficient (explained in Section 5.2.6), and the 
start of stalk sugar accumulation (Section 5.2.7, Eq. (5-40)).   

LFNO is calculated using a daily leaf phyllocron interval PI and cumulative thermal time 
(TTlfno, °Cd), as per DSSAT-Canegro (Jones and Singels, 2018).  PI is calculated from 
two trait parameters: LFPI1 and LFPI2 (°Cd), phyllocron interval values corresponding 
with rapid leaf appearance in the young crop and slower leaf appearance in the mature 
crop (Inman-Bamber, 1994).  The model switches from the short phyllocron to the 
longer phyllocron as the crop transitions from the tillering the stalk growth phase, with 
the following calculation: 

𝑃𝐼 = 𝐿𝐹𝑃𝐼1 +  (𝐿𝐹𝑃𝐼2 −  𝐿𝐹𝑃𝐼1) ∗ 𝑂𝑆𝐺𝑓𝑟𝑎𝑐 (5-5) 

Leaf PI values are widely published, and can be determined by via interactive 
calibration to maximise correlation between simulated and observed leaf number data. 

5.2.4 Temperature control factors  

Several processes (germination, photosynthesis, canopy and stalk expansion, 
reference leaf appearance rate) are controlled by temperature, represented in the 
model with process-specific temperature control factors (FT).  FT values are calculated 
using cardinal temperatures: FT is zero for daily mean air temperatures below the ‘base 
temperature’ (Tb); increases linearly to a maximum value when temperatures equal or 
are in the range of ‘optimal temperature’ (To); and decrease linearly to zero at and 
above ceiling temperature (Tf).  Different base temperature for germination values are 
permitted for plant crops (Tb_germ_P, °C) and ratoon crops (Tb_germ_R, °C).  This 
was done for two reasons, despite it being physiologically likely that these values are 
the same.  Firstly, a wide range of base temperatures for germination have been 
published, sometimes for the same genotype, so this functionality provided greater 
flexibility to explore different values.  Secondly, as the buds in ratoon crops are closer 
to the soil surface than for plant crops, soil temperatures fluctuate within a wider range 
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over the course of the day; this dynamic is lost when mean daily air temperature is 
used to drive germination, and may have the apparent effect of a different base 
temperature value.  

FT values are calculated for processes listed in Table 5-1; FT temperature functions 
are shown for canopy expansion and photosynthesis (Figure 5-5). 

 

 

Figure 5-5.  Temperature factor relationships with daily mean air temperature for the 
control of leaf area expansion (FTlai) and photosynthesis (FTphoto). 

Values for these parameters were based on those published by Jones & Singels (Jones 
and Singels, 2018) for the DSSAT-Canegro model. 

5.2.5 Canopy expansion 

 

The daily change in green leaf area index (dGLAI, m2/m2/d) is calculated (Eqn. (5-6)) 
from daily leaf area expansion (dLAIexp, m2/m2/d, Eqn. (5-7)) and daily senescence 
(dLAIsen, m2/m2/d, Eqn. (5-14)) rates.  dLAIexp is calculated from the dry mass of new 
leaf area each day (dLDM, t/ha/d) and specific leaf area (SLA, cm2/g). 

     

𝑑𝐺𝐿𝐴𝐼 = 𝑑𝐿𝐴𝐼𝑒𝑚 +  𝑑𝐿𝐴𝐼𝑒𝑥𝑝 − 𝑑𝐿𝐴𝐼𝑠𝑒𝑛 (5-6) 

𝑑𝐿𝐴𝐼𝑒𝑥𝑝 = 𝑑𝐿𝐷𝑀 ∗ 𝑆𝐿𝐴 ∗ 0.01 (5-7) 

 

The calculation of SLA uses the concept from the APSIM-Sugar model (Keating et al., 
1999).  SLA is permitted to vary daily between G input minimum (SLAmin) and maximum 
(SLAmax) SLA values, depending on source:sink status.  SLA is set to SLAmax when 
assimilate partitioned to leaves (dLDMsource, t/ha/d, dry mass of leaf blades, sheaths 
and meristem) is insufficient to fulfil the requirements of the expanding leaf area, 
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calculated using SLAmax (dLDMsinkmin, t/ha/d, Eqn. (5-10)).  SLA is set to SLAmin (i.e. 
densest leaves) when dLDMsource exceeds the biomass required to grow the leaf area 
that day, calculated using SLAmin (dLDMsinkmax, t/ha/d, Eqn. (5-11)).   

In cases where the source:sink balance falls between these boundaries, a proportional 
SLA (SLAvar, cm2/g), between SLAmin and SLAmax, is determined (this is not specified 
for the APSIM-Sugar model). 

This behaviour is described formally as follows: 

𝑆𝐿𝐴 = {

𝑆𝐿𝐴𝑚𝑖𝑛  , 𝑆𝐿𝐴𝑣𝑎𝑟 < 𝑆𝐿𝐴𝑚𝑖𝑛

𝑆𝐿𝐴𝑣𝑎𝑟 , 𝑆𝐿𝐴𝑚𝑖𝑛 ≤ 𝑆𝐿𝐴𝑣𝑎𝑟 ≤ 𝑆𝐿𝐴𝑚𝑎𝑥

𝑆𝐿𝐴𝑚𝑎𝑥, 𝑆𝐿𝐴𝑣𝑎𝑟 > 𝑆𝐿𝐴𝑚𝑎𝑥

 

(5-8) 

𝑆𝐿𝐴𝑣𝑎𝑟 = 𝑆𝐿𝐴𝑚𝑖𝑛 + ((𝑆𝐿𝐴𝑚𝑎𝑥 − 𝑆𝐿𝐴𝑚𝑖𝑛) ∗ (1 −
𝑑𝐿𝐷𝑀𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑑𝐿𝐷𝑀𝑠𝑖𝑛𝑘𝑚𝑖𝑛

𝑑𝐿𝐷𝑀𝑠𝑖𝑛𝑘𝑚𝑎𝑥 − 𝑑𝐿𝐷𝑀𝑠𝑖𝑛𝑘𝑚𝑖𝑛  
)) 

(5-9) 

The minimum sink strength for the expanding canopy (dLDMsinkmin, t/ha/d), 
corresponding with maximum SLA, is calculated as: 

𝑑𝐿𝐷𝑀𝑠𝑖𝑛𝑘𝑚𝑖𝑛 = 𝑑𝐿𝐴𝐼𝑝𝑜𝑡 ∗
1.0

𝑆𝐿𝐴𝑚𝑎𝑥
  ∗  100.0 

(5-10) 

where dLAIpot (m2/m2/d) is the potential daily expansion in green leaf area index (Eqn. 
(5-12)).  The maximum daily sink strength for canopy expansion (dLDMsinkmax (t/ha/d), 
corresponding with SLAmin) is calculated as: 

𝑑𝐿𝐷𝑀𝑠𝑖𝑛𝑘𝑚𝑎𝑥 = 𝑑𝐿𝐴𝐼𝑝𝑜𝑡 ∗
1.0

𝑆𝐿𝐴𝑚𝑖𝑛
  ∗  100.0 

(5-11) 

Minimum and maximum SLA values (i.e. for SLAmin and SLAmax respectively) were 
calculated by dividing measurements of green leaf area index by green leaf canopy dry 
mass (i.e. the sum of leaf blade, meristem and leaf sheath dry masses) and rounded 
to the nearest 5 cm2/g.  It is noted that the definition of SLA in other crop models, and 
values reported in the literature, usually excludes leaf sheath and meristem dry mass. 

The calculation of dLAIpot forms one of defining features of this model: a relative 
growth rate concept is used, whereby the size of the canopy can potentially increase 
by a fraction of its current size each day (and where the actual increase is limited by 
assimilate partitioned to the canopy).  This fraction decreases with crop age, reflecting 
a situation where green leaf area index (GLAI, m2/m2) can double in a matter of days 
in a young crop (when transitioning from one to two leaves, for example), but increases 
by a much smaller proportion each day in a fully-canopied crop.  dLAIpot is calculated 
as: 

𝑑𝐿𝐴𝐼𝑝𝑜𝑡 = 𝑅𝐺𝑅𝑙𝑎𝑖 ∗ 𝐹𝑇𝑙𝑎𝑖 ∗ 𝐺𝐿𝐴𝐼 (5-12) 

𝑅𝐺𝑅𝑙𝑎𝑖 = 𝑅𝐺𝑅𝑙𝑎𝑖𝑚𝑖𝑛 + ((𝑅𝐺𝑅𝑙𝑎𝑖𝑚𝑎𝑥 − 𝑅𝐺𝑅𝑙𝑎𝑖𝑚𝑖𝑛) ∗ (1 − 𝑂𝑆𝐺𝑓𝑟𝑎𝑐)) (5-13) 

where RGRlai is the daily source-unlimited relative canopy growth rate; RGRlaimax and 
RGRlaimin are respectively maximum and minimum relative GLAI growth rate trait 
parameters.  The transition from RGRlaimax to RGRlaimin (Eqn. (5-13)) is regulated by 
OSGfrac. 
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Figure 5-6.  Example relationship showing source-unlimited relative growth rate of 
green leaf area index (RGRlai), as a function of OSGfrac (top), which is itself a 

function of fractional interception of radiation (FIPAR) (bottom). Parameter names are 
explained in the text. 

Initial guidance for determining values for RGRlaimax and RGRlaimin came from 
analysing well-calibrated DSSAT-Canegro simulations (Jones et al., 2021).  These 
values were finalised via interactive calibration with the objective of minimising 
differences between simulated and observed GLAI and senesced leaf mass. 

The calculation of dLAIsen is based on the shading-driven aspect of leaf senescence 
in the APSIM-Sugar model2. 

𝑑𝐿𝐴𝐼𝑠𝑒𝑛 = 𝐺𝐿𝐴𝐼 ∗ 𝑅𝑆𝑅𝑙𝑎𝑖 (5-14) 

𝑅𝑆𝑅𝑙𝑎𝑖 =  {
0, 𝐺𝐿𝐴𝐼 ≤  𝐺𝐿𝐴𝐼𝑠𝑡

𝐿𝐴𝐼𝑠𝑒𝑛𝑐1 ∗ (𝐺𝐿𝐴𝐼 − 𝐺𝐿𝐴𝐼𝑠𝑡)
 

(5-15) 

where RSRlai is the daily relative senescence rate (the fraction of GLAI that senesces 
each day), identical to the APSIM variable slai_light_fac.  Equation (5-15) is illustrated 
in Figure 5-7.  Trait parameter GLAIst (m2/m2; in APSIM, lai_sen_light; typical values 
2.3-3.0 m2/m2) represents the threshold GLAI at which senescence starts.  According 
to Equation (5-15), the relative senescence rate will be higher the larger the difference 
between GLAI and GLAIst; this relative senescence rate is zero when GLAI ≤ GLAIst.  

 
2 The description of senescence in the APSIM-Sugar model literature reviewed lacks detail.  The 
algorithm was based on the code viewed at: 
 
https://github.com/APSIMInitiative/APSIMClassic/blob/27396788a2c0fcc2750b72700d7fccf35fc7c7ea/
Model/CropTemplate/crp_cnpy.f90 (1 June 2021) 
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Trait parameter LAIsenc1 (0.007, sen_light_slope in APSIM) defines the relationship 
between GLAI above the threshold and RSRlai. 

 

Figure 5-7.  Relationship between the relative fraction of green leaf area index (GLAI, 
m2/m2) senesced each day (RSRlai) and GLAI.  Parameter GLAIst is explained in the 

text. 

Leaf senescence can be triggered by, or its rate enhanced, by frost.  The approach 
used in CaneGEM for capturing frost impacts on senescence is based on APSIM-
Sugar: the leaf area fraction senesced due to frost ranges linearly between 100 % at a 
minimum air temperature of -5 °C or below, to zero at 0 °C.  

No provision is currently made for accelerating senescence with water stress, as the 
model does not simulate water stress.  This could be done by making the value of 
GLAIst dependent on water status, or the ratio of total source to sink strengths. 

GLAI is integrated each day as 

𝐺𝐿𝐴𝐼 = 𝐺𝐿𝐴𝐼 + 𝑑𝐺𝐿𝐴𝐼 (5-16) 

Fractional interception of photosynthetically-active radiation by the crop canopy 
(FIinter) is calculated from green leaf area index (GLAI, m2/m2) as  

𝐹𝐼𝑖𝑛𝑡𝑒𝑟 =  1 − 𝑒−𝐾𝑒∗𝐺𝐿𝐴𝐼 (5-17) 

where Ke is a photosynthetically-active canopy radiation extinction coefficient that 
varies with leaf number (Singels et al., 2008).  This is the standard Beer’s Law 
relationship, used in many crop models including DSSAT-Canegro. 

Ke is calculated by interpolating linearly between minimum (Kemin) photosynthetically-
active canopy radiation extinction at leaf 1, and maximum extinction (Kemax) at and 
after a defined maximum leaf number (LfnoKemax).  This is illustrated in Figure 5-8.  
Values for DSSAT-Canegro (Jones and Singels, 2018) were used. 
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Figure 5-8.  Example relationship between canopy extinction coefficient and 
physiological age expressed as primary shoot leaf number. 

 

5.2.6 Biomass accumulation (photosynthesis) 

Source strength (SOURCE, t/ha/d) includes daily photosynthesis rate (PHOTO, t/ha/d) 
and the daily provision of carbohydrate from the underground reserve (dRES, t/ha/d).  

𝑆𝑂𝑈𝑅𝐶𝐸 = 𝑃𝐻𝑂𝑇𝑂 + 𝑑𝑅𝐸𝑆 (5-18) 

Photosynthesis is calculated using a radiation-use efficiency approach (Eqn. (5-19)).  
Two measures of radiation use efficiency are used: one for above-ground mass only 
(as this is practical to measure), and another for whole-plant radiation use efficiency 
(as this allow for mass allocation to roots).  The theoretical maximum radiation use 
efficiency trait parameter (RUEadm, g/MJ) is defined for optimal temperature and 
moisture availability conditions, for above-ground biomass only.  Growth and 
maintenance are already accounted-for in the RUEadm value, but this excludes mass 
allocated to roots.  Whole-plant theoretical maximum radiation use efficiency (RUEo, 
g/MJ) is defined as the net photosynthesis rate (after deductions from growth and 
maintenance respiration), per unit of intercepted photosynthetically-active radiation 
under optimal temperature, moisture and nutrition conditions.  RUEo is estimated (Eqn. 
(5-20)) from RUEadm and the average fraction of respiration-net photosynthesis that 
is allocated to roots over the lifetime of the crop (trait parameter RTPFavg (g/g)).  

𝑃𝐻𝑂𝑇𝑂 = 𝐹𝑇𝑝ℎ𝑜𝑡𝑜 ∗ 𝐹𝐼𝑖𝑛𝑡𝑒𝑟 ∗ 𝑅𝑈𝐸𝑜 ∗ 𝑃𝐴𝑅 ∗ 0.01 (5-19) 

𝑅𝑈𝐸𝑜 = 𝑅𝑈𝐸𝑎𝑑𝑚 ∗ (
1

1 − 𝑅𝑇𝑃𝐹𝑎𝑣𝑔
) 

(5-20) 

where 𝑃𝐴𝑅 = 0.5 ∗ 𝑆𝑅𝐴𝐷, and SRAD (MJ/m2/d) is daily incident global solar radiation 
(model input). 

 

The basis for the values for RUEadm came from previous studies (Jones et al., 2021, 
2019), but interactive calibration was required to finalise the RUEadm values.  The 
value for RTPFavg (19%) was a compromise between values used in the DSSAT-
Canegro (≈14% of total dry mass for a crop of 100 t/ha total dry mass) and APSIM-
Sugar models (30% of ADM at emergence decreasing asymptotically to 20% at 
flowering (Keating et al., 1999), i.e. 0.30/(1+0.30) = 23% to 0.20/(1+0.2) = 16%).  In 
practice, this parameter value is calibrated in conjunction with RUEadm, but should be 
between 14 and 23% on the basis of values derived from published parameter values 
for DSSAT-Canegro and APSIM-Sugar. 
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Additional source can come from the underground carbohydrate reserve (RES, t/ha, 
see Section 5.2.7, Eq. (5-45)).  Source from RES is considered supplementary and 
can only be used to meet structural sink shortfalls; it does not contribute to stalk sugars.  
Little is known about the rhizome nature of the stool.  No more than RESexfrac 
(tentative value = 0.1 g/g) of the reserve can be made available for use by the plant 
each day.  The maximum mass of supplementary source from this reserve that can be 
supplied each day (dRESmax, t/ha/d) is calculated as: 

𝑑𝑅𝐸𝑆𝑚𝑎𝑥 = 𝑅𝐸𝑆𝑒𝑥𝑓𝑟𝑎𝑐 ∗ 𝑅𝐸𝑆 (5-21) 

5.2.7 Biomass partitioning to plant components  

Root system mass accumulation 

The growth of the root system is not simulated in terms of rooting front depth or root 
length density, because water stress and uptake are not simulated, but the mass of the 
root system is simulated: source is allocated to the root system to ensure that the 
source:sink dynamics accommodate this sink.   

The daily biomass partitioning to roots (dRDM, t/ha/d) follows a similar approach to 
DSSAT-Canegro, where the daily allocation fraction to roots (RTPF, g/g) is a function 
of total crop dry mass (TDM, t/ha), starting at a relatively high proportion of daily net 
photosynthesis (RTPFc1, g/g) and then decreasing exponentially (controlled by 
parameter RTPFc3) to a relatively stable smaller value (defined by the parameter 
controlling the maximum allocation of assimilate to above-ground biomass, RTPFc2, 
g/g).  dRDM, t/ha/d) is calculated as: 

𝑑𝑅𝐷𝑀 = 𝑅𝑇𝑃𝐹 ∗ 𝑃𝐻𝑂𝑇𝑂 (5-22) 

where 

𝑅𝑇𝑃𝐹 = min(𝑅𝑇𝑃𝐹𝑐1 , 1 − 𝑅𝑇𝑃𝐹𝑐2 ∗ (1 − 𝑒−1∗𝑅𝑇𝑃𝐹𝑐3∗𝑇𝐷𝑀)) (5-23) 

This is illustrated in Figure 5-9. 

 

Figure 5-9.  Example (using standard parameter values: RTPFc1 = 0.95, RTPFc3 = 
0.6, RTPFc2 = 0.88) of root biomass partitioning fraction as a function of total crop dry 

mass. 

Values for RTPFc1, RTPFc2 and RTPFc3 were based on published values for the 
Canegro model, corresponding with DSSAT-Canegro’s Max_rootpf (Jones, 2013), 
ADMPFmax and B parameters (Singels et al., 2002) respectively. 
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Canopy mass 

The daily allocation of photo-assimilate partitioned to above-ground parts of the stalk 
(dADMsource, t/ha/d) is calculated as the remainder of the daily biomass increment 
after deducting the daily allocation to root dry mass (dRDM, t/ha/d): 

𝑑𝐴𝐷𝑀𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑃𝐻𝑂𝑇𝑂 − 𝑑𝑅𝐷𝑀 (5-24) 

The dry mass of the canopy (LDM, t/ha) is integrated daily as 𝐿𝐷𝑀 = 𝐿𝐷𝑀 + 𝑑𝐿𝐷𝑀, 
where dLDM (t/ha/d) is the daily increase in canopy dry mass: 

𝑑𝐿𝐷𝑀 = 𝑑𝐿𝐷𝑀𝑠𝑜𝑢𝑟𝑐𝑒 + 𝑑𝐿𝐷𝑀𝑟𝑒𝑠 (5-25) 

dLDMsource (t/ha/d) is the daily photo-assimilate partitioned to the canopy, and 
dLDMres (t/ha/d) is the daily allocation of underground reserves to supplement canopy 
expansion. 

dLDMsource is calculated allometrically, based on OSGfrac: 

𝑑𝐿𝐷𝑀𝑠𝑜𝑢𝑟𝑐𝑒 = (1 − 𝑂𝑆𝐺𝑓𝑟𝑎𝑐 ∗ 𝑆𝐾𝑃𝐹𝑚𝑎𝑥) ∗ 𝑑𝐴𝐷𝑀𝑠𝑜𝑢𝑟𝑐𝑒 (5-26) 

where SKPFmax (g/g; trait parameter) is the maximum fraction of above-ground 
biomass that can be partitioned to stalk, and dLDMres is calculated as: 

𝑑𝐿𝐷𝑀𝑟𝑒𝑠 = min(𝑑𝐿𝐷𝑀𝑠𝑓, (1 − 𝑂𝑆𝐺𝑓𝑟𝑎𝑐 ∗ 𝑆𝐾𝑃𝐹𝑚𝑎𝑥) ∗ 𝑑𝑅𝐸𝑆𝑚𝑎𝑥) (5-27) 

where the daily leaf source shortfall (dLDMsf, t/ha/d) is calculated as 

𝑑𝐿𝐷𝑀𝑠𝑓 = max (0, 𝑑𝐿𝐷𝑀𝑠𝑖𝑛𝑘𝑚𝑖𝑛  −  𝑑𝐿𝐷𝑀𝑠𝑜𝑢𝑟𝑐𝑒) (5-28) 

Values for SKPFmax have been reported in the literature (Jones and Singels, 2018; 
Keating et al., 1999; Singels and Bezuidenhout, 2002) as this is a common sugarcane 
model input, can be estimated from observation as the fraction SDM/ADM (Jones et 
al., 2019), or calibrated interactively by comparing simulated vs observed SDM and 
ADM. 

Senesced canopy mass 

The increase in dry mass of senesced leaves each day (dSEN, t/ha/d) is calculated as 

𝑑𝑆𝐸𝑁 = 𝑑𝐿𝐴𝐼𝑠𝑒𝑛 ∗
1.0

𝑆𝐿𝐴
∗ 100.0 

(5-29) 

where SLA is specific leaf area (cm2/g) of new leaf area developing on the day of 
senescence.  Ideally, SLA on the day the senescing leaves were formed would be 
used, but as this model does not simulate individual leaves, it was not possible to do 
this. 

The mass of senesced material (SEN, t/ha), sometimes termed ‘trash’, is calculated 
as: 

𝑆𝐸𝑁 =  𝑆𝐸𝑁 +  𝑑𝑆𝐸𝑁 (5-30) 

 

Stalk fibre mass 

The objective of calculating stalk expansion is to determine the daily demand for stalk 
fibre, in order then to estimate stalk sugar accumulation.  In principle, a set of growing 
(well-watered) stalks will elongate (at a rate determined by temperature) and create a 
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demand for structural stalk fibre as the volume of stalk increases – whether this is rapid 
elongation for fewer/thinner stalks or less rapid elongation for more/thicker stalks. 

dSKF (t/ha/d) is the daily increase in stalk fibre mass.  dSKF is determined by the lower 
of sink strength for stalk fibre (dSKsink, t/ha/d) and source allocated to stalks 
(dSKsource, t/ha/d), and the allocation of underground reserves to expanding stalks 
(dSKres, t/ha/d): 

𝑑𝑆𝐾𝐹 = 𝑚𝑖𝑛(𝑑𝑆𝐾𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑆𝐾𝑠𝑖𝑛𝑘) + 𝑑𝑆𝐾𝑟𝑒𝑠 (5-31) 

dSKsource is simply any source remaining after meeting leaf expansion demands, and 
dSKsink is based on a daily potential stalk volume expansion rate (dSKpot, cm3/m2/d), 
which is driven by temperature and crop development (represented by OSGfrac).   

𝑑𝑆𝐾𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑑𝐴𝐷𝑀𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑑𝐿𝐷𝑀 (5-32) 

𝑑𝑆𝐾𝑠𝑖𝑛𝑘 = 𝑑𝑆𝐾𝑝𝑜𝑡 ∗
1

𝑆𝑆𝑉
∗ 0.01 

(5-33) 

𝑑𝑆𝐾𝑝𝑜𝑡 = 𝑆𝐾𝑒𝑥𝑝𝑜 ∗ 𝐹𝑇𝑠𝑘 ∗ 𝑂𝑆𝐺𝑓𝑟𝑎𝑐 (5-34) 

where SKexpo is a trait parameter indicating the maximum daily stalk expansion rate 
(cm3/m2/d; the 0.01 term in Eqn. (5-33) translates units from cm3/m2 to m3/ha), and 
FTsk is the temperature control factor for stalk expansive growth (see Section 5.2.4).   

dSKres is the lower of the stalk fibre biomass allocation shortfall (dSKsf, t/ha/d) and 
available underground reserve source remaining after deductions by leaf expansion 
demand: 

𝑑𝑆𝐾𝑟𝑒𝑠 = min(𝑑𝑆𝐾𝑠𝑓, 𝑑𝑅𝐸𝑆𝑚𝑎𝑥  − 𝑑𝐿𝐷𝑀𝑟𝑒𝑠) (5-35) 

where 

𝑑𝑆𝐾𝑠𝑓 = max(0.0, 𝑑𝑆𝐾𝑠𝑖𝑛𝑘 −  𝑑𝑆𝐾𝑠𝑜𝑢𝑟𝑐𝑒) (5-36) 

Stalk sugars mass 

Stalk sugars consist of sucrose and hexoses (glucose and fructose).  Stalk sugars 
mass (SKS, t/ha) and the daily change in stalk sugars mass (dSKS, t/ha) are given by  

𝑑𝑆𝐾𝑆 =  𝑑𝑆𝐾𝑆𝑠𝑜𝑢𝑟𝑐𝑒 ∗ 𝑆𝐾𝑆𝑃𝐹𝑝𝑜𝑡 (5-37) 

𝑆𝐾𝑆 =  𝑆𝐾𝑆 + 𝑑𝑆𝐾𝑆 (5-38) 

where dSKSsource (t/ha/d) is the daily assimilate available for partitioning to stalk 
sugars, and SKSPFpot (0-1) represents the relative capacity of the stalk to store 
sucrose. 

dSKSsource is calculated as:   

𝑑𝑆𝐾𝑆𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑃𝐻𝑂𝑇𝑂 + 𝑑𝐿𝐷𝑀𝑟𝑒𝑠 + 𝑑𝑆𝐾𝑟𝑒𝑠 − 𝑑𝑅𝐷𝑀 − 𝑑𝐿𝐷𝑀 − 𝑑𝑆𝐾𝐹 (5-39) 

while SKSPFpot is based on the number of internodes that have appeared since the 
start of the transition from tillering to stalk growth.  SKSPFpot is linearly interpolated 
(Eq. (5-40), Figure 5-10) between zero (before and until LFNOsksmin internodes have 
appeared), and one (when LFNOsksmax internodes have appeared) – at which point 
the stalks reach their maximum capacity to store sugars. 

𝑆𝐾𝑆𝑃𝐹𝑝𝑜𝑡 = 𝑓(𝐿𝐹𝑁𝑂) (5-40) 
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SKSPFpot is limited such that stalk sugar storage capacity cannot exceed 65% of total 
stalk dry mass. 

 

Figure 5-10.  Relative stalk sugars partitioning capacity (SKSPFpot) vs number of 
leaves appeared after the start of stalk growth.  Parameter values are explained in 

the text. 

The values for trait parameters LFNOsksmin and LFNOsksmax are based on internode 
sucrose accumulation reported in Singels & Inman-Bamber (Singels and Inman-
Bamber, 2011).  Considering that this model effectively simulates a single “big stalk” 
that represents a population of stalks of different ages and stages of development, 
these parameter values ought to be determined interactively to match simulated and 
observed mass and dry matter contents of stalk sugars. 

Stalk hexose mass 

It is assumed that a certain mass of stalk hexose is required for a unit of fibre synthesis 
in the stalk (stalk fibre synthesis:hexose ratio, SFHXR, calibrated as 30.0 g/g) (M. R. 
Jones et al., 2011).  Stalk hexose mass each day (SKH, t/ha) is calculated as 

𝑆𝐾𝐻 =  𝑆𝐾𝑆 ∗ 𝑆𝐾𝐻𝑓𝑟𝑎𝑐 (5-41) 

where SKHfrac is the hexose fraction of stalk sugars, calculated as: 

𝑆𝐾𝐻𝑓𝑟𝑎𝑐 =  𝑆𝐾𝐻𝑓𝑟𝑎𝑐𝑑−1 ∗ 0.95 + 𝑚𝑖𝑛 (1.0, { 
𝑆𝐹𝐻𝑋𝑅 ∗ 𝑑𝑆𝐾𝐹

𝑆𝐾𝑆
, 𝑆𝐾𝑆 > 0.001

1.0, 𝑆𝐾𝑆 ≤ 0.001
 ) ∗ 0.05,  

0.1 ≤ 𝑆𝐾𝐻𝑓𝑟𝑎𝑐 ≤ 0.50 

(5-42) 

where SKHfracd-1 is the previous day’s SKHfrac value (initialised to 0.50 on the first 
day of the simulation).  The 0.95 and 0.05 terms in Eq. (5-42) ensure that hexose mass 
fraction cannot change by more than 5% per day; and the hexose fraction is restricted 
to between 10 and 50% (based on values reported by Singels & Inman-Bamber 
(2011)). 

Eq. (5-42) is illustrated, for two fibre growth rates (dSKF = 0.150 (favourable conditions 
for expansive growth) and 0.015 (favourable conditions for sucrose accumulation)), in 
Figure 5-11. 
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Figure 5-11.  Relationship between total stalk sugar mass (SKS, t/ha) and the fraction 
of sugar that is required to be hexose (SKHfrac, g/g), for two daily fibre synthesis 

(dSKF, t/ha/d) rates: low (dSKF = 0.015) and high (dSKF = 0.150). 

Stalk sucrose mass 

The mass of stalk sucrose (SKSC, t/ha) is calculated from the complement of hexose 
fraction: 

𝑆𝐾𝑆𝐶 = (1 − 𝑆𝐾𝐻𝑓𝑟𝑎𝑐) ∗ 𝑆𝐾𝑆 (5-43) 

   

As the stalk gets bigger, the mass of fibre synthesised each day varies according to 
temperature and radiation intensity while the mass of stalk sugars continually 
increases, resulting in a decreasing overall proportion of hexoses in the stalk (SKHfrac, 
g/g, Eq. (5-42)), and so increasing juice purity.  This approach is different to that of 
Singels & Inman-Bamber (2011), who used a static relationship between structural dry 
mass fraction of total ADM and hexose fraction.   

Underground reserve mass 

If the allocation of source to stalk sugars exceeds the capacity of the stalks to store 
sugars, any remaining source is allocated to the underground reserve. 

𝑑𝑅𝐸𝑆 = 𝑑𝑆𝐾𝑆𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑑𝑆𝐾𝑆 − 𝑑𝐿𝐷𝑀𝑟𝑒𝑠 − 𝑑𝑆𝐾𝑟𝑒𝑠 (5-44) 

The mass of the underground carbohydrate reserve is calculated as 

𝑅𝐸𝑆 =  𝑅𝐸𝑆 + 𝑑𝑅𝐸𝑆 (5-45) 

 

5.3 Methodology 

5.3.1 Overview and general considerations 

The use of simulated soil temperatures to drive germination was assessed for plant 
and ratoon crops at the ICSM sites.  There appeared to be no consistent advantage to 
using soil temperatures rather than air temperatures, so CaneGEM model 
development continued using a standard model of germination based on air 
temperatures.  A short description of the exploration of simulated soil temperatures is 
provided in Appendix A. 
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CaneGEM model calibration and validation was undertaken using detailed growth 
analysis datasets (Table 5-3) for cultivar NCo376, as sufficiently detailed datasets for 
the Gs used for final evaluation of GxE interaction effects were not available.  

It was hypothesized that improvements in the simulation of canopy cover would lead 
to improved simulation of GxE interaction effects for this as well as biomass and yield 
accumulation.  Accordingly, fractional radiation interception (FIPAR, FIPARa) and 
aboveground dry biomass accumulation (ADM, ADMh) were considered important 
variables both for model calibration and validation.  Where it was necessary to estimate 
date of emergence (DoE, d) from shoot density data, such observations were required.  
The set of NCo376 datasets with observations that fulfilled these requirements were 
assigned to the calibration and validation sets.  

For the calibration of canopy development, DoE was “forced” to match observations.  
This was done to ensure the most accurate and realistic calibration of canopy-related 
parameters.  Calibration of germination-related model trait parameters was then 
conducted separately. 

The CaneGEM model was then validated separately with predetermined DoE and 
simulated DoE. 

The calibrated CaneGEM model (with DoE predetermined and simulated, separately) 
was then assessed for its performance in simulating E, G and GxE interaction effects 
on seasonal radiation interception and dry biomass accumulation for a multi-
environment, multi-genotype trial.   

As the objective was to develop an improved sugarcane crop growth simulation model, 
it was important to compare the performance of the new model with that of an existing 
well-respected and widely-used crop model.  The DSSAT-Canegro v4.5 model (Jones 
and Singels, 2018) was used to simulate the NCo376 validation experiments (using 
standard NCo376 trait parameter values) as well as the E, G and GxE interaction 
effects (using parameter values for N41, R570 and CP88-1762 determined by Jones 
et al. (2021)).   DSSAT-Canegro was chosen for comparison because it presented the 
strongest challenge against which to benchmark CaneGEM performance: 

• DSSAT-Canegro has been calibrated extensively for cultivar NCo376, and the 
available data for CaneGEM model calibration and validation was also for 
NCo376.   

• DSSAT-Canegro gave the strongest prediction of GxE interaction effects in 
Jones et al. (2021) (Chapter 4 of this thesis) 

The CaneGEM and DSSAT-Canegro models were compared using exactly the same 
validation and GxE assessment experiments.  Only the CaneGEM model was 
calibrated for variety NCo376, and while both CaneGEM and DSSAT-Canegro were 
calibrated using the same datasets.  It should be noted that datasets used for 
development of CaneGEM model concepts and model calibration were not explicitly 
separated, although model validation was undertaken with independent 
datasets.Datasets for model calibration, validation and assessment of E, G and GxE 
interaction effects are listed in Table 5-3.  
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Table 5-3.  Detail of experimental datasets used for model calibration (CaneGEM model) and validation (CaneGEM and DSSAT-
Canegro models), and for assessment of E, G and GxE interaction effects (CaneGEM and DSSAT-Canegro models).  “CC” refers to 
crop class (P = plant crop, R1 = 1st ratoon, R2 = 2nd ratoon, etc).  “Task”: C = calibration, V = validation, GE = G / E/ GxE interaction 

evaluation.  “RS” is row-spacing (m). 

Country, site and location, reference CC Start date Harvest date RS Task Irrigation 
type 

Soil type  

NCo376 crops for calibration and validation 

Pongola, South Africa 
27°24’0”S; 31°35’0”E; 308 m a.s.l. 
 
“A/Growth/14”, Donaldson (2009) 

R2 1998-03-03 1999-03-29 1.5 C Drip Ultisol Haploxerults 

R2 1998-04-08 1999-05-03 1.5 C 

R2 1998-05-06 1999-06-07 1.5 V 

R2 1998-08-06 1999-08-03 1.5 V 

R2 1998-12-08 1999-11-30 1.5 V 

Mount Edgecombe, South Africa 
29°42’S, 31°02’E; 96 m a.s.l. 
“A/Growth/16”, Singels et al. (2005c) 

R0 1999-12-09 2000-12-07 1.2 C Drip Lithocutanic / Mollisol 

R1 2000-06-06 2001-08-13 1.2 V 

R1 2000-12-07 2002-04-16 1.2 V 

Mount Edgecombe, South Africa 
29°42’S, 31°02’E; 96 m a.s.l. 
“A/Temp”, Smit & Singels (2007) 

R1 2003-10-13 2004-09-07 1.2 C Drip Humic Ferrasols 

R1 2004-04-07 2005-09-06 1.2 V Drip 

Bruyn’s Hill, South Africa 
29°25’S, 30°41’E; 990 m a.s.l. 
“A/Temp”, Smit & Singels (2007) 

R1 2003-10-16 2004-12-22 1.1 C Overhead 
sprinkler 
 

Haplic Phaeozens 

R1 2004-04-07 2005-09-07 1.1 V 

Mount Edgecombe, South Africa 
29°42’S, 31°02’E; 96 m a.s.l. 
“A/Space”2, Smit & Singels (2009) 

R1 2003-08-29 2004-07-20 0.9 V Drip Haplic Phaeozens 

1.2 V 

1.3 C 

1.6 V 

1.7 V 

USA, Belle Glade 
26°39’02”N; 80°38’08”W; 5 m a.s.l 
“ICSM IGEP”, Jones et al. (2019) 

P 2013-12-12 2015-01-04 1.5 C Water table Dystric Sapric 
Histosol  R1 2015-01-23 2016-01-26 1.5 C 

Reunion, La Mare.   
20°57’0”S; 55°18’0”E; 70 m a.s.l. 
“ICSM IGEP”, Jones et al. (2019) 

R1 2016-01-18 2017-01-25 1.5 C Overhead 
sprinkler 
 

Hypereutric Nitisols 
 

La Mercy, South Africa 
29°50’S, 31°06’E; 50 m a.s.l. 

R1 1995-03-08 1996-05-27 1.2 C Overhead 
sprinkler 

Alfisol Rhodoxeralf 
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Country, site and location, reference CC Start date Harvest date RS Task Irrigation 
type 

Soil type  

“A/Growth/11”, Singels et al. (1998) 

Pongola, South Africa 
27°24’0”S; 31°35’0”E; 308 m a.s.l. 
“Rostron” 

R1 1968-12-17 1970-05-05 1.5 V Overhead 
sprinkler 

Ultisol Haploxerults 

1969-02-11 1970-06-30 C 

1969-04-08 1970-08-25 V 

1969-06-03 1970-10-20 C 

1969-07-29 1970-12-15 C 

1969-09-23 1971-02-09 V 

1969-11-18 1971-04-06 C 

1970-01-13 1971-05-29 V 

ICSM IGEP1 dataset (for evaluating E, G and GxE interaction effects) – N41, R570 and CP88-1762 

Reunion, La Mare.   
20°57’0”S; 55°18’0”E; 70 m a.s.l. 
Jones et al. (2019) 

R1 2016-01-18 2017-01-25 1.5 GE Overhead 
sprinkler 
 

Hypereutric Nitisols 
 

South Africa, Pongola.   
27°24’0”S; 31°35’0”E; 308 m a.s.l. 
Jones et al. (2019) 

P 2014-03-25 2015-03-24 1.5 GE Overhead 
sprinkler 
and drip 

Rhodic Cambisol 
 

USA, Belle Glade.   
26°39’02”N; 80°38’08”W; 5 m a.s.l 
Jones et al. (2019) 

Plant 2013-12-12 2015-01-04 1.5 GE Water table Dystric Sapric 
Histosol  R1 2015-01-23 2016-01-26 1.5 GE 

Zimbabwe, Chiredzi. 
21°02’01.95”S, 31°36’58.52”E, 420 m a.s.l. 
Jones et al. (2019) 

R1 2015-06-03 2016-06-03 1.5 GE Floppy 
overhead 
sprinkler 

Eutric Luvisol 

1International Consortium for Sugarcane Modelling, International GxE Project 

2Destructive (biomass) and non-destructive (radiation interception) measurements were taken in different plots, where, by virtue of the radial row orientation and 
experimentalist choices, row-spacing was slightly different.  
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5.3.2 Models, datasets and model assessment scenarios 

Two sugarcane crop growth simulation models were assessed: DSSAT-Canegro 
(“DC”) and the newly-developed CaneGEM (“GEM”) model.  Three datasets (detailed 
in Table 5-3) were used: two were fully-irrigated growth analysis trial datasets for the 
South African reference cultivar NCo376, for model calibration (“376C”) and validation 
(“376V”); the third dataset used was the ICSM IGEP dataset previously described.  Two 
sources of germination phase duration (i.e. 50% primary shoot emergence date) values 
were used: predetermined (“P”) values were specified in advance (based on 
observations), while simulated (“S"), values were calculated internally by the models 
themselves. 

The CaneGEM model does not simulate water relations and so assumed ideal water 
availability.  The DSSAT-Canegro model simulations were set up to irrigate 
automatically with the objective of minimising water stress.  The water stress status of 
each of the experiments is detailed in Chapter 3 (Jones et al., 2019).  Stressed crops, 
and the last data point where drying-off (imposition of water stress by withholding 
irrigation prior to final harvest) had been undertaken, were removed from the analyses. 

The name, details and purpose for each combination of crop model, assessment 
dataset and emergence date source is listed in Table 5-4  and used hereon for clarity.  
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Table 5-4.  Combinations of crop growth simulation model, dataset, source of germination phase duration (i.e. date of primary shoot 
emergence) data, the purpose of the model assessment and corresponding scenario and task codes used in this chapter. 

Model 
assessment 

scenario code 

Crop growth 
simulation 

model name 

Dataset Task Source of duration 
of germination 

phase data 

Trait 
parameter 

values 

Purpose 

GEM_376C_P CaneGEM NCo376 
calibration 

C Predetermined NCo376 Calibrate the CaneGEM model, with a focus on plant 
processes after primary shoot emergence 

GEM_376C_S CaneGEM NCo376 
calibration 

C Simulated NCo376 Show the impacts of simulation of duration of 
germination phase. 

GEM_376V_P CaneGEM NCo376 
validation 

V Predetermined NCo376 Establish performance of CaneGEM model, with a focus 
on plant processes after primary shoot emergence 

GEM_376V_S CaneGEM NCo376 
validation 

V Simulated NCo376 Establish overall performance of CaneGEM model, 
including simulation of duration of germination phase.  
Also to permit like-for-like comparison with DSSAT-
Canegro 

DC_376V_S DSSAT-
Canegro 

NCo376 
validation 

V Simulated NCo376 Establish DSSAT-Canegro model performance for 
simulating E effects, to provide a benchmark against 
which the CaneGEM model can be compared. 

DC_IGEP_S DSSAT-
Canegro 

ICSM 
IGEP 

GE Simulated N41, R570 
and CP88-
1762 

Establish DSSAT-Canegro model performance for 
simulating GxE interaction effects, to provide a 
benchmark against which the CaneGEM model can be 
compared. 

GEM_IGEP_P1 CaneGEM ICSM 
IGEP 

GE Predetermined NCo376 Evaluate performance of CaneGEM model for predicting 
the impact of correct prediction of duration of 
germination phase on E, G and GxE interaction effects 
on canopy development, biomass accumulation and 
partitioning, without the confounding effects of non 
germination-related genotypic differences.  

GEM_IGEP_P CaneGEM ICSM 
IGEP 

GE Predetermined N41, R570 
and CP88-
1762 

Evaluate performance of CaneGEM model for predicting 
E, G and GxE interaction effects on canopy 
development, biomass accumulation and partitioning, 
without the confounding effects of possible errors in 
predicting date of emergence. 

GEM_IGEP_S CaneGEM ICSM 
IGEP 

GE Simulated  Evaluate overall performance of CaneGEM model for 
predicting E, G and GxE interaction effects in terms of 
canopy development, biomass accumulation and 
partitioning. 
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5.3.3 Statistical measures of model performance 

Corresponding simulated and observed values for the following set of variables were 
compared for model calibration and validation:  

• Duration of the primary shoot germination phase (DoGP, d) 

• Green leaf area index (daily, GLAI, m2/m2) 

• Fractional PAR interception (daily, FIPAR; seasonal, FIPARa),  

• Above-ground dry biomass (daily, ADM, t/ha; at harvest, ADMh, t/ha) 

• The duration of the tillering phase, from date of 50% primary shoot emergence 
to the date of onset of stalk growth (DoTP, d) 

• Millable stalk dry mass (daily, SDM, t/ha; at harvest, SDMh, t/ha) 

• Sucrose mass (daily, SUC, t/ha; at harvest, SUCh, t/ha) 

• Senesced canopy (“trash”) mass (daily, SEN, t/ha; at harvest, SENh, t/ha) 

DoTP was determined for observations by (1) linearly regressing SDM against ADM 
and solving for the maximum ADM where SDM = 0 t/ha (ADM_OSG, t/ha); (2) then 
estimating the thermal time age (TT_OSG, °Cd) at which ADM_OSG occurred, using 
linear interpolation between observations of ADM against cumulative thermal time 
(base 10 °C, approximating effective temperature for photosynthesis); and (3) looking 
up the nearest calendar date to TT_OSG, and expressing this in days after date of 50% 
primary shoot emergence. 

Simulated DoTP was determined from simulation outputs as the date (days after crop 
start) when OSGfrac was nearest 50%. 

Model performance (similarity with observations) was quantified with these statistical 
measures: 

• the coefficient of determination (R2),  

• the slope and intercept (“Y-int”) of linear regressions between simulated and 
observed values 

• the Student’s t-statistic representing the significance of the slope of linear 
regression, yielding a p-value 

• root mean squared error (RMSE, calculated as the square root of the mean 
squared  difference between observed and simulated values) 

• average prediction error (APE, calculated as the average difference between 
simulated and observed values).   

These were calculated using time series and season/at-harvest data, for comparison 
with published model performance.  Data were restricted to observations taken at 12 
months’ age or less, as sugarcane breeding for irrigated production is aimed at 12-
month harvests in most industries, and to avoid confounding from possible RGP 
effects.  Biomass data from the ICSM IGEP experiments were restricted to 9 months’ 
age to minimise confounding from lodging and drying-off. 

5.3.4 Determination of dates of emergence 

Dates of emergence, expressed as the duration of germination (DoGP), were identified 
for each NCo376 crop in the calibration and validation sets, for two reasons: firstly, to 
support more accurate calibration of the model’s canopy development and biomass 
partitioning aspects by allowing DoGP  to be predetermined; and secondly, in order to 
calculate optimal parameter values for base temperature for germination (Tb_germ_P 
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and Tb_germ_R, °C) and thermal times to emergence for plant (TTem_P, °Cd) and 
ratoon crops (TTem_R, °Cd).   

For the purposes of estimating DoGP, the definition of date of emergence was taken 
as the earliest date that 50% of primary shoots had emerged.  100% primary shoot 
density was assumed to be the stalk density at harvest (Bezuidenhout et al., 2003; 
Donaldson, 2009; Keating et al., 1999).  Stalk density at harvest was determined as 
the mean of the last three observations of stalk density, unless these were clearly taken 
during the shoot senescence phase, in which case fewer observations were used or 
another similar experiment (at the same location) was used to estimate this value.  A 
2nd-order polynomial function of thermal time (base 16 °C, Jones & Singels (2018)) was 
fitted to the shoot density data in order to interpolate/extrapolate from observations, to 
determine the date at which shoot density was equal to 50% of the final density (Figure 
5-12).  In cases where the apparent date of emergence was before the date of crop 
start, date of emergence was set to the date of crop start.  Where possible, the 
polynomials were fitted to data up to peak shoot density, or a very clear earlier inflection 
point (as described in Jones et al. (2019)).  On the basis that shoot density growth and 
senescence often appear roughly symmetrical with respect to thermal time, where 
insufficient pre-peak observations had been made, additional observations beyond the 
date of peak density were included for fitting. 
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Figure 5-12.  Polynomial functions (orange solid lines) fitted to shoot density vs 
thermal time from crop start data (black lines and points) to estimate dates of 

emergence for NCo376 calibration and validation datasets.  The vertical green lines 
indicate the date of emergence; blue solid lines the estimated final stalk density; and 

the dashed red line 50% of the final value. 

Observed or estimated dates of emergence from Jones et al. (2019) were used for the 
ICSM IGEP simulations for assessment of E, G and GxE interaction effects. 

5.3.5 CaneGEM trait parameter calibration with NCo376 data 

As only two plant crops had been included in the calibration dataset (“376C”, Table 
5-4), and both were in relatively cold environments, the optimal base temperature for 
plant crops was not calculated.  Tb_germ for plant crops was set to 16 °C and TTem_P 
set to 150 °Cd, based on literature (Jones and Singels, 2018).   
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The thermal time from crop start to emergence was determined for 28 ratoon crops, 
calculated with Tb_germ values 5-20 °C in 0.5 °C increments, with fixed To_germ and 
Tfin_germ values of 28 and 41 °C respectively (Jones and Singels, 2018).  CV% was 
calculated and minimised to identify an optimal Tb_germ and corresponding TTem_R 
value. 

In general, canopy- and biomass-related parameter values were set initially based on 
knowledge of process implementation and E responses from the DSSAT-Canegro 
and/or APSIM-Sugar models.  These were then refined in an iterative manner, by 
running the model with a changed parameter and assessing the impacts on a range of 
development and biomass-related variables in the 376C dataset. 

Values for FI_OSG1.5 and OSGfracc1 were derived by fitting Eqn. (5-3) to observations 
of SDM/ADM (a measurable proxy for OSGfrac) and FIinter.  

The adjustments for row-spacing were derived from analysis of trial data (Singels and 
Smit, 2009). 

Values for Tb_lai and To_lai were initially based on published values for leaf and tiller 
development and expansion (Jones and Singels, 2018).   

Initial guidance for determining values for RGRlaimax and RGRlaimin came from 
analysing well-calibrated DSSAT-Canegro simulations (Jones et al., 2021).  Attempts 
were made to determine values from observations, but this was deemed unreliable due 
to the difficulty in estimating total leaf area index, requiring the area of senesced leaves.  
Values were finalised by interactive calibration, comparing (and minimising differences 
between) simulated and observed GLAI.   

Kemin and Kemax values were taken from DSSAT-Canegro (Singels et al., 2008).  

For senescence-related parameters, GLAIst was initially set to 3 m2/m2 (a “rule of 
thumb” value at which a sugarcane canopy is considered closed) and LAIsenc1 was set 
to 0.007 (Keating et al., 1999).  

Minimum and maximum SLA values (i.e. for SLAmin and SLAmax respectively) were 
calculated by dividing measurements of green leaf area index by green leaf canopy dry 
mass (i.e. the sum of leaf blade, meristem and leaf sheath dry masses), although these 
ranges were modified (during calibration only) where necessary to ensure accuracy of 
simulated canopy dry mass. 

Biomass partitioning to sucrose was indirectly calibrated by ensuring that stalk dry 
mass and canopy mass were accurately predicted, and then modifying the stalk fibre 
density parameter SSV to predict stalk fibre dry mass and/or sucrose mass accurately. 

The coupled nature of canopy development and biomass partitioning required 
interactive, iterative calibration for finalising canopy growth rate, senescence and 
radiation use efficiency parameters, by evaluating parameter values changes against 
FIPAR, GLAI, biomass component values, and biomass component fractions. 

5.3.6 Model validation with NCo376 data 

The CaneGEM model, calibrated with the trait values listed in Table 5-1, was validated 
against an independent NCo376 dataset (“376V”, Table 5-4).  The model was validated 
with duration of germination phase predetermined (scenario “GEM_376V_P”, Table 
5-4) as well as simulated by the model (scenario “GEM_376V_S”, Table 5-4).  The 
same validation experiments were run with the DSSAT-Canegro model (Jones and 
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Singels, 2018) to establish a model performance benchmark for comparison (scenario 
“DC_376V_S”, Table 5-4). 

5.3.7 CaneGEM model calibration for ICSM IGEP cultivars (R570, N41 and CP88-
1762) 

Very few data were available for calculating Tb_germ, TTem_P and Ttem_R from 
observations.  It was decided to focus on varying only Tb_germ and keep TTem_P and 
TTem_R the same as NCo376.  Errors in TTem_x parameter values were expected  to 
manifest as poor fits for G effects, while changes to cardinal temperatures would affect 
GxE effects, the improvement of which is the objective of this work. 

Calibration was based on the following observations from the “IGEP” dataset (Table 
5-4): 

• At Belle Glade P, duration of germination (DoGP) for R570 was 71 days, vs 
CP88-1762 (56 days), N41 (50 d) and NCo376 (57 d): average daily air 
temperature (TAVEGP, °C) during this period was ≈ 17 °C 

• At Belle Glade R1, DoGP for R570 = 64 days, vs NCo376 (30 d), N41 (28 days), 
CP88 (22 d): TAVEGP ≈ 19 °C 

• At La Mare R1, DoGP for R570 = 24 d, vs N41 (18 d) and CP88 (24 d): TAVEGP 
= 27 °C 

• At Pongola P, DoGP for R570 = 23 d, vs N41 (26 d) and CP88 (26 d): TAVEGP 
= 23 °C 

At TAVEGP = 17 °C, the coldest site, R570 took 30% longer than the other Gs; at 19 
°C, R570 took 150% longer.  At 23 and 27 °C, DoTP was very similar for all three Gs.  
NCo376 at Belle Glade was faster than R570 but slower than the others, but same as 
the others at La Mare.  In the NCo376 model calibration, NCo376 required 150 °Cd 
and 43 °Cd at Tb_germ = 16 °C for emergence for P and R1 crops respectively.  
Keeping these TTem_x values the same, the following Tb_germ parameter values 
were chosen: 18 °C for R570, 15 °C for N41 and CP88-1762. 

Parameters To_germ, Tb_lai, To_lai, Tb_sk, To_sk, Tb_photo, To1_photo and 
To2_photo were all offset by the same amounts (+2 °C for R570, -1 °C for N41 and 
CP88-1762) relative to the standard NCo376 values (Table 5-1).  Tf_xx values were 
not modified as temperatures seldom exceeded To_xx values. 

Attempts at further improvement in prediction of G effects by modifying the cardinal 
temperatures further, RGRlaix or GLAIst only resulted in poorer prediction of GxE 
effects when DoGP was predetermined. 

Satisfactory simulation outcomes were achieved without modifying the reference 
radiation use efficiency parameter RUEadm from the value calibrated for NCo376.  
This is different to what was done in the work described in Chapter 4, where the 
maximum radiation use efficiency parameter values were determined for cultivars N41, 
R570 and CP88-1762 for the DSSAT-Canegro, Mosicas and APSIM-Sugar models.  
Reference RUE is widely considered a conservative parameter and there is little 
consensus regarding whether or not it differs between elite sugarcane Gs.  For these 
reasons, no attempts were made to explore calibrating RUEadm for more accurate 
simulation outcomes. 
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5.3.8 DSSAT-Canegro calibration for ICSM IGEP cultivars 

For the simulation of the ICSM experiments (for assessing prediction performance of 
G, E and GxE interaction effects), the DSSAT-Canegro model was run using the 
parameters determined for Jones et al. (2021), Chapter 4 of this thesis. 

5.3.9 Evaluation of E, G and GxE interaction effects 

Simulated vs observed E, G and GxE interaction effects were assessed for the “IGEP” 
dataset (Table 5-4), consisting of three cultivars (N41, R570 and CP88-1762) grown 
under full irrigation and experimental conditions at three sites (Belle Glade, Florida, 
USA; La Mare, Reunion Island, France; and Pongola, South Africa; Chiredzi, 
Zimbabwe was omitted as FIPAR data were not recorded at that site). 

A similar methodology for assessing E, G and GxE interaction effects as used in Jones 
et al. (2021) was followed, but is repeated here for convenience:   

G, E and GxE interaction effects were evaluated using the following additive model: 

𝑋𝑖𝑗 = �̅� + 𝐺𝑖 + 𝐸𝑗 + 𝐺𝐸𝑖𝑗 (1) 

where Xij is observed or simulated seasonal photosynthetically-active radiation 
interception fraction (FIPARa) or aerial dry biomass at harvest (ADMh, t/ha), X̅ is the 
grand mean value calculated over all environments and genotypes, Gi is the average 
value for  genotype i, and Ej is the average value for environment j: 

𝐺𝑖 = (
1

𝑛𝐸
∑ 𝑋𝑖𝑗

𝑛𝐸

𝑗=1

) − �̅� 

(2) 

𝐸𝑗 = (
1

𝑛𝐺
∑ 𝑋𝑖𝑗

𝑛𝐺

𝑖=1

) − �̅� 

(3) 

 

where nE is the number of environments and nG is the number of genotypes.  GEij was 
calculated by rearranging eq. (1) and substituting the other terms.   

Gi, Ej and GEij values, termed “effects”, were calculated for observations and 
simulations.  

• Gi represents the mean deviation from the grand mean, per genotype i, across 
all environments.  This reflects the genotypic effect, where, over all 
environments considered, one genotype might, for example, intercept less 
radiation compared to the others (negative effect value, i.e. Gi < 0), or produce 
higher biomass (positive value), than the other genotypes. 

• Ej represents the mean deviation from the grand mean, per environment j, 
across all Gs.  This reflects the environmental effect, where, over all genotypes 
tested, one environment might, for example, result in all Gs intercepting less 
radiation (negative effect vlaue), or producing higher biomass (positive effect 
value), than the other environments. 

• GEii represents deviation by individual combinations of genotype i and 
environment j from the grand mean, with the mean G and E effects removed.  
GEii therefore isolates the GxE interaction effects. 
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Statistical measures of similarity (described in Section 5.3.3) were then calculated for 
Gi, Ej and GE values calculated for simulations and observations.  Where the R2 value 
and slope (of observed vs simulated effect values) were close to 1.00, and the 
correlation between simulated and observed effect values was statistically significant 
(p<0.05), the model was deemed to be able to predict that effect accurately (and vice 
versa).   

Observed FIPARa was calculated by interpolating linearly between observations of 
FIPAR, multiplying these interpolated daily FIPAR values by incident 
photosynthetically-active radiation (PAR, calculated as 50% of recorded global 
radiation), and expressing as a fraction of total PAR over the same period.  Simulated 
FIPARa used simulated daily FIPAR values, limited to the periods between first and 
last FIPAR observations for each experiment.  This differs with Jones et al. (2021), who 
fitted integrated Canesim (Singels and Paraskevopoulos, 2017) canopy model curves 
to FIPAR observations, and used whole-season FIPAR to calculate FIPARa; this 
approach was not chosen primarily due to the difficulty of identifying the “real” date of 
emergence in some cases, and the consequent danger of misrepresenting early 
observed canopy cover. 

The CaneGEM and DSSAT-Canegro models were calibrated for N41, R570 and CP88-
1762 using the same datasets as for their assessment for predicting GE effects.  Ideally 
models should be evaluated on  independent datasets, but as this is the only study 
(and dataset) of its kind, this was not possible.  However, the models were calibrated 
to minimise differences between observed and simulated values, independently per 
genotype.  The models were explicitly not calibrated to minimise differences between 
observed and simulated GxE interaction effects.  The assessment of GxE interaction 
effects represents an independent test of the models’ abilities. 

5.4 Results 

5.4.1 Introduction 

The results of this study are divided between those derived from NCo376 datasets for 
calibration and validation (“376C” and “376V” respectively, Section 5.4.2), and those 
derived from the ICSM IGEP dataset (Section 5.4.3).  The NCo376-related 
assessments represent traditional evaluation of the crop models, amounting to 
evaluation of E effects only.  The ICSM IGEP assessments seek to evaluate models’ 
abilities to predict G and GxE interaction effects in addition to E effects. 

Results are listed by model assessment scenario code; these are defined in Table 5-4.   

As the objective of this study was to develop an improved sugarcane model, validation 
results for the DSSAT-Canegro model (“DC”) are presented to establish model 
performance benchmarks (scenario codes “DC_376V_S” and “DC_IGEP_S”).   

Predetermined (as recorded by experimentalists, or estimated from shoot population 
density data) duration of germination phase (DoGP, d) values, for each dataset, are 
listed in Table 5-5.  Trait parameter values for the standard cultivar NCo376 are listed 
in Table 5-1.  Trait parameters calibrated for cultivars N41, 570 and CP88-1762 using 
the ICSM IGEP experiments, that differ from the standard NCo376 trait parameter 
values, are shown in Table 5-6. 
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Table 5-5.  Duration of germination (days from crop start to 50% primary shoot 
emergence) for crops used for CaneGEM model calibration, validation and 

assessment of E/G/GxE effects.  “Obs. DoGP” indicates date of emergence values 
recorded by experimentalists, while “Est. DoGP” indicates DoGP estimated from 

shoot density observations; “Crop” refers to ratoon number, where R0 is a plant crop, 
R1 is the first ratoon and R2 the second ratoon. 

Country, site and 
location, reference 

Crop Crop start 
date 

Cultivar Obs. 
DoGP 

Est. 
DoGP 

NCo376 datasets (“376C” and “376V”) 

Pongola, South Africa 
“A/Growth/14” 

R2 1998-03-03 NCo376  7 

R2 1998-04-08 21  

R2 1998-05-06 40  

R2 1998-08-06  1 

R2 1998-12-08 9  

Mount Edgecombe, South 
Africa 
“A/Growth/16” 
 

R0 1999-12-09 NCo376  49 

R1 2000-06-06  29 

R1 2000-12-07 
 2 

Mount Edgecombe, South 
Africa 
“A/Temp” 
 

R1 2003-10-13 NCo376  1 

R1 2004-04-07  1 

Bruyn’s Hill, South Africa 
“A/Temp” 

R1 2003-10-16 NCo376  5 

R1 2004-04-07  11 

Mount Edgecombe, South 
Africa 
“A/Space”1 

R1 2003-08-29 NCo376  12 

USA, Belle Glade 
“ICSM IGEP” 

R0 2013-12-12 NCo376 55  

R1 2015-01-23 28  

Reunion, La Mare 
“ICSM IGEP” 

R1 2016-01-18 NCo376  5 

La Mercy, South Africa R1 1995-03-08 NCo376  30 

Pongola, South Africa 
“Rostron” 

R1 1968-12-17 NCo376  10 

1969-02-11  1 

1969-04-08  4 

1969-06-03  1 

1969-07-29  30 

1969-09-23  1 

1969-11-18  1 

1970-01-13  2 

ICSM IGEP dataset 

Reunion, La Mare R1 2016-01-18 N41  18 

R570  24 

CP88-1762  24 

South Africa, Pongola R0 2014-03-25 N41  26 

R570  23 

CP88-1762  26 

USA, Belle Glade R0 2013-12-12 N41 50  

R570 71  

CP88-1762 56  

R1 2015-01-23 N41 28  

R570 64  
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CP88-1762 22  
1All row-spacings had the same DoGP 

 

Table 5-6.  Trait parameter values calibrated for R570, N41 and CP88-1762 
necessary for capturing improvements in G, E and GxE interaction effects in 

seasonal radiation interception, with NCo376 values shown for reference. 

Parameter 
name 

Units Description R570 N41 CP88-
1762 

NCo376 

Tb_germ_P °C Base temperature for 
germination 

18 15 15 16 

To_germ °C Optimal temperature for 
germination 

30 27 27 28 

Tb_lai °C Base temperature for leaf area 
index expansion 

15 12 12 13 

To_lai °C Optimal temperature for leaf 
area index expansion 

37 34 34 35 

Tb_sk °C Base temperature for stalk 
expansion 

18 15 15 16 

To_sk °C Optimal temperature for stalk 
expansion 

37 34 34 35 

Tb_photo °C Base temperature for 
photosynthesis 

12 9 9 10 

To1_photo °C Start of optimal temperature 
range for photosynthesis 

22 19 19 20 

To2_photo °C End of optimal temperature 
range for photosynthesis 

42 39 39 40 

 

5.4.2 NCo376 experimental data 

CaneGEM model calibration results (NCo376 data) 

Time-series scatter plots for crop development and biomass values (Figure 5-13), and 
biomass fractions (Table 5-7), illustrate good performance by the CaneGEM model, for 
the NCo376 calibration set and duration of germination (DoGP) predetermined 
(assessment scenario code “GEM_376C_P”).  Time series PAR interception values 
(“PAR Int. Frac” in Table 5-7) were reasonably accurately simulated (slope = 1.26, R2 
= 0.85), partly explaining accurate simulation of ADM accumulation (slope = 0.85, R2 
= 0.78).  FIPAR was underestimated for low GLAI values, despite the positive y-
intercept statistic for GLAI indicating over-simulation of low values of GLAI.  Low ADM 
values are also over-estimated, which is inconsistent with under-estimated FIPAR. 
Simulation performance for GLAI was relatively poor (Table 5-7).   

While low values of ADM were slightly over-estimated, larger values were slightly 
under-estimated.  This ADM over/under-estimation dynamic was inherited by the 
biomass pools into which ADM is partitioned.  Predictions of biomass components 
(stalk, stalk fibre, stalk sucrose, and senesced ‘trash’ mass) were generally accurate 
(slopes 0.77-0.94, R2 values 0.67-0.85), while their fractions  were slightly more 
accurately simulated (slopes 0.93-1.12) overall.  Green canopy mass was the least 
accurately simulated biomass fraction (slope and R2 = 0.60). 
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Seasonal radiation interception (FIPARa, Figure 5-14) was adequately predicted (slope 
= 1.38, R2 = 0.65, Table 5-7).    DoTP was predicted 15 days short (Table 5-7, Figure 
5-14) overall, which accentuated the effect of over-estimation of early ADM values on 
corresponding SDM values.  The impact of this seemingly large error in DoTP was 
minimal in terms of SDM outcomes, and this is probably because a transition from the 
tillering phase to onset of stalk growth is simulated, rather than a step change as in 
DSSAT-Canegro and APSIM-Sugar.  Attempts to recalibrate the model to predict DoTP 
more accurately were unsuccessful, as this resulted in unsatisfactory predictions of 
canopy cover and biomass values. 

For seasonal/at-harvest values, only radiation interception (FIPARa), sucrose mass, 
and sucrose mass fraction showed statistically-significant relationships between 
simulated and observed values.   

Model performance was very similar when DoGP was simulated (scenario 
“GEM_376C_S”; results are shown in Appendix B, Figure 11-1, Figure 11-2 and Table 
11-1). 

 

 

Figure 5-13.  Scatter plot of time-series observed and CaneGEM model-simulated 
data for crop phenology- and biomass-related variables, for the calibration dataset for 
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NCo376.  Durations of germination phases were predetermined (scenario code 
“GEM_376C_P” in the text). 

 

Table 5-7.  CaneGEM model performance statistics, for calibration with NCo376 data 
and predetermined germination phase duration (scenario code “GEM_376C_P” in the 

text).  N = “number of observations”, “Y-int” is the y intercept of linear regression 
between observed and simulated values, RMSE is the root mean squared error, and 

APE is the average prediction error (explained in the text). 

Variable N R2 
p-

value 
Y-int Slope RMSE APE 

Time-series values 

Aerial dry biomass [t/ha] 34 0.78 0.00 5.80 0.85 9.73 0.38 

Green leaf area index [m2/m2] 23 0.24 0.02 2.86 0.38 1.18 0.47 

Green leaf canopy dry mass [t/ha] 25 0.60 0.00 3.18 0.60 2.13 -0.58 

Millable stalk dry mass [t/ha] 51 0.85 0.00 2.10 0.91 5.24 0.07 

PAR Frac. Int. [%] 59 0.86 0.00 -21.1 1.26 15.85 -2.85 

Stalk fibre dry mass [t/ha] 21 0.83 0.00 2.59 0.77 2.44 -0.05 

Sucrose mass [t/ha] 40 0.79 0.00 0.93 0.94 2.92 0.29 

Trash dry mass [t/ha] 34 0.67 0.00 0.63 0.94 2.56 0.26 

Time-series biomass fractions 

"Trash" / ADM 33 0.64 0.00 -0.02 1.12 0.05 0.00 

Green leaf canopy dry mass / ADM 25 0.83 0.00 0.00 1.07 0.10 0.02 

Stalk dry mass / ADM 39 0.66 0.00 0.03 0.93 0.11 -0.01 

Sucrose / stalk dry mass 43 0.73 0.00 0.01 0.99 0.07 0.00 

Values at harvest 

Seasonal PAR interception fraction 8 0.65 0.01 -0.25 1.38 0.09 0.03 

Onset of stalk growth (d) 8 0.51 0.05 13.78 0.75 24.38 -15.6 

Aerial dry biomass [t/ha] 9 0.17 0.28 35.57 0.37 12.28 1.91 

Green leaf area index [m2/m2] 6 0.27 0.29 6.27 -0.42 1.46 0.89 

Green leaf canopy dry mass [t/ha] 6 0.44 0.15 3.61 0.49 2.90 -1.72 

Millable stalk dry mass [t/ha] 14 0.35 0.03 17.64 0.55 6.87 1.83 

PAR Frac. Int. [%] 8 0.01 0.83 95.97 0.02 6.28 5.28 

Stalk fibre dry mass [t/ha] 5 0.68 0.09 0.14 0.91 2.98 -1.41 

Sucrose mass [t/ha] 13 0.45 0.01 6.97 0.65 3.89 1.66 

Trash dry mass [t/ha] 9 0.04 0.60 12.59 -0.18 4.48 2.23 

Biomass fractions at harvest 

"Trash" / ADM 9 0.04 0.59 0.24 -0.28 0.06 0.04 

Green leaf canopy dry mass / ADM 6 0.00 0.90 0.16 0.02 0.08 -0.03 

Stalk dry mass / ADM 10 0.42 0.04 0.50 0.21 0.08 0.00 

Sucrose / stalk dry mass 14 0.34 0.03 0.09 0.85 0.07 0.02 
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Figure 5-14.  Scatter plots of age of onset of stalk growth (days since crop start) and 
seasonal PAR interception, simulated (CaneGEM model) and observed, for the 

calibration dataset for NCo376.  Durations of germination phases were 
predetermined (scenario code “GEM_376C_P” in the text).   

CaneGEM model validation results (NCo376 data) 

Results for model assessment scenario “GEM_376V_P” (CaneGEM model, NCo376 
validation dataset, predetermined durations of germination phase and model 
parameters as listed in Table 5-1) are shown in Figure 5-15 (time-series biomass and 
crop phenology values), Figure 5-16 (time-series biomass fractions), Figure 5-17 
(DoTP and FIPARa), and Table 5-8 (model performance statistics).   

Prediction of time-series FIPAR values was good (slope = 1.11, R2 = 0.88); predictions 
of time-series ADM and SDM were (partly consequently) also accurate (slopes = 0.91 
and 0.84, R2 = 0.73 and 0.79, respectively).  Low observed values of FIPAR (< 0.5) 
were generally under-estimated, while higher values were over-estimated.   Similar 
trends in GLAI or ADM were not evident, however.  RMSEs for ADM, SDM and sucrose 
mass were 10.5, 6.4 and 4.3 t/ha, including biases (APE) of 4.3, 1.5 and 1.5 t/ha 
respectively. 

Predictions of time series values green leaf canopy mass fraction of ADM and sucrose 
fraction of stalk dry mass were accurate (slopes = 1.03 respectively, R2 = 0.90 and 
0.76 respectively).  Predictions of trash mass and stalk dry mass fractions of ADM were 
less accurately simulated (slope = 1.41 and 0.70 respectively), although the R2 value 
was reassuring high for the stalk dry mass fraction (0.85), suggesting that the variation 
in SDM fraction of ADM was adequately captured by the model.  Predictions of values 
at harvest were inaccurate overall.  DoTP was predicted with an R2 value of 0.75 (p < 
0.01), but with slope statistic of 0.49 and average under-estimation of ≈25 days on 
average.  Trash dry mass at harvest was predicted with a slope of 0.70, but with an R2 
of only 0.30. 
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Figure 5-15.  Scatter plot of time-series data for crop phenology- and biomass-related 
variables, for the CaneGEM model and the validation dataset for NCo376.  Durations 

of the germination phase were predetermined (model assessment scenario code 
“GEM_376V_P”).   
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Figure 5-16.  Scatter plot of time-series data, showing CaneGEM model-simulated 
and observed biomass fractions, for the validation dataset for NCo376.  Durations of 

the germination phase were predetermined (model assessment scenario code 
“GEM_376V_P”).   “ADM” is above-ground dry biomass (t/ha), while “Trash” refers to 

senesced leaf and stalk dry mass. 

 

Figure 5-17.  CaneGEM model-simulated vs observed duration of tillering phase 
(labelled as “OSG”, i.e. onset of stalk growth, left), and seasonal PAR interception 
(FIPARa, right), for the NCo376 validation dataset.  Durations of the germination 
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phase were predetermined (model assessment scenario code “GEM_376V_P”).  The 
shaded region shows values within one standard error range. 

Model validation performance outcomes for the CaneGEM model for simulated 
durations of germination phase (scenario “GEM_376V_S”) are shown in Table 5-8, with 
supplementary figures (Figure 11-3-Figure 11-5) shown in Appendix B.  Performance 
was very similar to that of the “GEM_376V_P” scenario (i.e. with predetermined 
durations of germination phase). 

This model assessment scenario presents the most appropriate comparison with the 
DSSAT-Canegro model.   
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Table 5-8.  CaneGEM and DSSAT-Canegro model performance statistics, for validation with NCo376 data.  p = “p-value”; “Y-int”, “Slp.” = y-
intercept and slope respectively of linear regression between observed and simulated values; “p” indicates the p-value (statistical strength of 

linear regression between observed and simulated values); “RMSE” and “APE” = root mean squared error and average prediction error 
respectively between observed and simulated values.  Model assessment scenario codes “GEM_376V_P”, “GEM_376V_S” and “DC_376V_S” 

are included here for correspondence with the presentation of results and discussion in the text. 

  CaneGEM model DSSAT-Canegro model 

  
Predetermined germination phase, 

"GEM_376V_P" 
Simulated germination phase,  

"GEM_376V_S" 
Simulated germination phase,  

"DC_376V_S" 

Variable R2 p Y-int Slp. RMSE APE R2 p Y-int Slp. RMSE APE R2 p Y-int Slp. RMSE APE 

Time-series values 

Aerial dry biomass [t/ha] 0.73 0.00 7.68 0.91 10.49 4.33 0.73 0.00 6.13 0.90 9.64 2.36 0.75 0.00 8.29 0.84 9.05 2.61 

Green leaf area index 
[m2/m2] 

0.39 0.00 2.51 0.47 1.17 0.40 0.39 0.00 2.48 0.47 1.17 0.37 0.37 0.00 1.97 0.52 1.16 0.06 

Green leaf canopy dry 
mass [t/ha] 

0.39 0.00 4.16 0.66 2.60 1.59 0.38 0.00 4.14 0.63 2.50 1.41 0.21 0.00 4.14 0.47 2.42 0.16 

Millable stalk dry mass 
[t/ha] 

0.79 0.00 4.95 0.84 6.38 1.45 0.81 0.00 3.66 0.84 5.97 0.02 0.77 0.00 6.14 0.8 6.68 1.67 

PAR Frac. Int. [%] 0.88 0.00 -4.00 1.11 13.26 3.28 0.87 0.00 -8.18 1.13 14.13 0.83 0.91 0.00 -20.45 1.25 14.70 -3.65 

Stalk fibre dry mass [t/ha] 0.77 0.00 3.63 0.80 2.98 1.36 0.75 0.00 3.18 0.80 2.92 0.87             

Sucrose mass [t/ha] 0.67 0.00 3.10 0.85 4.28 1.54 0.69 0.00 2.37 0.84 3.89 0.71 0.75 0.00 4.29 0.78 3.91 2.07 

Trash dry mass [t/ha] 0.77 0.00 -0.55 1.28 2.71 0.99 0.77 0.00 -0.62 1.25 2.53 0.72 0.83 0.00 1.69 0.71 1.45 0.11 

Time-series biomass fractions 

"Trash" / ADM 0.63 0.00 -0.06 1.41 0.05 -0.01 0.67 0.00 -0.08 1.51 0.05 -0.01 0.01 0.57 0.16 -0.08 0.05 0.01 

Green leaf canopy dry 
mass / ADM 

0.90 0.00 0.02 1.03 0.07 0.02 0.92 0.00 0.01 1.11 0.08 0.04 0.80 0.00 0.03 0.81 0.09 -0.03 

Stalk dry mass / ADM 0.85 0.00 0.18 0.70 0.07 0.03 0.86 0.00 0.13 0.77 0.06 0.01 0.69 0.00 0.19 0.74 0.11 0.05 

Sucrose / stalk dry mass 0.76 0.00 0.00 1.03 0.07 0.02 0.75 0.00 -0.03 1.09 0.08 0.00 0.89 0.00 0.04 1.02 0.06 0.04 

Values at harvest 

Seasonal PAR interception 
fraction 

0.25 0.17 0.55 0.35 0.13 0.08 0.29 0.13 0.58 0.28 0.11 0.06 0.72 0.00 0.22 0.7 0.06 0.00 

Onset of stalk growth (d) 0.75 0.00 45.3 0.49 45.7 -25.7 0.86 0.00 51.1 0.50 39.8 -18.9 0.79 0.00 73.8 0.44 40.7 -8.6 

Aerial dry biomass [t/ha] 0.10 0.40 46.50 0.22 14.75 7.32 0.13 0.34 42.68 0.26 13.63 5.35 0.16 0.28 41.65 0.23 11.95 2.72 

Green leaf area index 
[m2/m2] 

0.00 0.89 4.56 0.02 1.30 0.84 0.00 0.90 4.57 0.02 1.30 0.85 0.01 0.85 4.45 0.02 1.20 0.73 
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  CaneGEM model DSSAT-Canegro model 

  
Predetermined germination phase, 

"GEM_376V_P" 
Simulated germination phase,  

"GEM_376V_S" 
Simulated germination phase,  

"DC_376V_S" 

Variable R2 p Y-int Slp. RMSE APE R2 p Y-int Slp. RMSE APE R2 p Y-int Slp. RMSE APE 

Green leaf canopy dry 
mass [t/ha] 

0.10 0.45 5.83 0.47 2.91 2.17 0.07 0.54 6.32 0.38 2.87 2.07 0.01 0.79 9.90 -0.09 2.91 2.37 

Millable stalk dry mass 
[t/ha] 

0.21 0.10 26.99 0.30 8.62 3.10 0.26 0.06 23.91 0.35 7.91 1.70 0.16 0.16 28.39 0.21 8.28 1.48 

PAR Frac. Int. [%] 0.10 0.42 101.5 -0.03 5.76 3.58 0.11 0.38 101.9 -0.04 5.76 3.55 0.38 0.08 84.4 0.15 5.26 3.65 

Stalk fibre dry mass [t/ha] 0.45 0.05 9.55 0.47 3.75 1.39 0.41 0.06 9.09 0.47 3.76 0.95             

Sucrose mass [t/ha] 0.20 0.15 14.09 0.33 6.14 4.11 0.30 0.07 11.77 0.43 5.31 3.23 0.37 0.03 13.36 0.29 4.78 2.77 

Trash dry mass [t/ha] 0.30 0.16 5.91 0.72 4.51 3.60 0.33 0.14 5.59 0.72 4.16 3.28 0.28 0.17 5.99 0.25 2.05 -0.22 

Biomass fractions at harvest 

"Trash" / ADM 0.01 0.81 0.16 0.25 0.05 0.03 0.04 0.65 0.12 0.48 0.05 0.03 0.09 0.47 0.12 0.20 0.02 -0.01 

Green leaf canopy dry 
mass / ADM 

0.69 0.01 0.02 0.96 0.03 0.02 0.66 0.01 0.03 0.97 0.04 0.02 0.08 0.50 0.16 0.11 0.05 0.03 

Stalk dry mass / ADM 0.54 0.01 0.47 0.25 0.06 0.00 0.74 0.00 0.45 0.29 0.05 0.00 0.22 0.15 0.55 0.17 0.07 0.03 

Sucrose / stalk dry mass 0.18 0.13 0.26 0.53 0.07 0.05 0.20 0.10 0.18 0.68 0.07 0.04 0.18 0.13 0.39 0.22 0.06 0.04 
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DSSAT-Canegro model validation results (NCo376 data) 

Validation results for model assessment scenario “DC_376V_S”, are shown in Figure 
5-18 (time-series biomass and crop phenology values), Figure 5-19 (time-series 
biomass fractions), Figure 5-20 (DoTP and FIPARa), and Table 5-8 (model 
performance statistics). 

Considering time-series (daily) values, DSSAT-Canegro underestimated low values of 
FIPAR and over-estimated high values (slope = 1.25, intercept = -20.45), although it 
accounted well for FIPAR variations across experiments (R2 = 0.91) (Table 5-8).  Low 
values of ADM were over-estimated and high values underestimated, despite the 
FIPAR simulation error pattern.  This over-/under-estimation pattern was 
(consequently) evident in other biomass-related variables, such as SDM, sucrose and 
trash dry mass yields.  The R2 for ADM accumulation was poorer than that of FIPAR 
at 0.75.  RMSEs for ADM, SDM and sucrose mass were 9.1 t/ha, 6.7 t/ha, and 3.91 
t/ha respectively. R2 values for biomass component variables were generally in the 
range 0.75-0.91, with the exception of green leaf canopy mass (R2 = 0.21; slope = 
0.47).  GLAI prediction performance was poor (slope = 0.52, R2 = 0.37).  

DSSAT-Canegro model performance was considerably poorer in predicting values at 
harvest than values through the season.  Only two variables, FIPARa and DoTP, had 
statistically significant slopes (0.70 and 0.44 respectively), with good R2 values (0.72 
and 0.79).  Predicted DoTP was 9 days too short on average.  Biomass fractions at 
harvest were poorly predicted, with low R2 values, and low slope statistics. 
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Figure 5-18.  Scatter plot of simulated (DSSAT-Canegro) and observed time-series 
data for crop phenology- and biomass-related variables, for the NCo376 validation 

dataset.  Durations of germination phase were simulated by the model (model 
assessment scenario code “DC_376V_S”).  “PAR Frac. Int [%]” is fractional 

interception of photosynthetically-active radiation. 
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Figure 5-19.  Scatter plot of time-series data, showing simulated (DSSAT-Canegro) 
and observed biomass fractions, for the validation dataset for NCo376.  Durations of 
germination phases were simulated by the model (model assessment scenario code 
“DC_376V_S”).   “ADM” is above-ground dry biomass (t/ha), while “Trash” refers to 

senesced leaf and stalk dry mass. 

 

Figure 5-20.  Simulated (DSSAT-Canegro) vs observed duration of tillering phase 
(DoTP, labelled as “OSG date”, left), and seasonal PAR interception (FIPARa, right), 
for the NCo376 validation dataset.  Durations of germination phases were simulated 
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by the model (model assessment scenario code “DC_376V_S”).  The shaded region 
shows values within one standard error range. 

Comparison of DSSAT-Canegro and CaneGEM validation performance 

The two models gave generally very similar performance (Table 5-8, and Figure 5-21 
which graphically compares R2 values for time-series data) in simulating the NCo376 
validation dataset.  The CaneGEM model fared slightly better than DSSAT-Canegro 
for simulating time-series biomass fractions.  The DSSAT-Canegro model was able to 
simulate seasonal radiation interception more accurately than CaneGEM.  

 

Figure 5-21.  Comparison of R2 values for observed vs simulated time-series data, 
simulated by CaneGEM and DSSAT-Canegro for the NCo376 validation dataset, with 
durations of germination phase simulated by the models (model assessment scenario 

codes “GEM_376V_S” and “DC_376V_S”, explained in the text).   

5.4.3 ICSM IGEP experimental data 

DSSAT-Canegro, ICSM IGEP dataset, simulated date of emergence and calibrated G-
specific canopy parameters (“DC_IGEP_S”) 

Daily simulated (using the DSSAT-Canegro model) and observed FIPAR and ADM 
values for the ICSM IGEP experiments (model assessment scenario code 
“DC_IGEP_S”) are shown in Figure 5-22 and Figure 5-23 respectively.  Simulated and 
observed E, G and GxE effects are shown in Figure 5-24, while performance statistics 
for simulating these effects are listed in Table 5-9. 

E and GxE interaction effects on FIPARa were poorly captured  with analysis yielding 
negative relationships between simulated and observed values.  G effects were 
simulated very accurately (as was the intention with the calibration procedure 
described in Chapter 4), however.  Despite this, there was a statistically-significant but 
weak positive relationship between simulated and observed GxE interaction effects on 
ADMh (slope = 0.07, R2 = 0.52, p < 0.05); E and G effects on ADMh were simulated 
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more accurately than for FIPARa, although these relationships were not statistically 
significant.  

 

Figure 5-22.  Simulated (by DSSAT-Canegro, red line) and observed (black points 
and linearly-interpolated lines) fractional interception of photosynthetically-active 

radiation (FIPAR, %), for the non-stressed ICSM IGEP experiments, with simulated 
duration of germination phase (model assessment scenario code “DC_IGEP_S”). 
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Figure 5-23.  Simulated (by DSSAT-Canegro, red line) and observed (black points 
and linearly-interpolated lines) above-ground dry biomass (t/ha), for the non-stressed 

ICSM IGEP experiments, with simulated duration of germination phase (model 
assessment scenario code “DC_IGEP_S”). 
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Figure 5-24.  E, G and GxE interaction effects on seasonal photosynthetically-active 
radiation interception (FIPARa) and above-ground dry biomass at harvest (ADM), 
simulated (DSSAT-Canegro model) vs observed.  ICSM IGEP dataset, simulated 
duration of germination phase (model assessment scenario code “DC_IGEP_S”). 

 

Table 5-9.  DSSAT-Canegro model accuracy for predicting environmental (E), 
genotypic (G) and genotype-by-environment interaction (GE) effects on 

seasonal fractional interception of radiation (FIPARa) and aerial dry biomass 
at harvest (ADMh, t/ha).  ICSM IGEP dataset, simulated duration of 

germination phase (model assessment scenario code “DC_IGEP_S”).  “Y-int” 
= the y-intercept of the linear regression between observed and simulated 

values; “N” = the number of data points considered. 

 

Variable Level Slope R2 p-value N 

FIPARa 

E -0.23 0.62 0.43 3 

G 0.99 0.99 0.05 3 

GE -0.12* 0.60 0.01 9 

ADMh E 0.42 0.97 0.11 3 
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G 1.54 0.65 0.40 3 

GE 0.07* 0.52 0.03 9 

*P<0.05 

 

CaneGEM model, NCo376 parameter values and predetermined of durations of 
germination phase, ICSM IGEP dataset 

CaneGEM model FIPAR prediction performance with predetermined DoGP and 
NCo376 parameter values (model assessment scenario code “GEM_IGEP_P1”) was 
satisfactory (Figure 5-25).  Model predictions best-matched observations of N41, which 
is understandable as this cultivar was selected in the same breeding programme as 
NCo376.  In several cases early FIPAR was underestimated and mid-season FIPAR 
over-estimated. 

 

Figure 5-25.  CaneGEM-simulated (red line) and observed (black points and linearly-
interpolated lines) FIPAR, with predetermined durations of germination phase and 

NCo376 cultivar parameters for the ICSM IGEP dataset (model assessment scenario 
code “GEM_IGEP_P1”).  Inter-sample period average daily air temperature is also 
shown (stepped blue line).  Differences in simulated values between Gs are due to 

G-E differences in predetermined durations of germination phase. 

FIPARa was under-estimated at Belle Glade and over-estimated at La Mare (Figure 
5-26 “E”); and over-estimated for N41.  E and G effects on FIPARa and ADMh 
appeared reasonably accurately simulated, but were not statistically significant (Table 
5-10).  GxE interaction effects on FIPARa were very accurately simulated and strongly 
statistically-significant (p<0.01).  The GxE interaction effect on ADMh was also 
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accurately predicted and statistically-significant (p<0.05), suggesting that a significant 
part of the variation in observed ADMh is explained by G-per-E variation in DoGP.  

 

Figure 5-26.  E, G and GxE interaction effects, simulated vs observed, with 
predetermined durations of germination phase and NCo376 cultivar parameters for 
the ICSM IGEP dataset (model assessment scenario code “GEM_IGEP_P1”).  Trait 

parameter values are otherwise identical (NCo376 parameter values used). 

 

Table 5-10.  CaneGEM model accuracy for predicting environmental (E), genotypic 
(G) and genotype-by-environment interaction (GE) effects on seasonal fractional 

interception of radiation (FIPARa) and aerial dry biomass at harvest (ADMh, t/ha), for 
three cultivars (R570, N41 and CP88-1762), for the ICSM IGEP dataset.  Durations 

of germination phase were predetermined (model assessment scenario code 
“GEM_IGEP_P1”).  NCo376 trait parameter values were used. 

Variable Level Slope R2 p-value N 

FIPARa 

E 1.35 0.88 0.22 3 

G 1.04 0.90 0.20 3 

GE 1.06** 0.72 0.00 9 

ADMh E 0.90 0.92 0.18 3 
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G 0.69 0.78 0.31 3 

GE 0.43* 0.67 0.01 9 

**p<0.01, *p<0.05 

CaneGEM model, with calibrated cultivars and predetermined date of emergence, 
ICSM IGEP dataset 

CaneGEM model performance, following calibration for R570, N41 and CP88-1762 
(model assessment scenario code “GEM_IGEP_P”), for time-series values, is shown 
in Figure 5-27.  A graph of daily FIPAR values is shown in Appendix B (Figure 11-6). 

The changes to cardinal temperatures (which were based on changes to Tb_germ) 
resulted in considerable improvements (reduced scatter) in GxE interaction effects 
predictions. 

 

 

Figure 5-27.  Simulated (CaneGEM model, with predetermined date of emergence 
and G-specific calibration of canopy development parameters, model assessment 
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scenario code “GEM_IGEP_P”) vs observed crop development and biomass 
components, for the ICSM IGEP dataset. 

 

 

Figure 5-28.  E, G and GxE interaction effects, CaneGEM-simulated vs observed, 
with predetermined duration of germination and G-specific calibration of canopy 

development parameters, for the ICSM IGEP dataset (model assessment scenario 
code “GEM_IGEP_P”). 

Table 5-11.  CaneGEM model (with predetermined duration of germination and G-
specific calibration of canopy development parameters, model assessment scenario 
code “GEM_IGEP_P”) accuracy for predicting environmental (E), genotypic (G) and 
genotype-by-environment interaction (GE) effects on seasonal fractional interception 

of radiation (FIPARa) and aerial dry biomass at harvest (ADMh, t/ha). 

Variable Level Slope R2 p-value N 

FIPARa E 1.45 0.96 0.12 3 

G 2.41 0.93 0.17 3 

GE 1.06** 0.88 0.00 9 

ADMh E 0.89 0.92 0.19 3 

G 1.85 0.77 0.32 3 

GE 0.34** 0.92 0.00 9 
**p<0.01 
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CaneGEM model, calibrated cultivars with simulated durations of germination phase, 
ICSM IGEP dataset 

CaneGEM model performance results for model assessment scenario “GEM_IGEP_S” 
are shown Figure 5-29 (E, G and GxE interaction effects on FIPARa and ADMh) and 
Table 5-12 (statistics summarising performance of simulated E, G and GxE interaction 
effects).  Additional in results are provided in Appendix B, Figure 11-7 (daily FIPAR), 
Figure 11-8 (crop development and biomass scatter plots). 

The CaneGEM model’s ability to predict GxE interaction effects in FIPARa and ADMh 
were greatly reduced when the duration of the germination phase was simulated rather 
than predetermined. This is further evidence that GxE interaction effects in this dataset 
was driven primarily by GxE differences in the duration of the germination phase. 

 

 

Figure 5-29.  E, G and GxE interaction effects, CaneGEM-simulated vs observed, 
with simulated duration of germination phase and G-specific calibration of cardinal 

temperatures controlling canopy development and germination rate (model 
assessment scenario “GEM_IGEP_S”). 

 

Table 5-12.  CaneGEM model (with simulated duration of germination phase and G-
specific calibration of canopy development parameters, model assessment scenario 
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“GEM_IGEP_S”) simulation accuracy for predicting environmental (E), genotypic (G) 
and genotype-by-environment interaction (GE) effects on seasonal fractional 

interception of radiation (FIPARa) and aerial dry biomass at harvest (ADMh, t/ha).  
“N” = number of observations. 

Variable Level Slope R2 p-value N 

FIPARa E 1.67* 1.00 0.03 3 

G 2.32 0.95 0.14 3 

GE 0.20 0.02 0.73 9 

ADMh E 0.99 0.93 0.17 3 

G 1.71 0.79 0.30 3 

GE -0.01 0.00 0.95 9 
*p<0.05 

5.5 Discussion 

5.5.1 Novel canopy development and biomass partitioning algorithms are 
sound, and conventionally-assessed performance of the CaneGEM model 
is similar to that of DSSAT-Canegro 

The DSSAT-Canegro model simulated the NCo376 validation dataset (“376V”) very 
well, which is testament to that model’s pedigree.  The time-series RMSEs for ADM, 
SDM and sucrose mass (9.1, 6.7 and 3.9 t/ha respectively are only slightly greater than 
published values (e.g. 8.4, 5.6 and 3.3 t/ha, Jones et al. (2018)).  This appears to be 
the first time that DSSAT-Canegro has been validated with irrigated experiments only, 
and this an excellent result because the overriding impact of water stress, combined 
with well-studied water relations reflected in the model algorithms, makes 
rainfed/water-stressed experiments generally easier to simulate accurately.  Model 
performance for values and biomass fractions at harvest was generally poor, with the 
exceptions of FIPARa and DoTP.   

For the NCo376 calibration set (“376C”), the CaneGEM model’s prediction of FIPAR 
and FIPARa were reasonably good, and the simulation of time-series ADM, SDM and 
sucrose mass values was also satisfactory.  CaneGEM was unable to capture the 
dynamics of high values of green leaf area index, although this evidently had little 
impact on the simulation of radiation interception; this may however have affected the 
accuracy of green canopy mass simulations, which were considerably less accurately 
predicted than other biomass components. The poor prediction of values at harvest is 
of some concern, although it is acknowledged that capturing subtle differences in final 
fully-irrigated yields is difficult, especially given the possible presence of lodging and 
unrecorded end-of-season “drying-off” (intentional water stress to enhance sucrose 
content, Dias et al. (2018)).  Similar performance outcomes for predetermined and 
simulated duration of germination (DoGP) approaches was reassuring. 

The performance of the CaneGEM model for the NCo376 validation dataset (“376V”) 
was similar to that of the calibration dataset.  RMSEs for ADM, SDM and sucrose mass 
(10.5, 6.4 and 4.3 t/ha respectively for predetermined DoGP, and 9.6, 6.0 and 3.9 t/ha 
for predicted DoGP) compare favourably with the DSSAT-Canegro validation results 
presented here, published DSSAT-Canegro results, and published model performance 
for APSIM-Sugar (summarised in Jones & Singels (2018)).   

Although the predictions of seasonal/at harvest values were poor, they were generally 
no worse than those of DSSAT-Canegro.  DSSAT-Canegro however simulated DoTP 
(based on thermal time) more accurately than the FIPAR-based approach in the 
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CaneGEM model, and also simulated FIPARa more accurately.  Jones et al. (2019) 
reported that TT-based DoTP prediction was unreliable for the ICSM IGEP 
experiments.  This also unfortunately calls into question one of the key features of the 
CaneGEM model, where DoTP is linked to canopy development, which is also 
connected to the carbon balance (and was intended to capture the reported effect 
(Jones et al., 2019) of DoTP being earlier under high radiation relative to temperature 
conditions, as well as conclusions from Singels & Smit (2009)).  Despite the DoTP 
prediction error, time-series values of SDM accumulation and SDM/ADM fractions 
appear to have been accurately simulated in CaneGEM.   

The source:sink-based biomass partitioning between leaves and stems, and between 
stalk fibre, sucrose and hexoses, in CaneGEM appeared to work well, producing 
mostly accurate results.    

Three possible weaknesses are acknowledged: firstly, the majority of calibration 
experiments and all the validation experiments were from two relatively temperate 
locations in South Africa (Pongola and Mount Edgecombe); secondly, NCo376 is no 
longer widely grown – calibration and validation with a more popular cultivar might be 
desirable, although NCo376 remains a ‘reference’ cultivar, both in scientific research 
and breeding in the South African industry; and thirdly, in some cases low radiation 
interception values were under-estimated and intermediate values over-estimated. 
Green leaf area index and ADM accumulation did not show similar trends, however. 

The CaneGEM model appears to have generally equivalent performance to DSSAT-
Canegro, but with a considerably simpler model structure, clearer inter-process 
coupling (which can prevent inappropriate/unrealistic parameter combinations) and 
linkages to genotypic traits, and a greater emphasis on emergent simulation of complex 
traits.  Given the long pedigree of the DSSAT-Canegro model simulating NCo376, the 
performance outcomes for the CaneGEM model are considered satisfactory. 

5.5.2 Simulation of GxE interaction effects on canopy development and 
biomass accumulation is improved in the CaneGEM model 

Results for DSSAT-Canegro’s prediction of GxE interaction effects yielded a 
statistically significant (p < 0.05) slope of 0.07 and an R2 of 0.52 for ADMh.  Although 
the relationship is statistically significant, the very low value of the slope statistic means 
that this has very little practical utility in model application.  

With DoGP predetermined, the CaneGEM model was able to predict GxE interaction 
effects on FIPARa and ADMh considerably more accurately than DSSAT-Canegro in 
this study, and in comparison with the evaluation presented in Chapter 4.   

With DoGP predicted, however, the CaneGEM model was unable to predict GxE 
interactions in ADMh as accurately as DSSAT-Canegro, although the prediction of 
FIPARa GxE effects was arguably better (having a statistically-insignificant positive 
slope of regression between simulated and observed FIPARa GxE interaction effects, 
compared to a significant negative slope for DSSAT-Canegro). 

At Belle Glade R1, R570 intercepted less radiation than CP88-1762 had lower ADMh 
yields; and at La Mare R1, R570 intercepted more radiation than CP88-1762 and had 
higher yields.  In GxE analysis terms, these are classic crossover effects (Figure 5-30). 
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Figure 5-30.  Observed (solid lines) and CaneGEM-simulated (dashed lines) 
genotype-by-environment (GxE) crossover effects for seasonal intercepted 

photosynthetically-active radiation fraction (FIPARa, left) and above-ground dry 
biomass yields at harvest (ADMh, right), for two Gs (R570 and CP88-1762) and two 

Es (La Mare, Reunion Island; and Belle Glade, Florida, USA). 

These crossover effects were predominantly explained by the difference in duration of 
the germination phase for R570:  

• at La Mare, R570 and CP88-1762 were deemed to have emerged on the same 
date – 24 days after crop start.  The higher canopy growth rate for R570 drove 
it to intercept slightly more radiation than CP88-1762, driving higher seasonal 
radiation interception.  Conditions at crop start at La Mare were warm. 

• At Belle Glade, R570 took considerably longer than CP88-1762 to complete the 
germination phase and emerge – 71 vs 56 days.  It was relatively cool at Belle 
Glade at crop start. 

• Simulations with CaneGEM accounted for the differences in canopy 
development rate between the Gs (via differences in trait parameter values for 
relative canopy development rate and cardinal temperatures for canopy 
development), but could not adequately predict the GxE differences in duration 
of germination phase on the basis of different cardinal temperatures for thermal 
time driving germination rate.  Hence, it was necessary to specify the duration 
of the germination phase in order to predict the seasonal radiation interception 
differences sufficiently accurately to drive an accurate prediction of GxE effects 
in ADMh yields. 

With the assistance of the CaneGEM model and the ICSM IGEP dataset, GxE 
differences in ADMh yields were therefore dissected into G-specific temperature 
response and fundamental canopy development rate traits, and unresolved GxE 
influences on duration of germination phase. 

Dias et al. (2020) determined G-specific canopy-related model input parameter values 
(green leaf number, tillering factor, thermal time from date of primary shoot  emergence 
to date of onset of stalk growth and radiation extinction coefficient) for APSIM-Sugar, 
for 27 varieties and two Es in Brazil; their conclusion was that simulation outcomes 
matched qualitative information about the varieties considered, and that the calibrated 
model could be used for exploring GxExM interactions.  Duration of germination was 
not explored in this study, and relied on the standard APSIM-Sugar thermal time-based 
germination model.  It is noted that 21 of the 27 crops used in that study were plant 
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crops, for which this standard germination model appears to function more robustly 
than for ratoon crops.   

5.5.3 GxE interactions for date of emergence drive GxE in canopy cover and 
biomass yields, but prediction of germination rate is inadequate 

Running the CaneGEM model with predetermined DoGP per G and E, and NCo376 
trait parameters (model assessment scenario code “GEM_IGEP_P1”), resulted in 
accurate and statistically-significant prediction of GxE interaction effects in FIPARa and 
ADMh.   

Perhaps the most important finding of this work is then that GxE interaction effects in 
irrigated sugarcane appear to be mostly explained by GxE interactions in duration of 
germination phase.  Germination phase duration is therefore a key trait determining 
environmental fitness for irrigated sugarcane, and could possibly be used as a 
screening trait in selection in a breeding programme.   

Implementing germination rate screening would require that duration of germination is 
phenotyped, which could be achieved by: germinating individual buds in temperature-
controlled germination rooms or growth chambers and recording time to emerge (Poser 
et al., 2019; Smit, 2010); or by counting shoot density per unit area in a field trial 
scenario (Bezuidenhout et al., 2003; Donaldson, 2009); it may be possible to assess 
emergence status via remote sensing (Gers, 2003; Som-ard et al., 2021).  This could 
only practically be included from the second selection stage onwards, as phenotyping 
germination rate from true seed, as undertaken in the first stage, may not correspond 
with germination rate from setts or stools.   

The CaneGEM model was unable to predict DoGP well enough to capture the GxE 
interactions in FIPARa and ADMh that the DoGP GxE differences appeared to have 
caused.  The model uses a standard thermal time-based approach to predicting 
germination rate, based on air temperatures.  Attempts to use simulated soil 
temperatures were inconclusive, although plant crop germination rate appeared to be 
somewhat more accurately predicted by simulated soil temperature than air 
temperature (results presented in Appendix A).  The Tb_germ value of 16 °C chosen 
for NCo376 aligns with reported findings.  Smit (2010) reported Tb_germ values for 
South African cultivars (NCo376=18.1, N16=16.8, N27=17.8 °C), while Poser et al. 
(2019) reported Tb_germ values of 11-13 °C for Reunion cultivars (including R570), 
for plant crops germinated in growth chambers.  Their Tb_germ value for R570 was 
considerably lower than the value calibrated in the present study, but this is attributed 
to dissimilarity between field and growth chamber conditions; more importantly, R570 
had a higher Tb than the other Gs in that study, consistent with the present study.   
Tb_germ of 16 °C was reported for NCo376 by Jones et al. (2018), although 10 °C was 
recommended by Singels et al. (2008).   

Efforts to optimise Tb_germ based on observed or best-estimated date of emergence 
resulted in inconsistent outcomes between plant and ratoon crops, and also between 
air and simulated soil temperatures (results presented in Appendix A, Figure 10-1).  
The small number of data points, combined with coefficient of variation values of ≈ 35% 
for R570 plant crops across a wide range of air temperatures, indicates poor statistical 
strength for these outcomes.  Owing to this, a reasoned approach (described in Section 
5.3.7) to determining values for cardinal temperatures was followed.  It is noted 
however that the cardinal temperature values determined and used in the evaluation 
of model GxE prediction abilities are not clearly consistent with the CV%-minimising 
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Tb_germ temperatures shown in Figure 10-1.The real challenge does however seem 
to lie with the prediction (and indeed, measurement) of DoGP of ratoon crops; this 
appears less well-studied; Keating et al. (1999) assumed Tb_germ = 9 °C and TTem_R 
= 100 °Cd (with additional time required for coleoptile elongation to the soil surface, 
0.8 mm/°Cd), while Bezuidenhout et al. (2003) used similar values for their dynamic 
model of tillering.  The Tb_germ of 9.5 °C, where TTem_R variation was minimized in 
the present study, is very close to the APSIM-Sugar base temperature value of 9 °C.  
The high degree of variation (≈ 100%) is due to many ratoon crops effectively having 
emerged on the first day of the crop.  Singels & Bezuidenhout (2002) adjusted dates 
of emergence to match simulated stalk mass dynamics for 18 NCo376 crops; in seven 
of these crops, the date of emergence was calculated to be between 15 and 82 days 
earlier than the date of crop start.  It is clear that conditions prior to the start of ratoon 
crops need to be considered in the prediction of DoGP; such an algorithm is not 
included in any sugarcane crop growth models. 

5.5.4 Differential temperature responses appear to drive remaining GxE 
interactions, and can be inferred from germination rate 

Changes to cardinal temperatures based on insights from DoGP resulted in improved 
prediction of GxE interaction effects.  Such changes were also necessary to generate 
GxE interaction effects, whereas changing phase durations or activity rates per unit 
thermal time would have resulted only in G effects. 

Smit (2010) and Poser et al. (2019) reported G differences in base temperatures for 
germination rate in sugarcane.  Donaldson (2009) calculated base temperatures for 
biomass component mass accumulation rate in three South African cultivars.  
Significant differences were reported for base temperatures for canopy dry mass (12-
14 °C), stalk fibre mass (16-19 °C) and sucrose mass (16-19 °C).  By contrast, Smit 
and Singels (2006) did not find stable differences in base temperatures for stalk 
elongation rate for three South African sugarcane cultivars, suggesting that genotypes 
differed more reliably in their elongation rates per unit thermal time.  There was 
however considerable variation in base temperatures between sites and start dates, 
however, suggesting unresolved E effects. 

In other species, Tirfessa et al. (2020) found G differences in base and optimal 
temperatures for plant phenological development in sorghum, which (like sugarcane) 
is a (sub-)tropical C4 grass.  A range of base, optimal and ceiling temperatures for 
germination rates of genotypes of groundnut and pearl millet have been reported 
(Mohamed et al., 1988a), and the same authors found close correlations between 
germination rate and leaf growth rates in pearl millet (Mohamed et al., 1988b), 
suggesting a possible cardinal temperature coupling across plant processes.  Ortiz et 
al. (2022) reported genotypic differences in photosynthetic performance in response to 
temperature in soybean.  Parent et al. (2010) found evidence for coordination of 
temperature responses across processes in many species, including sugarcane. 

Overall, it appears that there is evidence for G differences in cardinal temperatures 
controlling phenological development.  Indeed, the results of the present study 
underline the importance of differences in the duration of the germination phase in 
explaining GxE interaction effects in biomass yields.  Although it was not possible to 
capture the germination rate dynamics with enough accuracy to simulate these effects, 
there is no doubt that temperature has a powerful influence on germination rate.  
Consistent cardinal temperature differences for biomass accumulation and expansive 
growth rates have not been demonstrated for sugarcane.   
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The present study however revealed improved prediction of GxE interaction effects in 
biomass yields when cardinal temperature differences identified in germination rates 
were carried through to expansive processes.   

Phenotyping temperature sensitivity for sugarcane field crops can be practically 
challenging, requiring paired sites at different altitudes (Smit and Singels, 2007); even 
then, differences in environmental variables and crop development makes comparison 
challenging.  If temperature responses are coordinated across plant processes, 
however, then using germination rate response to temperature as a proxy for relative 
temperature sensitivity for other processes could be feasible and practical within an 
operational breeding programme.  Setts or buds can be germinated in temperature-
controlled germination rooms relatively easily and cheaply, at a fraction of the spatial 
scale and complexity of a field trial.  By germinating buds of known reference Gs and 
unphenotyped Gs in two germination rooms set to different temperatures, absolute 
and/or relative temperature sensitivity for new Gs could be inferred (Poser et al., 2019). 

For the predetermined DoGP simulations, E and G effects on ADMh were reasonably 
well-predicted (not statistically significant, noting that achieving a significant 
relationship with 3-4 data points is difficult) without changing the maximum radiation 
use efficiency parameter RUEadm.  This tends to confirm the conservative nature of 
maximum RUE, consistent with the APSIM-Sugar model, in which this parameter value 
cannot be set per-cultivar; and disagrees with the findings of Jones et al. (2019) 
(Chapter 3) who found different RUE values for each G, and Jones et al. (2021) 
(Chapter 4) who asserted that models needed to permit G-specific maximum RUE 
parameter values to be useful for plant breeding applications, as well as Hoffman et al. 
(2018) who found G-specific RUE values for 14 cultivars in a pot trial.  It is possible 
that maximum RUE can vary in sugarcane genotypes; Basnayake et al. (2015) found 
a relationship between stomatal conductance and yield in a population of genotypes 
with wide genetic range.  However, the intense selection pressure in breeding 
programmes means that elite varieties are selected close to the genetic ceiling for RUE 
(Dias et al., 2019). 

Hoffman et al. (2018) also reported significant G differences for DoTP.  DSSAT-
Canegro parameters based on these G-specific RUE and DoTP parameters were used 
in simulations of a field trial (plant and ratoons 1-3) at Pongola, South Africa.  The 
model was able to predict yield G effects and rankings accurately across all Es (i.e. all 
four crops combined), but predictions were less accurate for individual Es (i.e. 
individual crops), suggesting that these G parameters/traits do not have a strong 
bearing on GxE interactions in cane yield.  Sexton et al. (2017) found that APSIM-
simulated biomass and sucrose yields, for two sites in Australia, were insensitive to 
thermal time to OSG, with more influential parameters including maximum RUE, 
maximum green leaf number and radiation extinction coefficient; 
germination/emergence-related parameters were not evaluated. 

5.5.5 Model structure and concepts 

Many assumptions were made regarding the role of onset of stalk growth (OSG) as the 
key mediator of several important plant processes.  The assumptions made in the 
development of the model reflect interpretation across a wide body of evidence, 
however, and the calibration, validation and E/G/GxE evaluation results lend 
confidence to these assumptions.  The model asserts that the OSG transition drives 
the increase in phyllocron interval, reduces canopy growth rates, stops tillering and 
triggers senescence; it is quite possible that OSG is actually the outcome of these 
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correlated phenomena.  Even if this is the case, it does not matter much in terms of 
practical simulation outcomes, and the model could provide a framework for exploring 
such causality in future research work.  That said, the duration of the tillering phase 
(which ends with OSG, DoTP) was predicted more accurately by DSSAT-Canegro, 
with its thermal time-based algorithm, than the CaneGEM model’s FIPAR-based DoTP 
prediction, for the NCo376 calibration and validation sets.  Future work could assess 
model performance where the DoTP algorithm is replaced with a thermal time 
approach, but where OSG status still interfaces with canopy development and biomass 
partitioning as described for the CaneGEM model.  This would however lose the 
connection between radiation intensity and date of OSG identified in Chapter 3.  While 
APSIM-Sugar also uses a thermal time OSG threshold, the Mosicas model relies on 
an ADM threshold to trigger OSG.  Mosicas shares with the CaneGEM model the 
concept of a gradual transition to OSG, although in Mosicas this is made a function of 
ADM, while in this CaneGEM model it is a function of radiation interception.  The 
findings of Chapter 3 were that the ADM threshold was less reliable than the thermal 
time method. 

The focus areas for CaneGEM model development were, for simplicity, in improving 
seasonal canopy development and biomass accumulation.  It was however necessary 
to account for stalk sugar mass for the source:sink-based approaches to biomass 
partitioning, and consequently structural growth, to work properly.  Daily hexose 
requirements are estimated dynamically as a proportion of the daily mass of structural 
fibre synthesised, and sucrose mass determined as the remainder of stalk sugars.  This 
approach to predicting sucrose mass appears to be accurate and is a strength of the 
CaneGEM model.  An additional strength is that the partitioning to stalk sugars is 
entirely an emergent consequence of source and structural sink strengths, so sucrose 
accumulation is effectively controlled by trait parameters regulating structural stalk and 
leaf growth and sink strengths. 

DSSAT-Canegro and APSIM-Sugar make use of a leaf-aging concept, modelled as a 
maximum number of green leaves per stalk.  This has been shown to be unstable with 
respect to row-spacing (Singels and Smit, 2009).  The literature review (Chapter 2) 
revealed a remarkable dearth of information about leaf senescence in sugarcane – and 
the experience with this model suggests that senescence has an important bearing on 
biomass partitioning dynamics in the plant.  Canopy dynamics following OSG are 
poorly understood and this warrants further research; the CaneGEM model provides a 
suitable framework for further exploration in this regard. 

The focus in this study was on fully-irrigated, well-fertilised sugarcane.  It is on this 
basis that the absence of water stress effects in the CaneGEM model is justified.  
Additionally, a multi-G, multi-E water stress response trial dataset is not available, so 
it would not have been possible to evaluate such a model.   Basnayake et al. (2012) 
found that genotype yield rankings were very similar under unstressed and mild- to 
moderately-stressed conditions.  This suggests that a model capable of simulating only 
unstressed sugarcane growth is still useful for assisting breeding in industries where 
mild/moderate water stress may be encountered.  Nevertheless, implementing the 
CaneGEM algorithms in an established crop modelling system (see 
Recommendations, Section 5.5.8 below) will permit linkages with existing water stress 
routines and will equip the model for exploring trait modelling more explicitly under 
stressed environments.  
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5.5.6 The CaneGEM model is well-suited for supporting plant breeding  

Fulfilment of characteristics for breeding-ready models 

Biomass partitioning is highly “emergent” (Hammer et al., 2019b; Hammer and Jordan, 
2007), with component masses determined as consequences of the interaction 
between simple plant processes, regulated by G parameters, in response to 
temperature and radiation.   

The CaneGEM model simulates complex traits, such as canopy development and 
accumulation of biomass, stalk and stalk sugar yields, accurately in an emergent 
manner.   

The model is fundamentally simple and parsimonious, considerably more so than 
DSSAT-Canegro and APSIM-Sugar.  CaneGEM has 48 input parameters, while 
DSSAT-Canegro (for example) has 88 input parameters across its cultivar, ecotype 
and species files for simulating unstressed growth. It is acknowledged that some of the 
complexity of DSSAT-Canegro and APSIM-Sugar relates to their simulation of water, 
energy and (in ASPIM anyway) nitrogen balances.  The key model inputs driving 
accurate simulation of GxE effects in canopy cover, RGRlaimax and Tb_lai, can be 
phenotyped relatively easily with standard instrumentation, and could in principle be 
inferred from estimates of GLAI and FIPAR from multi-spectral remotely-sensed 
imagery.  In these ways, the model is suitable for application in sugarcane breeding. 

Possible model applications to support breeding 

The parameters RGRlaimin and RGRlaimax appear to be stable per G with respect to 
temperature and radiation, and permit the emergent accurate simulation of canopy 
development (a complex phenotype).  This model could be used to explore the 
suggestion by Sinclair et al. (2004) that high initial leaf area development could be used 
as a marker for high yield in sugarcane breeding.  Analysis of GxE interaction effects 
for R570 and CP88-1762 at Belle Glade R1 and La Mare R1 suggests that the 
combination of duration of the germination phase (unresolved GxE effects), G-specific 
cardinal temperatures and RGRlai parameter values explain much of the observed 
GxE variability in seasonal radiation interception and biomass yields at harvest; greater 
initial leaf area is consistent with any/all of these, and so it would appear that the model 
outcomes support this hypothesis. 

The model could be used for phenotypic prediction across a wide range of Es, if it is 
calibrated appropriately for other cultivars.  In principle, it could be used for genetic trait 
sensitivity analyses to understand the relative impact of changes in values of genetic 
trait parameters in different Es, in order to narrow down the domain of target genetic 
regions for increasing yield within particular TPEs.  For example, in warm Es 
decreasing Tb_lai would have minimal impacts, while in a cool E this could dramatically 
increase canopy development and biomass accumulation rates.   

The model lends itself to G trait explorations where the model self-imposes tradeoffs 
between parameter values.  Increasing RUEadm, for example, would always enhance 
yields and would not generate any new insights.  If, however, if it can be assumed that 
RGRlaimax and RGRlaimin are correlated, faster initial canopy development would imply 
a greater rate of leaf area production in a mature crop.  Unless such genotypes were 
also to have a higher senescence threshold (parameter GLAIst), a greater leaf mass 
would senesce due to earlier and more profuse senescence.  The light interception and 
biomass accumulation gains of faster canopy development therefore would – in this 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

108 
 

situation – need to be balanced against greater unproductive losses of biomass in 
senesced leaf material. 

Finally, it may be possible to identify QTL that are associated with Tb_lai, To_lai, 
RGRlaimax and/or RGRlaimin.  This would permit indicative predictions of canopy 
development rate and biomass yields from genetic sequence analysis, bearing in mind 
that highly significant predictions of GxE interaction effects in FIPARa and ADMh were 
predicted for three diverse Gs by changing only five trait parameters.    

5.5.7 Additional possible model applications 

The novel approach to simulating biomass partitioning may make the CaneGEM model 
(or future derivatives thereof) uniquely suitable for studies that go beyond the 
capabilities of existing models.  For example, the ability to simulate sink strength 
limitations might provide further insights into understanding the reduced growth 
phenomenon (Park et al., 2005; Van Heerden et al., 2010).  Additional applications 
could include investigating fibre content traits (e.g. for biomass energy applications), 
modelling chemical ripener effects, and assessing climate change impacts and 
adaptations.   

5.5.8 Recommendations 

Implementation of novel algorithms in established modelling systems 

The CaneGEM model in its current form does not have a water balance and has not 
been tested for water-stressed conditions.  Work is underway to make the model 
available in the DSSAT v4 system (Jones et al., 2003) and it is recommended that this 
work is completed, including the necessary linkages to water stress indices. 

Implementation of this model in the Mosicas codebase would be relatively easy, as it 
already operates on an integrated canopy basis.  The APSIM-Sugar and DSSAT-
Canegro models could be adapted to change the basis for predicting date of OSG from 
thermal time to the described transition based on radiation interception.  APSIM-Sugar 
already includes the SLA and senescence algorithms used in CaneGEM.  The 
advantage of implementing these algorithms in existing modelling systems is reduced 
complexity for existing users of these models, and compatibility with existing simulation 
datasets.  Additionally, modelling systems such as APSIM and DSSAT allow linkages 
with existing modules that would potentially expand the functionality of the model, such 
as those that simulate the soil water and nitrogen balances. 

DSSAT-Canegro could be modified to limit leaf expansion to SLA-allowable ranges, 
and to link tillering rate with carbohydrate availability.  This could address a potential 
weakness with the integrated canopy approach, whereby tillering and leaf expansion 
are reported to have different cardinal temperatures for leaf appearance, expansion 
and tillering (Bezuidenhout et al., 2003; Bonnett, 1998; Jones and Singels, 2018; Smit 
and Singels, 2007).   

Germination modelling 

Duration of germination phase (DoGP) appears to be a strong determinant of GxE 
interaction effects in canopy development and biomass yield for irrigated sugarcane, 
and it is recommended that research into improving the prediction of DoGP, particularly 
for ratoon crops, is undertaken.   
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Germination in ratoon crops may start sooner than the date of harvest if conditions are 
suitable – for example, leaf/tiller senescence following water stress, or lodging, might 
allow more light closer to the ground; damage, from frost or lodging, might break apical 
dominance.   The development of a more accurate model of ratoon crop germination 
may require data recorded from the last few months of previous crops, as well as data 
for the new ratoon crops.  Data should include: daily weather variables, soil 
temperature at different depths, date of start of drying-off, lodging dates and severity 
ratings, and frequent (every 1-2 weeks initially, and then at regular thermal time rather 
than calendar time intervals) observations of shoot number, leaf number, and green 
leaf and total radiation interception.  Advances in the prediction of lodging events (van 
Heerden et al., 2015b) might prove valuable in predicting germination timing in 
following ratoon crops. 

The germination of plant crops is limited by soil water content (Keating et al., 1999), 
and can be completely suppressed in a very dry soil (Smit, 2010).  It is recommended 
that for field trials, soil water content is measured at crop start, and that careful records 
of early irrigation applications are kept.  This will permit crop models such as DSSAT-
Canegro and Mosicas to be started on the date of first significant irrigation application 
(or rainfall event), or alternatively (for models that consider soil water content effect on 
germination rate, e.g. APSIM-Sugar) to predict date of emergence as accurately as 
possible on the basis of soil water content. 

5.6 Conclusion 

A new sugarcane model, CaneGEM, has been developed, which (1) simulates canopy 
development based on temperature and carbon availability, and is therefore 
responsive to radiation intensity via photosynthesis; and (2) predicts the onset of stalk 
growth in response to canopy cover, linking this process to radiation intensity.  The 
model was calibrated and validated on 22 (11 each) experimental crops of the 
reference cultivar NCo376.  The CaneGEM model was calibrated for three cultivars 
against data from an international multi-environment trial, primarily by setting G-
specific temperature sensitivity thresholds.  Thereafter, the CaneGEM model’s abilities 
to predict E, G and GxE interaction effects were assessed using the multi-environment 
trial dataset.  The DSSAT-Canegro model was also validated and assessed for G-E 
effects predictions with the same datasets and methods to provide a performance 
benchmark for evaluating model improvement. 

Validation outcomes for the CaneGEM model indicated generally similar performance 
to that of DSSAT-Canegro for the NCo376 experiments, but with simpler underlying 
concepts and a greater degree of inter-process coupling, and with a smaller number of 
genetic control parameters (48 vs 88).  The CaneGEM model outperformed DSSAT-
Canegro for predicting GxE interaction effects on seasonal radiation interception and 
biomass yields at harvest, where growth phase duration was predetermined.  With 
duration of growth phase simulated, however, the CaneGEM model was not capable 
of predicting GxE interaction effects in radiation interception or biomass yields at 
harvest.  Attempts to modify the germination algorithm to use simulated soil 
temperatures were inconclusive, so the CaneGEM model uses a standard model of 
germination that makes use of air temperatures.   

All specific objectives were addressed, and the overarching objective of developing an 
improved sugarcane model, capable of accurately simulating GxE interaction effects 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

110 
 

on seasonal radiation interception and (by implication) biomass yields, was partially 
achieved. 

The CaneGEM model represents a balance between conceptual simplicity and 
biological realism.  To a large extent, the model relies on emergent consequences to 
simulate complex phenotypes such as the transition from tillering to stalk growth 
phases, accumulation of biomass components and yields.  The CaneGEM model fulfils 
the requirements of suitability as a tool for supporting crop improvement. 

The novel approach to simulating biomass partitioning may also make it uniquely 
suitable for studies that go beyond the capabilities of existing models, such as exploring 
the reduced growth phenomenon, stalk fibre management, and modelling chemical 
ripener effects.   

Two key recommendations are made for future work.  Firstly, in order to become more 
useful operationally, the CaneGEM model algorithms ought to be implemented in 
existing crop modelling software to take advantage of existing expertise and 
databases.  The second recommendation is that further research effort is invested in 
understanding the dynamics of germination, particularly for ratoon crops, with a focus 
on conditions prior to harvest of the preceding crop.  This work revealed the 
overwhelming importance of germination phase duration in explaining GxE interaction 
effects on radiation interception and biomass yields; existing germination algorithms 
are inadequate for predicting date of emergence with sufficient accuracy, particularly 
for ratoon crops, where in many cases germination appeared to have started before 
harvest of the previous crop.   
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6. MODEL APPLICATION CASE STUDY: ASSESSING THE IMPACTS 
OF CANOPY DEVELOPMENT TRAITS FOR FOUR 

ENVIRONMENTS 
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6.1 Introduction 

Rising demand for food and biofuels demands rapid acceleration of genetic gain 
(Diepenbrock et al., 2021).  Climate change will affect future crop production, in many 
cases resulting in decreases in yield.  Recent IPCC findings (Engelbrecht and 
Monteiro, 2021) report that future rainfall is expected to decrease in sub-Saharan 
Africa, in contrast to previous projections which suggested that future rainfall may be 
slightly higher than the reference historical periods.  The combination of decreased 
rainfall and increased evaporation might mean that future sugarcane yields will be 
negatively impacted by climate change in South Africa, Zimbabwe, Mozambique, 
Reunion island, and Mauritius, rather than the positive impacts generally reported 
(Jones et al., 2015; Jones and Singels, 2014; Knox et al., 2010; Marin et al., 2013; 
Singels et al., 2014).  While irrigated sugarcane yields may have the potential to 
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increase under climate change, sucrose content and yield may decrease (Jones et al., 
2015); and meeting increased evaporative demand implies greater electricity costs for 
irrigation.  Increased evaporative demand, decreased rainfall and increased demand 
for water from other crops and economic sectors in future also represent threats to 
irrigation sugarcane production.  Climate is also expected to become more variable, 
with increased incidence of extremes, and this also represents a threat to sugarcane 
production (Christina et al., 2021).  There is a need to develop capacity to accelerate 
the production of high-yielding sugarcane cultivars adapted to (changing) growing 
environments (Es) in order to meet future demands for sugar, bioethanol and fibre. 

Sugarcane worldwide is bred using a traditional approach of crossing and selection, 
which is resource intensive and takes a long time (typically 10-14 years per cultivar).  
Resource constraints limit breeders to selecting broadly-adapted varieties that perform 
well across large target populations of environments (TPEs).  In doing so, opportunities 
for exploiting genetic adaptations to more specific Es are lost. 

Crop improvement for many species is routinely undertaken with the assistance of 
advanced modelling techniques (Messina et al., 2018). Whole-genome prediction 
(WGP) methods use carefully articulated field trial data in multi-environment trials 
(METs) to train statistical models to predict complex phenotypes (e.g. yield) from 
genetic sequence data for the TPE.  WGP models combined with crop growth models 
(CGMs) leverage the crop physiology knowledge and dynamic nature of these CGMs 
to account for genotype-by-environment (GxE) interaction effects and non-linear 
genetic effects.  This can make breeding more efficient, for example by reducing the 
size of the training datasets for WGP models and to support exploration of niche 
breeding for sub-environments within the TPE.   

CGMs can support plant breeding in simpler ways, such as by characterising 
environments – e.g. assigning Es to water stress progression categories (Chenu et al., 
2009a; Hammer et al., 2019a; Ramburan, 2012).  Additionally, given that yield is a 
complex trait that is the outcome of lower-level plant process interacting with the 
growing environment throughout the duration of the crop, CGMs allow the roles of 
these sub-traits in yield formation to be explored, for the complex traits to be ‘dissected’ 
(Hammer and Jordan, 2007).  The identification of optimal combinations of model G 
trait input values for specific TPEs amounts to developing ‘ideotypes’ (Donald, 1968; 
Hammer and Jordan, 2007; Tao et al., 2017), which can be treated as targets for plant 
breeding.  The application of CGMs to support sugarcane breeding has been very 
limited, partly due to the genetic complexity of sugarcane (Balsalobre et al., 2017) and 
partly due to uncertainty regarding the accuracy and applicability of existing general-
purpose sugarcane CGMs to support this purpose. 

Several widely-used sugarcane CGMs are available.  These include the DSSAT-
Canegro, APSIM-Sugar and Mosicas models.  The use of these models to explore G 
effects has been limited.  Sexton et al. (2017) evaluated sensitivity of trait parameter 
values for the APSIM-Sugar model for two Es in Australia.   Inman-Bamber et al. (2016, 
2012) explored water stress adaptation traits in sugarcane, also using APSIM-Sugar.  
Singels et al (2016) used the DSSAT-Canegro model to explore water uptake traits as 
a climate change adaptation, as well as rooting characteristics for different stress 
environments.  Hoffman (2018) used a pot trial phenotyping study to estimate trait 
parameter values for the DSSAT-Canegro model, which was then able correctly to 
predict cultivar rankings in a field trial.   
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Owing to the absence of a suitable multi-G, multi-E growth analysis dataset for 
sugarcane, it was not until the present study (Jones et al., 2021) that these CGMs were 
formally assessed for their abilities to predict GxE interaction effects, a step 
recommended by Boote et al. (2021).  This study was limited to four fully-irrigated 
environments: Belle Glade, Florida, USA; Chiredzi, Zimbabwe; La Mare, Reunion 
island, France; and Pongola, South Africa (Jones et al., 2019).  A new model, called 
CaneGEM, described Chapter 5, was developed to address model shortcomings that 
limited sensitivity to key sources of GxE interaction effects.  These included carbon-
linked canopy development, phenology linked to canopy development, source:sink-
based biomass partitioning, and G-specific threshold temperatures for plant processes.  
The CaneGEM model provided some improvement in the prediction of GxE 
interactions, but also better fulfils the requirements of credibility and appropriateness 
recommended by Hammer et al. (Hammer et al., 2019b; Hammer and Jordan, 2007) 
for CGMs intended for supporting breeding.  These include emulating growth in 
biologically-realistic manner, and predicting complex traits as emergent consequences 
of lower-level processes. 

The CaneGEM model uses cardinal temperatures to control the process rate 
responses to temperature for duration of the germination phase, canopy expansion 
rate, stalk expansion rate and photosynthesis rate.  Process rates increase linearly as 
air temperature increases from the base temperature to the optimal temperature, and 
then decrease linearly between the optimal temperature and the ceiling temperature.  
Lowering the base temperature threshold (Tb_x for process x) could be expected to 
increase process rates at low temperatures, but might make the process less efficient 
at higher temperatures if they exceed a similarly-lowered optimal temperature (To_x) 
or near the ceiling temperature (Tf_x).  

CaneGEM uses relative growth rate parameters (RGRlaimin and RGRlaimax 
parameters; Eqn.(5-13) in Section 5.2.5) to control the maximum extent by which the 
canopy can expand as a fraction of its current size each day (where the actual extent 
is limited by temperature and source availability).  Two parameters are defined: a high 
value (RGRlaimax) for when the crop is very young, and a smaller rate (RGRlaimin) 
defined for the when the crop has fully transitioned to the stalk growth phase.  
Increasing these parameter values can be expected to result in faster canopy 
development, as long as biomass accumulation rates are sufficient to meet the greater 
sink strengths from a faster-expanding canopy, and so drive greater seasonal radiation 
interception and consequently greater final biomass yields.   

CaneGEM also considers a canopy senescence threshold (GLAIst parameter (Eqn. 
(5-15) in Section 5.2.5): this is the leaf area index value at which leaf senescence 
starts.  In principle, increasing this value should result in a larger canopy being 
maintained with smaller loss of biomass to leaf senescence, which could be expected 
to increase yields. 

The value of this model to support plant breeding needed to be demonstrated.  The 
study was funded by four cooperating institutions (SASRI, SGC Florida, ZSAES, 
CIRAD), members of the International Consortium for Sugarcane Modelling (ICSM), 
with the trial dataset collected by them.  For this reason, it was considered important 
to demonstrate value from the new model at each of the sites where data were 
collected (Belle Glade, Chiredzi, La Mare and Pongola).   

Furthermore, it was recognised that for well-managed fully-irrigated sites, temperature 
and radiation responses are the key environmental determinants of yield.  Temperature 
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responses in the CaneGEM model are determined by threshold temperatures – base, 
optimal and ceiling values, for plant processes for which there is evidence of genotype-
specificity: controlling germination, canopy development and stalk elongation (Bonnett, 
2014; Campbell et al., 1998; Inman-Bamber, 1994; Ngobese et al., 2018; Singels et 
al., 2005c; Smit, 2010).  There is also evidence of G-specific tillering and leaf 
development  traits in sugarcane (Bonnett, 1998; Sinclair et al., 2004; Singels et al., 
2005c; Zhou et al., 2003), which regulate radiation interception in the crop.  Conversely, 
there is little evidence for G-specific cardinal temperatures controlling leaf appearance 
(Bonnett, 1998) or photosynthesis.  As crops harvested early-, mid- and late-season 
experience differing climatic conditions at different developmental stages, it is 
necessary to account for this in simulation studies (e.g. Bezuidenhout and Singels 
(2007); Jones and Singels (2015)). 

With these considerations in mind, the broad objective was to evaluate the ability of 
the CaneGEM model to inform crop improvement by exploring the impact of 
genetically-controlled canopy development traits and temperature sensitivities on crop 
performance in different environments.   

The specific objectives were to use the CaneGEM model to assess and explain the 
impacts of changes to trait parameter values for: 

• cardinal temperatures controlling  rates of germination, canopy development 
and stalk elongation; 

• relative canopy growth rate; and 

• canopy senescence threshold, 

on biomass, stalk and sucrose yields, for early-, mid-, and late-season harvested crops, 
at each of the four ICSM sites. 

6.2 Methodology 

6.2.1 Simulations 

Simulations were conducted using the new source-sink sugarcane model described in 
the previous chapter.  At each site, the model was set up to simulate crops to be 
harvested at the typical start, end and middle of the milling season, for the last 20-30 
years, depending on the availability of weather data. For each of these simulated 
cropping seasons, 13 genotypes were assessed, consisting of: 

• A baseline G (NCo376).  The CaneGEM model was calibrated for NCo376, 
N41, R570 and CP88-1762; but only validated using NCo376 data.  For this 
reason, NCo376 was chosen as the ’baseline’ G on which to test perturbations 
to G parameter values, at all sites. 

• Four temperature-adapted Gs with base, optimal and ceiling cardinal 
temperature parameters for germination, canopy expansion, and stalk 
elongation (discussed in Section 5.2.4; trait parameters Tb_germ, To_germ, 
Tf_germ; Tb_lai, To_lai, Tf_lai; and Tb_sk, To_sk, Tf_sk; see Table 5-1)  altered 
from the baseline cultivar by -2 °C, -1 °C, +1 °C, +2 °C respectively.   
In the absence of clear information showing otherwise, and recognising that 
temperature responses have been demonstrated to be coordinated across plant 
processes for sugarcane and other crops (Parent and Tardieu, 2012), it was 
assumed that temperature thresholds across all affected plant processes would 
increase or decrease by the same extent – i.e. the same genetic region controls 
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temperature responses for germination, leaf expansion, tillering and stalk 
elongation.   
The range of temperature changes imposed was chosen on the basis of (1) 
using a set of values sufficiently broad to demonstrate clearly the direction and 
nature of responses to G variation in temperature thresholds; (2) this roughly 
representing the perceived variation in temperature across the set of sites 
considered, and so would reflect temperature response variation for Gs adapted 
to these regions, and (3) climate change projections indicating warming of 1-2 
°C over the next 30 years compared to the 1980s, providing additional insights 
into consequences of genetic adaptation (or non-adaptation) to climate change 
likely to be experienced at each of the sites.  The temperature increments also 
needed to be large enough for the CaneGEM model to distinguish clearly 
between treatments, and the experience with operating the CaneGEM model 
indicated that 1 °C increments would be appropriate;   

• Four Gs with adapted relative canopy growth rate, represented with 
RGRlaimin and RGRlaimax parameters (Eqn. (5-13) in Section 5.2.5; see Table 
5-1 for details) altered from the baseline G by -10%, -5%, +5%, +10% 
respectively. 
The magnitudes of changes imposed was based on the range of leaf 
development rates reported by Bonnett (1998), which varied by ≈ 25% between 
the fastest and slowest genotypes assessed.  

• Four Gs with adapted senescence thresholds, represented with the GLAIst 
parameter (Eqn. (5-15) in Section 5.2.5; see Table 5-1 for details) altered from 
the baseline G by -10%, -5%, +5%, +10% respectively. 
The magnitudes of the changes imposed were chosen to reflect the changes in 
relative canopy development rate.   

The changed trait parameter values are listed in Table 6-1.  Unchanged trait 
parameters are listed in Table 5-1 (Chapter 5).   
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Table 6-1.  Trait parameter values used for adapted genotypes in the case study.   

 

 

 Cardinal temperatures Relative canopy growth rate Senescence threshold 

Model param -2 °C -1 °C +1 °C +2 °C -10% -5% +5% +10% -10% -5% +5% +10% 

Tb_germ 14 15 17 18 16 16 16 16 16 16 16 16 

To_germ 26 27 29 30 28 28 28 28 28 28 28 28 

Tf_germ 39 40 42 43 41 41 41 41 41 41 41 41 

Tb_lai 11 12 14 15 13 13 13 13 13 13 13 13 

To_lai 33 34 36 37 35 35 35 35 35 35 35 35 

Tf_lai 43 44 46 47 45 45 45 45 45 45 45 45 

RGRlaimax 0.01 0.01 0.01 0.01 0.009 0.0095 0.0105 0.011 0.01 0.01 0.01 0.01 

RGRlaimin 0.25 0.25 0.25 0.25 0.225 0.2375 0.2625 0.275 0.25 0.25 0.25 0.25 

Tb_sk 13 14 16 17 15 15 15 15 15 15 15 15 

To_sk 33 34 36 37 35 35 35 35 35 35 35 35 

Tf_sk 46 47 49 50 48 48 48 48 48 48 48 48 

GLAIst 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.430 2.565 2.835 2.970 
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6.2.2 Crop management 

All crops were set up as 12-month ratoon crops, harvested on the 15th of first, last and 
middle months of the typical milling season at each site.  Full irrigation and adequate 
nutrition were assumed for all sites.  Harvest months and year ranges are listed in 
Table 6-2.  In each case, crops are assumed to have started in the harvest month of 
the preceding year. 

Table 6-2.  Harvest months and year ranges simulated at each site. 

Site Early 
season 
harvest 
month 

Mid-season 
harvest 
month 

Late-season 
harvest 
month 

Start 
year 

End 
year 

Reference 

Belle Glade, 
Florida, USA 

October January April 2003 2020 Baucum and 
Rice (2009) 

Chiredzi, 
Zimbabwe 

March July November 2000 2021 M. Zhou, 
pers. comm. 

La Mare, 
Reunion 
Island 

June September December 1994 2020 Lejars and 
Siegmund 
(2004) 

Pongola, 
South Africa 

March August December 1998 2020  

 

6.2.3 Data analysis 

The following variables were extracted or calculated from model outputs:  

• Phenology:  
o Duration from crop start to 50% primary shoot emergence (DoGP, days 

since crop start);  
o date of 50% onset of stalk growth (DoOSG, days since crop start) 

• Physiology:  
o Daily photosynthetically-active radiation (PAR) interception fraction 

(FIPAR) 
o Daily yield values of above-ground dry biomass, stalk dry mass and 

sucrose mass 
o seasonal radiation interception fraction (FIPARa), calculated as the ratio 

of the sum (over the whole cropping season) of daily intercepted PAR 
divided by the sum of daily incident PAR;  

o average apparent radiation use efficiency (RUEa, g/MJ), calculated as 
above-ground dry biomass at harvest divided by total intercepted 
radiation and expressed in g/MJ. 

• Biomass components:  
o above-ground dry biomass at harvest (ADMh, t/ha);  
o stalk mass at harvest (SDMh, t/ha);  
o sucrose mass at harvest (SUCh, t/ha) 

The mean, minimum, maximum and coefficient of variance of these variables were 
calculated across all cropping seasons, for all harvest times (early/mid/late) together 
and separately.  In some cases, the mean and standard deviation of daily values (per 
day after crop start) across simulation years, per harvest time, were calculated. 
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Results for the adapted Gs were expressed relative to that for the baseline G in the 
form of a percentage change (“delta”), calculated as: 

𝑑𝑒𝑙𝑡𝑎 = (
𝑣𝑎𝑙𝑢𝑒𝐺𝑥

𝑣𝑎𝑙𝑢𝑒𝐵𝐿
− 1) ∗ 100 

(6-1) 

where valueGx is the value for adapted genotype Gx, and valueBL is the value for the 
baseline cultivar.  All analyses were conducted using R (R Core Team, 2016). 

6.2.4 Weather data 

A summary of weather data for the four sites is provided in Figure 6-1. 

 

Figure 6-1.  Summary of monthly long-term weather data for the four study sites.  
‘aTMIN’ and ‘aTMAX’ are average daily minimum and maximum air temperature (°C) 
repectively; ‘aSRAD’ is average daily global solar radiation (MJ/m2/d).  The vertical 
green and red bars indicate the start and end months respectively of typical milling 

seasons at each site. 

Belle Glade, Florida, USA 

Weather data (TMIN, TMAX and SRAD) for Belle Glade were downloaded from the 
University of Florida web site3.  Data were available from 2002-11-18 onwards.  Missing 
or suspected incorrect data (TMIN < -10, SRAD > 40 MJ/m2/d, SRAD < 0.2 MJ/m2/d) 

 
3 https://fawn.ifas.ufl.edu/data/fawnpub/daily_summaries/BY_YEAR/  
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were replaced with NASA MERRA (Ruane et al., 2015) data downloaded from the 
NASA Power Portal4 for location 26.6871 °N -80.6567 °E. 

Chiredzi, Zimbabwe 

Daily weather data (TMIN, TMAX, SRAD and sunshine hours (SHRS, h/d)) were 
provided by the Zimbabwe Sugar Association Experiment Station.  The SRAD dataset 
had considerable gaps.  The Angstrom-Prescott method in the R ‘sirad’ package 
(Bojanowski, 2016) was used to estimate SRAD from SHRS, based on a calibration 
from the periods where both SRAD and SHRS had been observed.  Additionally, NASA 
Power MERRA data were downloaded for Chiredzi (-21.009°N, 31.6769°E) from the 
NASA Power Portal.  The SRAD data were assessed visually for accuracy (Figure 
11-10, Appendix B).  Observed SRAD data were used where available for 2000-2010, 
and MERRA data used otherwise.  Missing or suspected incorrect temperature values 
were replaced with MERRA values, bias-adjusted using linear regressions fitted to 
observed vs MERRA TMAX and TMIN separately (Figure 11-11, Appendix B).  

La Mare, Reunion Island 

Daily weather data for La Mare (TMIN, TMAX, and SRAD) were provided by CIRAD; 
these contained no gaps or obvious outliers for the period 1994-2020.  

Pongola, South Africa 

Daily weather data for Pongola, South Africa (Figure 11-13, Appendix B) were 
downloaded from the SASRI WeatherWeb5.  No gaps or outliers for the period 1998-
2000 were noted. 

6.3 Results 

6.3.1 Overview 

Detailed results for each site are shown the following sections.  Results are described 
and explained in the following order for each site: 

1. Baseline G, across all times of harvest 
2. Baseline G, per time of harvest 
3. Adapted Gs, across all times of harvest 
4. Adapted Gs, per time of harvest  

Given the need to summarise the dynamics of multi-year simulations, in many cases 
the data are visualised with boxplots.  These can be interpreted as follows: the thick 
horizontal line is the median value; the upper and lower bounds (“hinges”) of the box 
indicate the 25th and 75th percentiles; the lines indicate 1.5 x the interquartile range 
above and below the hinges, and any data points outside of this range are plotted as 
points (Wickham, 2016). 

A full summary of results for the four sites is shown in Table 11-2 in Appendix B.   

6.3.2 Belle Glade, Florida, USA 

At Belle Glade, germination for the baseline cultivar required between 32 (late-season) 
and 70 (mid-season) days.  Onset of stalk growth  occurred on average 127 days after 
crop start, ranging from 87 d for late-season crops to 160 d for late-season crops.  

 
4 https://power.larc.nasa.gov/data-access-viewer/  
5 https://sasri.sasa.org.za/pls/sasri/f?p=129:LOGIN_DESKTOP:9612752017621:::::  
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Average biomass (ADMh), stalk dry mass (SDMh) and sucrose mass (SUCh) yields 
were 53, 38 and 12 t/ha respectively (Table 11-2).   

Late season crops intercepted the most radiation (FIPARa = 0.67, Table 11-2) and 
consequently accumulated the most biomass (Figure 6-2).  Late-season crops 
experienced canopy cover losses due to frost nearer to harvest in some seasons, 
driving inter-seasonal FIPAR variation in the last 3 months of the seasons, while early 
season crops encountered frost close to crop start, driving FIPAR variation in the partial 
canopy period (Figure 6-2, Figure 11-14 in Appendix B).  Mid-season crops mostly 
avoided frost damage, with inter-seasonal variation in FIPAR driven by temperature 
and SRAD fluctuations and not frost per se.  Mid-season harvested crops had the 
lowest biomass and stalk yields, but ranked in the middle for sucrose yields.  Early- 
and late-season crops had similar biomass yields but late-season crops had higher 
stalk yields.  Late-season crops produced substantially higher sucrose yields than 
early- or mid-season crops (15.1 vs 10.3 and 11.6 t/ha), due to rapid canopy 
development, high radiation interception and biomass growth, and cool conditions in 
the 4-5 months before harvest favouring sucrose accumulation in addition to structural 
stalk growth. 
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Figure 6-2.  Daily average (±1 standard deviation, shaded) mean daily air 
temperature (C°), photosynthetically-active radiation interception fraction, above-
ground dry biomass (t/ha), stalk dry mass (t/ha), and sucrose mass (t/ha) and for 

Belle Glade, 2002-2020, baseline cultivar (NCo376).   

Adaptations to temperature sensitivity (Figure 6-3) had the greatest impact on yield-
related outcomes.  A clear trade-off between ADMh and SUCh was evident: lower 
temperature thresholds favoured larger biomass accumulation, but penalized sucrose 
yields, and vice versa.  Increasing the temperature thresholds by 1 °C resulted in a 
10% increase in SUCh and a 5% decrease in ADMh compared to the default cultivar, 
over all seasons and times of harvest.  The +1 °C adaptation also resulted in the most 
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consistent changes (across time of harvest) in SUCh compared to the baseline cultivar 
overall.  The +2 °C adaptation resulted in sucrose yields 18% higher than the baseline, 
but with a nearly 10% reduction in biomass yields (Table 11-2). 

Simulated outputs were much less sensitive to changes in relative canopy 
development rate and canopy senescence threshold.  The +10% canopy development 
rate adaption led to 1.6% increased seasonal radiation interception (FIPARa), but only 
a 0.2 % increase in biomass accumulation.  Slowing canopy growth by 10% did 
however reduce sucrose yields by 0.8 %.  Responses of a similar magnitude were 
noted for changing the senescence threshold. 

ADM and SDM accumulation were least sensitive to temperature adaptations for late-
season crops, and most sensitive for mid-season crops. This is because the magnitude 
of the temperature change was smallest relative to ambient temperatures at crop start 
for late-season crops, so the impact on radiation interception and biomass 
accumulation was relatively low.  For sucrose accumulation, however, late-season 
crops showed the greatest sensitivity – increasing more than early- and late-season 
crops for Gs adapted to higher temperatures and decreasing more than the other times 
of harvest for adaptations to lower temperatures (Figure 6-3).  This dynamic with 
sucrose accumulation is due to the magnitude of the changes being largest relative to 
ambient temperatures for the last 100 days of each season. 

Sucrose yield deltas were similar (7-11%) for the +1 °C and +2 °C adaptations for early-
season crops; for +2 °C Gs grown under early-season cycles, the biomass partitioning 
(sucrose) advantages were in some years offset by compromised ADM accumulation 
under the relatively cool season start conditions for these early season crops.  This led 
to much greater variation in the SUCh delta, compared to the +1 °C adaptation.  The 
+2 °C adaptation favoured sucrose yields for mid- and late-season harvesting, with 
increases in sucrose yield of 13 and 26% respectively.  The -2 °C adaptation resulted 
in larger SUCh decreases: -23 and -29% respectively for mid- and late-season 
harvests. 
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Figure 6-3.  Percentage change in above-ground dry mass (ADMh), stalk dry mass 
(SDMh) and sucrose mass (SUCh)  at harvest  due to trait differences in temperature 
sensitivity (Tmp), relative canopy expansion rate (Cpy) and senescence thresholds 

(Sen) for Belle Glade, 2003-2020. 

6.3.3 Chiredzi, Zimbabwe 

At Chiredzi, early- and late-season crops emerged after ≈ 26 days (Table 11-2), while 
mid-season crops took more than twice as long to emerge (59 d) due to cool starting 
conditions.  Onset of stalk growth (OSG) took longest for early-season crops (131 d 
after crop start), as a result of slow canopy development due to low temperatures for 
the first few months of growth, while mid- and late-season crops required 117 and 77 
days.  The time from emergence to OSG (i.e. DoTP) was however similar for mid- and 
late-season crops, ≈ 55 days.  Average simulated ADMh, SDMh and SUCh yields were 
approximately 67, 48 and 21 t/ha respectively over the period 2000-2021. 

ADMh for early and late-season harvests were almost identical (68.3 vs 68.1 t/ha), 
while mid-season harvests produced slightly lower biomass yields (63.2 t/ha).  Early-, 
mid- and late-season crops were distinguished more clearly with FIPARa (0.71, 0.67 
and 0.73 respectively); RUEa was similar (1.95 g/MJ) for early- and late-season crops, 
and slightly lower for mid-season crops (1.80 g/MJ).  Late-season crops produced the 
highest stalk dry mass yields (49.6 t/ha), followed closely by early-season crops (48.4 
t/ha); mid-season crops averaged lower SDMh yields (45.7 t/ha).  Sucrose yields were 
identical for early- and mid-season crops (20.5 t/ha) and greater for late-season crops 
(23.3 t/ha). 
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Increasing the cardinal temperature thresholds resulted in decreases in ADMh and vice 
versa.  Impacts were smaller at Chiredzi (-8 to +4% change overall) than at Belle Glade 
and Pongola (≈ -11 to +6% change), due to cooler periods at these sites, and more 
similar to La Mare (-7 to 4% change).  Stalk dry mass followed suit, decreasing with 
increase temperature thresholds.  Sucrose mass showed an inverse response, as at 
other sites, decreasing by 18.7% in the -2 °C adaptation and increasing by 9.8% overall 
with the +2 °C adaptation.  Increasing the relative canopy growth rate did not increase 
ADMh yields, but decreasing the rate reduced biomass yields by 0.3%.  ADMh yields 
were slightly more sensitive to the senescence threshold (-0.9 to +0.8%).   

Late-season crops showed the smallest response to temperature adaptation in terms 
of ADMh (-3.2 to 1.6% change) and SDMh (-3.8 to 2.6%), because high temperatures 
at crop start meant that 1-2 °C changes had little impact on canopy development rate, 
ensuring that FIPAR and ADM accumulation were not much affected.  Late-season 
crops however showed the greatest response in terms of sucrose yields (-23 to +21% 
change in for -2 °C to +2 °C): for the +2 °C adaptation, warm conditions early on in the 
crop ensured a rapidly-developing canopy, and moderate-cool conditions from mid-
way through the crop cycle drove a favourable combination of stalk structural growth 
and sucrose accumulation. 

Canopy growth rate adaptations had little impact.  Early-season sucrose yields became 
more variable compared to the baseline cultivar, but benefited slightly overall from 
faster canopy development.   Late-season crops on the other hand benefited (very 
slightly) from slower canopy development. 
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Figure 6-4.  Daily average (±1 standard deviation, shaded) mean daily air 
temperature (C°), photosynthetically-active radiation interception fraction, above-
ground dry biomass (t/ha), stalk dry mass (t/ha), and sucrose mass (t/ha) and for 

Chiredzi, 2000-2021, baseline cultivar (NCo376).   
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Figure 6-5.  Boxplots of biomass variables for Chiredzi, 2000-2020, expressed as 
percentage changes from baseline cultivar, for early- (blue), mid- (black) and late-

season (red) harvested crops.  ADMh = ‘Above-ground dry biomass at harvest’ (t/ha), 
SDMh = ‘Stalk dry mass at harvest’ (t/ha), SUCh = ‘Sucrose dry mass at harvest’ 

(t/ha).  Genetic adaptations to temperature sensitivity, canopy growth rate and 
senescence threshold are illustrated. 

6.3.4 La Mare, Reunion Island 

At La Mare, germination for the baseline cultivar required between 23 (late-season) 
and 40 (mid-season) days.  Onset of stalk growth was occurred on average 93 days 
after crop start, ranging from 75 d for late-season crops to 114 d for early-season crops.  
Average simulated ADMh, SDMh and SUCh yields were 72.3, 52.5 and 22.9 t/ha 
respectively over the period 1994-2020 (Table 11-2). 

Late season crops intercepted the most radiation (FIPARa = 0.74, Table 11-2) and 
consequently accumulated the most biomass (Figure 6-2), although the differences 
between harvest times were smaller than at other sites (Figure 6-6), due to the narrow 
temperature range at La Mare (20-28 °C, compared with 15-30 °C at Belle Glade and 
Chiredzi).  Biomass accumulation closely followed FIPARa, being greatest (75.2 t/ha) 
for late-season starts and smallest (70.5 t/ha) for mid-season crops.  Stalk dry mass 
yields were smallest for early-season crops, however, due to delayed onset of stalk 
growth compared to the other harvest cycles (DoOSG = 114 for early-season crops vs 
89 and 75 for mid- and late-season crops). 
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Late-season crops had considerably higher sucrose yields (26 t/ha) than early- (20.7 
t/ha) and mid-season (21.9 t/ha) crops.  Late season crops developed canopy cover 
faster and grew stalk structure to store sucrose in the warm start to the season, and 
then accumulated sucrose (along with stalk dry mass) from 200 days after crop start 
onwards; warming in the last month of the season was not sufficient greatly to slow 
sucrose accumulation rate up to harvest (Figure 6-6).  

 

Figure 6-6.  Daily average (±1 standard deviation, shaded) mean daily air 
temperature (C°), photosynthetically-active radiation interception fraction, above-

ground dry biomass (t/ha), stalk dry mass (t/ha), and sucrose mass (t/ha) and for La 
Mare, 1994-2020, baseline cultivar (NCo376). 
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Gs adapted to higher temperatures produced lower biomass and stalk dry mass yields, 
but increased sucrose yields (Table 11-2).  The -1 °C and -2 °C adaptations reduced 
sucrose yields by a greater extent (-10 and -20%) than the +1 °C and +2 °C 
adaptations increased them (+7 and +12%).  Adaptations to relative canopy 
development rate had little impact, although slight reductions in stalk and sucrose 
yields are noted for a 10% decrease in this trait parameter value.  Increasing the 
senescence threshold also resulted in very subtle impacts, with ADMh and SDMh 
increasing by a tiny margin, and a more substantial increase (≈ 2%) in sucrose yields 
with a 10% increase in senescence threshold. 

Increasing temperature thresholds reduced ADMh slightly (2-5%) for mid- and late-
season crops and vice versa, with a larger decrease for early-season crops (10%).    
SDMh followed a similar pattern, with slightly greater reductions in response to 
increasing temperature thresholds compared with ADMh.  Mid- and late-season crops 
SUCh yields increased with the +1 and +2 °C Gs, responding more sensitively than 
early-season crops.  This is because early-season crops had the coolest start, and the 
decrease in FIPARa and ADMh was greater than the increase in favourability for 
sucrose accumulation.  SUCh yields always exceeded baseline SUCh yields for mid- 
and late-season crops.  It is notable however that for early-season crops there were 
several seasons where the adapted Gs produced lower SUCh yields, although in most 
cases and on average, these Gs outperformed the baseline G.   

Early-season crops were more sensitive to changes in relative canopy development 
rate than mid- or late-season crops, suggesting that only with these crops was canopy 
development rate sink- rather than source-limited, due to low temperatures. 
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Figure 6-7.  Boxplots of biomass variables for La Mare, 1994-2020, expressed as 
percentage changes from baseline cultivar, for early- (blue), mid- (black) and late-

season (red) harvested crops.  ADM = ‘Above-ground dry biomass at harvest’ (t/ha), 
SDM = ‘Stalk dry mass at harvest’ (t/ha), SUC = ‘Sucrose dry mass at harvest’ (t/ha).  
Genetic adaptations to temperature sensitivity, canopy growth rate and senescence 

threshold are illustrated. 

6.3.5 Pongola, South Africa 

At Pongola, for the baseline cultivar NCo376, germination was fastest (26 days) for 
late season crops starting in summer, and slowest (53 days) for mid-season crops 
starting in late winter (Table 11-2).  Date of OSG occurred considerably sooner (83 
days after crop start) for late-season crops with fast canopy development (Table 11-2, 
Figure 6-9), compared with mid- (156 days) and late-season (121 days) crops.   
Average ADMh, SDMh and SUCh yields were 53.3, 37.5 and 17.3 t/ha respectively 
over the period 1998-2020 (Table 11-2). 

Early- and late-season crops produced higher biomass and stalk dry mass yields than 
mid-season crops (Table 11-2, Figure 6-8), due to greater radiation interception and 
higher radiation use efficiency.  Sucrose yields were greatest for late-season crops, 
however.  The dynamics of this, illustrated in Figure 6-8, warrants some explanation: 
(i) early-season crops, starting in late autumn, had very slow canopy development rate, 
leading to low biomass accumulation, and high temperatures leading up to harvest 
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favoured structural growth rather than sucrose accumulation; (ii) mid-season crops 
experienced faster canopy growth and biomass accumulation than early-season crops, 
and decreasing temperatures around 250 days after crop start drove up sucrose yields, 
but thereafter also reduced the rate of biomass accumulation towards harvest, 
reducing sucrose accumulation rates despite favourable conditions for partitioning to 
sucrose; (iii) late-season crops developed canopy the fastest and accumulated 
biomass in a near-linear fashion throughout the season; temperatures in the range 20-
25 °C in the 3 months before harvest resulted in a “Goldilocks” situation of a favourable 
balance of sustained biomass accumulation and stalk partitioning to sucrose. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 
 

131 
 

 

Figure 6-8.  Daily average (±1 standard deviation, shaded) mean daily air 
temperature (C°), photosynthetically-active radiation interception fraction, above-
ground dry biomass (t/ha), stalk dry mass (t/ha), and sucrose mass (t/ha) and for 

Pongola, 1998-2020, baseline cultivar (NCo376).   
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Figure 6-9.  Daily mean photosynthetically-active radiation interception for the 
baseline cultivar (NCo376) and genotypes adapted to lower (“Tmp -2 C”, blue, short-

dashed series) and higher (“Tmp +2 C”, red, long-dashed series) temperatures, at 
Pongola, South Africa, 1998-2020.  Shading indicates 1 standard deviation above 

and below the mean. 

A broadly similar pattern of ADMh temperature adaptation responses was evident at 
Pongola (Figure 6-10) as at the other sites: increasing the temperature thresholds 
penalised ADMh, due to reduced PAR interception (Figure 6-9).  The impacts on SUCh 
were less clear-cut, however.  SUCh decreased with decreasing temperature 
thresholds.  The +1 °C and +2 °C adaptations also had lower SUCh yields than the 
baseline for early-season crops, suggesting that the baseline cultivar is near-optimal 
at Pongola for such crops.  For mid- and late-season crops, however, the Gs adapted 
to higher temperatures reliably produced greater SUCh yields relative to the baseline 
G.  It should be noted that the baseline cultivar NCo376 was bred and selected in South 
Africa, albeit for rainfed production in the 1950s when temperatures were 
approximately 0.75 °C lower than the last 20 years (Singels et al., 2005a). 

Changes to the relative canopy development rate did not have much effect; ADMh, 
SDMh and SUCh responded positively to increased canopy development rate only for 
the early-season crops.  As at the other sites, increasing the senescence threshold 
was (very weakly) beneficial for yields. 
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Figure 6-10.  Boxplots of biomass variables for Pongola, 1998-2020, expressed as 
percentage changes from baseline cultivar, for early- (blue), mid- (black) and late-

season (red) harvested crops.  ADMh = ‘Above-ground dry biomass at harvest’ (t/ha), 
SDMh = ‘Stalk dry mass at harvest’ (t/ha), SUCh = ‘Sucrose dry mass at harvest’ 

(t/ha).  Genetic adaptations to temperature sensitivity, canopy growth rate and 
senescence threshold are illustrated 

 

6.4 Discussion 

6.4.1 Temperature impacts 

Overall, increasing the temperature thresholds – making the crop less tolerant of cold 
conditions – reduced biomass and stalk yields but increased sucrose yields.  The basic 
mechanism is as follows: 

1. Higher base and optimal temperatures for germination delayed emergence, 
which reduced PAR interception and this reduced biomass accumulation and 
yield; 

2. Higher base and optimal temperatures for canopy growth slowed canopy 
development and so also reduced PAR interception and biomass accumulation; 
the combination of less biomass and delayed onset of stalk growth (which is 
linked to FIPAR) reduced stalk dry mass yields. 

3. Higher base and optimal temperatures for stalk growth slowed stalk elongation 
and reduced the sink strength for stalk fibre, permitting greater accumulation of 
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‘excess’ photoassimilate to be stored as sucrose.  This effect outweighed the 
losses of biomass and stalk mass. 

From a sucrose accumulation perspective, the interaction with early-/mid-/late-season 
climatic conditions is manifested as a balance between these opposing forces of 
biomass accumulation and sucrose accumulation.  In general, increasing temperature 
thresholds favoured late- and mid-season crops more than early-season crops, 
because this adaptation – under cool conditions at crop start for early-season crops –  
penalised biomass accumulation relatively more than mid- and late-season crops.  
Similarly, reducing the temperature thresholds (i.e. adapting the crop to a cooler E) 
was most unfavourable for late-season crops, as the additional partitioning to structural 
growth in the late winter and spring did not materially increase radiation interception 
(and therefore had limited benefit in terms of additional biomass accumulation), but 
nevertheless suppressed natural ripening. 

Singels & Bezuidenhout (2002) described a biomass partitioning model that uses a 
temperature inflection point (calibrated as 25 °C) to define the temperature above 
which sugarcane (NCo376) partitions less to sucrose and more to non-sucrose sugars 
and stalk fibre.  The CaneGEM results presented here are consistent with this, and 
indeed the temperature range 20-25 °C seemed to be particularly beneficial for sucrose 
accumulation for NCo376; higher temperatures favoured greater stalk mass but with 
less sucrose at Pongola.  In the South African industry, late-season crops are 
considered to have low sucrose content and are often sprayed with chemical ripeners 
to increase sucrose content.  In these simulations, sucrose yields were highest in late-
season crops.  This may indicate that the default base temperature for stalk expansive 
growth is too high, resulting in overestimated sucrose accumulation with the 
temperature adaptations. 

A chemical ripener, trinexapac-ethyl, is sometimes applied to sugarcane to increase 
sucrose content (Van Heerden et al., 2015a).  The mode of action is transient 
suppression of stalk elongation, the consequence of which is (when used 
appropriately) increased sucrose content and mass.  Again, this model seems to 
emulate the impact of reduced stalk elongation on sucrose yield as an outcome rather 
than a prescribed descriptive behaviour. 

In South Africa, cultivar N31 is considered suitable for growth in the high-altitude 
Midlands region, characterised by relatively cool winter conditions (SASRI, 2006).  N31 
is a high-biomass, low-sucrose cultivar.  It is speculated that N31 was selected on the 
basis of cane yield, and that the favourable cane yields under Midlands conditions are 
due to being adapted to lower temperatures.  The CaneGEM model captures this 
dynamic – lower sucrose yields in a cold-adapted cultivar.   

The reduction of stalk length, ‘dwarfism’, has been exploited as a grain yield-enhancing 
mechanism in breeding crops such as wheat and rice (Peng et al., 2008; Richards, 
2000), via reduced lodging and increased harvest index (implying biomass partitioning 
toward harvestable parts rather than the plant stem).   

In sorghum, Hammer et al. (2010) simulated differences between Gs differing in 
canopy height: additional partitioning to grain was a consequence of a shorter growth 
traits, via reduced sink strength for stalk fibre and greater N available to the leaves.  
The greater leaf N concentration in shorter Gs meant that the leaf senescence was 
slowed.  It is possible then that genetic adaptations to increase temperature thresholds 
for stalk structural growth would indirectly result in a higher leaf senescence threshold, 
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which was shown in the present study to be beneficial to sugarcane biomass and 
sucrose yields. 

On this basis of the results presented in this chapter, with the possible caveat of late-
season sucrose yields, the CaneGEM model outcomes and underlying mechanisms 
appear to be reasonably realistic and credible. 

6.4.2 Faster canopy development and higher senescence threshold 

Faster relative canopy growth rate was advantageous to biomass, stalk and sucrose 
yields, through increased radiation interception.  This is consistent with Sinclair et al. 
(2004) who indicated that Gs with large early leaves appeared to yield well, and 
suggested that early leaf size could be used as a screening trait in selection.  Singels 
et al. (2005c) reported that leaf size appeared to be determined by the size of the 
preceding leaf, indicating a source feedforward effect.  Zhao et al. (2019) reported that 
normalised different vegetation index (NDVI) measurements taken during the partial 
canopy phase were strongly correlated with final yield in irrigated sugarcane in Florida, 
providing further evidence that early growth vigour favours yield accumulation.  The 
relative canopy development parameter is an integrated trait parameter, representing 
the effects of leaves and tillers – so tillering and leaf size ought to be considered 
together for screening.  One of the findings of Alam et al. (2017) was that tillering in 
sorghum is a growth process, resulting in more rapid canopy growth under radiation 
conditions and vice versa, but with clear genotypic propensity to tiller evident as well.  
The CaneGEM model simulation results revealed a weak yield interaction between 
relative canopy development rate and harvest season.   Yields either increased or did 
not change in response to lower relative canopy development rate for late-season 
crops.  For early-season crops, yields generally increased slightly in response to higher 
relative canopy development rate. 

Increasing the canopy senescence threshold also increased yields, by increasing 
radiation interception.   This aspect of the model is relatively weak, with unresolved E 
and possibly GxE interaction effects.  There is most probably a strong interaction with 
plant N status as well.  It is also possible that the range of GLAIst values considered in 
this case study was too narrow.  Liu & Bull (2001) simulated leaf senescence by 
considering the carbon balance of each leaf, by comparing its photosynthetic income 
(in a layered radiation interception model) with its respiration costs.  The authors also 
noted that leaf senescence occurs when the attached internode matures; if this 
maturity is determined by the sucrose content of the internode, it is possible that the 
senescence threshold would decrease as an emergent consequence of higher sucrose 
content in a G adapted to higher temperatures.  This possibility was not explored 
directly, but the results indicate slight reductions in sucrose mass with decreasing 
senescence threshold.  However, a 1 °C change in temperature sensitivity had a much 
greater impact on sucrose yields than a 10% change in senescence threshold, 
suggesting that if such a trade-off exists, it would be worth risking. 

6.4.3 Significance and provisos for sugarcane breeding  

Cold tolerance is advantageous for increasing biomass and stalk yields 

Across all Es and harvest times of year, reducing cardinal temperatures by 1-2 °C 
resulted in increased biomass and stalk yields.  This was due to more rapid canopy 
formation, which resulted in increased radiation interception and increased biomass 
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accumulation rates.  Key to this is the assumption that temperature adaptation is 
coordinated across all processes in the plant (Parent and Tardieu, 2012). 

Early growth vigour and can be phenotyped relatively easily in breeding trials, and 
could be rapidly phenotyped effectively in germination chambers (Poser et al., 2019) 
from the second selection stage onwards, when several buds for each G are available.   

Breeding for high sucrose content is considered easier than breeding for high biomass, 
due to the high heritability of sucrose content.  In principle then, selecting cold-tolerant 
Gs and then breeding into these high sucrose content traits would result in high-
biomass Gs with high sucrose content – a very appealing prospect.  Acreche et al. 
(2015) attributed genetic gain in sucrose yields to increasing cane yields in Argentina, 
rather than increasing sucrose content; and concluded that scope for further gains in 
sucrose yields was possible via increasing sucrose content. 

 This insight, that breeding for cold tolerance and high sucrose content together could 
increase both biomass and sucrose yields, can be seen as the major finding of this 
case study. 

Adaptation to higher temperatures may be advantageous for increasing sucrose yields 

The CaneGEM model makes use of a novel (for sugarcane) yet fairly simplistic model 
of sucrose accumulation.  In this model, sucrose accumulation is entirely a passive 
outcome of source strength and competing structural sinks.  If structural sink strengths 
are high (due, perhaps, to lower cardinal temperatures) then less biomass is ‘left over’ 
each day to be stored as sucrose.  If this model is correct, raising (or even maintaining) 
sucrose content in new cold-adapted Gs will be difficult unless other genotypic changes 
are made that result in decreased carbon costs of structural sinks – via, for example, 
decreasing stalk fibre content, stalk elongation rates, or perhaps increasing specific 
leaf area.   

This new sucrose partitioning model has not been as extensively tested and proven as 
the canopy development and aerial/stalk biomass partitioning aspects of the CaneGEM 
model.  For this reason, the prediction of  sucrose yields may be less accurate than 
predictions of biomass and stalk yields.   

Acknowledging this, a second, more tentative take-home point from this work is then: 
adapting Gs to warmer environments – making them less tolerant of cold – all else 
being equal, may penalise biomass and stalk yields but considerably favour sucrose 
yields.  Such an adaption might be necessary for maintaining current sucrose yields 
into a future with warming of 1-2 °C. This discussion is from the perspective of 
industries where sugar is the primary product of sugarcane, as this is often the case 
for irrigated sugarcane.  For industries that produce bio-ethanol from sugarcane, the 
model outputs for stalk sugars can be used, although as there is a linear relationship 
between stalk sugar and sucrose, the outcomes are likely to be similar.  For industries 
that produce, or will one day produce, cellulosic ethanol, or use sugarcane fibre for 
production of paper, plastics, or biomass energy, this model is similarly useful for 
identifying favourable traits and exploring new and changing growth environments. 

6.4.4 Recommendations for model improvement 

A key assumption in this work was that base and optimal temperatures for germination, 
canopy development and stalk elongation are coordinated – meaning that although 
these temperatures can be different between processes, they all increase or decrease 
to similar extent when the G is adapted to higher or lower temperatures.  It is possible 
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however, that these cardinal temperatures are independently genotypically-controlled.  
Detailed experimentation is required to assess this.  If independent G control is shown 
to be possible, the model could be used to explore a greater universe of adaptation 
possibilities.  On the basis of the outcomes of this study, lower base temperatures for 
germination and canopy development combined with higher base temperatures for 
stalk elongation would result in favourable sucrose accumulation outcomes across 
most environments.  The optimal extent of this needs to be determined for the time of 
harvest and temperature characteristics of the TPE.  Given the critical importance of 
the base and optimal temperatures for stalk expansive growth (via its impact on 
sucrose accumulation) underlying the tradeoff with biomass accumulation, existing Gs 
need to be characterised carefully in this regard to ensure that simulations produce 
accurate recommendations – either for deploying existing varieties to specific 
environments, or for defining breeding targets for TPEs. 

The dynamics of senescence appear to be poorly understood and the model’s 
simulation of senescence is relatively weak.  Senescence is likely to be an emergent 
and GxExM-sensitive consequence of canopy-related sub-traits such as leaf angle 
(more erect leaves would allow radiation to penetrate deeper into the canopy, possibly 
requiring less frequent leaf replacement), N concentration (more N-efficient Gs would 
support larger canopies with greater senescence thresholds; less fibre synthesis with 
higher temperature thresholds might allow more N to the canopy as the stalk would 
require less), and stalk elongation rate (more rapid elongation might shade lower 
leaves more quickly, requiring more frequent leaf replacement), and E traits such as 
latitude (solar declination angle) and the proportion of direct to diffuse radiation.  
Dedicated experimentation and more detailed canopy modelling are required to 
explore these dynamics. 

The CaneGEM model is limited by not having a water balance or nitrogen balance, and 
it is recommended the model is incorporated into the DSSAT and/or APSIM systems, 
as these allow relatively easy addition of new plant modules (Jones et al., 2003; Jones, 
2013).  The CaneGEM model algorithms could also be incorporated into the Mosicas 
model, as it has a simple software structure, although this model does not have an N 
model.  A further advantage of undertaking this integration would be to increase 
accessibility of the model to existing users familiar with the software interfaces. 

6.4.5 Additional model applications 

This model, with its unique carbon-linked canopy model and source:sink-based 
competitive biomass partitioning was demonstrated to have value for exploring G traits 
controlling temperature, canopy growth rate and senescence adaptations – resulting 
in outcomes significant and perhaps challenging to sugarcane breeding.   

The model would also be useful for application in harvest planning and climate impact 
assessments, characterisation of current and future irrigated sugarcane growth 
environments, as well as ideotyping for future irrigated environments – for high-sucrose 
and high-biomass sugarcane Gs. 

6.5 Conclusion 

A new sugarcane model, which simulates canopy growth rate on the basis of a carbon-
linked relative growth rate concept and partitioning of biomass based on source:sink 
competition, was used to evaluate genotypic adaptations to temperature sensitivity (1 
and 2 °C above and below the cardinal temperature parameter values for the reference 
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cultivar NCo376), canopy growth rate and canopy senescence (NCo376 ±5 and 10%)  
for early-, mid- and late-season harvesting at four sites around the world: Belle Glade, 
Florida, USA; Chiredzi, Zimbabwe; La Mare, Reunion island, France; and Pongola, 
South Africa.   

The temperature adaptations had the greatest impact, with decreases in the thresholds 
for temperature response (i.e. adaptation to cooler environments) resulting in 
increased in biomass and stalk yields at harvest.  A feasible breeding strategy for 
increasing sucrose yields in irrigated sugarcane may be to focus on cold adaptation 
traits and then pursue increased sucrose content.  The CaneGEM model also indicated 
that adaptation to warmer environments may enhance sucrose yields by reducing 
structural sink activity.  This is a more tentative outcome considering that the focus of 
the model development work was on the canopy development and above-ground 
biomass partitioning processes, and less on sucrose accumulation.   

The new CaneGEM sugarcane model has been demonstrated to be valuable for 
exploring G adaptations to temperature in particular, taking into account trade-offs that 
appear to be realistic, that would be difficult or impossible with other sugarcane models.  
The model has potential for application in identifying temperature- and canopy-related 
traits that lend favourable adaptability to different irrigated sugarcane production 
environments.  From a model development perspective, it is recommended (a) that the 
assumption of coordination of temperature thresholds across germination, canopy 
development and stalk elongation processes is tested more rigorously with carefully-
designed experiments; and, (b) that the model is incorporated into a modelling system 
such as DSSAT or APSIM to link to water and nitrogen balances and permit greater 
accessibility for users already familiar with such modelling system interfaces. 
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7. ANSWERS TO RESEARCH QUESTIONS, AND 
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7.1 Answers to research questions 

Four research questions were posed at the outset of this study; a set of four broad 
research activities, described in Chapters 3-6, respectively addressed these questions. 

7.1.1 Are observed genotypic differences adequately captured by process 
concepts and their respective G-specific input parameters in existing 
sugarcane models? 

The analysis of the ICSM IGEP dataset (Chapter 3) revealed shortcomings in three 
process concepts used in established sugarcane crop growth simulation models: the 
use of thermal time (based on air temperature) to model germination rate; and the 
absence of solar radiation influences in the prediction of time to onset of stalk growth, 
and unstressed tillering rate.  The use of G-specific cardinal temperatures for 
germination and canopy development-related model processes was recommended 
(Chapter 4) for capturing GxE interactions in canopy development and by implication, 
biomass yields. 

7.1.2 To what extent are existing sugarcane crop growth models suitable for 
supporting plant breeding applications? 

Three widely-used sugarcane crop growth models (DSSAT-Canegro, APSIM-Sugar 
and Mosicas) were assessed for their abilities to predict observed E, G and GxE 
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interaction effects in the ICSM IGEP dataset (Chapter 4).  All three models were 
capable of predicting E and G effects reasonably accurately, which suggests that they 
could be used effectively for environmental characterisation applications in sugarcane 
breeding.  They were however unable to predict GxE interaction effects in seasonal 
radiation interception (FIPARa), radiation use efficiency (RUEa), and biomass yields 
(ADMh).  Recommendations for model improvement arising from the model 
assessment included using simulated soil temperatures for calculating germination 
rate, and linking canopy development with biomass accumulation via a carbon balance 
in order to account for source:sink dynamics affecting radiation interception and 
biomass partitioning. 

7.1.3 To what extent can the prediction of these GxE interaction effects be 
improved if the identified shortcomings are addressed in a new sugarcane 
model? 

Following the recommendations outlined in Chapters 3 and 4, recommendations made 
in previous research for more accurate representation of sugarcane physiology, and 
general requirements of crop growth models for credible application in plant breeding, 
a new sugarcane crop growth simulation model, CaneGEM, was developed.  This 
model differs from other sugarcane models in three key respects, which address the 
identified shortcomings described in Chapters 3 and 4.  Firstly, it predicts the transition 
from tillering to stalk growth on the basis of radiation interception rather than thermal 
time.  Secondly, the canopy is represented in an integrated manner (and does not 
simulate individual shoots and leaves), with canopy development based on a relative 
growth rate concept, restricted by temperature and source strength.  Thirdly, biomass 
partitioning, particularly within the stalk, is determined as a consequence of source 
strength and sink strength for structural stalk fibre, which is determined by the degree 
of transition to stalk growth, temperature and specific stalk fibre density.  G-specific 
parameters regulate the range in specific leaf area, specific stalk volume, relative 
canopy growth rates, canopy senescence radiation threshold and relative senescence 
rate, and cardinal temperatures governing temperature responses for germination, 
canopy development, biomass accumulation and stalk expansion. 

The model was able to predict GxE interaction effects on FIPARa more accurately than 
the DSSAT-Canegro model in a direct comparison, and more accurately than the three 
models assessed in Chapter 4.  With G-specific calibration of cardinal temperatures for 
several plant processes, accurate and statistically-significant prediction of GxE 
interaction effects in FIPARa and ADMh was achieved.  However, it was discovered 
that a considerable proportion of GxE interaction in FIPARa and (consequently) ADMh 
appears to be driven by GxE interactions in the duration of the germination phase 
(leading to differences in date of primary shoot emergence).   

The CaneGEM model was not able to predict GxE interaction effects accurately unless 
accurate dates of emergence were correctly specified (not simulated) in advance.   
Attempts to improve the prediction of duration of germination phase, including using 
simulated soil temperature instead of air temperature, were unsuccessful. 

7.1.4 How would such an improved model deliver value to sugarcane breeding? 

The case study described in Chapter 6 explored three types of genotypic adaptations 
for each of the ICSM IGEP study sites, for early-, mid- and late-season harvests, using 
long-term weather datasets.  Increasing relative canopy development rate and canopy 
senescence thresholds by 5 and 10% resulted in small increases in radiation 
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interception, biomass, stalk and sucrose yields across all sites and dates of harvest, 
while decreasing these had the opposite effect.  These responses were limited in 
magnitude, probably due to the canopy development plasticity permitted by variable 
specific leaf area and the large green leaf area index characteristic of irrigated 
sugarcane. 

The response to temperature adaptation was most interesting and perhaps shows 
where the real value of the model lies for breeding.  Relatively small changes to 
cardinal temperature parameters resulted in substantial differences across several 
complex traits.  G adaptation to lower temperatures resulted in increased biomass and 
stalk yields, as expected, but also considerable sucrose yield penalties, a consequence 
of greatly increased sink strength for stalk fibre.  Targeting cold adaptation in breeding 
may however provide parent material for subsequent breeding of higher sucrose 
content, which may permit the development of Gs with high biomass and sucrose 
yields.   The source:sink-based partitioning, and linking of biomass accumulation with 
canopy development and phenology, means that this model has built-in inter-process 
couplings that result in natural, biologically-realistic tradeoffs that can be explored in 
silico for trait dissection and ideotyping.  Ideally these interactions should be confirmed 
and/or refined experimentally. 

If the assumption, that temperature adaptation is coordinated across plant processes, 
proves to be correct, it might be possible to associate Quantitative Trait Loci with 
temperature adaptations.  Running the model with QTL-predicted temperature 
adaptations may permit early screening of new crosses for suitability to different Es 
with the target populations of environments.  Phenotyping for cold tolerance and early 
growth vigour – which could be done relatively easily – holds promise for early 
screening in breeding programmes. 

More broadly, the CaneGEM model fulfils the requirements of models for supporting 
plant breeding: complex traits are predicted as the emergent consequences of lower-
level processes regulated by simple, stable traits; most trait parameters can be related 
to or inferred from phenotypic measurements; the model was demonstrated to have 
the potential to predict GxE interaction effects; and the model is parsimonious, being 
relatively simple and computationally undemanding. 

7.1.5 How has this study contributed to an improved understanding of the 
physiological basis for GxE interactions in irrigated sugarcane? 

This question is perhaps least convincingly answered.  Observed GxE crossover 
effects in seasonal radiation interception and biomass yields were accurately predicted 
by the CaneGEM model and explained in terms of: (unresolved) GxE differences in 
duration of germination phase; cardinal temperatures for canopy development; and 
relative canopy growth rate.   

The outcomes of the analysis of the ICSM IGEP dataset, literature, outcomes of the 
CaneGEM validation and GxE interactions assessment, as well as the case study, can 
be synthesised as follows:  

• Higher radiation use efficiency is favourable for biomass, cane and sucrose 
yields – but it remains unclear whether there is much genotypic variability in this 
trait amongst elite sugarcane genotypes.  The CaneGEM model was able to 
predict GxE interactions in biomass yields accurately without genotype-specific 
maximum radiation use efficiency values. 
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• Rapid germination is favourable for more rapid canopy development; more rapid 
canopy development results in increased seasonal radiation interception and 
earlier onset of stalk growth, permitting an earlier start to cane yield 
accumulation and greater opportunity for sucrose accumulation. 

• Early canopy growth vigour is favourable for yield accumulation, for similar 
reasons as outlined above.  It is noted that from a phenotyping perspective, 
rapid germination and high early canopy growth vigour may be difficult to 
distinguish, but that this does not matter – the outcomes are similar.  

• Genotypic adaptation to lower temperatures is favourable for biomass and cane 
yields. This is, all else being equal, more important in cooler environments, 
particularly environments with a cool start to the season: sugarcane is able to 
photosynthesise at lower temperatures than it is able to grow expansively; by 
ensuring that the crop has a larger canopy earlier on, more radiation can be 
intercepted and larger yields will result.  A unit change in temperature response 
will have a proportionally greater impact in a cool environment than a warm one 
– meaning that prospects for genetic gain (via temperature adaptations) in 
biomass and cane yields is likely to be greater in cooler production areas than 
warm ones. 

• Genotypic adaptation to higher temperatures may be favourable for sucrose 
yields. A genotype adapted to higher temperatures is able to exert weaker 
structural sink strengths, which has the disadvantage of decreasing canopy 
development rate and radiation interception; but, the weaker sink strength for 
structural growth means that additional source is available to be stored as 
sucrose, with the result that the plant has a higher natural ripening ability.  This 
effect is exacerbated in environments where the pre-harvest period is relatively 
warm, such as late-season crops.  In this case, the optimal tradeoff between 
canopy vigour and natural ripening ability needs to be determined, perhaps 
using a carefully-calibrated model such as CaneGEM.  This outcome can be 
considered tentative, as reduced sink strength for stalk fibre as a result of higher 
cardinal temperatures has not be demonstrated empirically. 

7.2 Recommendations 

7.2.1 Sugarcane breeding 

Four strong recommendations can be made from this study, that could inform future 
breeding of irrigated sugarcane: 

• Firstly, all three of the existing sugarcane models tested (DSSAT-Canegro, 
APSIM-Sugar and Mosicas), with their standard trait parameter values, are 
sufficiently sensitive to E differences for environmental characterisation 
applications in breeding.  It is recommended these models are used in breeding 
programmes for applications such as characterising abiotic stress patterns for 
weighting selection and cultivar evaluation and identifying suitable sites for 
inclusion in multi-environment trials.   

• Secondly, a considerable proportion of the GxE interactions in seasonal 
radiation interception and biomass accumulation appears to be driven by GxE 
interactions in duration of the germination phase.  It follows then that 
germination rate is an overwhelmingly powerful trait for determining sugarcane 
biomass accumulation potential.  It is recommended that phenotyping of date of 
primary shoot emergence (or possibly early canopy development rate) be 
explored for assisting selection in irrigated sugarcane. 
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• Thirdly, it was revealed in the case study in Chapter 6 that adapting the plant to 
grow more vigorously at lower temperatures resulted in enhanced radiation 
interception and increased biomass yields, but generally also resulted in very 
significant decreases in sucrose yields, particularly for cooler environments (and 
vice versa).  Projected global warming over the next 30 years will have the same 
practical effect as the adaptations to lower temperatures described in this study.     

• Fourthly, following the previous point, sucrose accumulation does of course 
depend on biomass accumulation, notwithstanding the trade-off between these 
in terms of temperature adaptation.  It is recommended that the new CaneGEM 
sugarcane model developed in this study (or some derivative thereof) is used to 
explore the biomass-sucrose mass trade-off space for each E and M 
combination in sugarcane breeding programmes, in order to identify optimal 
temperature adaptation breeding targets for current and/or expected future Es. 

7.2.2 Sugarcane physiology and crop growth model development 

In Chapters 5 (new model development) and 6 (case study), it was assumed that 
temperature responses are coordinated across processes.  This makes intuitive 
physiological sense and is supported in broad terms by literature.  However, given that 
sugarcane Gs are interspecific hybrids, it is recommended that this is demonstrated 
experimentally.  

It is clear from Chapters 3 and 5 that the standard model of predicting date of 
emergence based on thermal time accumulation (from air temperature) is inadequate, 
particularly for ratoon crops, especially given the importance of this trait in driving GxE 
interactions in biomass yields.  It appears that initiation of ratoon crop germination 
starts before harvest of the previous crop, and so an improved model of ratoon crop 
germination will need to consider radiation, temperature, water status and perhaps 
other conditions prior to harvest of the previous crop. 

The simulation (and understanding) of leaf/canopy senescence remains simplistic.  
There is likely to be value in better understanding and elucidating the mechanisms 
underlying senescence, as replacing green leaf area in a mature crop comes at the 
expense of stalk and sucrose mass accumulation. 

The new sugarcane crop growth model was developed and validated using a relatively 
large number of NCo376 trial datasets.  The calibration and assessment of the model 
for the ICSM IGEP cultivars (N41, R570 and CP88-1762) relied on a relatively small 
dataset, with some shortcomings (as identified in Chapter 3).  Repeating (with more 
consistent sampling protocols) or extending the experiment (by adding more Es, 
including date of harvest or formal water stress treatments) will lead to greater clarity 
and permit further model refinement.   

The CaneGEM model developed in this study does not simulate water or nitrogen 
balances.  Additionally, users of existing sugarcane crop models have already invested 
considerable time and effort into training and preparation of model inputs and software 
workflows for processing model outputs.  Rather than adding algorithms for water and 
nitrogen dynamics, it is recommended that the novel algorithms developed in this 
project should be integrated into codebases for existing mature sugarcane crop 
models.  Water and N-stress linkages to these processes are expected to be simple to 
implement, but further model calibration and testing would be required. 
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7.2.3 Model application in other domains 

The newly-developed sugarcane model will be valuable outside of operational plant 
breeding, particularly if the novel algorithms are incorporated into an established 
modelling system.  The temperature sensitivity and coupled biomass partitioning 
makes the model eminently suitable for exploring date of harvest strategies, agronomic 
management for biofuels and biomass production from sugarcane, climate change 
impacts assessment, and genotypic adaptations to climate change.  The CaneGEM 
model is unlikely however to offer much advantage over well-calibrated existing models 
for applications where E differences are of primary importance, such as crop 
forecasting and irrigation scheduling. 
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8. CONCLUSION 

The adequacy of common sugarcane crop model concepts for capturing genotype-by-
environment (GxE) interaction effects on sugarcane growth parameters was assessed 
using an international multi-E, multi-G dataset collected as part of the International 
Consortium for Sugarcane Modelling’s “International GxE Project” (ICSM IGEP).  
Genotype-specific phenotypic parameters based on process-level concepts from 
several sugarcane crop growth models were evaluated for their stability in value and 
consistency in ranking between environments.  Key outcomes included: maximum 
radiation use efficiency appeared to be genotype-specific and consistent between 
environments; leaf appearance rate is stably genotype-specific; duration of the 
germination phase was poorly predicted by the standard thermal time model, with 
unresolved GxE effects, but also that final biomass yields were correlated with duration 
of the germination phase; and, the date of onset of stalk growth depends on radiation 
intensity in addition to temperature. 

The same ICSM IGEP dataset was used to evaluate the performance of existing 
widely-used sugarcane crop growth simulation models for predicting GxE interactions 
in seasonal radiation interception and final biomass yields.  The DSSAT-Canegro, 
APSIM-Sugar and Mosicas models were calibrated based on the mean phenotypic 
values per genotype determined in the previous step; performance in predicting 
emergent outcomes was assessed (as no separate validation dataset was available), 
as were the models’ abilities to predict GxE interaction effects in seasonal radiation 
interception, apparent radiation use efficiency, biomass yields and stalk yields.  All 
models were found to predict environmental and genotypic main effects reasonably 
accurately, but were unable to predict GxE interaction effects.   

Weaknesses identified during these two activities were used to inform the development 
of a new sugarcane model with novel algorithms for predicting (1) the transition from 
tillering to stalk growth in response to fractional radiation interception; (2) leaf area 
index on the basis of temperature- and carbon-limited relative growth rate; and (3) 
biomass partitioning as a consequence of competition sink and source strengths.  This 
model was calibrated and validated using existing NCo376 growth analysis datasets, 
revealing similar performance to the established DSSAT-Canegro model.  E, G and 
GxE interaction effects in seasonal radiation interception and final biomass yields in 
the ICSM IGEP were also assessed, and prediction performance was shown to be 
superior to existing models.   

This process revealed that the prediction of the date of emergence was (and likely is 
in general) a powerful driver of these GxE interaction effects. GxE interaction effects 
were found also to be affected by G-specific cardinal temperatures for canopy 
development and relative canopy development rate.  In warm environments in general, 
plants germinated and developed canopy cover quickly, leading to greater seasonal 
radiation interception and greater biomass yields, and vice versa.  Lower relative 
canopy development rate (a G trait) could be compensated by warmer conditions (the 
case of CP88-1762 at Belle Glade), while a larger relative canopy development rate 
could compensate to some extent for cool conditions (R570 at Belle Glade) but slow 
germination in such conditions appeared to have a powerful diminishing effect on 
yields.  The standard thermal-time based germination simulation algorithm, as 
implemented in this model and many others, was found to be wholly inadequate for 
predicting GxE interaction effects in duration of germination phase.   
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Value of the CaneGEM model in sugarcane breeding was demonstrated in a case 
study, where G adaptations to temperature response, relative canopy development 
rate and leaf senescence threshold were assessed, for early-, mid-and late-season 
harvesting, using long-term weather datasets at each of the four sites in the ICSM 
IGEP dataset.  This revealed that biomass and cane yields could be increased via 
genotypic temperature adaptations to cooler environments (that is, reducing the 
cardinal temperatures for key plant processes); doing so, however, generally resulted 
in sucrose yield penalties.  The positive impacts on biomass yields were largest for 
mid-season crops at most sites, where germination rates and canopy development 
rates were considerably higher during the winter months compared to the non-adapted 
baseline genotype, leading to additional radiation interception.  The negative impacts 
on sucrose accumulation were strongest for crops harvested late in the season: the 
same temperature adaptation suppressed natural ripening during late winter and 
spring, while the concomitant additional structural canopy growth was not beneficial as 
the crop was already intercepting nearly all the incident radiation. 

Several recommendations are made for future work.  For sugarcane breeding, existing 
sugarcane models can and should be used for environmental characterisation 
applications, as these were shown to be sufficiently accurate; using date of emergence 
and/or early canopy growth vigour as a screening phenotype for irrigated sugarcane 
selection should be explored, as this had a powerful bearing on biomass yields; efforts 
should if possible focus on breeding Gs adapted to higher temperatures and/or with 
lower stalk fibre content, in order to maintain sucrose yields in a warming climate; and 
that the new sugarcane model be used to explore GxExM temperature adaptations to 
inform breeding targets in this regard.  From sugarcane physiology/model development 
perspectives, the coordination of temperature responses across plant processes needs 
to be evaluated; research ought to be undertaken  to properly understand the 
mechanics of ratoon crop germination; additional GxE experiments with more 
consistent protocols and/or additional treatments ought to be conducted to support 
model refinement; and it is recommended that the novel process algorithms developed 
for the CaneGEM model are included in one or more mainstream crop modelling 
platforms, in order to take advantage of existing water and nitrogen modules and 
ensure compatibility with existing users, data and processing workflows. 

It was hypothesised that crop simulation modelling capacity to support breeding of 
irrigated sugarcane could be enhanced by: 

• evaluating the strengths and weaknesses of existing sugarcane models and/or 
their constituent process-level concepts for predicting GxE interaction effects, 
observed in the ICSM IGEP trials, on radiation interception, radiation use 
efficiency and biomass yields; and 

• if necessary, developing an improved (new or revised) sugarcane crop model to 
address identified weaknesses 

With the possible caveat of the inadequate germination model, this hypothesis has 
been shown to be true.  

This work has resulted in enhanced understanding of the drivers of GxE interactions in 
biomass yields in irrigated sugarcane, new insights into breeding for current and future 
irrigated sugarcane growth environments, and the development of a practical crop 
growth simulation model for supporting breeding of irrigated sugarcane. 
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10. APPENDIX A – INVESTIGATING THE USE OF SIMULATED 
SOIL TEMPERATURE IN DRIVING GERMINATION 

10.1 Methodology 

Thermal time from crop start to observed date of 50% primary shoot emergence 
(TTem_P for plant crops, TTem_R for ratoon crops) was calculated using a range of 
base temperatures (0-20 °C, 0.5 °C increments) calculated using air and soil 
temperatures simulated by the DSSAT-Canegro model, for each G-E combination for 
the ICSM IGEP dataset (Table 5-3).  The coefficient of variation (cv%) was calculated 
per G (across Es), for each base temperature and temperature source tested.  The 
hypothesis in this regard was that cv% would be lower for soil temperatures than air 
temperatures, and it would be possible to identify optimal base temperature (Tb_germ, 
°C) and TTem_P / TTem_R parameter values for each G.   

10.2 Results 

Per-G minima of cv% of thermal time from crop start to date of primary shoot 
emergence, calculated using air and DSSAT-simulated soil temperatures (Figure 
10-1), revealed the base temperature that minimised TTem_P and TTem_R between 
Es.   

Calculated using air temperatures, TTem_P N41 plant crops had a clear minimum at 
14.5 °C; variability with R570 was high (≈ 35%) with similar cv% values for Tb_germ 
between 10 and 15 °C; and CP88-1762 Tb_germ was minimised in the range 10-15 °C 
as well, although the variability between Es was lower than with R570 (about 
15%).  Ratoon crops showed much clearer minima than plant crops, at higher base 
temperatures than plant crops. 

Using soil temperatures, however, plant crops showed clearer TTem_P cv% minima 
than with air temperatures, although the cv% values were higher for N41, similar for 
CP88-1762 and lower for R570.  For ratoon crops, only R570 showed a minimum value 
(around 22 °C), while for N41 and R570 cv% increased gradually from 0 °C, with a 
sharp increase from 23 °C upwards.  Minimum cv% values were higher than with air 
temperatures, strongly indicating that ratoon crop germination ought to be simulated 
with air rather than soil temperatures. 
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Figure 10-1.  Coefficient of variation (%) of thermal time from crop start to emergence 
(TTem_X) for ICSM cultivars and sites (Belle Glade, Chiredzi, La Mare and Pongola), 

at different base temperatures.  Soil temperatures were simulated by DSSAT-
Canegro, while air temperatures were recorded.   

This analysis was not repeated using soil temperatures simulated by APSIM-Sugar, 
but DSSAT and APSIM simulations were compared to an observed multi-year 
sugarcane soil temperature dataset.  Model performance for predicting soil 
temperatures was found to be similar for both crop models. 

10.3 Conclusion 

As using soil temperatures to drive germination was not clearly beneficial overall, the 
decision was made to use air temperatures, as this is simpler to implement and is the 
standard way that duration of the germination phase is calculated in most sugarcane 
models. 

11. APPENDIX B – SUPPLEMENTARY DATA 

11.1 Supplementary CaneGEM calibration results 

Results for the model assessment scenario code “GEM_376C_S” – i.e. the CaneGEM 
model, with the Nco376 calibration dataset, with duration of the germination phase 
simulated – are shown in Figure 11-1, Figure 11-2 and Table 11-1.  These are 
supplementary to the results presented in Section 5.4. 
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Figure 11-1.  Scatter plot of time-series data for crop phenology- and biomass-related 
variables, for the CaneGEM model, calibration dataset for NCo376.  Durations of 

germination phases were simulated.   
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Figure 11-2.  Scatter plots of age of onset of stalk growth (days since crop start) and 
seasonal PAR interception, simulated (CaneGEM model) and observed, for the 

calibration dataset for NCo376.  Durations of germination phases were simulated. 

 

Table 11-1.  CaneGEM model performance statistics, for calibration with NCo376 
data and simulated durations of growth phase.  N = “number of observations” , “p” = 

p-value, “Y-int” is the y intercept of linear regression between observed and 
simulated values, RMSE is the root mean squared error, and APE is the average 

prediction error (explained in the text). 

Variable N R2 p Y-int Slope RMSE APE 

Time-series values 

Aerial dry biomass [t/ha] 34 0.78 0.00 5.48 0.87 9.73 0.81 

Green leaf area index [m2/m2] 23 0.17 0.05 3.37 0.26 1.23 0.51 

Green leaf canopy dry mass [t/ha] 25 0.60 0.00 3.70 0.53 2.19 -0.70 

Millable stalk dry mass [t/ha] 51 0.85 0.00 1.71 0.92 5.36 -0.12 

PAR Frac. Int. [%] 59 0.90 0.00 
-

11.31 
1.19 12.36 2.27 

Stalk fibre dry mass [t/ha] 21 0.79 0.00 2.28 0.79 2.66 -0.18 

Sucrose mass [t/ha] 40 0.78 0.00 0.96 0.94 3.05 0.27 

Trash dry mass [t/ha] 34 0.71 0.00 0.59 0.98 2.48 0.45 

Trash dry mass [t/ha] 34 0.71 0.00 0.59 0.98 2.48 0.45 

Time-series biomass fractions 

"Trash" / ADM 33 0.65 0.00 -0.02 1.13 0.04 0.00 

Green leaf canopy dry mass / ADM 25 0.82 0.00 0.00 1.06 0.10 0.01 

Stalk dry mass / ADM 39 0.67 0.00 0.02 0.94 0.11 -0.01 

Sucrose / stalk dry mass 43 0.70 0.00 0.00 1.00 0.08 0.00 

Values at harvest 

Seasonal PAR interception fraction 8 0.80 0.00 -0.19 1.33 0.08 0.06 

Onset of stalk growth (d) 8 0.61 0.02 20.84 0.67 22.72 
-

17.00 

Aerial dry biomass [t/ha], at harvest 9 0.22 0.21 33.13 0.43 12.06 2.90 

Green leaf area index [m2/m2], at 
harvest 

6 0.27 0.29 6.29 -0.43 1.47 0.89 

Green leaf canopy dry mass [t/ha], at 
harvest 

6 0.47 0.13 3.36 0.49 2.99 -1.96 

Millable stalk dry mass [t/ha], at 
harvest 

14 0.34 0.03 18.61 0.52 6.86 1.87 

PAR Frac. Int. [%], at harvest 8 0.00 0.88 97.07 0.01 6.40 5.43 

Stalk fibre dry mass [t/ha], at harvest 5 0.65 0.10 -0.99 0.97 3.36 -1.54 

Sucrose mass [t/ha], at harvest 13 0.34 0.03 9.58 0.50 4.17 1.90 

Trash dry mass [t/ha], at harvest 9 0.01 0.85 11.87 -0.06 4.33 2.58 

Biomass fractions at harvest 

"Trash" / ADM 9 0.03 0.67 0.23 -0.19 0.06 0.04 

Green leaf canopy dry mass / ADM 6 0.01 0.89 0.15 0.02 0.08 -0.04 

Stalk dry mass / ADM 10 0.27 0.12 0.54 0.15 0.08 0.01 

Sucrose / stalk dry mass 14 0.13 0.21 0.24 0.52 0.09 0.03 
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11.2 Supplementary CaneGEM validation results 

Model performance outcomes for the CaneGEM model, the NCo376 validation dataset, 
with simulated durations of germination phase, are shown in Figure 11-3, Figure 11-4 
and Figure 11-5. 

 

 

 

Figure 11-3.  Scatter plot of time-series data for crop phenology- and biomass-related 
variables, for the CaneGEM model and the validation dataset for NCo376, simulated 
durations of germination phase (model assessment scenario code “GEM_376V_S”).     
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Figure 11-4.  Scatter plot of time-series data, showing simulated (CaneGEM model) 
and observed biomass fractions, for the validation dataset for NCo376, simulated 

duration of germination phase (model assessment scenario code “GEM_376V_S”).   
“ADM” is above-ground dry biomass (t/ha), while “Trash” refers to senesced leaf and 

stalk dry mass. 

 

Figure 11-5.  Simulated vs observed duration of tillering phase (labelled as date of 
onset of stalk growth, “OSG date”, left), and seasonal PAR interception (FIPARa, 
right), for the NCo376 validation dataset, simulated duration of germination phase 
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(model assessment scenario code “GEM_376V_S”).  The shaded region shows 
values within one standard error range. 

 

11.3 Supplementary CaneGEM results for the ICSM IGEP dataset 

CaneGEM-simulated (“GEM_IGEP_P” scenario) and observed FIPAR are shown in 
Figure 11-6.  Additional results for scenario “GEM_IGEP_S” are shown in Figure 11-7 
and Figure 11-8. 

 

Figure 11-6.  CaneGEM-simulated (red line) and observed (black points and linearly-
interpolated lines) FIPAR, with predetermined duration of growth phase and G-

specific calibration of canopy development parameters (model assessment scenario 
“GEM_IGEP_P”).  Inter-sample period average daily air temperature is also shown 

(stepped blue line). 
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Figure 11-7.  Simulated (CaneGEM model, with simulated emergence dates and G-
specific calibration) vs observed crop development and biomass components, for the 

ICSM IGEP dataset (model assessment scenario “GEM_IGEP_S”). 
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Figure 11-8.  Simulated (CaneGEM model, with simulated duration of germination 
phase and G-specific calibration of canopy development parameters, model 

assessment scenario code “GEM_IGEP_P”) vs observed crop development and 
biomass components, for the ICSM IGEP dataset. 

 

11.4 Weather data graphs for case study 

Weather data showing periods where data were patched (in red) are shown in Figure 
11-9-Figure 11-13. 
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Figure 11-9.  Daily weather data for Belle Glade, Florida.  Observed data (“Obs”, 
black points) were replaced with MERRA synthesized data (red points) where 

observed data were missing or out of expected ranges. 
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Figure 11-10.  Solar radiation data for Chiredzi, Zimbabwe, 2000-2020, observed, 
estimated from sunshine hours, and estimated by NASA Power (MERRA). 
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Figure 11-11.  Daily weather data for Chiredzi, Zimbabwe.  Observed data (“Obs”, 
black points) were replaced with MERRA synthesized data (red points) or bias-
adjusted MERRA data (“MERRA t.”, orange points) where observed data were 

missing or out of expected ranges. 
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Figure 11-12.  Daily weather data for La Mare, Reunion Island, France. 
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Figure 11-13.  Daily weather data for Pongola, South Africa.   

 

11.5 Results for case study 

Table 11-2 shows a summary of results for the case study described in Chapter 6.  
Daily fractional interception of photosynthetically-active radiation, for early-season (E), 
mid-season (M) and late-season (L) crops at Belle Glade, 2003-2020, shown in Figure 
11-14.   
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Table 11-2.  Mean simulated duration of germination (DoGP, d after crop start), date of onset of stalk growth (doOSG, d after crop 
start), seasonal photosynthetically-active radiation interception fraction (FIPARa), seasonal apparent radiation use efficiency (RUEa, 

g/MJ), above-ground dry biomass at harvest (ADMh, t/ha), stalk dry mass at harvest (SDMh, t/ha) and sucrose mass at harvest 
(SUCh, t/ha), for the baseline cultivar NCo376, and three classes of genetic adaptations: modification of temperature sensitivity 

thresholds, relative canopy growth rate, and the green leaf area index threshold at which senescence starts.  Data are shown for 
three times of harvest (early-, mid- and late-season) and the average of the three (‘All’). 

  
Base- 
line Temperature adaptation (°C) 

Canopy growth rate adaptation  
(% change from baseline G) 

Senescence threshold  
(% change from baseline G) 

H.S. Var 
NCo 
376 -2 -1 +1 +2 -10% -5% +5% +10% -10% -5% +5% +10% 

Belle Glade, Florida, USA, 2002-2020 

All DoGP 48.1 37.1 39.4 55.8 65.7 48.1 48.1 48.1 48.1 48.1 48.1 48.1 48.1 

All DoOSG 126.9 114.1 119.6 135.9 146.1 130.5 128.5 126.0 125.0 126.9 126.9 126.9 126.9 

All FIPARa 0.65 0.68 0.67 0.62 0.59 0.64 0.64 0.65 0.65 0.64 0.64 0.65 0.65 

All RUEa 1.69 1.81 1.76 1.62 1.53 1.68 1.69 1.70 1.70 1.68 1.69 1.70 1.71 

All ADMh 52.7 56.2 54.6 50.3 47.5 52.3 52.5 52.8 52.8 52.2 52.4 52.9 53.1 

All SDMh 37.6 40.7 39.2 35.6 33.3 37.0 37.3 37.7 37.9 37.1 37.3 37.8 38.0 

All SUCh 12.3 9.2 10.8 13.6 14.5 12.2 12.2 12.4 12.4 12.0 12.2 12.5 12.7 

Early DoGP 43.4 33.6 30.4 50.8 63.7 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 

Early DoOSG 160.4 143.5 150.7 174.3 187.5 167.1 163.6 158.8 157.2 160.4 160.4 160.4 160.4 

Early FIPARa 0.65 0.69 0.67 0.62 0.58 0.64 0.64 0.65 0.66 0.65 0.65 0.65 0.65 

Early RUEa 1.73 1.83 1.79 1.65 1.55 1.71 1.72 1.73 1.73 1.71 1.72 1.73 1.74 

Early ADMh 53.4 56.8 55.3 51.1 48.1 52.9 53.1 53.6 53.7 53.1 53.3 53.6 53.8 

Early SDMh 37.2 40.7 39.2 34.7 32.1 36.4 36.8 37.4 37.7 36.8 37.0 37.4 37.6 

Early SUCh 10.3 7.8 9.1 11.0 11.4 9.9 10.1 10.4 10.4 10.0 10.2 10.5 10.6 

Mid DoGP 69.5 51.4 59.2 80.2 93.1 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 

Mid DoOSG 133.2 117.4 124.2 142.8 154.2 136.5 134.6 132.1 130.8 133.2 133.2 133.2 133.2 

Mid FIPARa 0.62 0.67 0.64 0.58 0.54 0.61 0.61 0.62 0.62 0.61 0.61 0.62 0.62 

Mid RUEa 1.63 1.78 1.72 1.53 1.42 1.62 1.63 1.64 1.64 1.62 1.63 1.64 1.65 

Mid ADMh 50.9 55.6 53.5 47.7 44.1 50.6 50.8 51.1 51.0 50.5 50.7 51.1 51.3 

Mid SDMh 36.2 40.0 38.2 33.7 31.0 35.6 35.9 36.4 36.5 35.7 35.9 36.4 36.5 

Mid SUCh 11.6 8.9 10.4 12.5 13.1 11.5 11.6 11.7 11.6 11.3 11.5 11.8 11.9 
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Base- 
line Temperature adaptation (°C) 

Canopy growth rate adaptation  
(% change from baseline G) 

Senescence threshold  
(% change from baseline G) 

H.S. Var 
NCo 
376 -2 -1 +1 +2 -10% -5% +5% +10% -10% -5% +5% +10% 

Late DoGP 31.5 26.3 28.5 35.8 40.4 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 

Late DoOSG 87.1 81.5 83.8 91.5 96.6 87.7 87.3 87.1 87.1 87.1 87.1 87.1 87.1 

Late FIPARa 0.67 0.70 0.69 0.66 0.64 0.67 0.67 0.68 0.68 0.67 0.67 0.68 0.68 

Late RUEa 1.72 1.80 1.76 1.67 1.61 1.72 1.72 1.72 1.72 1.70 1.71 1.73 1.74 

Late ADMh 53.6 56.1 54.9 52.0 50.3 53.5 53.6 53.7 53.7 53.0 53.3 53.9 54.1 

Late SDMh 39.3 41.4 40.3 38.1 37.0 39.2 39.3 39.4 39.4 38.7 39.0 39.6 39.8 

Late SUCh 15.1 10.8 12.9 17.1 19.0 15.1 15.1 15.1 15.1 14.6 14.9 15.3 15.5 

Chiredzi, Zimbabwe, 2000-2020 

All DoGP 36.7 30.4 33.0 41.5 47.6 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 

All DoOSG 108.9 92.4 98.0 119.7 130.4 113.5 110.9 106.0 104.1 108.9 108.9 108.9 108.9 

All FIPARa 0.71 0.73 0.72 0.68 0.65 0.70 0.70 0.71 0.71 0.70 0.70 0.71 0.71 

All RUEa 1.90 1.97 1.93 1.83 1.75 1.89 1.89 1.90 1.90 1.88 1.89 1.90 1.91 

All ADMh 66.6 69.2 67.9 64.3 61.3 66.4 66.5 66.6 66.6 66.0 66.3 66.8 67.1 

All SDMh 47.9 50.7 49.4 45.7 43.3 47.4 47.7 48.1 48.2 47.3 47.6 48.2 48.4 

All SUCh 21.4 17.4 19.4 22.6 23.5 21.3 21.3 21.4 21.5 20.9 21.2 21.6 21.8 

Early DoGP 26.7 22.8 24.1 30.9 37.8 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 

Early DoOSG 131.3 99.2 108.5 150.3 166.8 140.9 135.6 124.0 119.2 131.3 131.3 131.3 131.3 

Early FIPARa 0.71 0.75 0.74 0.68 0.64 0.70 0.71 0.72 0.72 0.71 0.71 0.71 0.72 

Early RUEa 1.95 2.00 1.97 1.88 1.76 1.94 1.94 1.95 1.95 1.93 1.94 1.96 1.96 

Early ADMh 68.3 70.0 69.1 65.9 61.5 67.9 68.1 68.4 68.4 67.7 68.0 68.5 68.7 

Early SDMh 48.4 51.3 49.9 45.8 42.0 47.6 48.0 48.8 49.0 47.8 48.1 48.6 48.9 

Early SUCh 20.5 16.2 18.3 21.2 20.6 20.0 20.2 20.6 20.7 20.0 20.3 20.7 20.9 

Mid DoGP 58.8 44.5 51.0 68.0 77.3 58.8 58.8 58.8 58.8 58.8 58.8 58.8 58.8 

Mid DoOSG 117.2 102.8 109.6 127.7 138.3 119.2 118.0 116.9 116.4 117.2 117.2 117.2 117.2 

Mid FIPARa 0.67 0.71 0.70 0.64 0.61 0.67 0.67 0.67 0.68 0.67 0.67 0.68 0.68 

Mid RUEa 1.80 1.94 1.88 1.70 1.61 1.80 1.80 1.80 1.80 1.79 1.79 1.81 1.81 

Mid ADMh 63.2 68.2 65.9 59.7 56.5 63.1 63.1 63.2 63.2 62.7 63.0 63.5 63.7 

Mid SDMh 45.7 50.1 48.0 42.6 40.1 45.3 45.5 45.8 45.8 45.1 45.4 46.0 46.2 

Mid SUCh 20.5 18.0 19.4 21.1 21.9 20.4 20.4 20.5 20.5 20.0 20.3 20.7 20.9 
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Base- 
line Temperature adaptation (°C) 

Canopy growth rate adaptation  
(% change from baseline G) 

Senescence threshold  
(% change from baseline G) 

H.S. Var 
NCo 
376 -2 -1 +1 +2 -10% -5% +5% +10% -10% -5% +5% +10% 

Late DoGP 25.1 24.2 24.4 26.2 28.3 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 

Late DoOSG 77.1 75.0 75.5 79.7 84.5 79.1 77.8 76.2 75.9 77.1 77.1 77.1 77.1 

Late FIPARa 0.73 0.74 0.74 0.72 0.71 0.73 0.73 0.73 0.73 0.72 0.73 0.73 0.74 

Late RUEa 1.94 1.97 1.95 1.91 1.87 1.94 1.94 1.94 1.94 1.92 1.93 1.95 1.95 

Late ADMh 68.1 69.2 68.7 67.1 65.9 68.2 68.1 68.2 68.1 67.4 67.8 68.5 68.7 

Late SDMh 49.6 50.9 50.2 48.6 47.7 49.4 49.5 49.7 49.7 48.8 49.2 49.9 50.2 

Late SUCh 23.3 17.9 20.5 25.7 28.2 23.4 23.3 23.3 23.3 22.7 23.0 23.6 23.8 

La Mare, Reunion island, 1994-2020 

All DoGP 32.4 25.8 28.5 37.7 45.3 32.4 32.4 32.4 32.4 32.4 32.4 32.4 32.4 

All DoOSG 92.5 82.4 86.3 100.6 110.6 96.8 94.4 91.1 90.0 92.5 92.5 92.5 92.5 

All FIPARa 0.72 0.75 0.74 0.70 0.68 0.72 0.72 0.73 0.73 0.72 0.72 0.73 0.73 

All RUEa 2.03 2.10 2.07 1.97 1.90 2.03 2.03 2.03 2.03 2.01 2.02 2.04 2.05 

All ADMh 72.3 74.8 73.8 70.1 67.5 72.0 72.2 72.2 72.3 71.6 71.9 72.6 72.8 

All SDMh 52.5 55.1 54.0 50.4 48.0 51.9 52.2 52.6 52.7 51.7 52.1 52.8 53.1 

All SUCh 22.9 18.3 20.7 24.4 25.6 22.7 22.8 22.8 22.8 22.3 22.6 23.1 23.4 

Early DoGP 40.1 29.6 34.0 48.5 61.5 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 

Early DoOSG 113.7 95.6 102.8 127.5 142.8 120.3 116.6 110.9 108.5 113.7 113.7 113.7 113.7 

Early FIPARa 0.72 0.76 0.74 0.69 0.65 0.71 0.71 0.72 0.73 0.71 0.72 0.72 0.72 

Early RUEa 2.00 2.09 2.06 1.92 1.80 1.99 2.00 2.00 2.00 1.98 1.99 2.01 2.01 

Early ADMh 71.1 74.4 73.2 68.1 63.9 70.8 71.1 71.1 71.2 70.5 70.8 71.4 71.6 

Early SDMh 50.6 54.2 52.8 47.6 44.1 49.8 50.3 50.8 51.1 49.9 50.3 50.8 51.1 

Early SUCh 20.7 16.9 19.1 21.5 21.6 20.4 20.7 20.6 20.7 20.1 20.4 20.9 21.1 

Mid DoGP 34.7 27.2 30.5 39.8 46.8 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 

Mid DoOSG 89.3 79.3 83.4 96.6 105.6 93.3 91.3 88.1 87.1 89.3 89.3 89.3 89.3 

Mid FIPARa 0.71 0.74 0.73 0.69 0.66 0.70 0.71 0.71 0.71 0.70 0.71 0.71 0.71 

Mid RUEa 1.98 2.07 2.03 1.92 1.85 1.97 1.98 1.98 1.98 1.96 1.97 1.99 2.00 

Mid ADMh 70.5 73.5 72.1 68.3 65.8 70.1 70.4 70.4 70.4 69.8 70.1 70.8 71.0 

Mid SDMh 51.3 54.2 52.8 49.2 46.9 50.5 51.0 51.3 51.4 50.5 50.9 51.6 51.8 

Mid SUCh 21.9 17.5 19.8 23.5 24.7 21.6 21.8 21.8 21.8 21.3 21.6 22.2 22.4 
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Base- 
line Temperature adaptation (°C) 

Canopy growth rate adaptation  
(% change from baseline G) 

Senescence threshold  
(% change from baseline G) 

H.S. Var 
NCo 
376 -2 -1 +1 +2 -10% -5% +5% +10% -10% -5% +5% +10% 

Late DoGP 22.5 20.7 21.0 24.8 27.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 

Late DoOSG 74.6 72.3 72.6 77.7 83.5 76.8 75.2 74.5 74.4 74.6 74.6 74.6 74.6 

Late FIPARa 0.74 0.75 0.75 0.73 0.72 0.74 0.74 0.75 0.75 0.74 0.74 0.75 0.75 

Late RUEa 2.11 2.15 2.14 2.08 2.05 2.11 2.11 2.11 2.11 2.09 2.10 2.12 2.13 

Late ADMh 75.2 76.6 76.0 74.0 72.8 75.2 75.2 75.2 75.2 74.4 74.8 75.5 75.8 

Late SDMh 55.6 57.0 56.4 54.4 53.1 55.3 55.5 55.6 55.7 54.7 55.2 56.0 56.3 

Late SUCh 26.0 20.5 23.2 28.4 30.6 26.1 26.0 26.0 26.0 25.3 25.7 26.3 26.6 

Pongola, South Africa, 1998-2020 

All DoGP 36.5 28.7 31.8 43.1 54.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 

All DoOSG 119.9 102.3 107.6 132.7 148.6 125.3 122.3 117.6 116.2 119.9 119.9 119.9 119.9 

All FIPARa 0.67 0.71 0.70 0.64 0.60 0.66 0.67 0.68 0.68 0.67 0.67 0.67 0.68 

All RUEa 1.72 1.82 1.78 1.64 1.52 1.72 1.72 1.73 1.73 1.71 1.72 1.73 1.74 

All ADMh 53.3 56.2 55.0 50.5 46.9 53.1 53.2 53.4 53.3 52.8 53.0 53.5 53.7 

All SDMh 37.5 40.6 39.3 35.0 32.1 37.0 37.3 37.7 37.8 37.0 37.3 37.7 37.9 

All SUCh 17.3 13.7 15.7 18.1 18.5 17.2 17.2 17.3 17.3 16.8 17.1 17.5 17.6 

Early DoGP 30.8 24.1 26.7 37.7 56.4 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 

Early DoOSG 156.1 122.2 130.9 178.7 204.8 165.4 160.7 151.5 148.8 156.1 156.1 156.1 156.1 

Early FIPARa 0.66 0.72 0.70 0.62 0.55 0.65 0.66 0.67 0.68 0.66 0.66 0.67 0.67 

Early RUEa 1.78 1.87 1.83 1.65 1.48 1.76 1.78 1.79 1.79 1.77 1.77 1.79 1.79 

Early ADMh 55.1 57.7 56.7 51.1 45.6 54.6 55.0 55.4 55.3 54.7 54.9 55.3 55.4 

Early SDMh 38.3 41.8 40.5 34.4 29.8 37.4 38.0 38.8 38.8 37.8 38.1 38.5 38.7 

Early SUCh 16.3 13.1 15.0 15.8 14.5 15.9 16.2 16.5 16.5 15.9 16.1 16.5 16.6 

Mid DoGP 52.9 38.6 44.5 62.9 75.5 52.9 52.9 52.9 52.9 52.9 52.9 52.9 52.9 

Mid DoOSG 120.6 106.6 112.1 131.4 145.3 124.4 122.4 119.5 118.6 120.6 120.6 120.6 120.6 

Mid FIPARa 0.65 0.70 0.68 0.62 0.58 0.65 0.65 0.66 0.66 0.65 0.65 0.66 0.66 

Mid RUEa 1.64 1.78 1.72 1.55 1.43 1.64 1.64 1.64 1.64 1.63 1.63 1.65 1.65 

Mid ADMh 50.7 54.9 53.1 47.8 44.0 50.6 50.6 50.6 50.6 50.2 50.5 50.9 51.0 

Mid SDMh 35.7 39.4 37.9 33.3 30.3 35.3 35.4 35.8 35.8 35.2 35.4 35.9 36.1 

Mid SUCh 16.8 13.9 15.6 17.7 18.0 16.8 16.7 16.7 16.6 16.4 16.6 16.9 17.1 
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Base- 
line Temperature adaptation (°C) 

Canopy growth rate adaptation  
(% change from baseline G) 

Senescence threshold  
(% change from baseline G) 

H.S. Var 
NCo 
376 -2 -1 +1 +2 -10% -5% +5% +10% -10% -5% +5% +10% 

Late DoGP 26.0 23.4 24.1 28.6 31.7 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 

Late DoOSG 82.9 78.2 80.0 87.9 95.8 86.1 83.8 81.9 81.2 82.9 82.9 82.9 82.9 

Late FIPARa 0.70 0.71 0.71 0.69 0.67 0.69 0.70 0.70 0.70 0.69 0.69 0.70 0.70 

Late RUEa 1.75 1.82 1.79 1.70 1.66 1.75 1.75 1.75 1.75 1.73 1.74 1.76 1.77 

Late ADMh 54.0 56.1 55.1 52.6 51.1 54.1 54.1 54.1 54.1 53.5 53.8 54.3 54.5 

Late SDMh 38.6 40.6 39.6 37.3 36.2 38.3 38.5 38.7 38.7 37.9 38.2 38.8 39.1 

Late SUCh 18.8 14.1 16.4 20.9 23.0 18.9 18.8 18.8 18.7 18.2 18.5 19.0 19.2 
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Figure 11-14.  Daily fractional interception of photosynthetically-active radiation, for 
early-season (E), mid-season (M) and late-season (L) crops at Belle Glade, 2003-

2020.  Impacts of frost events, which reduce green leaf area index, are evident, e.g. 
2011. 

 

11.6 CaneGEM model source code file structure and operation 

11.6.1 Access to the CaneGEM model 

Please contact Matthew Jones (matthewjones0001@gmail.com) or Abraham Singels 
(abraham.singels@gmail.com) to request access to the CaneGEM model. 

11.6.2 Setting up the R environment for running the CaneGEM model 

The CaneGEM model is written in the R language.   

1. It is recommended to install R and “RStudio” – both free downloads. 
2. In RStudio, install the libraries tidyverse, broom, knitr, reshape2, kableExtra, 

ggpubr, chillR, lubridate and readxl, using the Tools menu. 

11.6.3 How to simulate the ICSM experiments (Chapter 5) with the CaneGEM 
model 

Steps for running the model 

1. Open CaneGEM.Rproj in RStudio 
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2. Open 'CreateCluster.R' and press on source.  This sets up parallel processing 
for fast model runs. 

3. Open RunCaneGEM_ICSM.R 
4. Click on "Source".  This runs the model. 
5. Outputs are generated in the ./outputs directory. 

File structure 

• The top-level R script to run is RunCaneGEM.R.  This makes uses of the 
following additional script files in the root directory: 

o CLAImodelv13.11_func.R – functions used by the CaneGEM model 
o CLAI_utilities.r – additional functions used by the CaneGEM model 
o CreateCluster.R – script to create parallel processing environment to 

increase the execution speed of the CaneGEM model 
o obssimplot_v13.8_v2LinObsFi.r – functions for processing and 

visualisation observed and simulated data 

• Model inputs are in the ./inputs directory.  These are explained in the model 
source code. 

• Genotype parameters are stored in ./modelparams_v13.11.csv (root working 
directory, not in ./inputs/) 

• output is produced in the ./outputs/ directory.  modelrun.csv and 
ModelRunDetails_YYYY-MM-DD HH.MM.SS.xlsx 

• The names of the input and output parameters are not consistent with the thesis.  
An explanation is provided in ./Input_Output_acronym_mapping.xlsx 

11.6.4 How to simulate the Case Study experiments (Chapter 6) with the 
CaneGEM model 

1. Open CaneGEM_casestudy.Rproj in RStudio 
2. Open 'CreateCluster.R' and press on source.  This sets up parallel processing 

for fast model runs. 
3. Open the following files and click ‘source’ to execute each one in sequence.  

Execution may take many minutes due to the large number of simulations. 
a. RunCaneGEM__casestudy_BelleGladeUSA.R 
b. RunCaneGEM__casestudy_ChiredziZimbabwe.R 
c. RunCaneGEM__casestudy_LaMareReunionFrance.R 
d. RunCaneGEM__casestudy_PongolaSouthAfrica.R 

4. The scripts above generate output in the ./outputs directory.  Files of 
approximately 200 Mb each are generated containing model output.  These 
outputs can be reloaded into the R environment later on for further analysis 
without having to rerun the model.  Open the file reprocessRDS.R for guidance. 

5. Open and run (with ‘source’ button) WeatherDataSummary.R to generate 
graphs of weather data. 

6. Outputs are stored in the ./outputs directory. 
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