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Abstract

This mini-dissertation proposes constructing a family of spliced distributions at a point di�erent from

the median, hence k = 1
4 instead of k = 1

2 , using the method of quantile splicing proposed by Mac`Oduol

et al. (2020). General results of these families of distributions are developed and the maximum likelihood

approach is explored and investigated for estimation purposes. Moreover, a numerical application is

presented in order to illustrate the implementation and application of the proposed method.
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1 Introduction:

1.1 Overview

The quantile function, also referred to as the inverse CDF, can be used to de�ne quantile-based distri-

butions, since closed-form expressions for the probability density functions (PDFs) and/or cumulative

distribution functions (CDFs) are di�cult to obtain. Such distributions include the logistic, cosine,

normal, uniform and Student's t(2) distribution.

Hastings Jr et al. (1947) and Tukey (1960) applied quantile-based methods to the lambda distribution

by joining their quantile functions together. The generalized lambda distributions (GLDs) arose from

there by generalizing the results obtained by Ramberg and Schmeiser (1972) and Ramberg and Schmeiser

(1974), for the lambda distributions.

Various techniques have since arisen with the objective of generating asymmetric distributions or

skewing the existing distributions. These methods rely on whether the distributions have existing CDF,

PDF, or quantile functions, and intend on increasing the �exibility of these distributions to provide a

better model to �t the data.

A skew logistic model was developed by Balakrishnan et al. (2017) where the PDF of the half logistic

distribution to the left of its location parameter was chosen, which includes a single positive shape

parameter. This was then joined to the PDF of the half logistic distribution to the right of the location

parameter. This proposed skew logistic's single and product moments were derived using the order

statistics and moments of the half logistic distribution. Thereafter, the properties of the skew logistic

distribution's order statistics were calculated for any sample size n, based on the aforementioned results.

Subsequently, the development of asymmetric families of distributions was suggested by Mac`Oduol

et al. (2020), based on utilizing quantile functions of symmetric univariate distributions as kernels. As

a result, the general formula for the L-moments of a two-piece distribution was derived. The method

of L-moments can be utilised to obtain the parameter estimates of the new family of distributions.

This reduces the computational di�culty encountered when single and product moments are used for

estimation.

The method of maximum likelihood estimation has not yet been explored for quantile splicing. The

principle of maximum likelihood estimation is de�ned as selecting values from our sample that are most

likely to be observed as the parameter estimates, before any observations have been made. The log of the

likelihood is often easier to maximize, and equates to the same estimate, since the log function is strictly

increasing, as stated in Pan and Fang (2002).

Maximum likelihood (ML) is a very reliable method that generates satisfactory estimates when there

are large samples, however these estimators can be bias. As the sample size increases, the bias decreases,
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so this can be resolved. The disadvantage of using ML estimation is that the error terms need to emanate

from a particular, stated distribution.

1.2 Aims and objectives:

The general formula in Mac`Oduol et al. (2020) will be used in this mini-dissertation to create a family

of spliced distributions, at the point k = 1
4 . The general form of the PDF, CDF and quantile functions

will then be derived, before investigating the properties of the spliced distributions. Thereafter, the main

goal is to acquire the maximum likelihood approach for spliced families of distributions, since the method

of L-moments estimation has already been applied by Mac`Oduol et al. (2020). Lastly, the developed

maximum likelihood estimate results will be applied and tested with real data to measure the e�ciency

of this estimation method.

1.3 Outline of the dissertation:

In Chapter 2, an extensive overview is given for the introduction of families of distributions. The skewing

methods for general distributions is discussed with examples of such distributions and their properties.

Thereafter, the beta-generated distributions and it's special cases are considered. The properties of this

family of distributions are also discussed.

Chapter 3 introduces two-piece families of distributions and introduces the method quantile splicing.

The general form of the CDF, PDF and quantile function of the two-piece families of distributions is

given. The general forms will be related to existing two-piece families of distributions, stating their CDF,

PDF and quantile functions and the properties of these distributions. The general form of the CDF,

PDF and quantile functions of spliced distributions will be given. Thereafter two-piece logistic, cosine

and Student's t(2) distributions, which have been spliced at k = 1
2 , are given. The general form of the

rth order L-moments for the two-piece family of distributions is given, as well as those of the two-piece

logistic, cosine and Student's t(2) distributions, when k = 1
2 .

Chapter 4 makes use of the results obtained in Chapter 3 for the PDF, CDF and quantile functions for

the two-piece family of distributions, by replacing k = 1
4 . The quantile measures and the distributional

forms are proposed, and examples of two-piece families of distributions, when k = 1
4 will be considered.

The method of L-moments estimation will also be discussed.

In Chapter 5, the method of maximum likelihood estimation for quantile-based functions will be

discussed. The theoretical results are then applied to the two-piece logistic, cosine and Student's t(2)

distributions, to obtain MLE estimates.

In Chapter 6, the method of L-moments estimation and the method of maximum likelihood estimation

for quantile-based distributions are applied to a dataset to obtain parameter estimates and compare the
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�t of the models to the data.

Chapter 7 summarises the di�erent techniques discussed as well as the results obtained in this mini-

dissertation.

1.4 Contributions of the dissertation:

The contributions per chapter, are outlined below.

Chapter 4

� The general formulae for the CDF, PDF and quantile functions of two-piece distributions is used

to derive the results for the two-piece logistic, cosine and Student's t(2) distribution, when k = 1
4 ,

in Chapter 4.3.1, 4.3.2 and 4.3.3.

� The quantile-based measures of distributional form for the two-piece logistic, cosine and Student's

t(2) distribution, when k = 1
4 , are derived in Chapter 4.3.1, 4.3.2 and 4.3.3.

� The rth order L-moments are derived using the general formula, for the two-piece logistic, cosine

and Student's t(2) distribution, when k = 1
4 , in Chapter 4.3.1, 4.3.2 and 4.3.3. These results are

derived in full in the Appendix of this mini-dissertation.

� The L-skewness and L-kurtosis ratios for the two-piece logistic, cosine and Student's t(2) distribu-

tion, when k = 1
4 , are obtained and plotted in Chapter 4.3.1, 4.3.2 and 4.3.3.

Chapter 5

� The log-likelihood functions and the partial and second derivatives of the log-likelihood function

for the two-piece logistic, cosine and Student's t(2) distribution, when k = 1
2 and when k = 1

4 , are

derived in Chapter 5.3.1, 5.3.2 and 5.3.3.
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2 Literature review:

Statistical distributions and their developments have been monitored for years prior to Vicari and Kotz

(2005) examining the initial build-out of statistical distributions. The normal distribution was discovered

by de Moivre (1733), whereas the normal probability integral Φ(x) was suggested, in tabular form by

Laplace (1774), after he discovered that the normal distribution was an approximation of the hypergeo-

metric distribution.

Thereafter, estimation methods based on the normal distribution were formulated by Gauss (1809)

and by Gauss (1816). Pearson used a method of higher moments and attained a generalization of the

normal distribution, which originated from his work in Pearson (1895). He also derived the Pearson

curves, which are still being used to date, to visualize probability transformations for a variety of shapes.

The method of di�erential equations was also used by Pearson (1895) to generate statistical distributions

for nonsymmetric data, as referred to in Lee et al. (2013).

The Pearson system of continuous distributions applies to every PDF, f(x), that satis�es the following

di�erential equation

1

f(x)

df(x)

dx
=

a+ x

b0 + b1x+ b2x2
, (1)

where the location, scale and shape parameters of the PDF depends on the constants a, b0, b1 and b2

and x ∈ R.

Hereafter, numerous methods were introduced to create families of distributions, such as the transla-

tion method by Johnson (1949). Johnson suggested generating distributions using a system that utilized

the method of normalization transformation. This resulted in a random variable which has the general

form

Z = γ + δf
(X − ξ

λ

)
, δ > 0, λ > 0, (2)

where f(·) is de�ned as the transformation function, Z represents a standardized normal random variable

and γ, ξ ∈ R.

The following families were proposed as transformation functions:

� The lognormal family (SL):

Z = γ + δ ln(X − ξ), (3)

where X ≥ ξ.

� The family of bounded distributions (SB):

Z = γ + δ ln
( X − ξ

ξ + λ−X

)
, (4)
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where ξ ≤ X ≤ ξ + λ.

� The family of unbounded distributions (SU ):

Z = γ + δ × ln

((X − ξ

λ

)
+

[(X − ξ

λ

)2
+ 1

] 1
2
)

= γ + δ sinh−1
(X − ξ

λ

)
, (5)

where −∞ < X <∞.

Thereafter, univariate distributions were derived from the above mentioned families of distributions,

namely the normal, gamma, lognormal, exponential and beta distributions.

The rest of this chapter takes an in-depth look at the di�erent methods used to introduce �exibility

to distributions with respect to their distributional forms.

2.1 Skewing methods for general distributions

2.1.1 Azzalini's skewing method

Azzalini (1985) suggested constructing a skew distribution by combining two symmetric distributions,

namely the skew normal family of distributions.

Lemma 1. Suppose X is a random variable with a PDF that is symmetric about 0 and Y be a random

variable with CDF G(.), such that G(.) is absolutely continuous with a symmetric �rst derivative. Then

it follows from Lee et al. (2013) that

1

2
= P (Y − λX < 0)

= EX [P (Y < λX|X = x)]

=

∫ ∞

−∞
f0 G(λx)dy, (6)

where λ ∈ R. ■

From Eq.(6) it follows that

2f0G(λx) = 1, (7)

where −∞ < x <∞.

Corollary 1. Suppose that X ∼ N(0, 1), then it follows that the random variable Xλ follows a skew

normal distribution, denoted by Xλ ∼ SN(λ), where λ represents the asymmetry parameter. The PDF

is given as

fXλ
(x;λ) = 2ψ(x)Φ(λx), (8)
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where x ∈ R, λ ∈ R and ψ(x) and Φ(x) represent the N(0, 1) PDF and CDF, respectively. ■

Properties of the skew-normal (SN(λ)) distribution:

Let Xλ represent a SN(λ) random variable. Let δ = λ√
1+λ2

and assume that the random variables A

and B are independent standard normal random variables,

� SN(0) ∼ N(0, 1).

� |Xλ| ∼= |Z|.

� X2
λ ∼ χ2

1.

� −Xλ ∼ SN(−λ).

� Mλ(t) = 2e( t
2

2 )Φ(δt) is the moment generating function of Xλ.

� The conditional distribution of A given B < λA follows as SN(λ).

�

Xλ
∼= δ |A|+

√
(1− δ2)B

∼= δ A(0) +
√

(1− δ2)B,

where A(0) denotes that A is truncated below 0.

� Xλ
d−→ |Z| as λ→ ∞ and Xλ

d−→ −|Z| as λ→ −∞.

� Let X be a random variable with PDF, g(x), then X2 ∼ χ2 if and only if a skewed function exists,

π(x) such that f(x;λ) = 2ϕ(x)Φ(λx) is true.

� Suppose X and Y are independent and identically distributed SN(λ) random variables. F (·)

denotes the CDF of two independent and identically distributed (iid) random variables, X1 and

X2, which both have �nite moments. It then follows that F (·) is skew-normally distributed if and

only if X2
1 ∼ χ2 and X2

2 ∼ χ2 and if (X1 +X2)
2 .
= (X + Y )2.

Another method used to create skewed distributions by using symmetric random variables is observed

in Lee et al. (2013), by setting f0(·) as the PDF of a symmetric random variable X and π ∈ [0, 1]

representing the skewing function, such that π(x) + π(−x) = 1. Therefore,

f(x) = f0(x)π(x) (9)

is considered to be a valid PDF.
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2.1.2 Weighted skewing approach

Chang and Genton (2007) suggested a weighted skewing approach which generates a skew symmetric

family of distributions. The PDF is manipulated by a non-negative and multiplicative weighting function,

after which the observed data follows as a random sample originating from a weighted distribution.

De�nition 1. Suppose X is a symmetric random variable with PDF f(x;β), where w(x;β, α) is a weight

function, with α and β de�ned as an unknown parameter. Then the general form of the PDF from the

weighted distribution follows from Lee et al. (2013) as

g(x;β, α) = f(x;β)
w(x;β, α)

E(w(x;β, α))
. (10)

■

Remark. When E(w(x;β, α)) = 1
2 , Eq.(10) is the PDF of a skewed symmetric distribution represented

by the form given in Eq.(9).

The epsilon-SN(λ, ϵ) distribution from Mudholkar and Hutson (2000) introduces an additional shape

parameter, ϵ ∈ [0, 1), to control the skewness. This family of distributions has a PDF given by

g(x) =


ψ
( x

1 + ϵ

)
, x < 0,

ψ
( x

1 + ϵ

)
, x ≥ 0,

(11)

where x ∈ R and ψ(·) is the N(0, 1) CDF.

The above Epsilon-SN and SN family from Eq.(8) were combined to form the extended family of

skew distributions in Salinas et al. (2007) with the following PDF,

f(x|λ, β) =


2f0

( x

1 + β

)[ β

1 + β
+
(1− β

1 + β

)
G
( λx

1 + β

)]
x < 0,

2f0

( x

1− β

)
G
( λx

1 + β

)
x ≥ 0,

(12)

where f0(·) and G(·) are de�ned as in Eq.(7), whilst λ ∈ R and β ∈ [0, 1) are skewness parameters.

Salinas et al. (2007) introduced the extended skew-exponential power distribution by setting f0(·) as

a symmetric exponential power density with G(·) de�ned as the CDF of a normal density such that G′(·)

is symmetric, including scale and location parameters.

2.1.3 The inverse scaling method

Fernández and Steel (1998) proposed a skewing method that can be implemented on any unimodal,

symmetric and continuous distribution. This method proposed the inverse scaling of the PDF, of any
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continuous distribution, on both sides of the mode. The unimodality is una�ected and allows for increased

�exibility with respect to the shape of the distribution with only one scalar parameter.

De�nition 2. Let f(·) represent the PDF of a unimodal distribution symmetric about 0. The PDF is

de�ned by Lee et al. (2013) as

g(x) =


cf(αx), x ≥ 0,

cf(
x

α
), x < 0,

(13)

where α, c > 0. ■

Whenever α ̸= 0 and g(x≥0|α)
g(x<0|α) , then this distribution becomes skewed. It can be noted that α controls

the mass of the probability on either side of the mode, whilst 'c' serves as a normalizing factor that

ensures g(x) is a valid PDF and is de�ned as c = 2α
(1+α2) .

Fernández and Steel (1998) suggested the introduction of two parameters to better control the �exibil-

ity of the distribution by using α1 and α2 instead of α and 1
α . The following class of skewed distributions

follows, with γ ∈ (0,∞), such that

p(ϵ|γ) = 2

γ + 1
γ

{
f
( ϵ
γ

)
I[0,∞)(ϵ) + f(γϵ) I(−∞,0)(ϵ)

}
. (14)

2.1.4 The transformation of the inverse probability integral

Skewness is introduced to symmetric, univariate distributions via a suggested general framework by

Ferreira and Steel (2006), which utilises the transformation of the inverse probability integral.

Lemma 2. Suppose f(·) and F (·) represent the PDF and CDF of a univariate, symmetric distribution,

respectively. Similarly, let p(·) and P (·) represent the PDF and CDF, respectively, of a bounded distribu-

tion on (0, 1). The resulting skew family of distributions de�ned by Ferreira and Steel (2006) has a PDF

that takes on the general form given by

g(x|f, p) = f(x)p[F (x)], x ∈ R, (15)

where g(x|f, p) is a weighted version of the PDF f(x), with the weight function p[F (x)]. ■

If p(·) originates from the uniform distribution, then g(·) = f(·). The family of distributions, from

Eq.(7), can be linked to Eq.(15) if

p(y|λ) = 2G(λF−1(y))−1. (16)
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Special cases:

� The inverse scale family of distributions by Fernández and Steel (1998) can be obtained from Eq.(15)

when

p(y|α) = 2

α+ 1
α

f [αsign(0.5−y) F−1(y)]

f [F−1(y)]
, (17)

where sign(·) returns the sign of a real number, either positive or negative.

� The beta-generated family of distributions suggested by Eugene et al. (2002) is a special form of

Eq.(15) when

p(y|α, β) = [β(α, β)]−1 yα−1 (1− y)β−1. (18)

Properties:

� P (·) is independent from F (·).

� If P (·) is uniform, then P (·) leads to a symmetric G(·).

� The mode of F (·) is equal to the unique mode of G(·).

� Skewness exists close to the mode of the distribution such that the tail behaviour on both tails of

G(·) are identical.

� The skewness measure is independent of F (·), and is given by AG = 1− 2P (X < mode).

� An odd function of P (·) exists due to the measure of skewness.

2.2 Beta-generated distributions

The introduction of the use of the beta distribution, as the source of developing beta-generated distribu-

tions originated from Eugene et al. (2002). The beta distribution is used by the beta-generated family,

to generate distributions that have more parameters, to �t a larger variety of shapes. In this case, the

skewness is not controlled by a certain parameter, but by the combined shape parameters.

De�nition 3. A beta-class random variable, X, has CDF that takes on the form

G(x) =

∫ F (x)

0

b(t)dt, (19)

where F (x) represents the CDF of any continuous random variable, and b(t) represents the PDF of the

beta random variable, given as

b(t) =
tα−1(1− t)β−1

B(α, β)
, (20)

with B(α, β) = Γ(α)Γ(β)
Γ(α,β) , as de�ned in Lee et al. (2013). ■
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De�nition 4. The PDF of a random variable originating from the beta-class distribution has the following

general form

g(x) =
1

β(α, β)
f(x) Fα−1(x) (1− F (x))β−1, (21)

where x ∈ (0, 1), α > 0 and β > 0 represent the shape parameters, as de�ned by Lee et al. (2013). ■

Remark. The distributions for which order statistics exist for a random variable X, with CDF F (x), is

generalized by this family of distributions. Eq.(21) represents the αth order statistic of a random sample

with size (α+ β − 1), only if α and β are integers.

Special cases

The following distributions are examples of the beta-generated distributions, referring to Eq.(19) and

Eq.(21):

1. The skew-t distribution by Jones (2001) is an example of a beta-generated distribution with PDF

given by

f(x;α, β) =
( 1

B(α, β)
√
α+ β 2α+β−1

) (
1 +

x√
α+ β + x2

)α+ 1
2
(
1− x√

α+ β + x2

)β+ 1
2

, (22)

where x ∈ R, β > 0 and α > 0, with F (x) =
1+ x√

α+β+x2

2 .

2. The log-F distribution, or better known as the beta-logistic distribution, has the following PDF

f(x;α, β) =
1

B(α, β)

eαx

(1 + ex)α+β
, −∞ < x <∞, (23)

with F (x) = ex

(1+ex) , as stated in Jones (2004).

3. The generalized beta-Type I distribution from McDonald (1984) has PDF

g(x) =
α [( xβ )

α]α−1[1− ( xβ )
α]β−1

B(α, β)
, 0 ≤ x ≤ β, (24)

where F (x) = ( xβ )
α .

4. The generalized beta-Type II distribution from Sepanski and Kong (2008) has PDF

g(x) =
α [( xβ )

α]α−1

B(α, β) [1 + ( xβ )
α]α+β

, x > 0, (25)

where F (x) = 1− 1
[1+( x

β )α] .
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The properties of beta-generated distributions:

Suppose X is a random variable with CDF, F (x;θ), where θ is a vector of parameters.

1. Property of transformation:

If U ∼ Uni(0, 1), it follows that X = F−1(U). Suppose that Y ∼ Beta(α, β) is de�ned on

(0, 1). A beta-generated random variable is then de�ned as X = F−1(Y ), with the following

parameters X ∼ GF and (θ, α, β).

2. Use the beta-generated distribution to produce a random sample:

Using the transformation property, one can simply generate a random sample from a beta-

generated distribution by �rst generating a random sample from a Beta(α, β) distribution,

and then using the inverse CDF (quantile function) to obtain the beta-generated distribution

values.

3. Skewness:

(a) If f(x) is symmetric, it follows that g(x) is also symmetric, only when α = β.

(b) When α > β, it follows that g(x) is skewed to the right, whereas g(x) is skewed to the left

when α < β.

4. Tail weight:

The tail weight is a concept that measures the behaviour of the shape of a distribution, with respect

to it's extreme values, as stated by Dato (2017).

(a) When α, β < 1, then f(x) has heavy symmetric tails. Bimodality occurs when α or β decreases.

(b) When α, β > 1, then f(x) has long symmetric tails with a greater peak, which occurs at larger

values of α or β.

(c) If it is true that f(·) has power tails, such that f ∼ x−(γ+1), with γ > 0 and x containing

large values, then it follows from Jones (2004) that the tails of g(x) behave as g ∼ x−βγ−1. An

example of this occurring is the skew-t distribution, where γ = 2. As β → 0, the tail weight

increases rapidly towards the limit of x−1, no matter the value of γ.

(d) If f(·) consists of exponential tails, such that f ∼ e−λx, where λ > 0, it follows that g(x) ∼

e−βλx. The log-F distribution falls within this category.

(e) If the tails of f(·) are normal, such that f ∼ e−
x2

2 , with (1 − F ) ∼ f(·)
x then it follows that

g(x) ∼ e−
βx2

2

xβ−1 .

5. Modes:
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If f(x) is unimodal, then it follows that g(x) will also be unimodal, if α = β ≥ 1. However

g(x) could also be bimodal.

6. Hazard function shapes:

Let hg(x) =
g(x)

[1−G(x)] be the hazard function of a beta-generated distribution. By incorporating

the property of the incomplete beta function, Ix, given by

Ix(α, β) = β(α, β)− I1−x(β, α), (26)

then the hazard function of the beta-generated family of distributions follows as

hg(x) =
Fα−1(x) (1− F (x))β−1

I1−F (x)(β, α)
f(x). (27)

The shape of hg(x) varies, but can be �exible. Lee et al. (2013) revealed that the beta-Weibull

distribution has a hazard function which can be monotonically decreasing, increasing, in a

bathtub shape or concave.

7. Entropy:

The Shannon entropy is de�ned as ηx = −EX [log(g(X))]. If a random variable follows the

beta-generated distribution, then the Shannon entropy is obtained as

ηx = logβ(α, β) + (α− 1)κ(α, β) + (β − 1)κ(β, α)− EY [log(F
−1(Y ))], (28)

where Y ∼ Beta(α, β), κ(α, β) = ψ(α+ β)− ψ(α) and ψ(.) is the digamma function.
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3 Two-piece families of distributions:

3.1 Introduction

The general form of the CDF, PDF and quantile functions of the two piece distribution is given and

related to the di�erent formulations given in Fernández and Steel (1998), Arellano-Valle et al. (2005)

and Nassiri and Loris (2013). The properties of the di�erent two piece distributions are stated, as well

as the method of moments estimations and maximum likelihood estimation. Di�erent variations of the

asymmetry parameter leads to the distribution considered in Mac`Oduol et al. (2020), as well as the other

proposed distributions mentioned above.

De�nition 5. The general form of the PDF, CDF and quantile function of a two piece distribution is

de�ned by Fernández and Steel (1998) and is given as

fT (x;α, β, λ) = 2

(
λ

1

α
fX

(x
α

)
I(x≤0) + (1− λ)

1

β
fX

(x
β

)
I(x>0)

)
, (29)

FT (x;α, β, λ) =


2λFX

(x
α

)
for x ≤ 0,

2λ− 1 + 2(1− λ)FX

(x
β

)
for x > 0,

(30)

and

QT (x;α, β, λ) =


αQX

( x
2λ

)
for x ≤ λ,

βQX

(x− 2λ+ 1

2(1− λ)

)
for x > λ,

(31)

respectively, where λ ∈ [0, 1], α > 0 and β > 0. ■

In Chapter 3.2, the CDF, PDF and quantile function of the proposed two piece distribution in Fernán-

dez and Steel (1998), that relate to the general form given in Eq.(29), are discussed. The properties and

method of moments estimation are also stated. In Chapter 3.3, the CDF, PDF and quantile function of

the proposed two-piece distribution in Arellano-Valle et al. (2005), that relate to the general form given

in Eq.(29), is discussed. The properties and method of moments estimation are also given.

In Chapter 3.4, the PDF, CDF and quantile function of the proposed two-piece distribution in Nassiri

and Loris (2013), that relate to the general form given in Eq.(29), are discussed. The properties and

method of moments estimation is discussed. In Chapter 3.5 the method of quantile splicing is introduced

and discussed.

3.2 Generalisation of the skewed exponential power distribution

Fernández and Steel (1998) proposed an approach to construct an asymmetric family of distributions,
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which transforms any symmetric distribution into the desired skew distribution. If a unimodal distribution

that is symmetric around 0, with density f and scalar index γ ∈ (0,∞) exists, then a probability density

in this class of skew distributions follows as

fγ(y) =
2

γ + 1
γ


f(γy) if y ≤ 0,

f(
y

γ
) if y > 0.

(32)

This relates to the general form of a two piece distribution given in Eq.(29), if α = 1
γ and β = γ.

The CDF and quantile function are obtained, using the general form given in Eq.(30) and Eq.(31)

with α = 1
γ and β = γ, respectively, as

Fγ

(
y;

1

γ
, γ, λ

)
=


2λ F (γy) if y ≤ 0,

2λ− 1 + 2(1− λ) F (
y

γ
) if y > 0.

(33)

and

Qγ

(
y;

1

γ
, γ, λ

)
=


1

γ
Q
( y
2λ

)
if y ≤ λ,

γ Q
(y − 2λ+ 1

2(1λ)

)
if y > λ.

(34)

Properties:

The general distributional properties, as found in Fernández and Steel (1998), are as follows:

� Location:

The median of the location-scale skew distribution is

me = Q(
1

2
|γ, λ)

= γ Q
(γ − 2. 12 + 1

2(1− λ)

)
= γ Q

( γ

2(1− λ)

)
.

� Spread:

The spread function, St(s), is obtained for 1
2 ≤ s ≤ 1 as

St(s) = Q(s)−Q(1− s)

= γ Q
(s− 2λ+ 1

2(1− λ)

)
− 1

γ
Q
(1− s

2λ

)
.

� Shape:
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The γ-functional is derived as

γ(s) =
Q(s) +Q(1− s)− 2me

Q(s)−Q(1− s)

=
γ Q

(
s−2λ+1
2(1−λ)

)
+ 1

γ Q
(

1−s
2λ

)
− 2γ Q

(
γ

2(1−λ)

)
γ Q

(
s−2λ+1
2(1−λ)

)
− 1

γ Q
(

1−s
2λ

) ,

for 1
2 ≤ s ≤ 1.

� Ratio-of-spread functions:

The ratio-of-spread function, for 1
2 ≤ u < v ≤ 1, is obtained as

R(u, v) =
St(u)

St(v)

=
γ Q

(
u−2λ+1
2(1−λ)

)
− 1

γ Q
(

1−u
2λ

)
γ Q

(
v−2λ+1
2(1−λ)

)
− 1

γ Q
(

1−v
2λ

) .

3.3 A general family of skew distributions

The general family of skew distributions, including Eq.(32) as a special case, was introduced by Arellano-

Valle et al. (2005). The PDF of this family of skew distributions, for a given density f that is symmetric

around 0, that contains a parameter α ∈ R as well as positive asymmetric functions given by a(.) and

b(.), is de�ned as

fα(y) =
2

a(α) + b(α)


f
( y

b(α)

)
if y ≤ 0,

f
( y

a(α)

)
if y > 0.

(35)

This relates to the general form of a two-piece distribution given in Eq.(29), if α = b(α), β = a(α)

and λ = b(α)
a(α)+b(α) . If the asymmetric functions are chosen such that a(α) = b(α), then Eq.(35) reduces

to a scale family of the density f , which does not allow for modi�cation of the underlying symmetry.

The CDF of the skew family of distributions is de�ned as

F (y|α) =


2b(α)

a(α) + b(α)
F
( y

b(α)

)
if y ≤ 0,

b(α)− a(α)

a(α) + b(α)
+

2a(α)

a(α) + b(α)
F
( y

a(α)

)
if y > 0,

(36)

which can be obtained using the general form in Eq.(30) with α = b(α), β = a(α) and λ = b(α)
a(α)+b(α) .

The quantile function is derived using the general formula given in Eq(31), with α = b(α), β = a(α)
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and λ = b(α)
a(α)+b(α) , such that

Q(y|α) =


b(α) Q

(y(a(α) + b(α))

2b(α)

)
, if y ≤ b(α)

a(α) + b(α)
,

a(α) Q
(y(a(α) + b(α)) + a(α)− b(α)

2a(α)

)
, if y >

b(α)

a(α) + b(α)
,

(37)

Properties of the skew family of distributions:

The following properties hold for the suggested skew family of distributions proposed by Fernández and

Steel (1998):

� The skew family has a median of

F−1
(1
2
|α
)
=


b(α)F−1

(
a(α) + b(α)

4b(α)

)
if a(α) < b(α),

a(α)F−1

(
3a(α)− b(α)

4a(α)

)
if a(α) ≥ b(α).

(38)

� The mode is obtained as

H(0|α) = b(α)

a(α) + b(α)
. (39)

A generalisation of the family of skew distributions occurs once a scale parameter σ > 0 and a location

parameter µ ∈ R are introduced.

Theorem 1. Suppose X is a skew random variable, X ∼ S(f, α). Then it follows from Arellano-Valle

et al. (2005) that the family of location-scale skew distributions can be represented such that Z = µ+σX,

with µ ∈ R and σ > 0. The probability density follows as

fθ(z) =
2

σ(a(α) + b(α))


f
( z − µ

σb(α)

)
if z ≤ µ,

f
( z − µ

σa(α)

)
if z > µ,

(40)

with θ = (µ, σ, α). The probability density function is denoted as Z ∼ S(f, µ, σ, α) or Z ∼ Sf(µ, σ, α).

Properties of the location-scale skew family of distributions:

The general distributional properties are stated by Arellano-Valle et al. (2005) and follow as:

� Location:
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The median is

F−1
(1
2
|α
)
=


µ+ σb(α)F−1

(
a(α) + b(α)

4b(α)

)
if a(α) < b(α),

µ+ σa(α)F−1

(
3a(α)− b(α)

4a(α)

)
if a(α) ≥ b(α).

� Spread:

The spread function, St(s), is obtained for 1
2 ≤ s ≤ 1, as

St(s) = Q(s)−Q(1− s)

= a(α) Q
(s(a(α) + b(α)) + a(α)− b(α)

2a(α)

)
− b(α) Q

( (1− s)(a(α) + b(α))

2b(α)

)
= a(α) Q

(a(α)(1 + s) + b(α)(1− s)

2a(α)

)
− b(α) Q

( (1− s)(a(α) + b(α))

2b(α)

)
.

� Shape:

The γ-functional is obtained as:

γ(s) =
Q(s) +Q(1− s)− 2me

Q(s)−Q(1− s)

=
a(α) Q

(
s(a(α)+b(α))+a(α)−b(α)

2a(α)

)
− b(α) Q

(
(1−s)(a(α)+b(α))

2b(α)

)
− 2a(α) Q

(
3a(α)−b(α)

4a(α)

)
a(α) Q

(
a(α)(1+s)+b(α)(1−s)

2a(α)

)
− b(α) Q

(
(1−s)(a(α)+b(α))

2b(α)

)
for 1

2 ≤ s ≤ 1.

� Ratio-of-spread functions:

The ratio-of-spread function, for for 1
2 ≤ u < v ≤ 1, is obtained as

R(u, v) =
St(u)

St(v)

=
a(α) Q

(
a(α)(1+u)+b(α)(1−u)

2a(α)

)
− b(α) Q

(
(1−u)(a(α)+b(α))

2b(α)

)
a(α) Q

(
a(α)(1+v)+b(α)(1−v)

2a(α)

)
− b(α) Q

(
(1−v)(a(α)+b(α))

2b(α)

)

3.4 Location-scale family of asymmetric densities

Nassiri and Loris (2013) constructed an asymmetric density by using a given density f that is symmetric

around 0, with positive real parameters λ1 and λ2 and de�ned it as

fλ1,λ2
(y) =

2λ1λ2
λ1 + λ2


f(λ1y) if y ≤ 0,

f(λ2y) if y > 0.

(41)
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This relates to the general form of a two piece distribution given in Eq.(29), if α = 1
λ1
, β = 1

λ2

and λ = λ1λ2

λ1+λ2
. The probability density function given in Eq.(41), is symmetric when λ1 = λ2, and if

λ1 = λ2 = 1 holds, then it results in the special case fλ1,λ2
(y) = f . When λ1 > λ2, a right-skew density is

obtained. The opposite follows such that when λ1 < λ2 then a left-skew density is obtained. The family

given by Arellano-Valle et al. (2005) in Eq.(33), is another special case of the Nassiri and Loris (2013)

family in Eq.(41), with λ1 = 1
b(α) and λ2 = 1

a(α) .

De�nition 6. The CDF of Y is obtained as

Fλ1,λ2
(y) =


2λ2

λ1 + λ2
F (λ1y) if y < 0,

λ2 − λ1
λ1 + λ2

+
2λ1

λ1 + λ2
F (λ2y) if y ≥ 0.

(42)

■

This is a special case of the general form of the CDF given in Eq.(30), obtained when selecting α = 1
λ1
,

β = 1
λ2

and substituting this into the special case of Eq.(30) given below:

FT

(
y;α, β, λ =

α

α+ β

)
=


2α

α+ β
F (

y

α
) for y < 0,

α− β

α+ β
+

2β

α+ β
F (

y

β
) for y ≥ 0.

(43)

The quantile function of the CDF, given by Eq.(42), follows as

Qλ1,λ2
(p) =


1

λ1
F−1

(λ1 + λ2
2λ2

p
)

if p <
λ2

λ1 + λ2
,

1

λ2

(λ1 + λ2
2λ1

p− λ2 − λ1
2λ1

)
if P ≥ λ2

λ1 + λ2
.

(44)

This relates to the general form of the quantile function given in Eq.(31), obtained when selecting

α = 1
λ1
, β = 1

λ2
and substituting this into the special case of Eq.(31) given below:

QT

(
y;α, β, λ =

α

α+ β

)
=


αQY

(y(α+ β)

2α

)
for y <

α

α+ β
,

βQY

(y(α+ β)− (β − α)

2β

)
for y ≥ α

α+ β
.

(45)

The reference symmetric density function f in Eq.(41) is a standardized form of the density given

by the location-scale family of densities, including the standard Laplace density as well as the standard

normal density. Introducing ϕ > 0, a scale parameter, and µ ∈ R, a location parameter, it follows that

fλ1,λ2(y;µ, ϕ) =
2λ1λ2

ϕ(λ1 + λ2)


f
(
λ1(

µ− y

ϕ
)
)

if y ≤ µ,

f
(
λ2(

y − µ

ϕ
)
)

if y > µ,

(46)
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where λ1, λ2 ∈ R+. Let µ = 0 and ϕ = 1, then it follows that fλ1,λ2
(y;µ, ϕ) = fλ1,λ2

(y).

Corollary 2. Assuming that f is contained in the location-scale family of symmetric densities, it follows

that if Y ∼ fλ1,λ2
(.;µ, ϕ), then for any β1, β2 ∈ R it follows that β1 + β2Y ∼ fλ1,λ2

(.;β1 + β2µ, |β1|ϕ). ■

Remark. Suppose Y is a random variable with the density function fλ1,λ2
(.;µ, ϕ), as in Eq.(46). Let

F and F−1 represent the CDF and the quantile function of the standard symmetric density function, f ,

that is symmetric around 0. Since f possesses the symmetric property, it follows that F (0) = 0.5 and

F−1(0.5) = 0.

De�nition 7. Suppose Y is a random variable with an asymmetric probability density function, fλ1,λ2
(.;µ, ϕ)

as in Eq.(46), then the CDF of Y follows as

Fλ1,λ2
(y;µ, ϕ) =


2λ2

λ1 + λ2
F
(
λ1(

y − µ

ϕ
)
)

if y < µ,

λ2 − λ1
λ1 + λ2

+
2λ1

λ1 + λ2
F
(
λ2(

y − µ

ϕ
)
)

if y ≥ µ.

(47)

For any value of β ∈ (0, 1), the quantile function of Y follows as

F−1
λ1,λ2

(β) =


µ+

ϕ

λ1
F−1

(β(λ1 + λ2)

2λ2

)
if β <

λ2
λ1 + λ2

,

µ+
ϕ

λ2
F−1

(β(λ1 + λ2) + (λ1 − λ2)

2λ1

)
if β ≥ λ2

λ1 + λ2
,

(48)

with

F−1
λ1,λ2

( λ2
λ1 + λ2

)
= µ, (49)

as stated by Nassiri and Loris (2013). ■

The maximum value of Y is found at F−1
λ1,λ2

(1), whilst the minimum value of Y is at F−1
λ1,λ2

(0).

Theorem 2. Suppose Y is a random variable with an asymmetric density fλ1,λ2(.;µ, ϕ). The r
th central

moment of Y , given that r ∈ R, follows as

E(Y − µ)r =
ϕr

(λ1 + λ2)

[λr+1
1 + (−1)r λr+1

2

λr1λ
r
2

]
µr, (50)

where

µr = 2

∫ ∞

0

srf(s)ds. (51)

The mean and variance follow as

E(Y ) = µ+
ϕ(λ1 − λ2)

λ1λ2
µ1 (52)

and

V ar(Y ) =
ϕ2

λ21λ
2
2

[(λ1 − λ2)
2(µ2 − µ2

1) + λ1λ2µ2], (53)
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respectively, whilst the skewness and kurtosis moment-ratios are obtained from Nassiri and Loris (2013)

as

γsk =
(λ1 − λ2)[(λ1 − λ2)

2(µ3 − 3µ1µ2 + 2µ3
1) + λ1λ2(2µ3 − 3µ1µ2)]

[(λ1 − λ2)2(µ2 − µ2
1) + λ1λ2µ2]

3
2

(54)

and

γku =
(λ51 + λ52)µ4 − (λ1 + λ2)(λ1 − λ2)

2[4(λ21 + λ22)µ1µ3 − 6(λ21 − λ1λ2 + λ22)µ
2
1µ2 + 3(λ1 − λ2)

2µ4
1]

(λ1 + λ2)[(λ1 − λ2)2(µ2 − µ2
1) + λ1λ2µ2]2

,

(55)

respectively. ■

Remark. It is very clear that the kurtosis and the skewness in Eq.(55) and Eq.(54) respectively, does

not depend on µ and ϕ. They depend only on λ1, λ2 and µ1, µ2, µ3 and µ4.

Properties of the location-scale family of asymmetric densities:

The general distributional properties, as found in Nassiri and Loris (2013), are

� Location:

The location-scale skew distribution has the following median

me =F−1(0.5)

=0.

� Spread:

The spread function, St(s), is obtained for 1
2 ≤ s ≤ 1, as

St(s) =Q(s)−Q(1− s)

=µ+
ϕ

λ2
Q
(s(λ1 + λ2) + (λ1 − λ2)

2λ1

)
−
(
µ+

ϕ

λ1
Q
( (1− s)(λ1 + λ2)

2λ2

))
=ϕ
( 1

λ2
− 1

λ1

)
Q
(s(λ1 + λ2) + (λ1 − λ2)

2λ1

)
Q
( (1− s)(λ1 + λ2)

2λ2

)

� Shape:
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The γ-functional value is derived as:

γ(s) =
Q(s) +Q(1− s)− 2me

Q(s)−Q(1− s)

=
µ+ ϕ

λ2
Q
(

s(λ1+λ2)+(λ1−λ2)
2λ1

)
+ µ+ ϕ

λ1
Q
(

(1−s)(λ1+λ2)
2λ2

)
− 2(0)

ϕ
(

1
λ2

− 1
λ1

)
Q
(

s(λ1+λ2)+(λ1−λ2)
2λ1

)
Q
(

(1−s)(λ1+λ2)
2λ2

)
=

2µ(
1
λ2

− 1
λ1

)
Q
(

s(λ1+λ2)+(λ1−λ2)
2λ1

)
Q
(

(1−s)(λ1+λ2)
2λ2

) +
1
λ1

+ 1
λ2

1
λ2

− 1
λ1

=
2µ(

1
λ2

− 1
λ1

)
Q
(

s(λ1+λ2)+(λ1−λ2)
2λ1

)
Q
(

(1−s)(λ1+λ2)
2λ2

) +
λ2 + λ1
λ1 − λ2

,

for 1
2 ≤ s ≤ 1.

� Ratio-of-spread functions:

The ratio-of-spread function, for for 1
2 ≤ u < v ≤ 1, is obtained as

R(u, v) =
St(u)

St(v)

=
ϕ
(

1
λ2

− 1
λ1

)
Q
(

u(λ1+λ2)+(λ1−λ2)
2λ1

)
Q
(

(1−u)(λ1+λ2)
2λ2

)
ϕ
(

1
λ2

− 1
λ1

)
Q
(

v(λ1+λ2)+(λ1−λ2)
2λ1

)
Q
(

(1−v)(λ1+λ2)
2λ2

)
=
Q
(

u(λ1+λ2)+(λ1−λ2)
2λ1

)
Q
(

(1−u)(λ1+λ2)
2λ2

)
Q
(

v(λ1+λ2)+(λ1−λ2)
2λ1

)
Q
(

(1−v)(λ1+λ2)
2λ2

) .

3.5 The method of quantile splicing

Quantile splicing is the method that refers to joining two quantile functions at a location point of choice.

Moreover, taking the median of a univariate symmetric distribution and joining the quantile functions of

the two half distributions at this point, is the method used to obtain the quantile function of a two-piece

distribution.

In Mac`Oduol et al. (2020), quantile splicing was utilized to obtain the general results of the two-piece

families of distribution's rth order L-moments. There exists an association between the L-moments of

the parent distribution as well as the the half distribution, which is disclosed by the general form, and is

attained by the order statistics.

Lemma 3. Suppose Y is a folded random variable, for which Y = |X|, Z = −Y and 0 < y < ∞. Then

the quantile functions of Y and Z follows from Mac`Oduol et al. (2020) as

QY (p) = QX

(1 + p

2

)
, 0 < p < 1 (56)

26



and

QZ(p) = QX

(p
2

)
, 0 < p < 1, (57)

respectively. ■

The half distributions used in the quantile functions are referred to as kernels in this method, hence

if there is an unknown CDF, this method can be applied to any univariate symmetric distribution. In

order to make use of the method of quantile splicing, the domains of the location parameter needs to be

attained on the left and the right side, −∞ < µ <∞.

Lemma 4. Let X be a continuous random variable, originating from a symmetric distribution, de�ned

on (−∞,∞) and let 0 < k < 1. It follows from Eq.(56) and Eq.(57) that the quantile function for the

piecewise distribution and for any given value of k, is de�ned as

QT (p) =


µ+ ασ(QX(p)−QX(k)) for p ≤ k,

µ+ σ(QX(p)−QX(k)) for p > k,

(58)

where −∞ < µ <∞ is the location parameter, α > 0 is de�ned as the shape parameter and σ > 0 follows

as the scale parameter.

De�nition 8. The CDF of X is obtained as

FT (x) =


FX

(
x−µ
ασ +QX(k)

)
for x ≤ µ,

FX

(
x−µ
σ +QX(k)

)
for x > µ.

(59)

The PDF can be obtained from the CDF as

fT (x) =


1
ασ fX

(
x−µ
ασ +QX(k)

)
for x ≤ µ,

1
σ fX

(
x−µ
σ +QX(k)

)
for x > µ.

(60)

■

Mac`Oduol et al. (2020) considered the case k = 1
2 , where the quantile splicing occurred at the median.

Suppose we let the scaling factor be k = 1
2 , as in Mac`Oduol et al. (2020). Then we get the following

results.

Lemma 5. Suppose X is a continuous random variable, as in Lemma 4, with the scaling factor k = 1
2 .
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The quantile function follows as

QT (p) =


µ+ ασ(QX(p)−QX( 12 )) for p ≤ 1

2 ,

µ+ σ(QX(p)−QX( 12 )) for p > 1
2 ,

(61)

as in Eq.(58). The CDF is obtained as

FT (x) =


FX

(
x−µ
ασ

)
for x ≤ µ,

FX

(
x−µ
σ

)
for x > µ.

(62)

The PDF follows from the CDF as

fT (x) =


1
ασ fX

(
x−µ
ασ

)
for x ≤ µ,

1
σ fX

(
x−µ
σ

)
for x > µ.

(63)

■

The results were applied to the logistic, cosine and Student's t(2) distribution and recorded in Table
1. Here are a few examples of two-piece distributions and their CDF, PDF and quantile functions.
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3.5.1 Properties of the two-piece families of distributions

The general distributional properties for the two-piece families of distributions for the logistic, cosine and

Student's t(2) distribution found in Mac`Oduol et al. (2020) are given as follows:

1. Logistic distribution:

� Location:

The median is

me =QT (
1

2
)

=µ+ σ

( 1
2

1− 1
2

)
=µ+ σlog(1)

=µ.

� Spread:

The spread function is obtained as

St(s) =QT (s)−QT (1− s)

=
{
µ+ σlog

(
s

1− s

)}
−
{
µ+ σαlog

( 1− s

1− (1− s)

)}
=σ(1 + α)log

( 1− s

1− (1− s)

)

for 1
2 < s < 1.

� Shape:

The γ-functional is derived by

γT (s) =
QT (s) +QT (1− s)− 2me

ST (s)

=

µ+ σlog

(
s

1−s

)
+ µ+ ασlog

(
1−s

1−(1−s)

)
− 2µ

σ(1 + α)log

(
1−s

1−(1−s)

)

=

σlog

(
s

1−s

)
− ασlog

(
1−s

1−(1−s)

)
σ(1 + α)log

(
1−s

1−(1−s)

)
=
1− α

1 + α

for 1
2 < s < 1.
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� Ratio-of-spread functions:

The ratio-of-spread functions, for 1
2 < a < b < 1 is

RT (a, b) =
ST (a)

ST (b)
=

σ(1 + α)log

(
a

1−a

)
σ(1 + α)log

(
b

1−b

) =

log

(
a

1−a

)
log

(
b

1−b

) .

2. Cosine distribution:

� Location:

The median is

me =QT (
1

2
)

=µ+ σ

(
4

π
arcsin

(√
1

2

)
− 1

)
=µ+ σ

(
4

π
.
π

4
− 1

)
=µ.

� Spread:

The spread function is obtained as

St(s) =QT (s)−QT (1− s)

=

{
µ+ σ

(
4

π
arcsin

(√
1

2

)
− 1

)}
−

{
µ+ σα

(
4

π
arcsin

(√
1

2

)
− 1

)}

=
4

π
σ

(
arcsin(

√
s)− α

(
π

2
− arcsin(

√
s

))
− σ(1− α)

=
4

π
σ(1 + α)arcsin(

√
s)− σ(1 + α)

=σ

(
4

π
arcsin(

√
s)− 1

)
(1 + α),

for 1
2 < s < 1.

� Shape:
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The γ-functional is derived by

γT (s) =
QT (s) +QT (1− s)− 2me

ST (s)

=

(
µ+ σ

(
4
πarcsin(

√
s)− 1

))
+
(
µ+ ασ

(
4
πarcsin(

√
1− s)− 1

))
− 2µ

σ
(
4
πarcsin(

√
s)− 1

)
(1 + α)

=
4
πσ
(
arcsin(

√
s) + α

(
π
2 − arcsin(

√
s)
))

− σ(1− α)

σ
(
4
πarcsin(

√
s)− 1

)
(1 + α)

=
4
π

(
arcsin(

√
s) + αarcsin(

√
s)
)
− (1 + α)

σ
(
4
πarcsin(

√
s)− 1

)
(1 + α)

=
σ
(
4
πarcsin(

√
s)− 1

)
(1− α)

σ
(
4
πarcsin(

√
s)− 1

)
(1 + α)

=
1− α

1 + α
,

for 1
2 < s < 1.

� Ratio-of-spread functions:

The ratio-of-spread functions, for 1
2 < a < b < 1 is

RT (a, b) =
ST (a)

ST (b)
=
σ
(
4
πarcsin(

√
a)− 1

)
(1 + α)

σ
(
4
πarcsin(

√
b)− 1

)
(1 + α)

=

(
4
πarcsin(

√
a)− 1

)(
4
πarcsin(

√
b)− 1

) .
3. Student's t(2) distribution:

� Location:

The median is

me =QT (
1

2
)

=µ+ σ

(
2. 12 − 1

(2. 12 (1−
1
2 ))

1
2

)

=µ.

� Spread:
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The spread function is derived as

St(s) =QT (s)−QT (1− s)

=

{
µ+ σ

(
2s− 1

(2s(1− s))
1
2

)}
−

{
µ+ σα

(
2(1− s)− 1

(2(1− s)(1− (1− s)))
1
2

1
2

)}

=σ

(
2s− 1

(2s(1− s))
1
2

)
+ σα

(
2s− 1

(2s(1− s))
1
2

)

=σ(1 + α)

(
2s− 1

(2s(1− s))
1
2

)
,

for 1
2 < s < 1.

� Shape:

The γ-functional is obtained as

γT (s) =
QT (s) +QT (1− s)− 2me

ST (s)

=

µ+ σ

(
2s−1

(2s(1−s))
1
2

)
+ µ+ ασ

(
2(1−s)−1

(2(1−s)(1−(1−s)))
1
2

)
− 2µ

σ(1 + α)

(
2s−1

(2s(1−s))
1
2

)
=
1− α

1 + α
,

for 1
2 < s < 1.

� Ratio-of-spread functions:

The ratio-of-spread functions, for 1
2 < a < b < 1 is

RT (a, b) =
ST (a)

ST (b)
=

(
2a−1

(2a(1−a))
1
2

)
(

2b−1

(2b(1−b))
1
2

) =
(2a− 1).(2b(1− b))

1
2

(2b− 1).(2a(1− a))
1
2

3.5.2 rth order L-moments

The rth order L-moments for the two-piece distributions has a general form stated by the following

theorem.

Theorem 3. Suppose there exists a random variable, T , that follows a two-piece (TP) distribution,

which is denoted by T ∼ TP (µ, σ, α), de�ned by its quantile function QT (s). The rth order L-moment,

for r ≥ 1, has the following general expression

LT :r = µ∗ + σ

(
LX:r − 0.5(1− α)×

r∑
j=1

c
(r−1)
j−1

µj:j

j

)
, (64)

33



where µ∗ is the location parameter for which −∞ < µ < ∞ is true, if r = 1, and if r > 1 then µ∗ = 0.

µj:j represents the expected value of the jth order statistic from a half distribution that has a sample size

n and c
(r−1)
j−1 represents the (j − 1)th coe�cient of the rth order shifted Legendre polynomial.

Proof. See Mac`Oduol et al. (2020) for detailed results.

Table 2 represents the polynomial coe�cients for j = 1, 2, ..., r − 1.

0 1 2 3 · · · j

0 c
(0)
0

1 c
(1)
0 c

(1)
1

2 c
(2)
0 c

(2)
1 c

(2)
2

3 c
(3)
0 c

(3)
1 c

(3)
2 c

(3)
3

...
...

...
...

...
. . .

r−1 c
(r−1)
0 c

(r−1)
1 c

(r−1)
2 c

(r−1)
3 c

(r−1)
j

Table 2: The coe�cients of a polynomial with degree (r − 1).

Theorem 4. The �rst 4 L-moments of T are obtained by substituting r = 1, 2, 3, 4, respectively, into

Eq.(64), to obtain

LT :1 = µ+ σ
(
LX:1 − 0.5(1− α)c

(0)
0 LZ:1

)
LT :2 = σ

(
LX:2 − 0.5(1− α)×

(
c
(1)
0 LZ:1 +

c
(1)
1

2
(LZ:1 + LZ:2)

))
LT :3 = σ

(
LX:3 − 0.5(1− α)×

(
LZ:1

(
c
(2)
0 +

c
(2)
1

2
+
c
(2)
2

3

)
+ LZ:2

(c(2)1

2
+
c
(2)
2

2

)
+ LZ:3

(c(2)2

6

)))
LT :4 = σ

(
LX:3 − 0.5(1− α)×

(
LZ:1

(
c
(3)
0 +

c
(3)
1

2
+
c
(3)
2

3
+
c
(3)
3

4

)
+
LZ:2

2
(c

(3)
1 + c

(3)
2 +

9

10
c
(3)
3 )

+
LZ:3

2

(c(3)2

3
+
c
(3)
3

2

)
+
LZ:4

20
c
(3)
3

))

Proof. See Mac`Oduol et al. (2020) for detailed results.

The coe�cients for the two-piece L-moments are given in Table 3for r = 1, 2, 3, 4.

r − 1
j − 1 0 1 2 3

0 1
1 -1 2
2 1 -6 6
3 -1 12 -30 20

Table 3: The coe�cients of a polynomial with degree (r − 1) for values r = 1, 2, 3, 4.

The L-moments of the logistic, cosine and Student's t(2) distribution are as follows:
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Distribution l1 l2 l3 l4

Logistic LT :1 = log(2)(1− α) LT :2 =
1

2
(1 + α) LT :3 =

1

4
(1− α) LT :4 =

1

12
(1 + α)

Cosine LT :1 =

(
2− 4

π

)
(1− α) LT :2 =

1

2
(1 + α) LT :3 =

2

3π
(1− α) LT :4 =

1

32
(1 + α)

Student's t(2) LT :1 =
2

π
(1− α) LT :2 =

1

2
(1 + α) LT :3 =

1

π
(1− α) LT :4 =

3

16
(1 + α)

Table 4: The L-moments of the logistic, cosine and Student's t(2) distribution

3.6 Method of estimation

Based on the existence of a closed-form expression for the L-moments of the logistic, cosine and Student's

t(2) distributions, the method of L-moments can be applied, as stated by Gilchrist (2000).
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4 Extended results using quantile splicing

4.1 Introduction

The general results from Mac`Oduol et al. (2020) are used to obtain the PDF, CDF and quantile functions

for the family of two-piece distributions, by replacing k = 1
4 . This means the family of distributions

consists of members whose quantile functions are spliced at the 1st quantile, or the 25th percentile. This

will be proposed in Chapter 4.2.1, in addition to the quantile measures and their distributional form. In

Chapter 4.2.2, the L-moments results are used to acquire a general formula of the rth L-moments when

k = 1
4 , as well as obtaining a general formula for the �rst 4 L-moments. Chapter 4.2.3 will consist of

examples of two-piece families of distributions where k = 1
4 , de�ned by their PDF, CDF and quantile

functions. Lastly, in Chapter 4.2.4 the L-moments estimation method is discussed.

4.2 General results

4.2.1 De�nition

Lemma 6. Let X be a random variable from a symmetric, uniform distribution with quantile function,

QT (p). Suppose T is a random variable from a two-piece family of distributions, spliced at the lower

quantile (k = 1
4) and denoted as T ∼ TP (µ, σ, α), where σ > 0, −∞ < µ < ∞ and α > 0 are the scale,

location and shape parameters, respectively. The quantile function of T is de�ned as

QT (p) =


µ+ ασ(QX(p)−QX( 14 )) for p ≤ 1

4 ,

µ+ σ(QX(p)−QX( 14 )) for p > 1
4 ,

(65)

as in Eq.(31). whereas the CDF is obtained as

FT (x) =


FX

(
x−µ
ασ +QX( 14 )

)
for x ≤ µ,

FX

(
x−µ
σ +QX( 14 )

)
for x > µ,

(66)

and the PDF is de�ned as

fT (x) =


1
ασ fX

(
x−µ
ασ +QX( 14 )

)
for x ≤ µ,

1
σ fX

(
x−µ
σ +QX( 14 )

)
for x > µ.

(67)

■
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4.2.2 Quantile measures of the distributional form

The quantile measures of the distributional form can be constructed, due to quantile splicing, to inves-

tigate the properties of the two-piece families of distributions with regards to their location, scale and

shape.

� Location: The median is the chosen measure of location de�ned by

me = QT

(1
2

)
. (68)

� Spread: The spread function summarises the span that is generated by the two-piece family of

distributions. This function is strictly increasing and location-invariant. The spread function is

de�ned as

ST (s) = QT (s)−QT (1− s), (69)

for 1
2 < s < 1.

For 1
2 < s < 1, it can be noted that QT (s) > QT (1− s), hence S(s) > 0. If these conditions hold,

the requirements are met for S(s) to be a valid spread function. Special cases of the spread function

exist, namely the inter-decile range (IDR) and the inter-quartile range (IQR), for which s = 9
10 and

s = 3
4 , respectively.

� γ-functional:

The γ-functional is de�ned as:

γT (s) =
QT (s) +QT (1− s)− 2QT (

1
2 )

QT (s)−QT (1− s)
=
QT (s) +QT (1− s)− 2me

QT (s)−QT (1− s)
, (70)

for 1
2 < s < 1.

The functional value increases as the numerator increases and the opposite also holds. If s = 3
4 in

Eq.(70), then the resulting equation is equal to the Bowley's quartile-based measure of skewness

proposed by Bowley (1902).

� Ratio-of-spread function:

This is an additional measure of kurtosis that describes the location of the probability mass that

exists in the distribution's tails. It gets measured for any set of values a and b, such as

RT (a, b) =
ST (a)

ST (b)
, (71)

for 1
2 < a < b < 1. Since ST (a) > ST (b) holds for

1
2 < a < b < 1, it follows that RT (a, b) > 1.
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4.2.3 rth order L-moments

Theorem 5. Let T represent a random variable that follows a two-piece distribution, denoted by T ∼

TP (µ, σ, α), for which the location parameter exists for −∞ < µ <∞ , the spread parameter is represented

by σ > 0 and α > 0 is the asymmetry parameter. Let 0 < k < 1, then the general form of the rth order

L-moments follows as

LT :r = µ∗ + σ(LX:r −QX(k))− kσ(1− α)

(∑r
j=1 c

(r−1)
j−1 µj:j

j
−QX(k)

∑r
j=1 c

(r−1)
j−1

j

)
, (72)

where QX(k) represents the quantile function of X, µj:j is the expected value of the greatest observation

in a sample of size r, originating from the kth piece distribution, which is generated from X, the parent

distribution and the coe�cients of the shifted scaled Legendre polynomials are represented by c
(r−1)
j−1 , for

j = 1, 2, ..., r and r ≥ 1.

Proof. See Mac`Oduol et al. (2020) for the detailed proofs.

Remark. Note that when r = 1, it follows that the location parameter µ∗ =
∫ 1

0
µP ∗

r−1(p)dp = µ, and

when r > 1 it equals 0.

Using Eq.(72) when k = 1
4 , the following results are obtained

Lemma 7. Let T be a random variable as in Theorem 5 and let the scaling factor k = 1
4 . Then the

general form of the rth order L-moments follows from Eq.(72) as

LT :r = µ∗ + σ
(
LX:r −QX

(1
4

))
−
(1
4

)
σ(1− α)

(∑r
j=1 c

(r−1)
j−1 µj:j

j
−QX

(1
4

)∑r
j=1 c

(r−1)
j−1

j

)
(73)

and has the following L-skewness ratio:

τT :3 =
LT :3

LT :2
, (74)

and the following L-kurtosis ratio:

tauT :4 =
LT :4

LT :2
. (75)

■

4.3 Examples of two-piece distributions spliced at the lower quartile

Examples of the two-piece families of distributions are proposed, stating their PDF, CDF and quantile

functions, as well as their L-moments, when k = 1
4 . The logistic, cosine and Student's t(2) distribution

are considered.
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4.3.1 Logistic distribution:

� De�nition and distributional properties.

The two-piece logistic distribution has the following quantile function, CDF and PDF respectively,

using Eq.(58), Eq.(59) and Eq.(60), when k = 1
4

QT (p) =


µ+ ασ

(
log
( p

1− p

)
− log

(1
3

))
, p ≤ 1

4
,

µ+ σ

(
log
( p

1− p

)
− log

(1
3

))
, p >

1

4
,

(76)

FT (x) =


e

(
x−µ
ασ +log

(
1
3

))
1 + e

(
x−µ
ασ +log

(
1
3

)) , x ≤ µ,

e

(
x−µ
σ +log

(
1
3

))
1 + e

(
x−µ
σ +log

(
1
3

)) , x > µ,

(77)

and

fT (x) =



e

(
x−µ
ασ +log

(
1
3

))
ασ
(
1 + e

(
x−µ
ασ +log

(
1
3

)))2 , x ≤ µ,

e

(
x−µ
σ +log

(
1
3

))
σ
(
1 + e

(
x−µ
σ +log

(
1
3

)))2 , x > µ,

(78)

where −∞ < µ <∞, σ > 0 and α > 0.

Figure 1 depicts the PDF of the two-piece logistic distribution, for varying values of α.
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Figure 1: The two-piece logistic distribution probability density curves, with L1 = 0 and L2 = 1, for
varying values of α > 0.

� Quantile-based measures of distributional form:

The quantile-based measures of the two-piece logistic distribution are given as

� Location: The median is

me =QT

(1
2

)
=µ+ σ

(
log
( 1

2

1− 1
2

)
− log

(1
3

))
=µ− σlog

(1
3

)
.

� Spread: The spread function is obtained as

St(s) =QT (s)−QT (1− s)

=
{
µ+ σ

(
log
( s

1− s

)
− log

(1
3

))}
−
{
µ+ ασ

(
log
( 1− s

1− (1− s)

)
− log

(1
3

))}
=σ
(
log
( s

1− s

)
− log

(1
3

))
− ασ

(
log
(1− s

s

)
− log

(1
3

))
,

for 1
2 < s < 1.

� γ-functional:
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The γ-functional is derived by

γT (s) =
QT (s) +QT (1− s)− 2me

ST (s)

=

{
µ+ σ

(
log
(

s
1−s

)
− log

(
1
3

))}
+
{
µ+ ασ

(
log
(

1−s
1−(1−s)

)
− log

(
1
3

))}
− 2
(
µ− σlog

(
1
3

))
σ
(
log
(

s
1−s

)
− log

(
1
3

))
− ασ

(
log
(

1−s
s

)
− log

(
1
3

))
=
σ
(
log
(

s
1−s

)
− log

(
1
3

))
+ ασ

(
log
(

1−s
s

)
− log

(
1
3

))
+ 2σlog

(
1
3

)
σ
(
log
(

s
1−s

)
− log

(
1
3

))
− ασ

(
log
(

1−s
s

)
− log

(
1
3

))
=
σ
(
log
(

s
1−s

)
+ log

(
1
3

))
+ ασ

(
log
(

1−s
s

)
− log

(
1
3

))
σ
(
log
(

s
1−s

)
− log

(
1
3

))
− ασ

(
log
(

1−s
s

)
− log

(
1
3

)) ,
for 1

2 < s < 1.

� Ratio-of-spread function:

The ratio-of-spread functions, for 1
2 < a < b < 1 is

RT (a, b) =
ST (a)

ST (b)
=
σ
(
log
(

a
1−a

)
− log

(
1
3

))
− ασ

(
log
(

1−a
a

)
− log

(
1
3

))
σ
(
log
(

b
1−b

)
− log

(
1
3

))
− ασ

(
log
(

1−b
b

)
− log

(
1
3

)) .
� rth order L-moments:

Theorem 6. The �rst four L-moments of a two-piece logistic distribution, when k = 1
4 follows as

LT :1 =1.38629− 0.28768α,

LT :2 =0.75 + 0.25α,

LT :3 =0.1875− 0.1875α,

LT :4 =0.04685 + 0.11979α.

The L-skewness and L-kurtosis ratios for the two-piece logistic distribution, when k = 1
4 , are given

below

τT :3 =
LT :3

LT :2
=

0.1875− 0.1875α

0.75 + 0.25α
, τT :4 =

LT :4

LT :2
=

0.04685 + 0.11979α

0.75 + 0.25α
.

Proof. See Appendix for detailed proofs.

Figure 2 presents the L-skewness and L-kurtosis ratios, for di�erent values of α.
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(a) L-skewness ratio plot (b) L-kurtosis ratio plot

Figure 2: The two-piece logistic distribution L-skewness and L-kurtosis ratio plots

It can be observed that τT :3 is a decreasing function as the value of α increases. This implies that

the distribution becomes heavily skewed as α→ ∞. Since k = 1
4 , the L-kurtosis ratio is no longer a

constant value. As the value of α→ ∞, the L-kurtosis ratio tends to a constant value of 0.479166.

4.3.2 Cosine distribution:

� De�nition and distributional properties:

The two-piece cosine distribution has the following quantile function, CDF and PDF respectively,

using Eq.(58), Eq.(59) and Eq.(60), when k = 1
4 :

QT (p) =


µ+ ασ

(
4

π
arcsin(

√
p)− 2

3

)
, p ≤ 1

4
,

µ+ σ

(
4

π
arcsin(

√
p)− 2

3

)
, p >

1

4
.

(79)

FT (x) =



0, 0 < µ− ασ,

sin2
(π
2

(x− (µ− ασ)

2ασ

)
− 1

3

)
, µ− ασ,< x < µ,

sin2
(π
2

(x− (µ− σ)

2σ

)
− 1

3

)
, µ < x < µ+ σ,

1, x ≥ µ+ σ.

(80)
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fT (x) =



π

4ασ
sin
(
π
(x− (µ− ασ)

2ασ

)
− 1

3

)
, µ− ασ < x < µ,

π

4σ
sin
(
π
(x− (µ− σ)

2σ

)
− 1

3

)
, µ < x < µ+ σ,

0 elsewhere

(81)

where −∞ < µ <∞, σ > 0 and α > 0.

Figure 3 represents the PDF of the two-piece logistic distribution, for di�erent values of α > 0.

Figure 3: The two-piece cosine distribution probability density curves, with L1 = 0 and L2 = 1, for
di�erent values of α > 0.

� Quantile-based measures of distributional form:

� Location: The median is

me =QT

(1
2

)
=µ+ σ

(
4

π
arcsin

(√1

2

)
− 2

3

)

=µ+
σ

3
.

� Spread:
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The spread function is obtained as

St(s) =QT (s)−QT (1− s)

=

{
µ+ σ

( 4
π
arcsin(

√
s)− 2

3

)}
−

{
µ+ σα

( 4
π
arcsin(

√
1− s)− 2

3

)}

=σ
( 4
π
arcsin(

√
s)− 2

3

)
− ασ

( 4
π
arcsin(

√
1− s)− 2

3

)
,

for 1
2 < s < 1.

� Shape:

The γ-functional is derived by

γT (s) =
QT (s) +QT (1− s)− 2me

ST (s)

=

(
µ+ σ

(
4
πarcsin(

√
s)− 2

3

))
+
(
µ+ σα

(
4
πarcsin(

√
1− s)− 2

3

))
− 2
(
µ+ σ

3

)
σ
(

4
πarcsin(

√
s)− 2

3

)
− ασ

(
4
πarcsin(

√
1− s)− 2

3

)
=
σ
(

4
πarcsin(

√
s)− 4

3

)
+ ασ

(
4
πarcsin(

√
1− s)− 2

3

)
σ
(

4
πarcsin(

√
s)− 2

3

)
− ασ

(
4
πarcsin(

√
1− s)− 2

3

) ,
for 1

2 < s < 1.

� Ratio-of-spread functions:

The ratio-of-spread functions, for 1
2 < a < b < 1 is

RT (a, b) =
ST (a)

ST (b)
=
σ
(

4
πarcsin(

√
a)− 2

3

)
− ασ

(
4
πarcsin(

√
1− a)− 2

3

)
σ
(

4
πarcsin(

√
b)− 2

3

)
− ασ

(
4
πarcsin(

√
1− b)− 2

3

) .
� rth order L-moments:

Theorem 7. The �rst four L-moments of a two-piece cosine distribution, when k = 1
4 follows as

LT :1 =1.56401− 0.230676α,

LT :2 =0.804499 + 0.195501α,

LT :3 =0.137832− 0.137832α,

LT :4 =− 0.0143277 + 0.076825α.

The L-skewness and L-kurtosis ratios are de�ned and given below for the two-piece cosine distribu-
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tion

τT :3 =
LT :3

LT :2
=

0.137832− 0.137832α

0.804499 + 0.195501α
, τT :4 =

LT :4

LT :2
=

0.137832− 0.137832α

0.804499 + 0.195501α
.

Proof. See Appendix for detailed proofs.

The plots of these L-skewness and L-kurtosis ratios, for di�erent values of α, are illustrated in

Figure 4.

Figure 4: The L-skewness and L-kurtosis ratio plots for the two-piece cosine distribution

It can be observed that τT :3 is a decreasing function when α > 0. The level of kurtosis, τT :4 is

increasing for all values of α > 0. Due to the scaling factor, k = 1
4 that was introduced, the level

of kurtosis is not constant for the cosine two-piece distribution, but as α → ∞, the value of the

L-kurtosis tends to a constant value of 0.392978.

4.3.3 Student's t(2) distribution:

� De�nition and distributional properties:

The two-piece Student's t(2) distribution has the following quantile function, CDF and PDF re-

spectively, using Eq.(58), Eq.(59) and Eq.(60), when k = 1
4 :

QT (p) =


µ+ ασ

(
2p− 1

(2p(1− p))
1
2

+

√
6

3

)
, p ≤ 1

4
,

µ+ σ

(
2p− 1

(2p(1− p))
1
2

+

√
6

3

)
, p >

1

4
,

(82)
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FT (x) =



1

2

(
1 +

x−µ
ασ −

√
6
3√

2 +
(
x−µ
ασ

)2 − √
6
3

)
, x ≤ µ,

1

2

(
1 +

x−µ
σ −

√
6
3√

2 +
(
x−µ
σ

)2 − √
6
3

)
, x > µ.

(83)

fT (x) =


1

ασ

(
2 +

(x− µ

ασ

)2
−

√
6

3

)− 3
2

, x ≤ µ,

1

σ

(
2 +

(x− µ

σ

)2
−

√
6

3

)− 3
2

, x > µ.

(84)

where −∞ < µ <∞, σ > 0 and α > 0.

Figure 5 depicts the PDF of the two-piece Student's t(2) distribution, for varying values of α > 0.

Figure 5: The two-piece Student's t(2) distribution probability density curves, with L1 = 0 and L2 = 1,
for di�erent values of α > 0.

� Quantile-based measures of distributional form:

� Location:
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The median is

me =QT (
1

2
)

=µ+ σ

(
2. 12 − 1√

(2. 12 (1−
1
2 ))

−
√
6

3

)

=µ− σ
(√6

3

)
.

� Spread:

The spread function is derived as

St(s) =QT (s)−QT (1− s)

=

{
µ+ σ

(
2s− 1√
2s(1− s)

−
√
6

3

)}
−

{
µ+ ασ

(
2(1− s)− 1√

(2(1− s)(1− (1− s))
−

√
6

3

)}

=σ

(
2s− 1√
2s(1− s)

−
√
6

3

)
− σα

(
2− 2s− 1√
s(2− 2s)

−
√
6

3

)

=σ

(
2s− 1√
2s− s2

−
√
6

3

)
+ σα

(
2s− 1√
2s− s2

−
√
6

3

)

=σ(1 + α)

(
2s− 1√
2s− s2

−
√
6

3

)
,

for 1
2 < s < 1.

� Shape:

The γ-functional is obtained as

γT (s) =
QT (s) +QT (1− s)− 2me

ST (s)

=

{
µ+ σ

(
2s−1√
2s(1−s)

−
√
6
3

)}
−

{
µ+ ασ

(
2(1−s)−1√

2(1−s)(1−(1−s))
−

√
6
3

)}
− 2
(
µ− σ

(√
6
6

))
σ(1 + α)

(
2s−1√
2s−s2

−
√
6
3

)

=

σ

(
2s−1√
2s−s2

−
√
6
3

)
+ σα

(
2s−1√
2s−s2

−
√
6
3

)
+ 2σ

(√
6
3

)
σ(1 + α)

(
2s−1√
2s−s2

−
√
6
3

)

=

σ

(
2s−1√
2s−s2

+
√
6
3

)
+ σα

(
2s−1√
2s−s2

−
√
6
3

)

σ(1 + α)

(
2s−1√
2s−s2

−
√
6
3

) ,
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for 1
2 < s < 1.

� Ratio-of-spread functions:

The ratio-of-spread functions, for 1
2 < a < b < 1 is

RT (a, b) =
ST (a)

ST (b)
=

σ(1 + α)

(
2a−1√
2a−a2

−
√
6
3

)

σ(1 + α)

(
2b−1√
2b−b2

−
√
6
3

) =

(
2a−1√
2a−a2

−
√
6
3

)
(

2b−1√
2b−b2

−
√
6
3

) .

� rth order L-moments:

Theorem 8. The �rst four L-moments of a two-piece Student's t(2) distribution, when k = 1
4

follows as

LT :1 =1.10266− 0.36755α,

LT :2 =0.66667 + 0.33333α,

LT :3 =0.27566− 0.27566α,

LT :4 =0.16855 + 0.211145α.

The L-skewness and L-kurtosis ratios are de�ned, for the two-piece Student's t(2) distribution, as

τT :3 =
LT :3

LT :2
=

0.27566− 0.27566α

0.66667 + 0.33333α
, τT :4 =

LT :4

LT :2
=

0.16855 + 0.211145α

0.66667 + 0.33333α
.

Proof. See Appendix for detailed proofs.

Figure 6 depicts the L-skewness and L-kurtosis ratios, for di�erent values of α.
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Figure 6: The L-skewness and L-kurtosis ratio plots for the two-piece Student's t(2) distribution

It can be observed that τT :3 is a decreasing function as α increases. τT :4 is an increasing function as

α increases. Since k = 1
4 , the L-kurtosis is no longer a constant ratio for this two-piece distribution,

however, as α→ ∞, the L-kurtosis ratio tends to a constant value of 0.633434.

4.4 Method of L-moments estimation

Assuming that there does not exist any closed-form expressions for the PDF or CDF, it makes the

process of matching a data set to this model more di�cult. Hence, another estimation method, other

than maximum likelihood estimation and the method of moments estimation is considered. Let S(θ)

represents a set of functions that represents the properties of the population. S(θ) is dependent on the

quantile function, QX(r; θ), and its parameters θ. Therefore, the number of sample quantities matches

the number of functions in S(θ).

If the model is a quantile-based distribution, then making use of the quantile function is very bene�cial.

The occurrence of the method of percentiles for speci�c percentiles arose due to this advantage, where

S(θ) = (me), IQR or the quantile function Q(r; θ).

The method of L-moments matches S(θ) for the sample quantities, which are the sample L-moments

for this case, as suggested by Hosking (1990). Due to the L-moments that have a closed-form expression

in Eq.(64), this method is applied in order to �nd the parameter estimates for the two-piece families of

distributions. During this process, four sample quantities are considered and matched to the population

functions that need to be estimated, denoted by ℓi, for i = 1, 2, 3, 4. ℓ1 is matched to the location

parameter, ℓ2 is matched to the scale parameter, ℓ3 is matched to the L-skewness ratio (τ3) and lastly ℓ4

is matched to the L-kurtosis ratio (τ4).

These values are de�ned by the sample order statistics of size=n. Thereafter, the U -statistics are

used to estimate these values, by de�ning the average of the sub-samples as a function, with a size of r.
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U -statistics are a direct result obtained from the observed data, of size n.

Lemma 8. Let X1, X2, X3, ..., Xn represent a sample of size n. The ordered sample follows as X(1) <

X(2) < X(3) < ... < X(n). The r
th sample ℓ-moment, de�ned by Hosking (1990), is given as

ℓr =

(
n

r

)−1 ∑∑∑
. . .
∑∑

1<i1<i2<i3<...<ir<n

r−1
r−1∑
k=0

(−1)k
(
r − 1

k

)
xir−k:n

, (85)

for r = 1, 2, 3, ..., n.

The �rst four ℓ-moments obtained from Eq.(85) are

l1 =
1

n

n∑
i=1

xi = x̄,

l2 =
1

2

(
n

2

)−1 n∑
i>j

∑
(xi − xj),

l3 =
1

3

(
n

3

)−1 n∑
i>j>k

∑∑
(xi − 2xj + xk),

l4 =
1

4

(
n

4

)−1 n∑
i>j>k>l

∑∑∑
(xi − 3xj + 3xk − xl). (86)

The sample has the following L-skewness ratio:

t3 =
l3
l4
, (87)

and the following L-kurtosis ratio:

t3 =
l4
l2
. (88)

■

Parameter estimates are obtained by matching the estimates in Lemma 8 to the population values of

any univariate two-piece distribution,by following the subsequent steps.

Step 1:

Applying Eq.(77) to the observed data set, the �rst four sample L-moments can be obtained. Using

Eq.(87) and Eq.(88), the sample L-kurtosis and L-skewness ratios are calculated, respectively.

Thereafter the e�ectiveness of this proposed two-piece distribution is veri�ed by �tting the t3 and

t4 values to the (τT :3, τT :4)-space of the two-piece distribution. If they lie within this space, we

conclude that the proposed two-piece distribution may be �t to the data set.

If there exists an additional shape parameter in the two-piece distribution, then the (τT :3a, τT :4)-

space is a region enclosed by all combinations of the two shape parameters. If t3 and t4 exist within

this region, then the estimation process can continue.
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Step 2:

Solve α̂, the asymmetry parameter estimate.. Set t3 = τT :3.

Step 3:

Solve σ̂, the scale parameter estimate, by substituting the parameter estimates found in Step 2 into

the formula for LT :2. Equate this expression to l2 and solve appropriately.

Step 4:

Solve µ̂, the location parameter estimate, by substituting the parameter estimates found in Step 2

and Step 3 into the formula for LT :1 from the two-piece distribution and equate this to ℓ1 and solve

the unknown parameter estimate accordingly.

Step 5:

The standard errors of the parameter estimates are calculated, using the bootstrap method, for

N = 10000 samples.
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5 Maximum likelihood estimation

5.1 Introduction:

According to Gilchrist (2000), the general idea behind the likelihood function is that an observation xi,

in a small interval dxi, has the probability of occurrence f(xi : θ) dxi, where f(xi : θ) represents the

PDF with parameter θ. If a set of n independent observations exists, then the probability changes to the

product of the marginal PDFs of the independent observations,
∏
(f(xi : θ) dxi).

Therefore, the likelihood function is de�ned as

l(θ) =
∏

(f(xi : θ) dxi)

= f(x1 : θ)f(x2 : θ)...f(xn : θ). (89)

The likelihood is large if the value selected for θ is near the true value, whilst the likelihood is small if

the value selected for θ is a far o�, relative to the true value.

5.2 MLE for quantile-based distributions

The likelihood function for quantile functions is de�ned as

L(θ) = fp(p(1) : θ)fp(p(2) : θ)...fp(p(n) : θ), (90)

with pr de�ned as xr = Q(p(r) : θ). This corresponds to the p-value which generates the observed x for

a given value of θ. The log-likelihood is de�ned as

l(θ) = ln[L(θ)]

=
∑

ln fp(p(r) : θ). (91)

The log-likelihood is a maximized goodness-of-�t criterion. The method of maximum likelihood selects

the parameter to maximise the likelihood, or rather, the log-likelihood. The advantage of utilizing the

method of maximum likelihood is that it produces estimators with useful properties. These properties

include:

� The maximum likelihood estimators θ̂, obtained for big samples, are unbiased, follow an approxi-

mately normal distribution and have a minimum variance value.

� If a minimum variance and the unbiased property holds theoretically for an estimator from a small
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sample, then the estimator is granted the maximum likelihood.

� The properties of the variance of the obtained estimators are derivable.

� The more observations obtained in the sample implies that the estimators become closer to the true

value, hence they are consistent estimators.

Proposition:

Considering the family of distributions obtained by the transformation X = ν + δ−1Z, where δ > 0, is

used as shown by Kim (2005). A random variable, X, has the following density

h(x; θ, ν, δ) = cθδϕ(δ(x− ν))Φ(θδ|x− ν|). (92)

Suppose there exists a random sample emanating from the density in Eq.(92) that exists, such as

X1, X2, ..., Xn. The log-likelihood of the parameters θ, ν and δ follows as

Ln(θ, δ, ν) = nlncθ + nlnδ +

n∑
i=1

lnϕ(δ(xi − ν)) +
∑
1

lnΦ(δθ(xi − ν)) +
∑
2

lnΦ(−δθ(xi − ν)), (93)

where the summation over all observations is represented by
∑

1 for xi − ν ≥ 0 and
∑

2 for xi − ν < 0.

After reparametrisation, such that α = δν, and keeping θ �xed, the log-likelihood Ln changes to

Ln = constant+ nlnδ +

n∑
i=1

lnϕ(ωi) +
∑
1

lnΦ(ui) +
∑
2

lnΦ(vi), (94)

where ωi = δxi − α, ui = θδxi − θα and vi = −θδxi − θα.

Due to the log-concavity of Eq.(94), keeping θ �xed, it follows that δ and α have unique solutions.

Applying the same methodology as Azzalini (1985), we estimate by solving for δ and α, keeping θ �xed,

the following equations

∂Ln

∂δ
= nδ−1 −

n∑
i=1

ωixi + θ
{∑

1

xiη(ui)−
∑
2

xiη(vi)
}
= 0 (95)

∂Ln

∂α
=

n∑
i=1

ωi − θ
{∑

1

η(ui)−
∑
2

η(vi)
}
= 0, (96)

with η(ui) = ϕ(ui)
Φ(ui)

and η(vi) = ϕ(vi)
Φ(vi)

. This can be solved via the Newton-Raphson method. A range

of values for θ is selected, and this step is repeated with this range of values for θ to generate a pro�le

likelihood, from which the value of θ can be estimated.
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The sample information matrix obtained via the Newton-Raphson procedure is

−∂2Ln

∂δ2
= nδ−2 +

n∑
i=1

x2i + θ2
{∑

1

[x2iuiη(ui) + x2i η(ui)
2] +

∑
2

[x2i viη(vi) + x2i η(vi)
2]
}
, (97)

−∂2Ln

∂α2
= −n+ θ2

{∑
1

[uiη(ui) + η(ui)
2] +

∑
2

[viη(vi) + η(vi)
2]
}
, (98)

−∂2Ln

∂α∂δ
= −

n∑
i=1

xi − θ2
{∑

1

[xiuiη(ui) + xiη(ui)
2] +

∑
2

[xiviη(vi) + xiη(vi)
2]
}
. (99)

■

The proposition holds for the more general model, Xi = τ ′iβ + δ−1Zi, for i = 1, 2, ..., n and where β

is a p-dimensional parameter, τi represents the p-vector of covariates and Z1, Z2, ..., Zn are iid random

variables that follow a two-piece skew-normal distribution with the shape parameter θ. The maximum

likelihood estimators may also be derived using the pro�le log-likelihood in Eq.(94).

The method of maximum likelihood estimation requires maximising the log-likelihood function, in

terms of an additional parameter r, where 0 ≤ r ≤ n, which is included in the log-likelihood de�ned in

the following theorem.

Theorem 9. The log-likelihood l(θ, σ2, ϵ), includes an integer r = r(x(1), x(2), ..., x(n)) for 0 ≤ r ≤ n,

and may be represented by

l(θ, σ2, ϵ) =


− n

2
log2πσ2 − 1

8σ2
[

n∑
i=1

(x(i) − θ)2] if r = 0, n,

− n

2
log2πσ2 − 1

2σ2
[

r∑
i=1

(x(i) − θ)2

(1 + ϵ)2
+

n∑
i=r+1

(x(i) − θ)2

(1 + ϵ)2
] if 1 ≤ r ≤ n,

(100)

where the order statistics of an epsilon-skew normal population, ESN(θ, σ, ϵ), sample is represented by

x(1) ≤ x(2) ≤ ... ≤ x(n) and the log-likelihood's form originates from the PDF of the ESN(θ, σ, ϵ) distri-

bution. ■

This theorem originates from Mudholkar and Hutson (2000). The form obtained when r = 0 is

equivalent to the case when ϵ = −1 in the PDF. Likewise, when r = n is equivalent to when ϵ = 1 in

the PDF of the ESN(θ, σ, ϵ). The log-likelihood corresponds to the half-normal distributions, when r = 1

and r = n.

Lemma 9. The maximum likelihood estimate of (θ̂, σ̂2, ϵ̂), when r = 0 and r = n follows as

(θ̂, σ̂2, ϵ̂) =


(x(1), s

2
0,−1) if r = 0,

(x(n), s
2
n, 1) if r = n,

(101)

where s20 =
∑n

i=2
(x(i)−x(1))

2

4n and s2n =
∑n−1

i=1
(x(i)−x(n))

2

4n .
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If 0 ≤ r ≤ 1, then the local minima of the following

hj(x, θ) =
1

4

{[ j∑
i=1

(x(i) − θ)2
] 1

3

+
[ n∑
i=j+1

(x(i) − θ)2
] 1

3

}3

, (102)

for j = 1, 2, ..., n − 1, can be used to establish the local maxima of the log-likelihood of the ESN(θ, σ, ϵ)

family, as stated by Mudholkar and Hutson (2000).

Proof. If 0 ≤ r ≤ n holds for a �xed value of σ2, then the log-likelihood l(θ, σ2, ϵ) in Eq.(100) is maximised

where the local minima is as follows

hj(x, θ, ϵ) =

j∑
i=1

(x(i) − θ)2

(1 + ϵ)2
+

n∑
i=j+1

(x(i) − θ)2

(1− ϵ)2
, (103)

for −1 < ϵ < 1 and j = 1, 2, ..., n− 1. Equating the derivative of Eq.(103) to 0, with respect to ϵ, follows

as
j∑

i=1

(x(i) − θ)2

(1 + ϵ)3
+

n∑
i=j+1

(x(i) − θ)2

(1− ϵ)3
= 0. (104)

If ϵ is removed between Eq.(103) and Eq.(104), the minimum of hj(x, θ, ϵ), in terms of ϵ is

hj(x, θ) =
1

4

{[ j∑
i=1

(x(i) − θ)2
] 1

3

+
[ n∑
i=j+1

(x(i) − θ)2
] 1

3

}3

. (105)

Therefore, hj(x, θ) needs to be minimised in terms of θ, for x(j) ≤ θ ≤ x(j+1). The following derivative

of hj(x, θ) exists, in terms of θ

h′j(x, θ) = −2

3

{
j∑

i=1

(x(i) − θ)2
[ j∑

i=1

(x(i) − θ)2
]− 2

3

+

n∑
i=j+1

(x(i) − θ)2
[ n∑
i=j+1

(x(i) − θ)2
]− 2

3

}
. (106)

The solution of h′j(x, θ) = 0, for j = 1, 2, ..., n − 1 is clearly the local stationary points of the log-

likelihood.
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5.3 Theoretical results to obtain MLE estimates for two-piece families of

distributions

5.3.1 Two-piece logistic distribution

Using the PDF given in Mac`Oduol et al. (2020) for the two-piece logistic distribution, the log-likelihood

function of the two-piece logistic distribution, when k = 1
2 , follows as:

l(X) =−
n∑

i=1

[Xi − µ

ασ
− ln(ασ)− ln

(
1 + e

Xi−µ

ασ

)2]
I[Xi≤µ]

+
[Xi − µ

σ
− ln(σ)− ln

(
1 + e

Xi−µ

σ

)2]
I[Xi>µ]

= −
n∑

i=1

[Xi − µ

ασ
− ln(ασ)− 2ln

(
1 + e

Xi−µ

ασ

)]
I[Xi≤µ]

+
[Xi − µ

σ
− ln(σ)− 2ln

(
1 + e

Xi−µ

σ

)]
I[Xi>µ]

= nln(ασ)−
n∑

i=1

[Xi − µ

ασ
− 2ln

(
1 + e

Xi−µ

ασ

)]
I[Xi≤µ]

+ nln(σ)−
n∑

i=1

[Xi − µ

σ
− 2ln

(
1 + e

Xi−µ

σ

)]
I[Xi>µ]

(107)

The partial derivatives are derived with respect to α, σ and µ, from Eq.(107), such that:

∂l(X)

∂α
=
n

ασ
σ −

n∑
i=1

[
− Xi − µ

α2σ
+ 2
(eXi−µ

ασ

(
Xi−µ
α2σ

)
1 + e

Xi−µ

ασ

)]
I[Xi≤µ]

=
n

α
−

n∑
i=1

[(Xi − µ

α2σ

)(eXi−µ

ασ − 1

1 + e
Xi−µ

ασ

)]
I[Xi≤µ]

(108)

∂l(X)

∂σ
=
2n

σ
−

n∑
i=1

[(Xi − µ

ασ2

)(eXi−µ

ασ − 1

1 + e
Xi−µ

ασ

)]
I[Xi≤µ]

+
[(Xi − µ

σ2

)(eXi−µ

σ − 1

1 + e
Xi−µ

σ

)]
I[Xi>µ]

(109)

∂l(X)

∂µ
=−

n∑
i=1

[(eXi−µ

ασ − 1

1 + e
Xi−µ

ασ

)( 1

ασ

)]
I[Xi≤µ]

+
[(eXi−µ

σ − 1

1 + e
Xi−µ

σ

)( 1
σ

)]
I[Xi>µ]

(110)

The second derivatives are derived with respect to α, σ and µ, from Eq.(108), Eq.(109)and Eq.(110) to

obtain:

∂2l(X)

∂α2
=− n

α2
+

n∑
i=1

[(2(Xi − µ)

α4σ2

)(ασe 2(Xi−µ)

ασ + (Xi − µ)e
Xi−µ

ασ − ασ(
1 + e

Xi−µ

ασ

)2
)]

I[Xi≤µ]
(111)
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∂2l(X)

∂σ2
=− 2n

σ2
−

n∑
i=1

[(−2(Xi − µ)

α2σ4

)(ασe 2(Xi−µ)

ασ + (Xi − µ)e
Xi−µ

ασ − ασ(
1 + e

Xi−µ

ασ

)2
)]

I[Xi≤µ]
−
[(2(Xi − µ)

σ4

)
(
σe

2(Xi−µ)

σ + (Xi − µ)e
Xi−µ

σ − σ(
1 + e

Xi−µ

σ

)2
)]

I[Xi>µ]
(112)

∂2l(X)

∂µ2
=−

n∑
i=1

[( −2e
Xi−µ

ασ

ασ
(
1 + e

Xi−µ

ασ

)2
)]

I[Xi≤µ]
−
[( 2e

Xi−µ

σ

σ
(
1 + e

Xi−µ

σ

)2
)]

I[Xi>µ]
(113)

Using the PDF given in Eq.(78), the log-likelihood function of the two-piece logistic distribution, when

k = 1
4 , follows as:

l(X) =−
n∑

i=1

[Xi − µ

ασ
+ log

(1
3

)
− ln(ασ)− ln

(
1 + e

Xi−µ

ασ +log( 1
3 )
)2]

I[Xi≤µ]
+
[Xi − µ

σ
+ log

(1
3

)
− ln(σ)

− ln
(
1 + e

Xi−µ

σ +log( 1
3 )
)2]

I[Xi>µ]

= −2nlog
(1
3

)
+ nln(ασ)−

n∑
i=1

[Xi − µ

ασ
− 2ln

(
1 + e

Xi−µ

ασ +log( 1
3 )
)]

I[Xi≤µ]
+ nln(σ)−

n∑
i=1

[Xi − µ

σ

− 2ln
(
1 + e

Xi−µ

σ +log( 1
3 )
)]

I[Xi>µ]
(114)

The partial derivatives are derived with respect to α, σ and µ, from Eq.(114), such that:

∂l(X)

∂α
=
n

α
−

n∑
i=1

[Xi − µ

α2σ

(eXi−µ

ασ − 3

e
Xi−µ

ασ + 3

)]
I[Xi≤µ]

(115)

∂l(X)

∂σ
=
2n

σ
−

n∑
i=1

[(Xi − µ

ασ2

)(eXi−µ

ασ − 3

e
Xi−µ

ασ + 3

)]
I[Xi≤µ]

−
n∑

i=1

[(Xi − µ

σ2

)(eXi−µ

σ − 3

e
Xi−µ

σ + 3

)]
I[Xi>µ]

(116)

∂l(X)

∂µ
=−

n∑
i=1

[(eXi−µ

ασ − 3

e
Xi−µ

ασ + 3

)
I[Xi≤µ]

+
(eXi−µ

ασ − 3

e
Xi−µ

ασ + 3

)
I[Xi>µ]

]
(117)

The second derivatives are derived with respect to α, σ and µ, from Eq.(115), Eq.(116) and Eq.(117) to

obtain:

∂2l(X)

∂α2
=− n

α2
+

n∑
i=1

[(2(Xi − µ)

α4σ2

)(ασe 2(Xi−µ)

ασ + (3Xi − 3µ)e
Xi−µ

ασ − 9ασ(
e

Xi−µ

ασ + 3
)2

)]
I[Xi≤µ]

(118)
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∂2l(X)

∂σ2
=− 2n

σ2
−

n∑
i=1

[(−2(Xi − µ)

α2σ4

)(ασe 2(Xi−µ)

ασ + (3Xi − 3µ)e
Xi−µ

ασ − 9ασ(
e

Xi−µ

ασ + 3
)2

)]
I[Xi≤µ]

−
[(2(Xi − µ)

σ4

)
(
σe

2(Xi−µ)

σ + (3Xi − 3µ)e
Xi−µ

σ − 9σ(
e

Xi−µ

σ + 3
)2

)]
I[Xi>µ]

(119)

∂2l(X)

∂µ2
=−

n∑
i=1

[( −6e
Xi−µ

ασ

ασ
(
e

Xi−µ

ασ + 3
)2
)]

I[Xi≤µ]
−
[( 6e

Xi−µ

σ

σ
(
e

Xi−µ

σ + 3
)2
)]

I[Xi>µ]
(120)

5.3.2 Two-piece cosine distribution

Using the PDF given in Mac`Oduol et al. (2020) for the two-piece cosine distribution, the log-likelihood

function of the two-piece cosine distribution, when k = 1
2 , follows as:

l(X) =−
n∑

i=1

[
ln(π)− ln(4ασ) + ln

(
sin
(
π
(Xi − (µ− ασ)

2ασ

)))]
I[µ−ασ<Xi≤µ]

+
[
ln(π)− ln(4σ)

+ ln
(
sin
(
π
(Xi − (µ− σ)

2σ

)))]
I[µ<Xi≤µ+σ]

=− 2nln(π) + nln(4ασ) + nln(4σ)−
n∑

i=1

[
ln
(
sin
(
π
(Xi − (µ− ασ)

2ασ

)))]
I[µ−ασ<Xi≤µ]

+
[
ln
(
sin
(
π
(Xi − (µ− σ)

2σ

)))]
I[µ<Xi≤µ+σ]

(121)

The partial derivatives are derived with respect to α, σ and µ, from Eq.(121), such that:

∂l(X)

∂α
=
n

α
+

n∑
i=1

[(π(Xi − µ)

2α2σ

)(cos( π
2ασ (Xi − (µ− ασ))

)
sin
(

π
2ασ (Xi − (µ− ασ))

))]
II[µ−ασ<Xi≤µ]

(122)

∂l(X)

∂σ
=
2n

σ
+

n∑
i=1

[(π(Xi − µ)

2ασ2

)(cos( π
2ασ (Xi − (µ− ασ))

)
sin
(

π
2ασ (Xi − (µ− ασ))

))]
I[µ−ασ<Xi≤µ]

+

n∑
i=1

[(π(Xi − µ)

2σ2

)(cos( π
2σ (Xi − (µ− σ))

)
sin
(

π
2σ (Xi − (µ− σ))

))]
I[µ<Xi≤µ+σ]

(123)

∂l(X)

∂µ
=

n∑
i=1

[( π

2ασ

)(cos( π
2ασ (Xi − (µ− ασ))

)
sin
(

π
2ασ (Xi − (µ− ασ))

))]
I[µ−ασ<Xi≤µ]

+

n∑
i=1

[( π
2σ

)(cos( π
2σ (Xi − (µ− σ))

)
sin
(

π
2σ (Xi − (µ− σ))

))]
I[µ<Xi≤µ+σ]

(124)
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Using the PDF given in Eq.(81), the log-likelihood function of the two-piece cosine distribution, when

k = 1
4 , follows as:

l(X) =−
n∑

i=1

[
ln(π)− ln(4ασ) + ln

(
sin
(
π
(Xi − (µ− ασ)

2ασ

)
− 1

3

))]
I[µ−ασ<Xi≤µ]

+
[
ln(π)− ln(4σ)

+ ln
(
sin
(
π
(Xi − (µ− σ)

2σ

)
− 1

3

))]
I[µ<Xi≤µ+σ]

=nln(π) + nln(4ασ)−
n∑

i=1

[
ln
(
sin
(
π
(Xi − (µ− ασ)

2ασ

)
− 1

3

))]
I[µ−ασ<Xi≤µ]

+
[
ln(π)− ln(4σ)

+ ln
(
sin
(
π
(Xi − (µ− σ)

2σ

)
− 1

3

))]
I[µ<Xi≤µ+σ]

(125)

The partial derivatives are derived with respect to α, σ and µ, from Eq.(125), such that:

∂l(X)

∂α
=
n

α
+

n∑
i=1

[(3π(Xi − µ)

2α2σ

)( cos
(

π
2ασ (Xi − (µ− ασ))

)
(
3sin

(
π

2ασ (Xi − (µ− ασ))
)
− 1
))]

I[µ−ασ<Xi≤µ]
(126)

∂l(X)

∂σ
=
2n

σ
+

n∑
i=1

[(3π(Xi − µ)

2ασ2

)( cos
(

π
2ασ (Xi − (µ− ασ))

)
(
3sin

(
π

2ασ (Xi − (µ− ασ))
)
− 1
))]

I[µ−ασ<Xi≤µ]

+

n∑
i=1

[(3π(Xi − µ)

2σ2

)( cos
(

π
2σ (Xi − (µ− σ))

)
(
3sin

(
π
2σ (Xi − (µ− σ))

)
− 1
))]

I[µ<Xi≤µ+σ]
(127)

∂l(X)

∂µ
=

n∑
i=1

[( π

2ασ

)( cos
(

π
2ασ (Xi − (µ− ασ))

)
(
sin
(

π
2ασ (Xi − (µ− ασ))

)
− 1

3

))]
I[µ−ασ<Xi≤µ]

+

n∑
i=1

[( π
2σ

)( cos
(

π
2σ (Xi − (µ− σ))

)
(
sin
(

π
2σ (Xi − (µ− σ))

)
− 1

3

))]
I[µ<Xi≤µ+σ]

(128)

5.3.3 Two-piece Student's t(2) distribution

Using the PDF given in Mac`Oduol et al. (2020) for the two-piece Student's t(2) distribution, the log-

likelihood function of the two-piece Student's t(2) distribution, when k = 1
2 , follows as:

l(X) =−
n∑

i=1

[
ln(1)− ln(ασ) + ln

(
2 +

(Xi − µ

ασ

)2)− 3
2
]
I[Xi≤µ]

+
[
ln(1)− ln(σ) + ln

(
2 +

(Xi − µ

σ

)2)− 3
2
]
I[Xi>µ]

=nln(ασ) +
3

2

n∑
i=1

[
ln
(
2 +

(Xi − µ

ασ

)2)]
I[Xi≤µ]

+ nln(σ) +
3

2

n∑
i=1

[
ln
(
2 +

(Xi − µ

σ

)2)]
I[Xi>µ]

(129)
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The partial derivatives are derived with respect to α, σ and µ, from Eq.(129), such that:

∂l(X)

∂α
=
n

ασ
σ +

3

2

n∑
i=1

[( 1

2 +
(

Xi−µ
ασ

)2)( (Xi − µ)2

σ2
× −2

α3

)]
I[Xi≤µ]

=
n

α
− 3

n∑
i=1

[( (Xi − µ)2

α3σ2
(
2 +

(
Xi−µ
ασ

)2))]
I[Xi≤µ]

(130)

∂l(X)

∂σ
=
2n

σ
− 3

n∑
i=1

[( (Xi − µ)2

α2σ3
(
2 +

(
Xi−µ
ασ

)2))]
I[Xi≤µ]

+
[( (Xi − µ)2

σ3
(
2 +

(
Xi−µ

σ

)2))]
I[Xi>µ]

(131)

∂l(X)

∂µ
=− 3

n∑
i=1

[( (Xi − µ)

α2σ2
(
2 +

(
Xi−µ
ασ

)2))]
I[Xi≤µ]

+
[( (Xi − µ)

σ2
(
2 +

(
Xi−µ

σ

)2))]
I[Xi>µ]

(132)

The second derivatives are derived with respect to α, σ and µ, from Eq.(130), Eq.(131) and Eq.(132) to

obtain:

∂2l(X)

∂α2
=− n

α2
+ 3

n∑
i=1

[ (Xi − µ)2(X2
i − 2Xiµ+ 6α2σ2 + µ2)

α2(X2
i − 2Xiµ+ 2α2σ2 + µ2)2

]
I[Xi≤µ]

(133)

∂2l(X)

∂σ2
=− 2n

σ2
+

n∑
i=1

[(3(Xi − µ)2(X2
i − 2Xiµ+ 6α2σ2 +mu2)

σ2(X2
i − 2Xiµ+ 2α2σ2 +mu2)2

)]
I[Xi≤µ]

+
[( 9(Xi − µ)2

σ4
(
2 +

(
Xi−µ

σ

)2) − 6(Xi − µ)2

σ6
(
2 +

(
Xi−µ

σ

)2)2)]
I[Xi>µ]

(134)

∂2l(X)

∂µ2
=

n∑
i=1

[−3(X2
i − 2Xiµ− 2α2σ2 + µ2)

(X2
i − 2Xiµ+ 2α2σ2 + µ2)2

]
I[Xi≤µ]

+
[( 3

σ2
(
2 +

(
Xi−µ

σ

)2))

−
( 6(Xi − µ)2

σ4
(
2 +

(
Xi−µ

σ

)2)2)]
I[Xi>µ]

(135)

Using the PDF given in Eq.(84), the log-likelihood function of the two-piece Student's t(2) distribution,
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when k = 1
4 follows as:

l(X) =−
n∑

i=1

[
ln(1)− ln(ασ) + ln

(
2 +

(Xi − µ

ασ

)2
−

√
6

3

)− 3
2
]
I[Xi≤µ]

+
[
ln(1)− ln(σ) + ln

(
2 +

(Xi − µ

σ

)2
−

√
6

3

)− 3
2
]
I[Xi>µ]

=nln(ασ) +
3

2

n∑
i=1

[
ln
(
2 +

(Xi − µ

ασ

)2
−

√
6

3

)]
I[Xi≤µ]

+ nln(σ) +
3

2

n∑
i=1

[
ln
(
2 +

(Xi − µ

σ

)2
−

√
6

3

)]
I[Xi>µ]

(136)

The partial derivatives are derived with respect to α, σ and µ, from Eq.(136), such that:

∂l(X)

∂α
=
n

α
− 3

n∑
i=1

[ (Xi − µ)2

α3σ2
(
2 +

(
Xi−µ
ασ

)2
−

√
6
3

)]
I[Xi≤µ]

(137)

∂l(X)

∂σ
=
2n

σ
− 3

n∑
i=1

([ (Xi − µ)2

α2σ3
(
2 +

(
Xi−µ
ασ

)2
−

√
6
3

)]
I[Xi≤µ]

+
[ (Xi − µ)2

σ3
(
2 +

(
Xi−µ

σ

)2
−

√
6
3

)]
I[Xi>µ]

)
(138)

∂l(X)

∂µ
=− 3

n∑
i=1

([ (Xi − µ)2

α2σ2
(
2 +

(
Xi−µ
ασ

)2
−

√
6
3

)]
I[Xi≤µ]

+
[ (Xi − µ)2

σ2
(
2 +

(
Xi−µ

σ

)2
−

√
6
3

)]
I[Xi>µ]

)
(139)

The second derivatives are derived with respect to α, σ and µ, from Eq.(137), Eq.(138) and Eq.(139) to

obtain:

∂2l(X)

∂α2
=− n

α2
− 27

n∑
i=1

[ (Xi − µ)2((
√
6− 6)α2σ2 −X2

i + 2Xiµ− µ2)

α2((
√
6− 6)α2σ2 − 3X2

i + 6Xiµ− 3µ2)2

]
I[Xi≤µ]

(140)

∂2l(X)

∂σ2
=− 2n

σ2
+

n∑
i=1

[(−27(Xi − µ)2((
√
6− 6)α2σ2 −X2

i + 2Xiµ− µ2)

σ2((
√
6− 6)α2σ2 − 3X2

i + 6Xiµ− 3µ2)2

)]
I[Xi≤µ]

+
[( 9(Xi − µ)2

σ4
(
2 +

(
Xi−µ

σ

)2
−

√
6
3

))− ( 6(Xi − µ)4

σ6
(
2 +

(
Xi−µ

σ

)2
−

√
6
3

)2)]
I[Xi>µ]

(141)

∂2l(X)

∂µ2
=

n∑
i=1

[ −18(
√
6− 6)α2σ2(Xi − µ)(

(6−
√
6)α2σ2 + 3µ2 − 6Xiµ+ 3X2

i

)2 ]
I[Xi≤µ]

+
[ −18(

√
6− 6)σ2(Xi − µ)(

(6−
√
6)σ2 + 3µ2 − 6Xiµ+ 3X2

i

)2 ]
I[Xi>µ]

(142)
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6 Application

6.1 Introduction

The �t of the skew logistic distribution proposed by Balakrishnan et al. (2017) can be determined using

the L-moments method or the method of maximizing the likelihood function numerically, since there

exists an explicit CDF, PDF and quantile function. The dataset used in this application chapter is from

Hand et al. (1993), which reports the pulse rates, in beats per second, of 50 patients in a hospital.

In Chapter 6.2, the method of L-moments estimation was applied to the dataset for the suggested

two-piece logistic when k = 1
2 and the two-piece logistic when k = 1

4 , to compare the best estimated

parameters for the dataset. In Chapter 6.3, the method of maximum likelihood estimation was applied

to the dataset for the suggested two-piece Student's t(2) when k = 1
2 and the two-piece Student's t(2)

when k = 1
4 , to �nd the best estimated parameters for the dataset.

6.2 Descriptive results

Figure 7 depicts the histogram of the pulse rates dataset.

Figure 7: The pulse rates, in beats per minute, of 50 patients in a hospital.

The descriptive statistics for the pulse rates dataset is given in Table 5.
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Descriptive statistics measure Value

Mean 82.3
Variance 79.8469
Skewness moment ratio (α3) 1.23788
Kurtosis moment ratio (α4) 6.25636

Table 5: The descriptive statistics measures of the pulse-rates of 50 patients, in beats per minute, in a
hospital

The data are clearly skewed to the right, since α3 > 1, and since the kurtosis ratio, α4 > 3, it can be

concluded that the pulse rates dataset is leptokurtic, when compared to a normal distribution.

The average scaled absolute error (ASAE), introduced by Castillo and Hadi (1997), is de�ned as a

measure that compares the �t of di�erent models to a dataset. The ASAE is de�ned as

ASAE =
1

n

n∑
i=1

|xi:n − Q̂(Si:n)|
(xn:n − x1:n)

, i = 1, 2, ..., n, (143)

where Q̂(Si:n) is the empirical quantile function of the �tted distribution.

The ASAE measure may be used to compare models which are de�ned by their CDF or PDF or

models that are quantile-based. The smaller ASAE value is preferred, as this represents the distribution

that has the better �t to the data.

The Akaike's information criterion (AIC) and Bayesian information criterion (BIC) are the most

popular criteria used to determine which model is the best �t to the dataset. The AIC is de�ned as

AIC = −2l(X) + 2κ, (144)

where κ is the number of parameters estimated and l(X) is de�ned as the log-likelihood function.

BIC is de�ned as

AIC = log(nκ)− 2l(X), (145)

where n is the sample size. The model with the minimum AIC value is preferred, and the model with

the smaller BIC value is preferred, as stated by Vrieze (2012).

6.3 Method of L-moments estimation

6.3.1 Two-piece logistic distribution

The parameter estimates and ASAE value obtained with the method of L-moments is given in Table 6.
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Distribution µ̂ σ̂ α̂ ASAE

Two-Piece Logistic,
k = 1

2

79.9594 6.18347 0.45391 0.04831

Two-Piece Logistic,
k = 1

2

77.6189 7.87184 0.33054 0.12077

Table 6: Parameter estimates of the pulse rates dataset using the method of L-moments estimation

The probability density plots, using the parameter estimates, is given in Figure 8 for the two-piece

logistic when k = 1
2 and Figure 9 for the two-piece logistic when k = 1

4 , respectively.

Figure 8: The probability density plot and the QQ-plot given for the two-piece logistic, when k = 1
2

Figure 9: The probability density plot and the QQ-plot given for the two-piece logistic, when k = 1
4

The density plotted for the two-piece logistic distribution, when k = 1
2 provides the best �t to the

histogram of the data, since it does not over�t the data as the density of the two-piece logistic distribution,

when k = 1
4 does. The QQ-plot in Figure 8 is closer to a straight line than that of the QQ-plot in Figure

9. When comparing the ASAE values, the value for k = 1
2 is 0.04831, which is much lower than that
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of the value for k = 1
4 , which is 0.12077. We can conclude that the better �t to the dataset is by the

two-piece logistic distribution, when k = 1
2 .

6.3.2 Two-piece Student's t(2)

The parameter estimates and ASAE value obtained with the method of L-moments is given in Table 6.

Distribution µ̂ σ̂ α̂ ASAE

Two-Piece Student's t(2),
k = 1

2

80.612 5.821 0.544 0.0242

Two-Piece Student's t(2),
k = 1

4

77.119 5.516 0.4448 0.078

Table 7: Parameter estimates of the pulse rates dataset using the method of L-moments estimation

The probability density plots, using the parameter estimates obtained via the method of L-moments

estimation, is given in Figure 10 for the two-piece Student's t(2) when k = 1
2 and Figure 11 for the

two-piece Student's t(2) when k = 1
4 , respectively.

Figure 10: The probability density plot and the QQ-plot given for the two-piece Student's t(2) distribu-
tion, when k = 1

2
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Figure 11: The probability density plot and the QQ-plot given for the two-piece Student's t(2) distribu-
tion, when k = 1

4

The QQ-plot in Figure 10 is closer to a straight line, than that of the QQ-plot in Figure 11, and

there is less under�tting in the density plot over the histogram of the data in Figure 10, therefore the

better �t is obtained by using the two-piece Student's t(2) distribution, when k = 1
2 . When comparing

the ASAE values, the value for k = 1
4 is 0.078 while k = 1

2 is 0.0242. Since this value is smaller, it shows

the two-piece Student's t(2) distribution when k = 1
2 provides the better �t.

6.4 Maximum likelihood estimation

6.4.1 Two-piece logistic

The parameter estimates, the AIC, BIC and loglikelihood values obtained with the method of maximum

likelihood estimation are given in Table 8.

Distribution µ̂ σ̂ α̂ AIC BIC Loglikelihood

Two-Piece Logistic,
k = 1

2

79.5893 6.28687 0.33054 -713.80937 -706.16128 360.90469

Two-Piece Logistic,
k = 1

2

79.9999 10.81089 0.34094 -772.44516 -764.79707 390.22258

Table 8: Parameter estimates of the pulse rates dataset, for the two-piece logistic distribution when k = 1
2

and k = 1
4 .

The probability density plots are given in Figure 12 for the two-piece logistic when k = 1
2 and Figure

13 for the two-piece logistic when k = 1
4 , respectively.
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Figure 12: The probability density plot and the QQ-plot given for the two-piece logistic, when k = 1
2

Figure 13: The probability density plot and the QQ-plot given for the two-piece logistic, when k = 1
4

The density plotted for the two-piece logistic distribution, when k = 1
2 �ts the histogram of the

dataset better, as it over�ts the data. The QQ-plot of the two-piece logistic distribution, when k = 1
2 ,

given in Figure 12, lies more closely to the straight line that that of the QQ-plot of the two-piece logistic

distribution, when k = 1
4 , given in Figure 13. The AIC value for the two-piece logistic distribution,

when k = 1
2 , is −713.80937, compared to the AIC value of −772.44516 obtained for the two-piece

logistic distribution, when k = 1
4 . The smallest AIC value is preferred, therefore the two-piece logistic

distribution, when k = 1
4 , is preferred for the pulse rates data with the obtained parameter estimates.

6.4.2 Two-piece Student's t(2)

The parameter estimates, the AIC, BIC and loglikelihood values obtained with the method of maximum

likelihood estimation are given in Table 6.
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Distribution µ̂ σ̂ α̂ AIC BIC Loglikelihood

Two-Piece Student's
t(2), k = 1

2

80.0004 6.99999 0.29999 -125.80595 -118.15785 66.90297

Two-Piece Student's
t(2), k = 1

4

80.9687 10.82799 0.29390 -695.16621 -687.51812 351.58310

Table 9: Parameter estimates of the pulse rates dataset, for the two-piece Student's t(2) distribution,
when k = 1

2 and k = 1
4 .

The probability density plots are given in Figure 14 for the two-piece Student's t(2) when k = 1
2 and

Figure 15 for the two-piece Student's t(2) when k = 1
4 , respectively.

Figure 14: The probability density plot and the QQ-plot given for the two-piece Student's t(2) distribu-
tion, when k = 1

2

Figure 15: The probability density plot and the QQ-plot given for the two-piece Student's t(2) distribu-
tion, when k = 1

4

The density plot of the two-piece Student's t(2) distribution, when k = 1
2 , over�ts the histogram of

the dataset on the left of mode, but is a better �t to the dataset on the right of the mode. The density

plot of the two-piece Student's t(2) distribution, when k = 1
4 , under�ts the histogram of the dataset to
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the left of the mode and over�ts the histogram of the dataset to the right of the mode.

The AIC value of the two-piece Student's t(2) distribution, when k = 1
2 is −125.80595, compared to

the AIC value of the two-piece Student's t(2) distribution, when k = 1
4 , which is −695.16621, is bigger.

The QQ-plot of the two-piece Student's t(2) distribution, when k = 1
2 gives a better �t to the dataset,

with the parameter estimates obtained using the method of maximum likelihood estimation.
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7 Conclusion

In this mini-dissertation, the method of maximum likelihood estimation was applied to two-piece dis-

tributions obtained through quantile splicing. These distributions include the two-piece logistic, cosine

and Student's t(2) distribution, when k = 1
4 . The results obtained using the method of L-moments for

the above-mentioned distributions is compared to the results obtained using the method of maximum

likelihood estimation.

The method of maximum likelihood estimation for quantile-based distributions is explored, by deriving

the loglikelihood functions together with the �rst and second derivatives of the loglikelihood functions

for the two-piece logistic, cosine and Student's t(2) distributions, when k = 1
2 and when k = 1

4 . These

results are applied to the pulse rates dataset, obtained from Hand et al. (1993). The results obtained

after applying the method of L-moments estimation and the method of maximum likelihood estimation

to the pulse rates dataset, for the two-piece logistic and two-piece Student's t(2) distribution, when k = 1
2

and k = 1
4 , are compared.

Although the method of maximum likelihood estimation did not provide signi�cant results compared

to those obtained using the method of L-moments, it has now been investigated. The method of maximum

likelihood estimation is a laborious method to apply to two-piece distributions, since the derivations in

the di�erent quartiles are tedious to determine.

There exists other estimation methods that can be applied to two-piece distributions such as the Bayes

estimator explored in Fernández and Steel (1998), method-of-moments estimation used by Mudholkar and

Hutson (2000) as well as probability-weighted moments, proposed by Gilchrist (2000) as a straightforward

method to apply.
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A Appendix

This chapter contains the derivations of the rth order L-moments results given for the two-piece univariate

distributions in Chapter 4.3.1-4.3.3. The scaling factor is equated to k = 1
4 to obtain the L-moments of

the two-piece distribution that is spliced at the lower quartile.

A.0.1 Two-piece logistic distribution

Theorem 10. Let T be a real-valued standardized random variable that originates from the two-piece

logistic distribution, de�ned as T ∼ LTP (0, 1, α), where the location parameter is µ = 0, the scale param-

eter is σ = 1, and α > 0 is the asymmetric parameter. Suppose k = 1
4 , then the �rst 4 L-moments of the

two-piece logistic distribution follows as

LT :1 =1.38629− 0.28768α,

LT :2 =0.75 + 0.25α,

LT :3 =0.1875− 0.1875α,

LT :4 =0.04685 + 0.11979α.

Proof. For r = 1, the �rst moment of T is

LT :1 =

∫ 1
4

0

µ+ ασ log
( u

1− u

)
du+

∫ 1

1
4

µ+ σ log
( u

1− u

)
du−

∫ 1
4

0

µ+ ασ log
( k

1− k

)
du

−
∫ 1

1
4

µ+ σ log
( k

1− k

)
du

=

∫ 1
4

0

α log
( u

1− u

)
du+

∫ 1

1
4

log
( u

1− u

)
du−

∫ 1
4

0

α log
(1
3

)
du−

∫ 1

1
4

log
(1
3

)
du

=α
[
log(1− u) + u log

( u

1− u

)] ∣∣∣ 14
0
+
[
log(1− u) + u log

( u

1− u

)] ∣∣∣1
1
4

− α log
(1
3

)
[
1

4
− 0]

− log
(1
3

)
[1− 1

4
]

=α(−0.562335) + (0.562335) + 0.274653α+ 0.823959

=1.38629− 0.28768α
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The second L-moment of T , when P1(p) = 2p− 1 and r = 2 , is derived as

LT :2 =

∫ 1
4

0

(
µ+ ασ log

( u

1− u

))
(2u− 1) du+

∫ 1

1
4

(
µ+ σ log

( u

1− u

))
(2u− 1) du

−
∫ 1

4

0

(
µ+ ασ log

( k

1− k

))
(2u− 1) du−

∫ 1

1
4

(
µ+ σ log

( k

1− k

))
(2u− 1) du

=

∫ 1
4

0

(
α log

( u

1− u

))
(2u− 1) du+

∫ 1

1
4

(
log
( u

1− u

))
(2u− 1) du−

∫ 1
4

0

(
α log

(1
3

))
(2u− 1) du

−
∫ 1

1
4

(
log
(1
3

))
(2u− 1) du

=2α

∫ 1
4

0

(
log
( u

1− u

))
(u) du− α

∫ 1
4

0

log
( u

1− u

)
du+ 2

∫ 1

1
4

(
log
( u

1− u

))
(u) du−

∫ 1

1
4

log
( u

1− u

)
du

− α log
(1
3

)∫ 1
4

0

(2u− 1) du− log
(1
3

)∫ 1

1
4

(2u− 1) du

=2α
[1
2

(
u+ log(1− u) + u2log

( u

1− u

))] ∣∣∣ 14
0
− α

[
log(1− u) + ulog

( u

1− u

)] ∣∣∣ 14
0

+ 2
[1
2

(
u+ log(1− u) + u2log

( u

1− u

))] ∣∣∣1
1
4

−
[
log(1− u) + ulog

( u

1− u

)] ∣∣∣1
1
4

− α log
(1
3

)[2u2
2

− u
] ∣∣∣ 14

0

− log
(1
3

)[2u2
2

− u
] ∣∣∣1

1
4

=α(−0.106345)− α(−0.562335) + (1.106235)− (0.562335)− 0.20599α+ 0.20599

=0.75 + 0.25α
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When r = 3 and P2(p) = 6p2 − 6p+ 1, the third L-moment follows as

LT :3 =

∫ 1
4

0

(
µ+ ασ log

( u

1− u

))
(6u2 − 6u+ 1) du+

∫ 1

1
4

(
µ+ σ log

( u

1− u

))
(6u2 − 6u+ 1) du

−
∫ 1

4

0

(
µ+ ασ log

( k

1− k

))
(6u2 − 6u+ 1) du−

∫ 1

1
4

(
µ+ σ log

( k

1− k

))
(6u2 − 6u+ 1) du

=

∫ 1
4

0

(
α log

( u

1− u

))
(6u2 − 6u+ 1) du+

∫ 1

1
4

(
log
( u

1− u

))
(6u2 − 6u+ 1) du

−
∫ 1

4

0

(
α log

(1
3

))
(6u2 − 6u+ 1) du−

∫ 1

1
4

(
log
(1
3

))
(6u2 − 6u+ 1) du

=6α

∫ 1
4

0

(
log
( u

1− u

))
(u2) du− 6α

∫ 1
4

0

(
log
( u

1− u

))
(u) du+ α

∫ 1
4

0

log
( u

1− u

)
du

+ 6

∫ 1

1
4

(
log
( u

1− u

))
(u2) du− 6

∫ 1

1
4

(
log
( u

1− u

))
(u) du+

∫ 1

1
4

log
( u

1− u

)
du

− α log
(1
3

)
−
∫ 1

4

0

(6u2 − 6u+ 1) du− log
(1
3

)∫ 1

1
4

(6u2 − 6u+ 1) du

=6α
[1
6

(
2log(1− u) + 2u+ u2 + 2u3log

( u

1− u

))] ∣∣∣ 14
0
− 6α

[1
2

(
u+ log(1− u) + u2log

( u

1− u

))] ∣∣∣ 14
0

+ α
[
log(1− u) + ulog

( u

1− u

))] ∣∣∣ 14
0
+ 6
[1
6

(
2log(1− u) + 2u+ u2 + 2u3log

( u

1− u

))] ∣∣∣1
1
4

− 6
[1
2

(
u+ log(1− u) + u2log

( u

1− u

))] ∣∣∣1
1
4

+
[
log(1− u) + ulog

( u

1− u

))] ∣∣∣1
1
4

− α log
(1
3

)[6u3
3

− 6u2

2
+ u
] ∣∣∣ 14

0
− log

(1
3

)[6u3
3

− 6u2

2
+ u
] ∣∣∣1

1
4

=α(−0.047196)− α(−0.319036) + α(−0.562335) + (3.047196)− (3.319036) + (0.562335)

+ 0.102995α− 0.102995

=0.1875− 0.1875α
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The fourth L-moment of T , where r = 4 and P3(p) = 20p3 − 30p2 + 12p− 1, is

LT :4 =

∫ 1
4

0

(
µ+ ασ log

( u

1− u

))
(20u3 − 30u2 + 12u− 1) du

+

∫ 1

1
4

(
µ+ σ log

( u

1− u

))
(20u3 − 30u2 + 12u− 1) du

−
∫ 1

4

0

(
µ+ ασ log

( k

1− k

))
(20u3 − 30u2 + 12u− 1) du

−
∫ 1

1
4

(
µ+ σ log

( k

1− k

))
(20u3 − 30u2 + 12u− 1) du

=

∫ 1
4

0

(
α log

( u

1− u

))
(20u3 − 30u2 + 12u− 1) du+

∫ 1

1
4

(
log
( u

1− u

))
(20u3 − 30u2 + 12u− 1) du

−
∫ 1

4

0

(
α log

(1
3

))
(20u3 − 30u2 + 12u− 1) du−

∫ 1

1
4

(
log
(1
3

))
(20u3 − 30u2 + 12u− 1) du

=20α

∫ 1
4

0

(
log
( u

1− u

))
(u3) du− 30α

∫ 1
4

0

(
log
( u

1− u

))
(u2) du+ 12α

∫ 1
4

0

(
log
( u

1− u

))
(u) du

− α

∫ 1
4

0

(
log
( u

1− u

))
du+ 20

∫ 1

1
4

(
log
( u

1− u

))
(u3) du− 30

∫ 1

1
4

(
log
( u

1− u

))
(u2) du

+ 12

∫ 1

1
4

(
log
( u

1− u

))
(u) du−

∫ 1

1
4

(
log
( u

1− u

))
du− αlog

(1
3

)∫ 1
4

0

(20u3 − 30u2 + 12u− 1) du

− log
(1
3

)∫ 1

1
4

(20u3 − 30u2 + 12u− 1) du

=20α
[ 1

24

(
6log(1− u) + 6u+ 3u2 + 2u3 + 6u4log

( u

1− u

))] ∣∣∣ 14
0

− 30α
[1
6

(
2log(1− u)

)
+ 2u+ u2 + 2u3log

( u

1− u

)] ∣∣∣ 14
0
+ 12α

[1
2

(
u+ log(1− u) + u2log

( u

1− u

))] ∣∣∣ 14
0

− α
[
log(1− u) + ulog

( u

1− u

)] ∣∣∣ 14
0
+ 20

[ 1

24

(
6log(1− u) + 6u+ 3u2 + 2u3 + 6u4log

( u

1− u

))] ∣∣∣1
1
4

− 30
[1
6

(
2log(1− u)

)
+ 2u+ u2 + 2u3log

( u

1− u

)] ∣∣∣1
1
4

+ 12
[1
2

(
u+ log(1− u) + u2log

( u

1− u

))] ∣∣∣1
1
4

−
[
log(1− u) + ulog

( u

1− u

)] ∣∣∣1
1
4

− αlog
(1
3

)[20u4
4

− 30u3

3
+

12u2

2
− u
] ∣∣∣ 14

0

− log
(1
3

)[20u4
4

− 30u3

3
+

12u2

2
− u
] ∣∣∣ 14

0

=α(−0.027576)− α(−0.235979) + α(−0.638072)− α(−0.562335) + (9.19424)− (15.236) + (6.63807)

− (0.562335)− 0.012874α+ 0.012874

=0.04685 + 0.11979α

These results were obtained using Gradshteyn et al. (1996) (2.723.1, 2.729.1-2.729.4)

A.0.2 Two-piece cosine distribution

Theorem 11. Let T be a real-valued standardized random variable following a two-piece cosine dis-

tribution, represented by T ∼ COSTP (0, 4, α), where the location parameter µ = 0, 4 represents the
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scale parameter σ and α > 0 is the asymmetry parameter. Applying a transformation of variables, let

z = arcsin(
√
u). It then follows that u = sin2(z) and du = sin(2z). z is evaluated on the interval (0, π6 )

and (π6 ,
π
2 ). The �rst 4 L-moments of the cosine distribution, with a scaling factor of k = 1

4 follows as

LT :1 =1.56401− 0.230676α,

LT :2 =0.804499 + 0.195501α,

LT :3 =0.137832− 0.137832α,

LT :4 =− 0.0143277 + 0.076825α.

Proof. For r = 1, the �rst moment of T is

LT :1 =

∫ 1
4

0

µ+ ασ
( 4
π
arcsin

√
u− 1

)
du+

∫ 1

1
4

µ+ σ
( 4
π
arcsin

√
u− 1

)
du−

∫ 1
4

0

µ+ ασ
( 4
π
arcsin

√
k − 1

)
du

−
∫ 1

1
4

µ+ σ
( 4
π
arcsin

√
k − 1

)
du

=

∫ 1
4

0

4α
( 4
π
arcsin

√
u− 1

)
du+

∫ 1

1
4

4
( 4
π
arcsin

√
u− 1

)
du−

∫ 1
4

0

4α
( 4
π
arcsin

√
1

4
− 1
)
du

−
∫ 1

1
4

4
( 4
π
arcsin

√
1

4
− 1
)
du

=4α

∫ 1
4

0

( 4
π
arcsin

√
u
)
du− 4α

∫ 1
4

0

1 du+ 4

∫ 1

1
4

( 4
π
arcsin

√
u
)
du− 4

∫ 1
4

0

1 du+
4α

3

∫ 1
4

0

1 du+
4

3

∫ 1

1
4

1 du

=4α

∫ π
6

0

4

π
z sin(2z) dz − 4α

(1
4
− 0
)
+ 4

∫ π
2

π
6

4

π
z sin(2z) dz − 4

(
1− 1

4

)
+

4α

3

(1
4
− 0
)
+

4

3

(
1− 1

4

)
=4α

[ 4
π

(
− 1

2
z cos(2z) +

1

4
sin(2z)

)] ∣∣∣π6
0
− α+ 4

[ 4
π

(
− 1

2
z cos(2z) +

1

4
sin(2z)

)] ∣∣∣π2
π
6

− 3 +
α

3
+ 1

=4α
[√3

2π
− 1

6

]
− α+ 4

[7
6
−

√
3

2π

]
− 2 +

α

3

=1.56401− 0.230676α
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The second L-moment of T , when P1(p) = 2p− 1 and r = 2, is obtained as

LT :2 =

∫ 1
4

0

(
µ+ ασ

( 4
π
arcsin

√
u− 1

))
(2u− 1) du+

∫ 1

1
4

(
µ+ σ

( 4
π
arcsin

√
u− 1

))
(2u− 1) du

−
∫ 1

4

0

(
µ+ ασ

( 4
π
arcsin

√
k − 1

))
(2u− 1) du−

∫ 1

1
4

(
µ+ σ

( 4
π
arcsin

√
k − 1

))
(2u− 1) du

=

∫ 1
4

0

(
4α
( 4
π
arcsin

√
u− 1

))
(2u− 1) du+

∫ 1

1
4

(
4
( 4
π
arcsin

√
u− 1

))
(2u− 1) du

−
∫ 1

4

0

(
4α
( 4
π
arcsin

√
1

4
− 1
))

(2u− 1) du−
∫ 1

1
4

(
4
( 4
π
arcsin

√
1

4
− 1
))

(2u− 1) du

=4α
[ ∫ 1

4

0

( 4
π
arcsin

√
u
)
(2u) du−

∫ 1
4

0

( 4
π
arcsin

√
u
)
du−

∫ 1
4

0

(2u) du+

∫ 1
4

0

1 du
]

+ 4
[ ∫ 1

4

0

( 4
π
arcsin

√
u
)
(2u) du−

∫ 1
4

0

( 4
π
arcsin

√
u
)
du−

∫ 1
4

0

(2u) du+

∫ 1
4

0

1 du
]

−
∫ 1

4

0

4α
(−1

3

)
(2u− 1) du−

∫ 1

1
4

4
(−1

3

)
(2u− 1) du

=4α
[ ∫ π

6

0

8

π
z sin2(z) sin(2z) dz −

∫ π
6

0

4

π
z sin(2z) dz −

(2u2
2

) ∣∣∣ 14
0

+
(1
4
− 0
)]

+ 4
[ ∫ π

2

π
6

8

π
z sin2(z) sin(2z) dz −

∫ π
2

π
6

4

π
z sin(2z) dz −

(2u2
2

) ∣∣∣1
1
4

+
(
1− 1

4

)]
+

4α

3

[2u2
2

− u
] ∣∣∣ 14

0
+

4

3

[2u2
2

− u
] ∣∣∣ 14

0

=4α

([ 1

8π

(
− 16z cos(2z) + 4zcos(4z) + 8sin(2z)− sin(4z)

)] ∣∣∣π6
0
−
[ 4
π

(
− 1

2
z cos(2z) +

1

4
sin(2z)

)] ∣∣∣π6
0

−
( 1

16

)
+
(1
4

))
+ 4

([ 1

8π

(
− 16z cos(2z) + 4zcos(4z) + 8sin(2z)− sin(4z)

)] ∣∣∣π2
π
6

−
[ 4
π

(
− 1

2
z cos(2z) +

1

4
sin(2z)

)] ∣∣∣π2
π
6

−
(15
16

)
+
(3
4

))
+

4α

3

(−3

16

)
+

4

3

( 3

16

)
=4α

((7√3

16π
− 5

24

)
−
(√3

2π
− 1

6

)
−
( 1

16

)
+
(1
4

))
+ 4

(( 7

48

(
10− 3

√
3

π

))
−
(7
6
−

√
3

2π

)
−
(15
16

)
+
(3
4

))

− α

4
+

1

4

=0.804499 + 0.195501α
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When r = 3 and P2(p) = 6p2 − 6p+ 1, the third L-moment follows as

LT :3 =

∫ 1
4

0

(
µ+ ασ

( 4
π
arcsin

√
u− 1

))
(6u2 − 6u+ 1) du+

∫ 1

1
4

(
µ+ σ

( 4
π
arcsin

√
u− 1

))
(6u2 − 6u+ 1) du

−
∫ 1

4

0

(
µ+ ασ

( 4
π
arcsin

√
k − 1

))
(6u2 − 6u+ 1) du−

∫ 1

1
4

(
µ+ σ

( 4
π
arcsin

√
k − 1

))
(6u2 − 6u+ 1) du

=

∫ 1
4

0

(
4α
( 4
π
arcsin

√
u− 1

))
(6u2 − 6u+ 1) du+

∫ 1

1
4

(
4
( 4
π
arcsin

√
u− 1

))
(6u2 − 6u+ 1) du

−
∫ 1

4

0

(
4α
( 4
π
arcsin

√
1

4
− 1
))

(6u2 − 6u+ 1) du−
∫ 1

1
4

(
4
( 4
π
arcsin

√
1

4
− 1
))

(6u2 − 6u+ 1) du

=4α
[ ∫ 1

4

0

( 4
π
arcsin

√
u
)
(6u2) du−

∫ 1
4

0

( 4
π
arcsin

√
u
)
(6u) du+

∫ 1
4

0

( 4
π
arcsin

√
u
)
du

−
∫ 1

4

0

(6u2 − 6u+ 1) du
]
+ 4
[ ∫ 1

1
4

( 4
π
arcsin

√
u
)
(6u2) du−

∫ 1

1
4

( 4
π
arcsin

√
u
)
(6u) du

+

∫ 1

1
4

( 4
π
arcsin

√
u
)
du−

∫ 1

1
4

(6u2 − 6u+ 1) du
]
+

4α

3

∫ 1
4

0

(6u2 − 6u+ 1) du+
4

3

∫ 1

1
4

(6u2 − 6u+ 1) du

=4α
[ ∫ π

6

0

24

π
z sin4(z) sin(2z) dz −

∫ π
6

0

24

π
z sin2(z) sin(2z) dz +

∫ π
6

0

4

π
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(6u3

3
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2
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0

]
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π
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π
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π
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π
z sin(2z) dz −

(6u3
3
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2
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]
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3

(6u3
3

− 6u2

2
+ u
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0
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4

3

(6u3
3

− 6u2

2
+ u
) ∣∣∣1

1
4

=4α

([ 1

24π

(
− 90z cos(2z) + 36z cos(4z)− 6z cos(6z) + 45sin(2z)− 9sin(4z) + sin(6z)

)] ∣∣∣π6
0

−
[ 3

8π

(
− 16z cos(2z) + 4z cos(4z) + 8sin(2z)− sin(4z)

)] ∣∣∣π6
0
+
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π

(
− 1
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1

4
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3
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)
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(
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+
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√
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√
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√
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]
+
α

8
− 1

8

=0.137832− 0.137832α

80



The fourth L-moment of T , where r = 4 and P3(p) = 20p3 − 30p2 + 12p− 1, follows as

LT :4 =

∫ 1
4

0

(
µ+ ασ

( 4
π
arcsin

√
u− 1

))
(20u3 − 30u2 + 12u− 1) du
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√
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√
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√
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=
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√
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√
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√
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+
1
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√
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=− 0.0143277 + 0.076825α

These results were obtained using Gradshteyn et al. (1996) (1.321.1, 1.321.2, 1.323.2, 1.335.1, 2.633.1).

A.0.3 Two-piece Student's t(2) distribution

Theorem 12. Let T be a random variable that is real-valued and standardized and that follows a two-

piece Student's t(2) distribution, denoted by T ∼ t(2)TP (0,
2
√
2

π , α), where te location parameter is µ = 0,

the scale parameter σ = 2
√
2

π and the asymmetry parameter is given by α > 0. The �rst 4 L-moments of

the Student's t(2) distribution, for k = 1
4 follows as

LT :1 =1.10266− 0.36755α,

LT :2 =0.66667 + 0.33333α,

LT :3 =0.27566− 0.27566α,

LT :4 =0.16855 + 0.211145α.
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Proof. The �rst moment of T , when r = 1, is

LT :1 =

∫ 1
4
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)
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The second L-moment of T , when P1(p) = 2p− 1 and r = 2, is

LT :2 =

∫ 1
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When r = 3 and P2(p) = 6p2 − 6p+ 1, the third L-moment follows as
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The fourth L-moment of T , where r = 4 and P3(p) = 20p3 − 30p2 + 12p− 1, follows as
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These results were obtained using Wolfram Research, Inc. (2022).
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