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Abstract: Spread options are notoriously difficult to price without the use of Monte Carlo simulation.
Some strides have been made in recent years through the application of Fourier transform methods;
however, to date, these methods have only been applied to specific underlying processes including
two-factor geometric Brownian motion (gBm) and three-factor stochastic volatility models. In this
paper, we derive the characteristic function for the two-asset Heston–Hull–White model with a full
correlation matrix and apply the two-dimensional fast Fourier transform (FFT) method to price equity
spread options. Our findings suggest that the FFT is up to 50 times faster than Monte Carlo and yields
similar accuracy. Furthermore, stochastic interest rates can have a material impact on long-dated
out-of-the-money spread options.

Keywords: spread option; two-asset Heston–Hull–White model; discounted characteristic function;
fast Fourier transform; stochastic interest rates

1. Introduction

Let S1, S2 denote the prices of two different equities, T the maturity date, K the strike
price, and r the risk-free interest rate. Let Q be the risk-neutral measure associated with the

bank account as numeraire, B(t) = e
∫ t

0 r(s)ds. The value of a European equity spread call
option at t = 0 is then given by:

VSpread(0) = EQ
[
e−
∫ T

0 r(s)ds max
(

S1(T)− S2(T)− K, 0
)]

. (1)

Equation (1) has no closed-form solution when the underlying assets are driven by
stochastic interest rates and stochastic volatility. Monte Carlo simulation is one possible
way of solving the problem, but it is too slow for practical use.

A breakthrough was made by Dempster and Hong (2002) where the authors extended
the Carr and Madan (1999) Fourier transform method to two factors. The authors derived
lower and upper bound expressions for the price of a European spread call option and
showed how to compute these expressions by means of the two-dimensional FFT when the
underlying asset processes are driven by gBm or stochastic volatility.

Hurd and Zhou (2010) proposed a method for pricing spread options based on a
square integrable Fourier representation of the payoff function. The authors claim that
the method can be applied to any model for which the characteristic function of the joint
asset process is known in closed form. The authors considered gBm, three-factor stochastic
volatility, and exponential Lévy models for the underlying asset processes.

Little has been said about the impact of stochastic interest rates on spread options. We
do, however, know that stochastic interest rate risk dominates that of stochastic volatility for
long-dated European call and put options (see Kammeyer and Kienitz 2012). Furthermore,
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there is empirical evidence that suggests changes in interest rates and changes in stock
prices are negatively correlated in general (Alam and Uddin 2009). None of the models
considered by Dempster and Hong (2002) or Hurd and Zhou (2010) account for stochastic
interest rates or the correlation between interest rates and stock prices.

Grzelak and Oosterlee (2011) made a remarkable contribution to the literature, which
derived approximations for the characteristic function of the Heston (1993) model with
stochastic interest rates driven by a Hull and White (1990) process. This model is called
the Heston–Hull–White model. Through these approximations, the model allows for
a full matrix of correlations between stock, volatility, and interest rate processes. The
authors showed that the model can be calibrated to European options efficiently via Fourier
techniques.

In this paper, we extend the Heston–Hull–White model of Grzelak and Oosterlee
(2011) to two assets and the FFT method of Hurd and Zhou (2010) to stochastic interest
rates. We then compare the efficiency of the extended Hurd and Zhou (2010) method
to a Monte Carlo simulation and assess the impact of stochastic interest rates on spread
option prices.

The rest of this paper is organised as follows. The two-asset Heston–Hull–White model
is introduced in Section 2. In Section 3, we discuss the result of Grzelak and Oosterlee
(2011) that will be used to derive the discounted characteristic function. The discounted
characteristic function for the two-asset Heston–Hull–White model is derived in Section 4.
The extension of the Hurd and Zhou (2010) FFT algorithm to stochastic interest rates is
detailed in Section 5. Our numerical results are shown in Section 6, and Section 7 concludes
the paper.

2. The Two-Asset Heston–Hull–White Model

Combining the three-factor stochastic volatility model of Dempster and Hong (2002)
and the Heston–Hull–White model of Grzelak and Oosterlee (2011) yields:

dS1(t) = (r(t)− δ1)S1(t)dt + σ1
√

v(t)S1(t)dWx1(t)

dS2(t) = (r(t)− δ2)S2(t)dt + σ2
√

v(t)S2(t)dWx2(t)

dv(t) = κ
(

v̄− v(t)
)

dt + σv
√

v(t)dWv(t)

dr(t) = λ
(

θ(t)− r(t)
)

dt + ηdWr(t),

(2)

where σ1, σ2 denote the volatility of S1, S2, respectively; δ1, δ2 are the dividend yields for
S1, S2; κ and λ denote the mean reversion speed of the variance and short rate processes; σv
and η denote the volatility of the variance and short rate processes, respectively, and v̄ and
θ(t) denote the mean level of the variance and short rate, respectively.

The underlying process are correlated as follows:

dWx1(t)dWx2(t) = ρx1,x2 dt, dWx1(t)dWv(t) = ρx1,vdt,

dWx1(t)dWr(t) = ρx1,rdt, dWx2(t)dWv(t) = ρx2,vdt,

dWx2(t)dWr(t) = ρx2,rdt, dWv(t)dWr(t) = ρv,rdt.

Taking the log-transform x1(t) = log S1(t), x2(t) = log S2(t) and applying Itô’s
lemma, the system of stochastic differential equations (SDEs) in (2) can be rewritten as:

dx1(t) =
(

r(t)− δ1 − 1
2 σ2

1 v(t)
)

dt + σ1
√

v(t)dWx1(t)

dx2(t) =
(

r(t)− δ2 − 1
2 σ2

2 v(t)
)

dt + σ2
√

v(t)dWx2(t)

dv(t) = κ
(

v̄− v(t)
)

dt + σv
√

v(t)dWv(t)

dr(t) = λ
(

θ(t)− r(t)
)

dt + ηdWr(t).

(3)
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The system of SDEs in (3) can be expressed as:

dX(t) = µ(X(t))dt + σ(X(t))dB(t),

where

X(t) =


x1(t)
x2(t)
v(t)
r(t)

,

µ(X(t)) =



r(t)− δ1 − 1
2 σ2

1 v(t)

r(t)− δ2 − 1
2 σ2

2 v(t)

κ
(

v̄− v(t)
)

λ
(

θ(t)− r(t)
)

,

B(t) =


Bx1(t)

Bx2(t)

Bv(t)

Br(t)

,

Σ(X(t)) = σ(X(t))σ(X(t))T

=


σ2

1 v(t) ρx1,x2 σ1σ2v(t) ρx1,vσ1σvv(t) ρx1,rσ1η
√

v(t)

∗ σ2
2 v(t) ρx2,vσ2σvv(t) ρx2,rσ2η

√
v(t)

∗ ∗ σ2
v v(t) ρv,rσvη

√
v(t)

∗ ∗ ∗ η2

,

with B(t) a vector of independent Brownian motions and σ(X(t)) the Cholesky decomposi-
tion of the symmetric covariance matrix Σ(X(t)).

The influential paper by Duffie et al. (2000) states that each element in the drift and
covariance matrices must be a linear function of the state variables in X(t) in order for a
model to be in affine form. If this is the case, then the discounted characteristic function for
the state vector X(t) can be written as:

φ(u, X(t), t, T) = EQ
[
e−
∫ T

t r(s)ds+iuTX(T) | F (t)
]

= eA(u,τ)+B(u,τ)x1(t)+C(u,τ)x2(t)+D(u,τ)v(t)+E(u,τ)r(t), (4)

where τ := T − t, and u = [u1, u2, 0, 0]T .
From the covariance matrix Σ(X(t)), it is clear that there are elements that are nonlinear

functions of the state variables, in particular
√

v(t).
Grzelak and Oosterlee (2011) proposed replacing the term

√
v(t) with E

[√
v(t)

]
so

that the Heston–Hull–White model could be expressed in affine form as in Equation (4).
Their result follows in the next section.

3. The Result of Grzelak and Oosterlee

In order to write the Heston–Hull–White model in affine form, Grzelak and Oosterlee
(2011) proposed the following approximation for

√
v(t):
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Lemma 1.
(

Approximation for E
[√

v(t)
])

. Given that v(t) follows a Cox et al. (1985) process,

E
[√

v(t)
]

can be approximated by:

E
[√

v(t)
]
≈

√
c(t)(λ(t)− 1) + c(t)d +

c(t)d
2(d + λ(t))

=: Λ(t),

where c(t) = 1
4κ σ2

v (1− e−κt), d = 4κv̄
σ2

v
, and λ(t) = 4κv(0)e−κt

σ2
v (1−e−κt)

.
See Grzelak and Oosterlee (2011) for details.

The authors mention that the approximation for E
[√

v(t)
]

is still nontrivial and may
lead to challenges when deriving the characteristic function for the Heston–Hull–White
model. Therefore, a further simplified approximation for E

[√
v(t)

]
was proposed as shown

in Lemma 2 below:

Lemma 2.
(

Further approximation for E
[√

v(t)
])

. E
[√

v(t)
]

can be further approximated by a
function of the form:

E
[√

v(t)
]
≈ a + be−ct =: Λ̃(t),

where a =
√

v̄− σ2
v

8κ , b =
√

v(0)− a, and c = − log(b−1(Λ(1)− a)).
See Grzelak and Oosterlee (2011) for details.

Note that Λ̃(t) in Lemma 2 is undefined for v̄ < σ2
v /8κ; hence, parameter constraints

must be imposed in order to use this result.
In the next section, we derive the discounted characteristic function for the two-asset

Heston–Hull–White model using the approximation of Grzelak and Oosterlee (2011).

4. The Two-Asset Heston–Hull–White Characteristic Function

Replacing
√

v(t) with E
[√

v(t)
]

in the covariance matrix Σ(X(t)) yields the approxi-
mated covariance matrix for the two-asset Heston–Hull–White model:

Σ̃(X(t)) =


σ2

1 v(t) ρx1,x2 σ1σ2v(t) ρx1,vσ1σvv(t) ρx1,rσ1ηE
[√

v(t)
]

∗ σ2
2 v(t) ρx2,vσ2σvv(t) ρx2,rσ2ηE

[√
v(t)

]
∗ ∗ σ2

v v(t) ρv,rσvηE
[√

v(t)
]

∗ ∗ ∗ η2

.

For the derivation of the discounted characteristic function, we drop the function
arguments for convenience. Hence, x1 := x1(t), x2 := x2(t) r := r(t), v := v(t), and
φ := φ(u, X(t), t, T). Furthermore, to simplify the calculations, we consider a constant
term structure of interest rates θ(t) = θ. The method can be generalised to include a term
structure of interest rates, see Grzelak (2011) for details.

Using the drift vector µ(X(t)) and the covariance matrix Σ̃(X(t)) and applying the
multidimensional Itô lemma to φ(u, X(t), t, T) yields the partial differential equation (PDE):
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0 =
∂φ

∂t
+ (r− δ1 −

1
2

σ2
1 v)

∂φ

∂x1
+ (r− δ2 −

1
2

σ2
2 v)

∂φ

∂x2
+ κ(v̄− v)

∂φ

∂v
+ λ(θ − r)

∂φ

∂r

+
1
2

σ2
1 v

∂2φ

∂x2
1
+

1
2

σ2
2 v

∂2φ

∂x2
2
+

1
2

σ2
v v

∂2φ

∂v2 +
1
2

η2 ∂2φ

∂r2 + ρx1,x2 σ1σ2v
∂2φ

∂x1∂x2

+ ρx1,vσ1σvv
∂2φ

∂x1∂v
+ ρx1,rσ1ηE

[√
v
] ∂2φ

∂x1∂r
+ ρx2,vσ2σvv

∂2φ

∂x2∂v

+ ρx2,rσ2ηE
[√

v
] ∂2φ

∂x2∂r
+ ρv,rσvηE

[√
v
] ∂2φ

∂v∂r
− rφ, (5)

subject to the terminal condition φ(u, X(T), T, T) = ei(u1x1(T)+u2x2(T)).
The PDE in (5) is in affine form as a consequence of the linearisation technique

proposed by Grzelak and Oosterlee (2011). Therefore, its solution is of the form:

φ(u, X(t), t, T) =eA(u,t,T)+B(u,t,T)x1(t)+C(u,t,T)x2(t)+D(u,t,T)v(t)+E(u,t,T)r(t).

Calculating the partial derivatives in (5) with A := A(u, t, T), B := B(u, t, T), C :=
C(u, t, T), D := D(u, t, T), and E := E(u, t, T) yields:

∂φ

∂t
= φ

(
∂A
∂t

+ x1
∂B
∂x1

+ x2
∂C
∂t

+ v
∂D
∂v

+ r
∂E
∂r

)
,

∂φ

∂x1
= Bφ,

∂φ

∂x2
1
= B2φ,

∂φ

∂x1∂x2
= BCφ,

∂φ

∂x2
= Cφ,

∂φ

∂x2
2
= C2φ,

∂φ

∂x1∂v
= BDφ,

∂φ

∂x2∂r
= CEφ,

∂φ

∂v
= Dφ,

∂φ

∂v2 = D2φ,
∂φ

∂x1∂r
= BEφ,

∂φ

∂v∂r
= DEφ,

∂φ

∂r
= Eφ,

∂φ

∂r2 = E2φ,
∂φ

∂x2∂v
= CDφ.

Substituting the partial derivatives into (5) gives the following PDE:

0 =
∂A
∂t

+ x1
∂B
∂t

+ x2
∂C
∂t

+ v
∂D
∂t

+ r
∂E
∂t

+ (r− δ1 −
1
2

σ2
1 v)B + (r− δ2 −

1
2

σ2
2 v)C

+ κ(v̄− v)D + λ(θ − r)E +
1
2

σ2
1 vB2 +

1
2

σ2
2 vC2 +

1
2

σ2
v vD2 +

1
2

η2E2

+ ρx1,x2 σ1σ2vBC + ρx1,vσ1σvvBD + ρx1,rσ1ηE
[√

v
]

BE

+ ρx2,vσ2σvvCD + ρx2,rσ2ηE
[√

v
]
CE + ρv,rσvηE

[√
v
]

DE− r.

Collecting the terms for x1, x2, v, and r and performing a change of variable τ = T− t,
the following set of ordinary differential equations (ODEs) must be solved:

∂B
∂τ = 0,
∂C
∂τ = 0,
∂D
∂τ = − 1

2 σ2
1 B− 1

2 σ2
2 C− κD + 1

2 σ2
1 B2 + 1

2 σ2
2 C2 + 1

2 σ2
v D2 + ρx1,x2 σ1σ2BC

+ρx1,vσ1σvBD + ρx2,vσ2σvCD,
∂E
∂τ = B + C− λE− 1,
∂A
∂τ = κv̄D + λθE + 1

2 η2E2 + ρx1,rσ1ηE[
√

v]BE + ρx2,rσ2ηE[
√

v]CE

+ρv,rσvηE[
√

v]DE− δ1B− δ2C,
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with initial conditions B(u, τ) = iu1, C(u, τ) = iu2, D(u, τ) = 0, E(u, τ) = 0, and
A(u, τ) = 0.

The solutions to the ODEs are given by:

B(u, τ) = iu1,

C(u, τ) = iu2,

D(u, τ) =
−Q− D1

2R(1− Ge−D1τ)
(1− e−D1τ),

E(u, τ) = (iu1 + iu2 − 1)λ−1(1− e−λτ),

A(u, τ) = κv̄I1(u, τ) + λθ I2(u, τ) +
1
2

η2 I3(u, τ) + ρx1,rσ1η I4(u, τ)

+ ρx2,rσ2η I5(u, τ) + ρv,rσvη I6(u, τ)− δ1iu1τ − δ2iu2τ,

where

D1 =
√

Q2 − 4PR,

G =
−Q− D1

−Q + D1

P = −1
2

[
σ2

1 u2
1 + σ2

2 u2
2 + 2ρx1,x2 σ1σ2u1u2 + i(σ2

1 u1 + σ2
2 u2)

]
Q = ρx1,vσ1σviu1 + ρx2,vσ2σviu2 − κ

R =
1
2

σ2
v .

The solutions to the integrals I1(u, τ), I2(u, τ), I3(u, τ), I4(u, τ), I5(u, τ), and I6(u, τ)
are given by:

I1(u, τ) =
1

2R

[
(−Q− D1)τ − 2 log

(1− Ge−D1τ

1− G

)]
,

I2(u, τ) =
1
λ
(iu1 + iu2 − 1)(τ +

1
λ
(e−λτ − 1)),

I3(u, τ) =
1

2λ3 (i + u1 + u2)
2[3 + e−2λτ − 4e−λτ − 2λτ],

I4(u, τ) = − 1
λ
(iu1 + u1u2 + u2

1)

[
b
c
(e−ct − e−cT) + aτ +

a
λ
(e−λτ − 1)

+
b

c− λ
e−cT

(
1− e−τ(λ−c)

)]
,

I5(u, τ) = − 1
λ
(iu2 + u1u2 + u2

2)

[
b
c
(e−ct − e−cT) + aτ +

a
λ
(e−λτ − 1)

+
b

c− λ
e−cT

(
1− e−τ(λ−c)

)]
,

I6(u, τ) =
∫ τ

0
E
[√

v(T − s)
]

D(u, s)E(u, s),

where E
[√

v(T − s)
]
≈ a + b−c(T−s), with a, b, and c defined in Lemma 2.

This concludes the derivation of the discounted characteristic function for the two-
asset Heston–Hull–White model. In the next section, we extend the FFT method of Hurd
and Zhou (2010) to cater for stochastic interest rates.
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5. The Result of Hurd and Zhou Extended

Hurd and Zhou (2010) stated the following theorem for the square integrable Fourier
representation of the basic spread option payoff function F(x1, x2) = max(ex1 − ex2 − 1, 0):

Theorem 1. For any real numbers ε = (ε1, ε2) with ε2 > 0, ε1 + ε2 < −1, and x = (x1, x2),

F(x) =
1

4π2

∫ ∫
R2+iε

eiux′ F̂(u1, u2)du1du2,

F̂(u1, u2) =
Γ(i(u1 + u2)− 1)Γ(−iu2)

Γ(iu1 + 1)
,

where Γ(z) is the complex gamma function defined for<(z) > 0 by the integral Γ(z) =
∫ ∞

0 e−ttz−1dt
and ux′ = u1x1 + u2x2, where x′ is the unconjugated transpose of x.

See Hurd and Zhou (2010) for the proof.

Lemma 3 below is adapted from Hurd and Zhou (2010) to account for stochastic
interest rates:

Lemma 3. Let N(T) = e−
∫ T

0 r(s)ds and x(t) =
[

log S1(t), log S2(t)
]
. For any t > 0, the

increment x(t)− x(0) is independent of x(0), which implies:

EQ
[

N(T)eiux(T)′
]
= eiux(0)′φ(u; T),

with φ(u; T) := EQ
[

N(T)eiu(x(T)−x(0))′
]
.

See Hurd and Zhou (2010) for details.

Using Theorem 1 and Lemma 3, the price of a European spread call option with
stochastic interest rates can be written as a two-dimensional Fourier transform in the
variable x(0). The derivation is shown below. Consider the spread option payoff function:

VSpread(0) = EQ
[

N(T)max
(

ex1(T) − ex2(T) − 1, 0
)]

.

Changing from the risk-neutral measure Q to the T-Forward measure using the zero-
coupon bond P(0, T) as numeraire, we obtain:

VSpread(0) = P(0, T)ET

[ 1
4π2

∫ ∫
R2+iε

eiux(T)′ F̂(u1, u2)du1du2

]
=

1
4π2 P(0, T)

∫ ∫
R2+iε

ET

[
eiux(T)′

]
F̂(u1, u2)du1du2.

Using the result P(0, T)ET

[
eiux(T)′

]
= EQ

[
N(T)eiux(T)′

]
, the price of the spread op-

tion becomes:

VSpread(0) =
1

4π2 P(0, T)
{ ∫ ∫

R2+iε
eiux(0)′ 1

P(0, T)
EQ
[

N(T)eiu(x(T)−x(0))′
]

× F̂(u1, u2)du1du2

}
=

1
4π2

∫ ∫
R2+iε

eiux(0)′φ(u; T)F̂(u1, u2)du1du2. (6)

Equation (6) is for the specific case where K = 1. Roberts (2018) shows that the result
can be extended to K > 0 by scaling the two initial stock prices as follows:
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VSpread(S1(0), S2(0), K, T) = K×VSpread

(
S1(0)

K
,

S2(0)
K

, 1, T

)
. (7)

The implementation of Equation (7) using the FFT technique is outlined in Alfeus and
Schlögl (2018). Algorithm 1 below follows directly from their paper:

Algorithm 1 2D FFT Algorithm

Input : N, a power of two; ū, truncation width; ε, damping factor.

Define : u(k) = (u1(k1), u2(k2)) and x(l) = (x1(l1), x2(l2)).

Set x(0) =
[

log
(

S1(0)
K

)
, log

(
S2(0)

K

)]
∈ x(l).

for k, l ∈ {1, 2, . . ., N − 1}2 do

H(k) = (−1)k1+k2 φ(u(k) + iffl)F̂(u(k) + iε);

C(l) = (−1)l1+l2

(
γN
2π

)2

e−εx(l)′ ;

end for

V = <(C× ifft2(H)).

P← K×V using an interpolation technique.
return P.

In Algorithm 1, the double integral in Equation (6) is approximated by a double sum
over the lattice:

Γ = {u(k) = (u1(k1), u2(k2)) | k = (k1, k2) ∈ {0, 1, . . ., N − 1}2}, ui(ki) = −ū + kiγ,

where γ = 2ū
N is the lattice spacing, and ū = Nγ

2 .

Furthermore, x(0) =
[

log
(

S1(0)
K

)
, log

(
S2(0)

K

)]
is chosen to lie on the reciprocal lattice:

Γ∗ = {x(l) = (x1(l1), x2(l2)) | l = (l1, l2) ∈ {0, 1, . . ., N − 1}2}, xi(li) = −x̄ + liγ∗,

where γ∗ = π
ū is the reciprocal lattice spacing, and x̄ = Nγ∗

2 .
This concludes the extension of the Hurd and Zhou (2010) FFT algorithm to stochastic

interest rates. In the next section, we test the accuracy of the two-asset Heston–Hull–White
model and the impact of the stochastic interest rates on spread option prices.

6. Numerical Results

This section is divided into three parts. First, we compare our implementation of the
Hurd and Zhou (2010) FFT algorithm to the results shown in their paper. Secondly, we
compare the convergence of the FFT to the Monte Carlo simulation. Lastly, we assess the
impact of stochastic rates on the spread option prices.

All code was implemented in Python on an HP laptop Intel(R) Core(TM) i5 - 1.60GHz
with 16 GB memory.

6.1. Implementation Testing

The two-asset Heston–Hull–White model reduces to the three-factor stochastic volatil-
ity model of Dempster and Hong (2002) when η = 0. Hurd and Zhou (2010) published
spread option prices for various strikes based on the three-factor stochastic volatility model
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and their FFT algorithm. Table 1 below compares our implementation with the results
published in Hurd and Zhou (2010).

Table 1. S1(0) = 100, S2(0) = 96, δ1 = 0.05, δ2 = 0.05, v(0) = 0.04, r(0) = 0.1, σ1 = 1.0, σ2 = 0.5,
κ = 1, v̄ = 0.04, σv = 0.05, λ = 1, θ = 0.1, η = 0, ρx1,xv = 0.5, ρx1,v = −0.5, ρx1,r = 0,
ρx2,v = 0.25, ρx2,r = 0, ρv,r = 0, N = 256, ū = 40, ε1 = −3, ε2 = 1, T = 1.

Strike Hurd and Zhou Price Model Price Absolute Difference Relative Difference

2.0 7.548502 7.549344 0.000842 0.011155%

2.2 7.453536 7.454381 0.000845 0.011337%

2.4 7.359381 7.360137 0.000756 0.010273%

2.6 7.266037 7.266787 0.000749 0.010308%

2.8 7.173501 7.174295 0.000794 0.011069%

3 7.081775 7.082660 0.000885 0.012497%

3.2 6.990857 6.991678 0.000821 0.011744%

3.4 6.900745 6.901351 0.000606 0.008782%

3.6 6.811440 6.812176 0.000736 0.010805%

3.8 6.722939 6.723817 0.000878 0.013060%

4.0 6.635242 6.635881 0.000639 0.009630%

The results confirm that our implementation of the FFT algorithm was accurate.
Next, we test the convergence of the FFT and Monte Carlo simulation for spread

options.

6.2. Convergence

Table 2 below shows the FFT price and execution time for a European spread call
option with varying K and N.

Table 2. Convergence of FFT using the parameters in Table 1.

N FFT Price K = 2 FFT Price K = 3 FFT Price K = 4 Time (seconds)

4 4.354906 6.532359 8.709812 0.012491

8 1.488913 2.233370 2.977827 0.013598

16 0.697647 1.046470 1.395293 0.041658

32 0.450374 0.675562 0.900749 0.059231

64 0.936496 1.404743 1.872991 0.206991

128 7.553730 7.087006 6.640188 0.787242

256 7.549344 7.082660 6.635881 3.233390

512 7.549344 7.082660 6.635881 12.481379

1024 7.549344 7.082660 6.635881 50.788263

2048 7.549344 7.082660 6.635881 203.205588

4096 7.549344 7.082660 6.635881 817.879709

The FFT algorithm convergesdto the solution in approximately 3.23 s with N = 256
steps.

Figure 1 below shows the convergence and execution time for the Monte Carlo
simulation.
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Figure 1. Monte Carlo convergence using the parameters in Table 1.

The Monte Carlo simulation converged to the FFT price with 1,000,000 simulations
in approximately 168 s. The FFT significantly outperformed the Monte Carlo in terms of
efficiency being up to 50 times faster.

We conclude this paper by assessing the impact of stochastic interest rates on the
spread option prices.

6.3. Impact of Stochastic Interest Rates

We consider the following two cases to test the impact of stochastic interest rates:
Case 1 where interest rates and equity prices are positively correlated; and Case 2 where
interest rates and equity prices are negatively correlated.

Figure 2 below shows the results for Case 1 using the same parameters as in Table 1
except for η, ρx1,r, and ρx2,r.
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Figure 2. Impact of stochastic interest rates with η = 0.05, ρx1,r = 0.75, and ρx2,r = 0.6.

Similarly, Figure 3 below shows the results for Case 2.
For short-dated European spread call options, the impact of stochastic interest rates

was insignificant. However, for long-dated European spread call options, the price differ-
ence between deterministic interest rates and stochastic interest rates widened for further
out-the-money options. Moreover, when interest rates and stock prices were positively
correlated, the spread option price under the stochastic interest rates was higher than under
the deterministic interest rates. The opposite held when interest rates and stock prices were
negatively correlated.
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Figure 3. Impact of stochastic interest rates with η = 0.05, ρx1,r = −0.75, and ρx2,r = −0.6.

7. Conclusions

In this paper, we extended the Heston-Hull–White model of Grzelak and Oosterlee
(2011) to two underlying assets and the FFT algorithm of Hurd and Zhou (2010) to account
for stochastic interest rates.

Based on our implementation of the two-asset Heston–Hull–White model, we ob-
served that the FFT algorithm was approximately 50 times faster than the Monte Carlo
simulation. We also observed that the price of a long-dated European spread call option
was sensitive to stochastic interest rates and equity-rate correlation. This difference became
more significant for out-of-the-money options.

We hope that practitioners will find use in our extensions of the Heston–Hull–White
model of Grzelak and Oosterlee (2011) and the FFT algorithm of Hurd and Zhou (2010),
which will lead them to test the impact of stochastic interest rates on their spread option
portfolios.
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