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Abstract. In this paper, we provide a systematic way of finding explicit solutions for

a class of continuous fragmentation equations with growth or decay in the state space

and derive new explicit solutions in the cases of constant and linear growth/decay

coefficients.

1. Introduction

Coagulation and fragmentation equations, modelling the processes of rearrangement

of clusters of animate or inanimate matter, are considered to be one of the most

fundamental equations of the classical science. These processes consist in splitting large

clusters into smaller blocks and, conversely, forming of larger clusters from smaller ones,

see Fig. 1, and are abundant in natural and technological processes. We can mention

here animal groups formation, [1, 2, 3], phytoplankton dynamics, [4, 5, 6], polymer

degradation, [7, 8, 9, 10], planetesimal formation, industrial spray drying, aerosols

formation, floculation and many others, see [11] for a more extensive description and

references.

The original coagulation–fragmentation equations, formulated by M. Smoluchowski

[12, 13] for the pure coagulation case and extended to include the fragmentation part

in [14, 15], assumed the existence of minimum building blocks and thus had the form

of an infinite system of ordinary differential equations. However, in many applications

such as droplets formation in clouds, fog or aerosols, [16, 17], it makes sense to consider

a continuous size variable that can take any positive value. An extension of the original

Smoluchowski equations to the continuous case that took the form of an integro–

differential equation, was done by Müller, see [18], and finally Melzak in [19] incorporated
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2017/25/B/ST1/00051 and the National Research Foundation of South Africa Grant 82770
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Figure 1. Pure fragmentation and coagulation processes

fragmentation into a continuous particle size model. While the fragmentation term in

[14, 15, 19] is linear, that is, the rate of fragmentation is intrinsically linked to the

properties of a given cluster, it is worthwhile to mention the nonlinear fragmentation

models, where there breakage is induced by interactions of two clusters, see e.g., [20, 21].

In this paper, we shall deal only with the continuous case and we discard the

coagulation processes (but, as explained below, we include transport in the state space).

Following original ideas of Smoluchowski, we assume here that a single variable, such

as particle mass or size, is required to differentiate between the reacting particles (a

discussion of the cases where other features of the reacting particles, like their shape,

play a role in the process can be found in [22]). Then, for the pure fragmentation process

we obtain the following formulation, which can be traced back to the work of McGrady

and Ziff [23] (1987) and Vigil and Ziff [24] (1989),

ut(x, t) = − a(x)u(x, t) +

∫ ∞
x

a(y)b(x, y)u(y, t) dy, (1.1a)

u(x, 0) = u0(x) , x ∈ R+. (1.1b)

Here u(x, t) is the density of particles of size x > 0 at time t, a(x) represents the

overall rate of fragmentation of an x-sized particle, while the coefficient b(x, y), often

called the fragmentation kernel, is the distribution function of the sizes of the daughter

particles produced by the parent particle of size y. It is assumed to be nonnegative and

measurable, with b(x, y) = 0 for x > y and∫ y

0

xb(x, y) dx = y, for each y > 0, (1.2)

but is otherwise arbitrary.

Pure fragmentation processes consist only in rearrangements of mass among clusters

and thus are (formally) mass conserving. Often, however, the fragmentation is

accompanied by events that involve loss or gain of mass, see Fig. 2. In engineering,

physical or chemical practice, mass loss can occur due to oxidation, melting, sublimation

or dissolution of the matter from the exposed surface of the particles. The resulting

surface recession widens the pores of the clusters, causing their disintegration into

smaller ones, [25, 26, 27].

We may also observe reverse processes, where the clusters, while undergoing

fragmentation due to external causes, may gain mass due to the precipitation of matter
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Figure 2. Fragmentation processes with growth (left) and decay (right)

from the environment. Other examples of this type come from biology, where it has

been observed that, depending on circumstances, living organisms form bigger clusters

or split into smaller ones, see, e.g., [1, 28, 3, 29, 5, 30, 31, 32]. It is, however, not often

fully recognised that the living matter has its own vital dynamics, that is, in addition

to forming or breaking clusters, individuals forming them can be born or die inside,

which should be adequately represented in the models. In the continuous case, the

birth and death processes are incorporated into the model by adding an appropriate

first-order transport term, analogously to the age or size structured McKendrick model,

see [5, 33, 6, 34, 35]. Thus, we shall consider the following modification of (1.1a) with

either growth (+) or decay (−),

u±t (x, t) ± (r(x)u±(x, t))x =

− a(x)u±(x, t) +

∫ ∞
x

a(y)b(x, y)u±(y, t)dy, x, t ∈ R+, (1.3a)

u±(x, 0) = u0(x), x ∈ R+, (1.3b)

where r is a positive and continuous function on R+, which gives the rate of growth or

decay of clusters in the absence of fragmentation. In the growth case, if∫ 1

0

dx

r(x)
< +∞, (1.4)

then (1.3a)–(1.3b) must be supplemented by a boundary condition which we assume

here to be

lim
x→0+

r(x)u+(x) = 0. (1.5)

Problems (1.1a)–(1.1b) and (1.3a), (1.3b) and (1.5) have been the subject of intensive

research, both from the practical and theoretical points of view. Nontrivial properties of

these problems such as phase transitions (called shattering and runaway fragmentation),

see e.g., [36, 23, 25, 26, 37], and the existence of multiple solutions, see e.g., [38, 39], have

necessitated the development and application of sophisticated mathematical methods

for their analysis. A comprehensive account of the relevant theory can be found in [11],

with further developments given in [40, 41]. In parallel to the theoretical developments,

we have seen an extensive search for explicit solutions to (1.1a)–(1.1b) and (1.3a), (1.3b)

and (1.5) (as well as to the equations containing the coagulation terms). The interest

in explicit solutions stems from several facts – whenever available, they can be used as
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benchmark solutions to validate and improve approximate and numerical procedures.

They also allow for observing specific phenomena that elude simple theoretical tools

and thus stimulate their refinement, and often they give better information about the

process that cannot be acquired in a more general context. Thus it is not surprising

that there exists a large body of physical and engineering literature devoted to the

derivation and utilization of explicit solutions. While possibly the first explicit solutions

to continuous fragmentation equations are due to Filippov [36], the systematic study

of them in the context of polymer degradation is due to Ziff and McGrady, [9, 10, 23],

who derived solutions to the fragmentation equation with the power law coefficients,

which are briefly discussed below, in terms of the Kummer confluent hypergeometric

function. Their ideas were later extended to some cases of fragmentation equations

with decay in a series of papers [26, 25, 27, 42] and used, among others, to determine

the shattering regime through the analysis of the scaling properties of the explicit

solutions. A related direction of research, based on the knowledge of explicit solutions of

fragmentation (and coagulation) equations, deals with finding of the so-called self-similar

profiles describing the long term patterns of the evolution of the analysed systems, see

[43, 9, 10, 44, 45, 46, 47, 48, 49, 50].

2. Preliminaries

Our work, written in the spirit of the papers [9, 10, 23], aims at extending their results

to a larger class of fragmentation equations with growth or decay. We shall achieve

this by developing a unified approach covering the admissible cases. For the sake of

completeness, we begin with the pure fragmentation case.

2.1. Pure fragmentation models

Of special interest in applications are the so-called power-law coefficients, defined by

a(x) = xα and b(x, y) =
ν + 2

y

(
x

y

)ν
, −2 < ν ≤ 0. (2.1)

For instance, in the context of chain polymers, such coefficients describe the situation in

which the scission is independent of the position along the polymer, but is a function of

the length of the chain (if α 6= 0), see [10]. Note that the lower limit on ν is due to the

fact that otherwise the integral in (1.2) is infinite. On the other hand, the upper bound

follows from physical features of the model that can be found in [11, Section 2.2.3.2].

In particular, binary fragmentation occurs when ν = 0, with the associated initial-value

problem given by

ut(x, t) = −xαu(x, t) + 2

∫ ∞
x

yα−1u(y, t) dy , u(x, 0) = u0(x). (2.2)

In fact, in [23] it is shown that it is sufficient to investigate this binary equation since

u(x, t) = xν ũ
(
x
ν+2
2 , t

)
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is a solution of the general power-law equation whenever ũ satisfies the binary equation

with α replaced by 2α/(ν + 2). Then, for instance for α > 0, we can use the integrating

factor e−tx
α

and the change of variables ξ = xα so that, letting

u(x, t) = e−tx
α

v(ξ, t), (2.3)

we can reduce the problem to

vt(ξ, t) =
2

α

∫ ∞
ξ

et(ξ−η)v(η, t) dη, v(ξ, 0) = v0(ξ) = u0

(
ξ

1
α

)
. (2.4)

The authors used a power series technique to obtain a solution, ur, for the so-called

mono-disperse initial state, modelled by u0(x) = δr(x), r > 0, where δ is the Dirac

delta. While such a solution, due to the singularity of the initial condition, is not

classical (but can be interpreted in the sense of distributions, see Appendix A.2), it is

used as Green’s function to obtain the solution to the general initial distribution u0 as

u(x, t) =

∫
R+

ur(x, t)u0(r) dr. (2.5)

The exact solutions to (2.2) obtained in this way were given in terms of special functions,

such as Kummer’s confluent hypergeometric function. We shall show that these solutions

fit into a more general theory that is presented in this paper.

2.2. Fragmentation with growth or decay

Here we consider (1.3a) and (1.3b), where, in addition to (2.1), we assume

r(x) = kxγ, a(x) = axα, (2.6)

with k, a > 0, α 6= 0. In the growth case, if γ > 1, then the characteristics of the

problem suffer a finite time blow-up and the total mass of the system becomes infinite

in finite time, the pointwise solutions, however, may still exists, see [11, Example 5.2.7].

On the other hand, in the decay case the solutions with finite mass exist for any γ ≥ 0,

[51, Theorem 9.4]. Further, in the growth case, (1.4) is satisfied if 0 ≤ γ < 1 and then

we supplement (1) with the boundary condition (1.5) (with r(x) = kxγ).

First, we simplify the fragmentation part, as in Section 2.1. Hence, we let

z = axα, v±(z, t) = z−
ν
αu±

((z
a

) 1
α
, t

)
, x, t ∈ R+. (2.7)

Formal substitution of (2.7) into (1.3a), (1.3b) yields

v±t (z, t)± βzµv±z (z, t) = − [±θzµ−1 + z]v±(z, t)

+m

{ ∫∞
z
v±(s, t)ds if α > 0,∫ z

0
v±(s, t)ds if α < 0,

(2.8a)

v±(z, 0) = v0(z) := z−
ν
αu0

((z
a

) 1
α
, 0

)
, (2.8b)
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for t, z ∈ R+, with

β = a
1−γ
α kα, θ = a

1−γ
α k(γ + ν),

m = (ν+2)
|α| , µ =

γ + α− 1

α
. (2.8c)

It is important to observe that if α < 0, then the roles of + and − in (2.8a) are reversed

due to the change of sign of β so that the growth problem becomes the decay problem

and conversely. This is, however, compensated by the change of the integral operator.

We note that the decay case with µ = θ = 0 was solved in [27, 42]. The approach

of the authors was to use the characteristic coordinates for the transport part of the

equation to remove the derivative with respect to the state variable and work with

the simplified equation that resembles the pure fragmentation equation but with time-

dependent coefficients, which, in the case with µ = θ = 0, can be incorporated into the

unknown function. Here, we provide a systematic extension of their approach and show

that it works for the case of decay and growth with µ = 1 and growth with µ = 0.

We observe that an additional difficulty in the growth case is to make sure that the

characteristics fill the whole quadrant R2
+ so that the characteristic change of variables

is a transformation onto it. Fortunately, in the case of linear growth, this is true, but

in the case of a constant growth rate, we need to impose boundary conditions, which

complicates the procedure.

To shorten the notation, we shall define

J +[u](x) =

∫ ∞
x

u(y)dy, J −[u](x) =

∫ x

0

u(y)dy, x ∈ R+,

and combine the notation into J sgα where sgα = + if α > 0 and sgα = − if α < 0.

Linear growth or decay. Here we assume µ = 1. In terms of the original parameters,

this means γ = 1, so the problems with linear growth/decay become problems with

linear growth/decay again (though the growth and decay can switch). Thus, (2.8a)

becomes

v±t (z, t)± βzv±z (z, t) = −[±θ + z]v±(z, t) +mJ sgα[v±(·, t)](z), (2.9)

with the same initial condition (2.8b). As noted above, (2.6) implies that in both the

growth and the decay scenarios, the characteristics associated to the transport part of

the model fill-up the entire first quadrant R2
+ so that no boundary condition at z = 0 is

required, see Fig. 3.

The characteristics associated to the transport part of (2.9) are given explicitly by

z±(ξ, t) = ξe±βt, ξ, t ∈ R+,

where as before the signs ± correspond to the growth and the decay scenarios in the

original variables, respectively. The substitution

w±(ξ, τ±) = eτ
±ξ(1± βτ±)

θ
β v±(z±(ξ, t(τ±)), t(τ±)),

τ±(t) = ± 1
β
(e±βt − 1), τ± ∈ I±, Isgα := R+, I−sgα := [0, 1

β
), (2.10)
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Figure 3. Characteristics determined by the initial condition at t = 0 fill the first

quadrant in the linear growth (left) and decay (right) case.

(note that an analogous time rescaling was used in [52]) transforms (2.9) to

w±τ±(ξ, τ±) = mJ sgα[e−τ
±(·−ξ)w±(·, τ±)](ξ), (ξ, τ±) ∈ R+ × I±, (2.11a)

w±(ξ, 0) = w0(ξ) := ξ−
ν
αu0

((
ξ

a

) 1
α

)
, ξ ∈ R+. (2.11b)

Constant growth or decay. Here we assume µ = 0 and hence, to avoid singularity at

z = 0, we also require θ = 0. In terms of the original parameters, we have α = 1 − γ
and γ = −ν. Thus, the earlier constraints yield 0 ≤ γ < 2 and −1 < α ≤ 1, and hence

we can distinguish the following cases:

(i) Decay with α < 0. It requires γ > 1 and no boundary condition in (1.3a)–(1.3b);

it is transformed into the growth case with J − requiring boundary condition as

z → 0+ that corresponds to x→∞. The zero boundary condition for v− at z = 0

means that xγu−(x) converges 0 as x→∞, in accordance with [51, Theorem 9.4].

(ii) Growth with α < 0. It requires γ > 1, so no boundary condition in (1.3a)–(1.3b) is

needed; it is transformed into the decay case with J −, which does not require any

boundary condition as z → 0+.

(iii) Decay with α > 0. It requires γ < 1 and no boundary condition in (1.3a)–(1.3b); it

is transformed into the decay case with J +, which does not require any boundary

condition as z → 0+.

(iv) Growth with α > 0. It requires γ < 1 and a boundary condition at x = 0 in

(1.3a)–(1.3b); it is transformed into the growth case with J +, requiring boundary

condition as z → 0+ that corresponds to x→ 0+. The zero boundary condition for

v+ at z = 0 means that xγu+(x) converges 0 as x→ 0.

Having this in mind, the transformed equation takes the form

v±t (z, t)± βv±z (z, t) = −zv±(z, t) +mJ sgα[v±(·, t)](z). (2.12)
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Figure 4. Characteristics determined by the initial condition at t = 0 fill the

first quadrant in the constant decay case (right). In the growth case (left), the

characteristics determined by the initial condition at t = 0 fill only the region below

the main diagonal and hence a boundary condition at z = 0 is needed to determine

the initial values for the characteristics above it.

The initial conditions are again given by (2.8b), and we will have to supplement (2.12)

by the boundary condition

lim
z→0+

v±(z, t) = 0, (2.13)

whenever ±β > 0. Here the characteristics are given by

z±(ξ, t) = ±βt+ ξ, (2.14)

see Fig. 4. Then we let g±(ξ, t) = v(z±(ξ, t), t) and hence (2.12) becomes

g±t (ξ, t) = −(ξ ± βt)g±(ξ, t) +mJ sgα[g±(·, t)](ξ), (2.15a)

g±(ξ, 0) = g0(ξ) = v0(ξ), (2.15b)

for ξ ∈ R+. The way we write the boundary condition depends on the method we choose

to solve (2.15a)–(2.15b). Here, see Section 5, we extend (2.2) to ξ < 0 by assuming that

g±0 (ξ) = 0 for ξ < 0 and introducing the initial condition φ(ξ) = g0(ξ) + ψ(ξ), where

ψ(ξ) = 0 for ξ > 0 and must be determined for ξ < 0, see Fig. 5. In this way, for such

an extended solution g±, we write (2.13) as

g±
(
ξ,∓β−1ξ

)
= 0, ξ ∈ R−, (2.16)

whenever ±β > 0. Finally, we set

w±(ξ, t) = e±
βt2

2
+ξtg±(ξ, t) (2.17)

and arrive at the equation analogous to (2.4) and (2.11a),

w±t (ξ, t) = mJ sgα[e−t(·−ξ)w±(·, t)](ξ), (2.18a)

w±(ξ, 0) = φ(ξ), (2.18b)

with ξ > 0 if ±β < 0 and ξ ∈ R if ±β > 0 and, in the latter case,

w±
(
ξ,∓β−1ξ

)
= 0, ξ ∈ R−. (2.18c)

The formal similarity of (2.4), (2.11a) and (2.18a) justifies studying general equations

of this type, which is carried out in the following section.
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Figure 5. Geometry of the problem (2.18a)–(2.18c) with β = 1 in the growth case

in the characteristic coordinates (ξ, t). Recall that v0(ξ) is only known for ξ > 0 and

ψ(ξ), ξ < 0, is to be determined so that w± (ξ,−ξ) = 0 is satisfied.

3. Model equation

As we have seen in Introduction, a large class of fragmentation equations with or without

additional growth or decay can be reduced to the following linear integro-differential

equation

u±t (x, t) = mJ ±[ϕ(±t(· − x))u±(·, t)](x), t ∈ R+, (3.1a)

u±(x, 0) = u±0 (x), (3.1b)

with

J +[u](x) =

∫ ∞
x

u(y)dy, J −[u](x) =

∫ x

0

u(y)dy,

where x ∈ R+ or x ∈ R, and the integral kernel is given by an entire function

ϕ(z) =
∑
n≥0

ϕn
n!
zn, (3.1c)

which we assume to be of finite exponential type ` > 0, see e.g., [53]. The main aim of

this section is to show that (3.1a)–(3.1c) is classically solvable for suitably chosen input

data u±0 . Our presentation is intentionally abstract. We construct an explicit solution

to (3.1a)–(3.1c) in a Banach space X±, which is chosen so that

‖J ±‖X±→X± ≤ c, (3.2)

for some c > 0.

Remark. We emphasize that the concrete form of the Banach spaces X± is irrelevant

at this point. All our calculations and formulas hold automatically in every space

X±, where the basic estimate (3.2) is satisfied. The concrete choice of X± depends

on particular applications, see e.g. the definition of weighted L1 spaces X±σ±ρ and X+ρ

employed in Sections 4, 5 and Section 5.3, respectively.

As we shall see shortly, in the functional settings of X± problem (3.1a)–(3.1c) takes

the form of an abstract linear variable-coefficient ODE. Indeed, it is easy to verify that(
J ±
)n

[u](x) = (±1)n−1

(n−1)!
J ±[(· − x)n−1u(·)](x), n ≥ 1. (3.3)
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Our assumption on the integral kernel ϕ implies that the functions

Φ(z) =

∫
R+

ϕ(sz)e−sds =
∑
n≥0

ϕnz
n, Φ̃(z) =

∑
n≥0

|ϕn|zn, (3.4)

are analytic in the disk D 1
`

= {|z| < 1
`
}. These observations allow us to define the map

Φ(zJ ±) :=
∑
n≥0

ϕn(zJ ±)n, 0 ≤ |z| < 1
c`

=: r.

Let L(X±) denote the space of bounded linear operators on X±. By construction,

Φ(± · J ±) : Dr → L(X±), is an analytic operator valued function of z and

‖Φ(zJ ±)‖X±→X± ≤ Φ̃(c|z|).

Hence, locally in time, we may write (3.1a)–(3.1c) as

u±t = mΦ(±tJ ±)J ±u±, u±(0) = u±0 , u± ∈ C1((0, r), X±). (3.5)

The problem (3.1a)–(3.1c), written in the abstract form (3.5), is readily integrable.

Lemma 3.1. The problem (3.5) is classically solvable. That is, for any u±0 ∈ X±, there

exists a unique classical solution u ∈ C([0, r), X±) ∩ C1((0, r), X±) satisfying (3.5).

Furthermore, the solutions are given explicitly by

u±(x, t) = φ0u
±
0 (x) + tJ ±[F (±t(· − x))u±0 (·)](x), (3.6a)

where the kernel§

F (z) =
∑
n≥0

φn+1

n!(n+1)!
zn, φn = dn

dzn
exp
{
m

∫ z

0

Φ(ξ)dξ
}∣∣∣

z=0
,

is of finite exponential type ` > 0. Equivalently,

u±(t) = φ(tJ ±)u±0 , t ∈ [0, r), (3.6b)

where

φ(z) = exp
{
m

∫ z

0

Φ(ξ)dξ
}

=
∑
n≥0

φn
n!
zn. (3.6c)

Proof. (a) The proof is straightforward. First, we rewrite (3.5) in the form of Volterra

integral equations of the first kind

u±(t) = u±0 +m

∫ t

0

Φ(τJ ±)J ±u±(τ)dτ, 0 < t < r. (3.7)

Since ‖Φ(tJ ±)J ±‖X±→X± ≤ cΦ̃(ct) and Φ̃(z) is monotone increasing for t ≥ 0, it

follows that the integral equations are uniquely solvable in C([0, t±0 ], X±), for some

0 < t±0 < r. Furthermore, since the right-hand side of these equations is in

C1((0, t±0 ), X±), we conclude that the solutions u± ∈ C([0, t±0 ], X±) to (3.7) are in fact

of class C1((0, t±0 ), X±) and hence satisfy (3.5) in the classical sense.

§ Using Hankel’s integral representation for the reciprocal of gamma function, one can show that

F (z) =
∫
R

(
exp
{
m
∫ z(1+is)

0
Φ(ξ)dξ

}
− 1
)

e1+isds
z(1+is) .
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(b) To obtain (3.6a), we note that the function φ, defined by (3.6c), is analytic in D 1
`

as

a composition of an entire and an analytic function. Moreover, the reciprocal is given

by

φ−1(z) = exp
{
−m

∫ z

0

Φ(ξ)dξ
}
.

Hence, on account of the commutativity of tJ ± and sJ ± for scalar t, s,

φ−1(tJ ±)u±t (t)− φ−1(tJ ±)mΦ(tJ ±)J ±u±(t) =
d

dt
[φ−1(tJ ±)u±(t)] = 0,

in C((0, t±0 ), X±). Integrating with respect to time and observing that φ−1(tJ ±) =

(φ(tJ ±))
−1

, we infer

u±(t) = φ(tJ ±)u±0 , t ∈ [0, t±0 ).

In connection with the last formula, we note that the right-hand side of (3.6b) is analytic

when t ∈ Dr, with values in X±. Using this fact, it is not difficult to verify that u±,

defined in (3.6b), satisfies (3.5) in the classical sense for t ∈ (0, r). Finally, using the

analyticity of φ(z) and the standard Cauchy estimates, we obtain (3.6a) with F (z) of

finite exponential type ` > 0.

Lemma 3.1 is of purely local nature. However, as we shall see in Sections 4 and 5,

the integral kernels F (z) appearing in applications to the growth/decay-fragmentation

problems are entire functions of z with moderate (power) growth in R+. This allows,

after some adjustments, for global extensions of formulae (3.6a) and (3.6b) beyond the

initial data classes X± and the time interval (0, r).

4. Solution to the fragmentation models with linear growth and decay rates

Since it is obvious that ϕ(z) := e−(sgα)z is of finite exponential type 1, the model

(2.11a)–(2.11b) falls in the scope of the theory presented in Section 3. In particular, if

we define

X±σ±ρ := L1(R+, x
±σe±ρxdx), ‖u‖X±σ±ρ =

∫
R+

|u|(x)x±σe±ρxdx, (4.1)

for σ ≥ 0, ρ > 0, then direct calculations show that

‖J ±‖X±σ±ρ→X±σ±ρ ≤
1
ρ
, ρ > 0, σ ≥ 0.

We note that the spaces with exponential weights for the solution of (2.11a)–(2.11b)

are natural as the later problem is obtained from the original ones through exponential

scalings such as (2.3), (2.10) or (2.17). The solutions to the original problems are

considered, however, in spaces with no exponential weights, as seen in Section 4.2.

It immediately follows from Lemma 3.1 that the local in time classical solutions to

(2.11a)–(2.11b), with the initial data w±0 ∈ Xsgασ
sgαρ , ρ > 0, σ ≥ 0, are given explicitly by

w±(ξ, τ±) = w±0 (ξ)

+mτ±J sgα
[

1F1

(
1− (sgα)m; 2;−τ±(· − ξ)

)
w±0

]
(ξ), (4.2)
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where

1F1(a; b; z) =
∑
n≥0

(a)nzn

(b)nn!
,

is the Kummer confluent hypergeometric function of the first kind, [54, Formula 13.1.2,

p. 504]. We note also that in view of the Kummer transformation, see [54, Formula

13.1.27, p. 505],

1F1(a; b; z) = ez1F1(b− a; b;−z), (4.3)

w±, defined in (4.2), are nonnegative for nonnegative input data w±0 .

Remark. Alternatively, to use (3.6b), we observe that, since ϕ(z) = e−(sgα)z,

Φ(z) =
1

1 + (sgα)z
.

While the series defining Φ in (3.4) converges only for |z| < 1, Φ is analytic everywhere

except for z = −(sgα)1. Thus, φ(z) = (1 + (sgα)z)(sgα)m where, for non-integer m > 0

(as well as for the function ln(1 + (sgα)z) that appears in intermediate calculations),

we assume that the respective functions are defined in C, cut along the ray (−∞,−1],

when α > 0, or along [1,+∞), when α < 0. Then, as long as the spectrum of τ±J sgα

does not intersect the respective line, we have

w±(ξ, τ±) = (I + (sgα)τ±J sgα)(sgα)m[w±0 ](ξ). (4.4)

In the particular case of α > 0, this approach yields global in τ± ∈ R+ solutions w±.

The rigorous proof of this fact is given in Appendix B, Proposition B.1.

4.1. Explicit solutions

Backward substitution shows that the solutions to (1.3a)–(1.3b) are given explicitly by

u±(x, t) = exp
{
∓kt∓ axα

kα
(1− e∓kαt)

}[
u±0 (xe∓kt)

± a(ν+2)
kα

(1− e∓kαt)
∫ ∞
x

1F1

(
1− ν+2

α
; 2; ∓a

kα
(1− e∓kαt)(yα − xα)

)
xνyα−ν−1u±0 (ye∓kt)dy

]
. (4.5)

We remark at this point that (4.5) follows from (4.2) in a purely formal manner,

hence it requires proper justification. To avoid overloading text with huge amount

of mathematical technicalities, the rigorous proofs are postponed to Appendix A. Here

we mention that (4.5) are indeed genuine solutions in the sense of distributions. That is,

these solutions satisfy (1.3a)–(1.3b) in the space of Schwartz distributions D′(R2
+), see

[55], for initial data u±0 in D′(R+). As an immediate consequence, for the monodisperse

initial data u±0 = δx0 , x0 ∈ R+, we have‖

u±(x, t) = exp
{
∓axα0

kα
(e±kαt − 1)

}[
δx0e±kt(x)

‖ In formula (4.6) and everywhere below, χA(·) denotes the characteristic function of set A ⊂ R+.
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± χ[0,x0e±kt](x)a(ν+2)
kα

(e±kαt − 1)xα−ν−1
0 xν

1F1

(
1 + ν+2

α
; 2; ∓a

kα
(1− e∓kαt)(xα − xα0 e±kαt)

)]
. (4.6)

Formula (4.6) has straightforward physical interpretation. Expanding the right-hand

side of (4.6), we see that the term containing δ-distribution describes the evolution and

mass loss of the original particle of size x0, while the term with the Kummer function

provides a continuous mass distribution of daughter particles generated by multiple

fragmentation and transport events.

Remark. As usual, stronger properties of solutions are obtained for regular initial data

u±0 . For instance, if (u±0 )x ∈ Xp+1
0 , u±0 ∈ X

p+α
0 and

α > 0, p ≥ α− ν − 1, (4.7a)

α < 0, p ≥ 0, p > 1 + α, (4.7b)

then

u±t , (ru
±)x, au ∈ C((0, T ), Xp

0 ), (4.8)

and (4.5) satisfies (1.3a)–(1.3b) in the classical sense of Xp
0 . For the proof of this and

related facts the reader is referred to Appendix A, Corollary A.2.

4.2. Moments

Moments M±
p (t) := ‖u±(·, t)‖Xp

0
of the solutions are of physical importance as they

provide information about the global state of the evolving system. For instance, the

zeroth moment M±
0 (t) gives the number of particles in the system at time t, the first

moment M±
1 (t) describes the evolution of the total mass of the system, while the higher

order moments are related to the distribution of mass between small and large clusters.

Furthermore, the behaviour of the first moment is related to the occurrence of a phase

transition phenomenon, known as ”shattering”, [36, 23], that describes an unaccounted

for loss of mass from the system; we mentioned it in Introduction. In the context of

fragmentation with growth or decay, shattering refers to the fact that the evolution of

the total mass of the system is not determined solely by the mass growth/decay terms

±(r(x)u±(x, t))x built into the model, [25, 26] and [11, Sections 5.2.7&8].

As mentioned in Section 4.1, for integrable input data u±0 ∈ X
p
0 , the nonnegative

p-th order moments M±
p (t) are well defined and remain finite at each instance of time

t ≥ 0, only if the inequalities (4.7a)-(4.7b) are satisfied. There is, however, an interesting

difference in the behaviour of higher and lower order moments of u±, t > 0, when α > 0

and when α < 0. It follows from (A.9a) of Corollary A.2 that in the first case all higher

order moments p ≤ q ≤ p + ν + 2 become finite instantly at t > 0. In contrast, for

α < 0 only the lower order moments 1+α < q ≤ p and 0 ≤ q, remain well defined. This

phenomenon is related to two different types of moment regularization effect (discovered

recently in [40, 41]) induced by the fragmentation rate a, with α > 0 and α < 0.
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Figure 6. Evolution of moments with u±0 (x) = δ2(x) and k = 1 a = 1, ν = − 3
2 : left

column α = 3; right column α = −3.

Remark. The explicit formulae (4.5) and (4.6) allow for direct computations of

nonnegative-order moments for integrable and monodisperse input data u±0 , respectively.

However, in view of the linearity of the model (1.3a)–(1.3b) and of the moment

functionals M±
p (t), p ≥ 0, we present calculations only for the latter case. For general

integrable data u±0 ∈ X
p
0 , the dynamics of Mp(t) can be read off the monodisperse case

via the standard superposition principle (see e.g., (2.5)).

To emphasize the dependence on the initial data, in the monodisperse case we

denote M±
p (t, x0) := ‖u±(·, t)‖Xp

0
. Then, integrating (4.6) with the aid of identities

(A.4b) and (A.5), for the general value of p ≥ 0, satisfying (4.7a)–(4.7b), we get

M±
p (t, x0) = exp{±pkt∓ axα0

kα
(e±kαt − 1)}xp0

· 1F1

(
ν+2
α

; p+ν+1
α

;
±axα0
kα

(e±kαt − 1)
)
, α > 0, (4.9a)

and

M±
p (t, x0) =

Γ(α−p+1
α

)

Γ(α−p−ν−1
α

)
exp{±pkt∓ axα0

kα
(e±kαt − 1)}xp0

·Ψ
(
ν+2
α

; p+ν+1
α

;
±axα0
kα

(e±kαt − 1)
)
, α < 0, (4.9b)

where Ψ(a; b; z) is the Kummer¶ hypergeometric function of the second kind, see [54,

¶ In fact, Ψ(a; b; z) was introduced by F. Tricomi and accordingly, in some texts, is called the Tricomi

hypergeometric function.
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Formulas 13.2.5 and 13.1.29, p. 505]. In particular, letting p = 1 in (4.9a)-(4.9b),

we see that the total mass of the particle system associated to a monodisperse initial

distribution evolves according to the formulae

M±
1 (t, x0) = e±ktx0, α > 0, (4.10a)

M±
1 (t, x0) =

e±ktx0

Γ(1− ν+2
α

)
Γ
(

1− ν+2
α

;
±axα0
kα

(e±kαt − 1)
)
, α < 0, (4.10b)

where Γ(a; z) =
∫∞
z
e−ssa−1ds, a > 0, is the incomplete gamma function (see [54,

Formula 6.5.3, p. 260]). Since (4.10a) describes also the evolution of the total mass due

to the transport terms ±k(xu(x, t))x, we immediately see that there is no shattering

if α > 0, while (4.10b) shows that shattering occurs in both decay and the growth

scenarios for α < 0. However, in the growth case, on account of the asymptotic identity

Γ(a;x) = O(xa−1e−x), x→ +∞,

[54, Formula 6.5.32, p. 263], for large values of t shattering is dominated by the linear

growth and in this case we have

lim
t→∞

M+
1 (t, x0) =∞, x0 ∈ R+, α < 0.

The typical behavior of moments in all four cases covered by (1.3a)–(1.3b), with the

monodisperse initial data u±0 (x) = δ2(x), is shown in Fig 6.

4.3. Non-uniqueness

It is well known that pure fragmentation (k = 0) equation (1.3a)–(1.3b), with α > 0, has

multiple solutions satisfying the same initial data. This phenomenon was first observed

in [38], and it was explained in [39, 56], where the author also shown that it is related to

the non-maximality of the generator of the semigroup associated with the fragmentation

equation.

It turns out that similar situation occurs in the context of growth/decay-

fragmentation model (1.3a)-(1.3b), for general k > 0. Indeed, separating variables in

(2.11a) and using transformation (A.10a)-(A.10b), we infer that the family of functions

û±(x, t) = xν
∫ ∞

0

exp{∓k(ν + 1)t± µ
kα

(e±kαt − 1)}

(µ
a

+ xαe∓kαt)
α+ν+2
α

û±0 (µ)dµ, (4.11)

with α > 0, satisfy (1.3a) pointwise, for any zeroth order distribution û±0 ∈ D′(R+). It

is a trivial exercise to verify that these solutions are p-integrable, provided −(1 + ν) <

p < 1 + α; and are classical in Xp
0 , provided −(1 + ν) < p < 1. In the former case, the

p-th order moments M̂±
p (t) := ‖û±(·, t)‖Xp

0
are well defined and are given by the formula

M̂±
p (t) = a

2−p
α

α
B(p+ν+1

α
, α−p+1

α
)

∫ ∞
0

exp{±pkt± µ
kα

(e±kαt − 1)}µ
p−2
α û±0 (µ)dµ.

Hence, we see that in both the growth and the decay scenarios, the total mass of the

system described by (4.11) is amplified by the spurious factor exp{± µ
kα

(e±kαt − 1)},
rendering these solutions physically infeasible.
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5. Solution to fragmentation models with constant growth and decay rates

Since the solutions here are also based on Lemma 3.1 and the coordinate transformations

defined by the characteristics are diffeomorphisms, as in (A.10a)–(A.10b), in this section

we shall focus only on deriving the formulae for solutions to (2.18a)–(2.18c).

We have four different cases described in paragraph Constant growth or decay of

Section 2.2. However, the cases (ii) and (iii) do not require boundary conditions and

both are confined to the first quadrant, as in Section 4.

5.1. Cases ±β < 0.

This scenario covers items (ii) and (iii). That is, the decay case with α > 0 or the

growth case with α < 0 in (1.3a)–(2.6). Here, problem (2.18a)–(2.18b) takes the form

w±t (ξ, t) = mJ sgα[e−t(·−ξ)w±(·, t)](ξ), (5.1a)

w±(ξ, 0) = w0(ξ), ξ ∈ R+. (5.1b)

In this case, analogously to (4.4), the local solutions are given by

w±(ξ, t) = (I + (sgα)tJ sgα)(sgα)m[w0](ξ). (5.2)

Situation here is completely identical to that considered in detail in Section 4. For that

reason, our presentation here is very laconic. We mention that in view of Lemma 3.1

the solutions (5.2) are classical for small values of t > 0, in the sense of spaces Xsgασ
sgαρ

from (4.1). Further, on the account of Proposition B.1, (5.2), with α > 0, holds for any

finite value of t > 0. The explicit solutions to (1.3a)–(2.6) follow from (5.2) by passing

back from the characteristic (ξ, t) back to the physical (x, t) variables (for the concrete

formulae see Section 5.4 below). Repeating almost verbatim the extension arguments

of Lemma A.1, it is not difficult to verify that for the resulting explicit formulae all

conclusions of Corollary A.2 hold.

5.2. The case ±β > 0 and α < 0.

This is only possible if β < 0, that is, we deal with (i) – the decay with α < 0 in

(1.3a)–(2.6). Then problem (2.18a)–(2.18b) takes the form

w−t (ξ, t) = mJ −[e−t(·−ξ)w−(·, t)](ξ) = m

∫ ξ

0

e−t(η−ξ)w(η, t)dη, (5.3a)

w−(ξ, 0) = φ(ξ), (5.3b)

with ξ ∈ R, φ(ξ) = v0(ξ) + ψ(ξ), where v0 is assumed to be extended by 0 to R−,
ψ(ξ) = 0 for R+ and must be determined on R−, so that

w−
(
ξ, β−1ξ

)
= 0, ξ ∈ R−. (5.3c)

Having in mind the equivalent representation of the solution, given by (3.6a), we see

that (I−tJ −)−m[v0](ξ) converges to zero as ξ → 0+ if so does v0 (which, due to α < 0, is

equivalent to u0 vanishing as x→∞). This can be ascertained, at least for small t > 0,
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by taking the series expansion of (I−tJ −)−m[v0](ξ) and noting that its terms are v0 and

integrals from 0 to ξ; see also (5.6) for integer values of m. Hence, (I − tJ −)−m[v0](ξ)

can be continuously extended by 0 to R− for any t ≥ 0 and a quick reflection leads us

to the conclusion that the function

w−(ξ, t) =

{
0 for ξ ∈ R−,
(I − tJ −)−m[v0](ξ) for ξ ∈ R+,

(5.4)

is a solution to (5.3a).

Remark. This result is natural if we take into account [51, Theorem 9.4] and comment

(i) in Section 2.2. Indeed, according to the former, if γ > 1, then the characteristics of

the transport part fill only the region in R+ × R+ bounded by the limit characteristic

t = x1−γ

k(γ−1)
and the solutions vanish identically outside of it. Since for µ = 0, we have

α = 1− γ, on the account of (2.7) and (2.8c), this characteristic is transformed into

t = − 1

kαa
axα = − 1

β
z−,

which is precisely the limiting characteristic (2.14), separating the region of influence of

the initial condition from the region of influence of the boundary condition in (2.13).

Example. In this example, we shall present the application of (5.4) to a particularly

simple case of (1.3a)–(2.6), illustrating the pertinent techniques. Consider

u−t (x, t) − (x
4
3u−(x, t))x = −x−

1
3u− +

2

3
x−

4
3

∫ ∞
x

u−(y, t)dy, (5.5a)

u−(x, 0) = δx0(x), (5.5b)

where x0, x, t ∈ R+. Here, γ = 4
3

= −ν and α = −1
3
, leading to m = 2, β = −1

3
so that

the original characteristics 1
3√x−

1
3
√
η

= 3t are transformed into z− 1
3
t = ξ and the limiting

characteristic 1
3√x = 3t (as η →∞ transforms into z = 1

3
t (with ξ = 0). Moreover, using

(2.7), the initial condition for u− is transformed into v0(ξ) = 1
3
δ
x
−1/3
0

(ξ) = 1
3
δ(ξ−x−1/3

0 ).

Precisely, by (2.8c), for any test function φ, we have∫ ∞
0

v0(z)φ(z)dz =

∫ ∞
0

z−4δ(z−3 − x0)φ(z)dz =
1

3

∫ ∞
0

δ(r − x0)φ(r−
1
3 )dr

=
1

3
φ(x

− 1
3

0 ) =
1

3

∫ ∞
0

δ(r − x−
1
3

0 )φ(r)dr.

Now, using (B.3) with λ = 1, we find that

(I − tJ −)−m[g](ξ) = g(ξ) +
m∑
n=1

(
m

n

)
tn
(
J −
)n

[e−t(·−ξ)g(·)](ξ) (5.6)

= g(ξ) +
m∑
n=1

(
m

n

)
(−1)n−1tn

(n− 1)!

∫ ξ

0

e−t(σ−ξ)(σ − ξ)n−1g(σ)dσ,
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where (3.3) was employed. Hence, using (5.4) with (5.5b) and (5.6) with m = 2, for

ξ > 0,

w−(ξ, t) =
1

3
δ

(
ξ − 1

3
√
x0

)
+
te
t
(
ξ− 1

3√x0

)
3

(
2 + t

(
ξ − 1

3
√
x0

))
χ

[x
−1/3
0 ,∞)

(ξ),

where χ is, as before, the characteristic function of the indicated set. Using again the

rules of transformation of the delta function, we arrive at the solution

u−(x, t) = e
−t
(

1
3√x0

+ t
6

)(
δ

(
x− 27x0

(tx
1/3
0 + 3)3

)

+
t

3x
4
3

(
2 + t

(
1
3
√
x
− 1

3
√
x0

− t

3

))
χ[

0,
27x0

(tx
1/3
0 +3)3

](x)

 .

5.3. The case ±β > 0 and α > 0.

In this scenario necessarily β > 0 and we have the growth case with α > 0 in (1.3a),

that is, case (iv). Then the problem (2.18a)–(2.18b) takes the form

w+
t (ξ, t) = mJ +[e−t(·−ξ)w+(·, t)](ξ) = m

∫ ∞
ξ

e−t(η−ξ)w(η, t)dη, (5.7a)

w+(ξ, 0) = φ(ξ), (5.7b)

with ξ ∈ R, φ(ξ) = v0(ξ) +ψ(ξ), where, as before, v0 is assumed to be extended by 0 to

ξ < 0, ψ(ξ) = 0 for ξ > 0, but must be determined in a nontrivial way for ξ < 0, so that

w+
(
ξ,−β−1ξ

)
= 0, ξ < 0, (5.7c)

is satisfied. It is not difficult to verify that the operator J + is bounded on the space

X+ρ := L1(R, eρxdx) for any ρ > 0 (we restrict the considerations here to the case σ = 0

to avoid dealing with the singularity of the weight xσ at x = 0).

As before, the solution to (5.2) is given by

w+(ξ, t) = (I + tJ +)m[φ](ξ), ξ ∈ R, t ∈ [0, T ], (5.8)

for any T <∞. Thus, we have

w+(ξ, t) = (I + tJ +)m[v0](ξ), ξ > 0 (5.9)

and, using the definition of φ, for ξ < 0, we can write, see Appendix B,

w+(ξ, t) = (I + tJ +)m[v0](ξ) + (I + tJ )m[ψ](ξ)

=: F (ξ, t) + (I + tJ )m[ψ](ξ), (5.10)

where

J [f ](ξ) :=

∫ 0

ξ

f(η)dη. (5.11)
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Thus, in view of (5.7c), we get

0 = (I + tJ +)m[v0](ξ)|t=−β−1ξ + (I + tJ )m[ψ](ξ)|t=−β−1ξ

= F (ξ,−β−1ξ) + (I + tJ )m[ψ](ξ)|t=−β−1ξ. (5.12)

The problem is that the operators (I + tJ +)m and (I + tJ )m are nonlocal and their

evaluation at a given t for general m is quite involved. Thus we shall proceed under the

simplifying assumption that m ∈ N.

Let us introduce the (probabilistic) Hermite polynomials, see [54, Section 20.3],

Hem(ζ) = m!

bm
2
c∑

i=0

(−1)i

i!(m− 2i)!

ζm−2i

2i
. (5.13)

Then, as shown in Appendix B, the unique solution ψ ∈ X+ρ to (5.12) reads

ψ(ξ) = (−1)m
dm

dξm

(
e−

ξ2

2β y

(
ξ√
β

))
= (−1)mβ

m
2
dm

dζm

(
e−

ζ2

2 y(ζ)

)∣∣∣∣
ζ= ξ

2

, (5.14a)

where y is given by

y(ζ) =

∫ ζ

0

(
m∑
i=1

1

(Hem)′(λm,i)
eλm,i(ζ−σ)

)
e
σ2

2 g(σ)dσ, (5.14b)

λm,1, . . . , λm,m are simple real roots of Hem and g(ζ) = −βm
2 F
(
ζβ

1
2 ,−β− 1

2 ζ
)

.

5.4. Solutions

As mentioned earlier in Section 5.1, the formulae for solutions in the constant

growth/decay case are based on the same representation (5.2) as in Section 4 and,

consequently, their properties can be established as in Appendix A.

For the sake of completeness, we conclude this section by providing unified formulae

for the solutions in the decay case of (1.3a)–(2.6). Note that since we cover both positive

and negative α, some restrictions below are superfluous. The explicit solutions to (1.3a)–

(2.6) in the decay case are given by

u(x, t) = 0, xα < −kαt, x, t ∈ R+,

u(x, t) = e−
1
2
kaαt2−axαt

[(
1 +

kαt

xα

) 1−α
α
u0

(
x

(
1 +

kαt

xα

) 1
α

)
+ a(α + 1)xα−1t

∫ ∞
(xα+kαt)

1
α

1F1

(
− 1

α
; 2; at(xα + kαt− yα)

)
u0(y)dy

]
, xα ≥ −kαt, x, t ∈ R+.

Here, as µ = θ = 0, by default γ = 1 − α and ν = α − 1. In particular, for the

monodisperse initial data u0(x) = δ(x− x0), we have,

u(x, t) = 0, xα0 < kαt, x, t ∈ R+,
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u(x, t) = e−
1
2
kaαt2−axαt

[
δ

(
x− x0

(
1− kαt

xα0

) 1
α

)
+ χ

[0,(xα0−kαt)
1
α ]
a(ν + 2)xα−1t1F1

(
− 1

α
; 2; at(xα + kαt− xα0 )

)]
,

xα0 ≥ kαt, x, t ∈ R+.
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Figure 7. Evolution of moments with u−0 (x) = δ2(x), k = 1 and a = 1: left column

α = 2
3 ; right column α = − 3

4 .

As in Section 4, we shall also provide formulae for the moments of solutions, focusing

on the monodisperse initial data only. First, we consider α > 0 and p ≥ 0, in which

case we have

M−
p (t, x0) = 0, xα < kαt, x0, t ∈ R+,

M−
p (t, x0) = e−

1
2
kaαt2xp0

(
1− kαt

xα0

) p
α

1F1

(
p− 1

α
;
p+ α

α
;−at(xα0 − kαt)

)
,

xα0 ≥ kαt, x0, t ∈ R+.

In particular,

M−
1 (t, x0) = 0, xα0 < kαt, x0, t ∈ R+,

M−
1 (t, x0) = e−

1
2
kaαt2x0

(
1− kαt

xα0

) 1
α
, xα0 ≥ kαt, x0, t ∈ R+,

and no shattering occurs.

On the other hand, when −1 < α < 0 and 0 < 1 + α < p, the moments are given

by

M−
p (t, x0) =

Γ(α−p+1
α

)

Γ( p
|α|)

e
1
2
kaαt2−axα0 txp0

(
1− kαt

xα0

) p
α

·Ψ
(
α + 1

α
;
α + p

α
; at(xα0 − kαt)

)
, x0, t ∈ R+,

and, in particular, the formula

M−
1 (t, x0) =

e−
1
2
kaαt2

Γ( 1
|α|)

x0

(
1− kαt

xα0

) 1
α
Γ
( 1

|α|
; at(xα0 − kαt)

)
, −1 < α < 0,
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indicates that there exists spurious loss of mass not connected with the transport

processes, i.e., for −1 < α < 0, we have shattering solutions.

The typical behavior of moments, with the monodisperse initial data u−0 (x) =

δx0(x), is shown in Fig 7.

6. Conclusion

In this paper we considered continuous fragmentation equation with a transport term

in the state space, describing either growth or decay of clusters. We have shown that in

two special but important in application cases of linear or constant transport rates,

the equations can be transformed to the same form as was obtained for the pure

fragmentation equation in [9, 10, 23]. By interpreting the resulting equation as an

ordinary differential equation with operator right hand side, we were able to write down

solutions to all equations in a compact unified form as an algebraic function of the

antiderivative operator acting on the initial condition. This operator form of the solution

can be easily evaluated, giving explicit computable solutions in concrete cases. We have

used these explicit solutions to gain physical insights into the described processes and

validate the obtained solutions by evaluating the relevant moments of the solutions

and comparing their properties with the theoretical predictions. In particular, we have

shown that, indeed, shattering occurs in both growth and decay models if α < 0, in

agreement with the results in [26, 25] and [51].

A. Justification of (4.5) and (4.6)

A.1. Extension of (4.2).

It can be verified by direct calculations that w±, with α < 0 are local, i.e., these solutions

blow-up in a finite time in the sense of X−σ−ρ , σ, ρ ∈ R+. For the forthcoming analysis,

it is convenient to replace w± with

f±(ξ, τ±) := e−τ
±ξw±(ξ, τ±), f±0 (ξ) := w±0 (ξ). (A.1)

It turns out that the latter functions are defined globally for τ± ∈ R+. Furthermore, we

have

Lemma A.1. Assume that f±0 ∈ X
(sgα)σ
0 and either α > 0 and σ ≥ 0, 0 ≤ δ ≤ m or

α < 0, σ > m and 0 ≤ δ < σ −m. Then

(τ±)δf± ∈ C([0, T ], X
(sgα)σ+δ
0 ), (A.2a)

for every finite value of T > 0. In addition, if f±0 ∈ X
(sgα)σ+1
0 , then

f± ∈ C1((0, T ), X
(sgα)σ+δ
0 ) (A.2b)

and f± is the global classical solution to

f±τ±(ξ, τ±) + ξf±(ξ, τ±) = mJ sgα[f±(·, τ±)](ξ), ξ, τ± ∈ R+, (A.3a)

f±τ±(ξ, 0) = f±0 (ξ), ξ ∈ R+, (A.3b)
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in the sense of X
(sgα)σ
0 .

Proof. (a) We let

A±(τ±)[w±0 ](ξ) := e−τ
±ξw±0 (ξ),

B±(τ±)[w±0 ](ξ) := mτ±e−τ
±ξ

J sgα
[

1F1

(
1− (sgnα)m; 2;−τ±(y − ξ)

)
w±0

]
(ξ).

Since ξδe−ξ ≤ cδ, δ ∈ R+, for some cδ > 0, uniformly in ξ ∈ R+, it follows that

‖A±(τ±)‖X(sgα)σ→X(sgα)σ+δ ≤ cδ(τ
±)−δ, σ, δ ≥ 0,

uniformly for τ± ∈ R+. To estimate the norm of B±, we consider separately the cases

α > 0 and α < 0.

(b) Assume initially that α > 0. Then, in view of (4.3), we have

‖B±(τ±)‖Xσ→Xσ+δ ≤ m(τ±)−δ

sup
ξ∈R+

ξ−σe−ξ
∫ ξ

0

yσ+δ
1F1

(
1 +m; 2; ξ − y

)
dy.

Next, by the asymptotic identity (see, e.g., [54, Formulas 13.4.1 and 13.5.5, p. 508])

1F1

(
a; b;−z

)
=

{
O(1), z → 0,

O(z−a), z →∞, Re z > 0,
(A.4a)

and the formula∫ x

0

yp1F1(a+ 1; 2;x− y)dy = xp

a

[
1F1

(
a; p+ 1;x

)
− 1
]
, (A.4b)

which holds for all a 6= 0 and p > −1, we have

‖B±(τ±)‖Xσ→Xσ+δ ≤ c(τ±)−δ, 0 ≤ δ ≤ m,

for some c > 0. Hence, (A.2a), with α > 0, is settled.

(c) Let now α < 0. In this case,

‖B±(τ±)‖X−σ→X−σ+δ ≤ m(τ±)−δ

sup
ξ∈R+

ξσe−ξ
∫
R+

(ξ + y)δ−σe−y1F1

(
1 +m; 2; y

)
dy.

It is not difficult to verify that for 0 < a < p,∫
R+

(x+ y)−pe−y1F1(a+ 1; 2; y)dy = x−p

aΓ(p)

∫
R+

e−ttp−a−1
[
(x+ t)a − ta

]
dt

= x−p

aΓ(p)

[
Γ(p− a)Ψ(−a; 1− p;x)− Γ(p)

]
≤

{
Γ(p−a)
aΓ(p)

xa−p, 0 < a ≤ 1,
2a−1Γ(p−a)

aΓ(p)
xa−p + 2a−1−1

a
x−p, a > 1.

(A.5)

Hence,

‖B±(τ±)‖X−σ→X−σ+δ ≤ cδ(τ
±)−δ, 0 ≤ δ ≤ σ −m
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and the proof of (A.2a) is complete.

(d) From (A.4a)–(A.4b), (A.5), the inclusion f±0 ∈ X
(sgnα)σ+1
0 and the standard

identity (see [54, Formula 13.4.8, p. 505])

d
dz 1F1(a; b; z) = a

b 1F1(a+ 1; b+ 1; z), (A.6)

it follows (as in parts (b) and (c) above) that f±, defined by the explicit formulas (4.2)

and (A.1), satisfies

f±τ± , ξf
±,J sgα[f±] ∈ C((0, T ), X

(sgα)σ+δ
0 ),

for any finite value of T > 0. Using this fact and the direct substitution of f± into

(A.3a)–(A.3b), it is not difficult to verify that (A.3a) and (A.3b) hold in X
(sgα)σ
0 globally

for τ± ∈ R+.

A.2. Distributional and classical solutions.

In connection with Lemma A.1, we note that f±, being integrable, satisfies (A.3a)–

(A.3b) in the sense of Schwartz distributions. Moreover, from (4.3) and (A.6), it follows

that f±, given by (4.2) and (A.1), satisfies

0 =

∫
R+

f±0 (ξ)v(ξ, 0) +

∫
R+

(∫
R+

f±(ξ, τ±)[
vτ±(ξ, τ±)(ξ, τ±)− ξv(ξ, τ±) +mJ −(sgnα)[v(·, τ±)](ξ)

]
dξ

)
dτ±, (A.7)

for any v ∈ D(R2
+) and f±0 ∈ D′(R+). That is, formulae (4.2), (A.1) solve (A.3a)–(A.3b)

in the sense of Schwartz distributions for any distributional initial data in D′(R+). In

particular, for the monodisperse initial condition f±0 (·) = δξ0(·) = δ(· − ξ0), supported

at ξ0 ∈ R+, we have

f±(ξ, τ±) = e−τ
±ξ
[
δξ0(ξ)

+ χ[0,ξ0](ξ)mτ
±

1F1

(
1−m; 2; τ±(ξ − ξ0)

)]
, α > 0, (A.8a)

f±(ξ, τ±) = e−τ
±ξ
[
δξ0(ξ)

+ χ[ξ0,∞)(ξ)mτ
±

1F1

(
1 +m; 2; τ±(ξ − ξ0)

)]
, α < 0. (A.8b)

As an immediate consequence of the preliminary calculations, presented above, we have

Corollary A.2. For u±0 ∈ D′(R+), the distributional solutions to (1.3a)–(1.3b) are

given explicitly by (4.5). In particular, for the monodisperse initial data u±0 = δx0,

x0 ∈ R+, formula (4.6) holds.

Further, for any finite value of T > 0 and integrable input data u±0 ∈ Xp, with

either α > 0, p ≥ α − ν − 1 and 0 ≤ δ ≤ ν+2
α

or α < 0, p > 1 + α and 0 ≤ δ < α−p+1
α

,

the solutions (4.5) satisfy

tδu± ∈ C([0, T ], Xp+αδ
0 ), (A.9a)
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In addition, if the initial datum is regular, i.e., if (u±0 )x ∈ Xp+1
0 and u±0 ∈ X

p+α
0 , then

u±t , (ru
±)x, au ∈ C((0, T ), Xp

0 ), (A.9b)

and (4.5) satisfies (1.3a)–(1.3b) in the classical sense of Xp
0 .

Proof. (a) By virtue of our definitions of v±, w±, f±, f±0 and ξ, z±, τ±, the solution to

(1.3a)–(1.3b) is formally given by

u(x, t) = (1± βτ±(t))
ν
α
− θ
β ξ

ν
α (x, t)f±(ξ(x, t), τ±(t)), (A.10a)

ξ(x, t) = xαe∓βt, τ±(t) = ± 1
β
(e±βt − 1), x, t ∈ R+. (A.10b)

Since the coordinate transformation (x, t) 7→ (ξ, τ±), defined in (A.10b), is a

diffeomorphism from R2
+ to R+ × I± and since f± ∈ D′(R2

+) satisfies (A.3a)–(A.3b)

in the sense of distributions for any f±0 ∈ D′(R+), it follows (after changing variables in

(A.7)) that u±, defined in (4.5), satisfies

0 =

∫
R+

u±0 (x)v(x, 0)dx+

∫
R+

dt

∫
R+

u±(x, t)

[
vt(x, t)± r(x)vx(x, t)

− a(x)v(x, t) + a(x)

∫ x

0

b(y, x)v(y, t)dy
]
dx,

for any u±0 ∈ D′(R+) and hence our first claim is settled.

(b) The right hand side of formula (A.10a) defines one-to-one linear maps T ± :

f± 7→ u±. Elementary calculations shows that these maps satisfy

T ± ∈ L(C([0, T±], Xσ
0 ), C([0, T ], Xp

0 )),(
T ±
)−1

∈ L(C([0, T±], Xp
0 ), C([0, T ], Xσ

0 )),

p = α(σ + 1)− ν − 1, σ ∈ R, T = ± 1
β
(1± βT±),

for any finite T± ∈ I±. These inclusions, together with (A.2a)–(A.2b) and the identity

τ±(t) = O(t), t→ 0, yield (A.9a). In addition, if (u±0 )x ∈ Xp+1
0 and u±0 ∈ X

p+α
0 , direct

calculations, using (A.6), (A.10a)–(A.10b) and (A.2a)–(A.2b), show that u±, defined in

(4.5), satisfy (A.9b). Using this fact and the direct substitution, it is not difficult to

verify that u±, defined in (4.5), satisfy (1.3a)–(1.3b) in the classical sense of Xp
0 . The

proof is complete.

B. Proofs and additional formulae in the constant decay rate case

B.1. Proof of (5.2).

Proposition B.1. The unique classical solution to (5.1a)–(5.1b) in X±σ±ρ , ρ, σ > 0 is

given by

w±(ξ, t) = (I + tJ ±)m[w0](ξ), t ∈ [0, T ], ξ ∈ R+, (B.1)

for any finite T > 0.
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Proof. From Lemma 3.1 we know that (B.1) holds at least for 0 < T < ρ. Further, by

directly solving the resolvent equation

λf − tJ ±f = g, (B.2)

we find that the resolvent of tJ ± is formally given by

(λI − tJ ±)−1[g](ξ) =
t

λ2
J ±[e±

t
λ

(·−ξ)g(·)](ξ) +
1

λ
g(ξ), ξ ∈ R+. (B.3)

Then, changing the order of integrals,∫ ∞
0

ξ±σe±ρξ
∣∣∣J ±[e±

t
λ

(·−ξ)g(·)](ξ)
∣∣∣ dξ

≤


∫∞

0

(
e
tReλ
|λ|2

η|g(η)|
∫ η

0
ξσe

(
ρ− tReλ
|λ|2

)
ξ
dξ

)
dη, if α > 0,∫∞

0

(
e
− tReλ
|λ|2

η|g(η)|
∫∞
η
ξ−σe

−
(
ρ− tReλ
|λ|2

)
ξ
dξ

)
dη, if α < 0.

Using monotonicity of x±σ on the respective intervals to factor it out from the inner

integrals, we see that if ρ− tReλ
|λ|2 > 0, then both integrals can be evaluated leading to

∥∥∥J ±[e±
t
λ

(·−ξ)g(·)]
∥∥∥
X±σ±ρ

≤ |λ|2

ρ|λ|2 − tReλ
‖g‖X±σ±ρ

and hence the resolvent (I−tJ ±)−1 exists in X±σ±ρ as long as the above condition is satis-

fied. Thus, the spectrum of tJ ± is contained in

{
λ ∈ C;

(
Reλ− t

2ρ

)2

+ (Imλ)2 ≤ t2

4ρ2

}
,

which belongs to the closed right complex half-plane. Also, the spectrum of 0J ± is 0.

Therefore, for any function F that is analytic in an open set containing the spectrum

of tJ ± (for a fixed t ≥ 0), we can evaluate Φ(tJ ±) by means of the Dunford integral

F(tJ ±) =
1

2πi

∫
C
F(z)(I − tJ ±)−1dz,

where C is a curve surrounding the spectrum of tJ ± in a positive direction. We see that

if we change t ∈ [0, T ], then the spectra of tJ ± will continuously change from 0 to the

disc centred at
(
T
2ρ
, 0
)

with radius T
2ρ
, so each one will be contained in the latter. By

the analyticity of the resolvent, we can define a smooth function [0, T ] 3 t 7→ F(tJ ±)

for any 0 < T <∞, provided the analyticity domain of F includes the largest spectral

disc of tJ ±. Since the functions z 7→ (1 + tz)m,m > 0, t ∈ [0, T ] are analytic in C with

the cut along the negative ray {z ∈ C; Re z > −1/T} (with an obvious exception for

the integer values of m, which give polynomials), the solution (B.1) can be extended to

[0, T ] for any T > 0.

Remark. The occurrence of the weight ξ−σ in the case α < 0 is natural if one has in

mind transformation (2.7) for z.
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B.2. Proof of (5.10).

To show that (5.10) holds, we note that the formal resolvent is again given

by (B.3), with ξ ∈ R and, as before, the spectrum of tJ + is contained in{
λ ∈ C;

(
Reλ− t

2ρ

)2

+ (Imλ)2 ≤ t2

4ρ2

}
. Hence, the solution to (5.2) is given by the

same formula (B.1)

w+(ξ, t) = (I + tJ +)m[φ](ξ), t ∈ [0, T ],

for any T <∞ but extended to ξ ∈ R.

For further use, we note that the solution to

λf(ξ)− t
∫ 0

ξ

f(η)dη = λf(ξ)− tJ [f ](ξ) = g(ξ), ξ ∈ R−, (B.4)

is given by

f(ξ) =
t

λ2
e−

t
λ
ξ

∫ 0

ξ

e
t
λ
ηg(η)dη +

1

λ
g(ξ). (B.5)

Using the Dunford integral representation for (5.8), we obtain

w+(ξ, t) = (I + tJ +)m[φ](ξ) =
1

2πi

∫
C
(1 + z)m(zI − tJ +)−1[φ](ξ)dz

=
1

2πi

∫
C
(1 + z)m

(
t

z2
e−

t
z
ξ

∫ ∞
ξ

e
t
z
ηφ(η)dη +

1

z
φ(ξ)

)
dz. (B.6)

Now recall that for ξ > 0 we have φ(ξ) = v0(ξ), with known v0. Thus, for such ξ, (B.6)

provides a complete solution, given by (5.9). Next, using the definition of φ, for ξ < 0

we can write

w+(ξ, t) =
1

2πi

∫
C
(1 + z)m

(
t

z2
e−

t
z
ξ

∫ ∞
0

e
t
z
ηv0(η)dη

)
dz

+
1

2πi

∫
C
(1 + z)m

(
t

z2
e−

t
z
ξ

∫ 0

ξ

e
t
z
ηψ(η)dη +

1

z
ψ(ξ)

)
dz

=: F (ξ, t) + (I + tJ )m[ψ](ξ). (B.7)

B.3. Proof of (5.14a)–(5.14b).

The proof of (5.14a)–(5.14b) is quite involved, hence we split it into a series of lemmas.

Lemma B.1. The substitution z = e−
ζ2

2 y transforms the differential equation

m∑
k=0

(
m

k

)
ζm−kz(k)(ζ) = g(ζ), ζ ∈ R, (B.8)

into to the constant coefficient equation

Hem

(
d

dζ

)
[y](ζ) = e

ζ2

2 g(ζ), (B.9)

where Hem is the probabilist’s Hermite polynomial of order m, [54, Section 20.3].
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Proof. Consider the substitution z = hy for some known differentiable function h. Then,

using the Leibnitz product formula and changing the order of summation,

m∑
k=0

(
m

k

)
ζm−k(hy)(k)(ζ) = ζm

m∑
r=0

y(r)(ζ)

(
m∑
k=r

(
m

k

)(
k

r

)
ζ−kh(k−r)(ζ)

)

= ζm
m∑
r=0

y(r)(ζ)

(
m−r∑
l=0

(
m

l + r

)(
l + r

r

)
ζ−(l+r)h(l)(ζ)

)

=:
m∑
r=0

am,r(ζ)y(r)(ζ) =: Lm[y](ζ). (B.10)

We shall prove that for r ≥ 1, we have

am+1,r(ζ) =
m+ 1

r
am,r−1. (B.11)

Indeed,

am+1,r(ζ) = ζm+1

m+1−r∑
l=0

(
m+ 1

l + r

)(
l + r

r

)
ζ−(l+r)h(l)(ζ) (B.12)

and (
m+ 1

l + r

)(
l + r

r

)
=
m+ 1

r

(
m

l + r − 1

)(
l + r − 1

r − 1

)
.

Thus, taking into account ζm+1ζ−(l+r) = ζmζ−(l+(r−1)) in (B.12), we obtain (B.11). Then,

by iteration, (B.11) yields

am,r(ζ) =

(
m

r

)
am−r,0(ζ). (B.13)

Hence, to specify all am,r, it suffices to know am,0 for any m ∈ N0, with a0,0 = 1. In

what follows, we specify h(ζ) = e−
ζ2

2 and note that

h(k)(ζ) = h−1(ζ)(−1)kHek(ζ),

where Hek is the Hermite polynomial, defined in (5.13). Hence,

am,0(ζ) = h−1(ζ)ζm
m∑
l=0

(
m

l

)
(−1)l

 b l2 c∑
i=0

(−1)i

i!(l − 2i)!

ζ−2i

2i

 .

Considering the sum in the formula above, there are only even powers of ζ−1, running

from 1 to 2bm
2
c. The power ζ−2i appears in the expansion only for l ≥ 2i, with the

coefficient

bm,i :=
m∑
l=2i

(
m

l

)
(−1)l+il!

i!(l − 2i)!2i
=

(−1)i

i!2i

m−2i∑
p=0

(−1)p+2i m!

(m− p− 2i)!p!

=
(−1)i

i!2i

2i−1∏
k=0

(m− k)
m−2i∑
p=0

(−1)p

(
m− 2i

p

)
.
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Thus, we have

bm,i =

{
0 for 2i < m,

(−1)
m
2 (m− 1)!! for 2i = m.

Hence

am,0(ζ) = e−
ζ2

2 cm := e−
ζ2

2

{
0 for m odd,

(−1)
m
2 (m− 1)!! for m even,

(B.14)

with the convention (0− 1)!! = 1. Therefore, by (B.13),

Lm[y](ζ) = e−
ζ2

2

m∑
r=0

(
m

r

)
cm−ry

(r)(ζ)

=


e−

ζ2

2

k∑
i=0

(
2k

2i

)
(−1)k−i(2(k − i)− 1)!!y(2i)(ζ) for m = 2k,

e−
ζ2

2

k∑
i=0

(
2k + 1

2i+ 1

)
(−1)k−i(2(k − i)− 1)!!y(2i+1)(ζ) for m = 2k + 1.

Using the change of variable l = k − i and the definition of the double factorial, the

coefficients in both equations can simplified to (−1)l m!
(m−2l)!

1
2ll!

and, using (5.13), both

differential operators can be combined into

Lm[y](ζ) = e−
ζ2

2 m!

bm
2
c∑

l=0

(−1)l

l!(m− 2l)!2l
y(m−2l)(ζ) = e−

ζ2

2 Hem

(
d

dζ

)
[y](ζ).

Hence, (B.9) is proved.

Lemma B.2. The solution to (B.9) satisfying

y(0) = y′(0) = · · · = y(m−1)(0) = 0, (B.15)

is given by

y(ζ) =

∫ ζ

0

(
m∑
i=1

1

(Hem)′(λm,i)
eλm,i(ζ−σ)

)
e
σ2

2 g(σ)dσ, (B.16)

where λm,1, . . . , λm,m are simple real roots of Hem.

Proof. The solution to (B.9) can be found by the variation of constants formula. Clearly,

the characteristic polynomial for (B.9) is Hem(λ) = 0. By [54, Section 22.16], all zeroes

of Hermite polynomials (as orthogonal polynomials) are real and simple. Then the

functions θm,i(ζ) = eλm,iζ form a basis of the solution space of the homogeneous equation

(B.9), hence we seek a particular solution to the inhomogeneous equation (B.9) as

y(ζ) = C1(ζ)eλm,1ζ + · · ·+ Cm(ζ)eλm,mζ . (B.17)

In the general setting of the variation of constants method, C ′is are given by

C ′i = (−1)m−ie
ζ2

2 g(ζ)
Wi(ζ)

W (ζ)
,
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where W is the Wronskian of {θm,1, . . . , θm,m} and Wi is the minor of the element (m, i)

of W . When the roots of the characteristic polynomial are simple, this formula can be

made more explicit. Indeed,

W (ζ) =
m∏
i=1

eλm,iζ

∣∣∣∣∣∣∣∣∣
1 1 . . . 1

λm,1 λm,2 . . . λm,m
...

...
...

...

λm−1
m,1 λm−1

m,2 . . . λm−1
m,m

∣∣∣∣∣∣∣∣∣ = V (λm,1, . . . , λm,m)
m∏
i=1

eλm,iζ ,

where V is the Vandermonde determinant, whose value is

V (λm,1, . . . λm,m) =
∏

1≤i<j≤m

(λm,j − λm,i).

Now, for a given r,

Wr =
m∏

i=1,i 6=r

eλm,iζV (λm,1, . . . , λr−1, λr+1, . . . , λm,m).

To relate these two Vandermonde determinants, we write

V (λm,1, . . . λm,m)

=
∏

1<j≤m

(λm,j − λm,1) · . . . ·
∏

r<j≤m

(λm,j − λm,r) · . . . · (λm,m − λm,m−1)

=
∏

1≤i<r

(λm,r − λm,i) ·
∏

r<j≤m

(λm,j − λm,r) ·
∏

1≤i<j≤m
i,j 6=r

(λm,j − λm,i)

= (−1)m−r
∏

1≤i≤m
i 6=r

(λm,r − λm,i) · V (λm,1, . . . , λr−1, λr+1, . . . , λm,m)

= (−1)m−r(Hem)′(λm,r)V (λm,1, . . . , λr−1, λr+1, . . . , λm,m).

Hence,

C ′i(ζ) =
e
ζ2

2 gm(ζ)

eλm,iζ(Hem)′(λm,i)

and (B.16) follows from (B.17).

Theorem B.3. Let m ∈ N. Then the unique solution ψ ∈ X+ρ to (B.7) satisfying

(5.7c) is given by

ψ(ξ) = (−1)m
dm

dξm

(
e−

ξ2

2β y

(
ξ√
β

))
= (−1)mβ

m
2
dm

dζm

(
e−

ζ2

2 y(ζ)

)∣∣∣∣
ζ= ξ

2

, (B.18)

where y is given by (B.16) with g(ζ) = −βm
2 F
(
ζβ

1
2 ,−β− 1

2 ζ
)

.
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Proof. In this particular case, F (ξ, t) is a known function, for ξ < 0 given by

F (ξ, t) =
m∑
r=1

(
m

r

)
1

(r − 1)!
tr
∫ ∞

0

(η − ξ)r−1w0(η)dη. (B.19)

Hence, we can re-write (B.7) as

(I + tJ )m[ψ](ξ) =
m∑
k=0

(
m

k

)
tkJ k[ψ](ξ) = w+(ξ, t)− F (ξ, t). (B.20)

Now, we use (5.7c) and arrive at

m∑
k=0

(
m

k

)
(−1)kβ−kξkJ k[ψ](ξ) = −F (ξ,−β−1ξ) =: G(ξ), (B.21)

where G is a known function. If we denote Z(ξ) = (−1)mJm[ψ](ξ), then Z(l)(ξ) =

(−1)m+lJm−l[ψ](ξ) and (B.21) becomes

m∑
k=0

(
m

k

)(
ξ

β

)m−k
Z(k)(ξ) = G(ξ). (B.22)

Next, with ζ = ξ√
β

and z(ζ) = Z(ξ), (B.22) takes the form

m∑
k=0

(
m

k

)
ζm−kz(k)(ζ) = β

m
2 G(ζ

√
β) =: g(ζ) (B.23)

and hence, by Lemma B.1, using z(ζ) = e−
ζ2

2 y(ζ), we transform (B.8) into

Hem

(
d

dζ

)
[y](ζ) = e

ζ2

2 g(ζ). (B.24)

Further, we observe that, by definition, Zk(0) = 0 for k = 0, . . . ,m − 1 and, since

y(ζ) = e−
ζ2

2 z(η), the Leibniz formula shows that yk(0) = 0, provided y(l)(0) = 0 for

l = 0, . . . , k − 1, thus, by induction, the initial (or terminal) conditions for (B.24) are

given by (B.15). Thus, the solution to (B.9) satisfying these conditions is given by

(B.16) and we recover formula (B.18) for ψ by backward substitution.

To estimate ψ, we observe that, by (B.19), e−
ζ2

2 y(ζ) is a linear combination of terms

of the form

Iλ := eλζ−
ζ2

2

∫ ζ

0

p2m−1(σ)e−λσ+σ2

2 dσ = e−
υ2

2

∫ υ

−λ
q2m−1(ς)e

ς2

2 dς,

where p2m−1(σ) and q2m−1(ς) = p2m−1(ς + λ) are polynomials of degree 2m − 1 with

coefficients depending on the moments of w0 of order from 0 to m − 1. Now, by the

Leibniz rule, the mth derivative of Iλ is a linear combination of kth derivatives of e−
υ2

2

(which are the Hermite polynomials of degree k) and e−
υ2

2 and the (m− k)th derivative

of
∫ υ
−λ q2m−1(ς)e

ς2

2 dς, 0 ≤ k ≤ m, which, apart from the case k = m, is the derivative

of order m − k − 1 of q2m−1(ς)e
ς2

2 . Using again the Leibniz rule, we see that the rth
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derivative of the latter is given by q̄2m−1+r(ς)e
ς2

2 , where q̄2m−1+r is a polynomial of

degree 2m − 1 + r. Thus, the terms of I
(m)
λ are products of polynomials of degrees k

and 3m − k − 2, and hence polynomials of degree 3m − 2, except for k = m, which is

given by

Hem(υ)e−
υ2

2

∫ υ

−λ
q2m−1(ς)e

ς2

2 dς.

By the l’Hôspital rule,

lim
υ→−∞

Hem(υ)e−
υ2

2

∫ υ
−λ q2m−1(ς)e

ς2

2 dς

Hem(υ)p̄2m−2(υ)
= lim

υ→−∞

∫ υ
−λ q2m−1(ς)e

ς2

2 dς

e
υ2

2 p̄2m−2(υ)
= lim

υ→−∞

q2m−1(υ)

p̃2m−1(υ)
= l,

for some finite l, where p̄2m−2 and p̃2m−1 are polynomials of respective degrees. Thus,

ψ(ξ) = O(ξ3m−2) as ξ → −∞

and hence φ ∈ X+ρ.
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