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Abstract. We present a general approach to proving the existence of spec-
tral gaps and asynchronous exponential growth for growth-fragmentation semi-
groups in moment spaces L1(R+; xαdx) and L1(R+; (1 + x)α dx) for un-
bounded total fragmentation rates and continuous growth rates r(.) such that∫ +∞
0

1
r(τ)

dτ = +∞. The analysis is based on weak compactness tools and

Frobenius theory of positive operators and holds provided that α > α̂ for a
suitable threshold α̂ ≥ 1 that depends on the moment space we consider. A
systematic functional analytic construction is provided. Various examples of
fragmentation kernels illustrating the theory are given and an open problem is
mentioned.
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1. Introduction.

1.1. Notation and general assumptions.

This paper deals with the existence of spectral gaps (see (11) below) for C0-semigroups (V (t))t≥0

governing general growth-fragmentation equations

∂

∂t
u(x, t) +

∂

∂x
[r(x)u(x, t)] + a(x)u(x, t)

=

∫ +∞

x

a(y)b(x, y)u(y, t)dy, (x, t > 0) (1)

in moment spaces

X0,α := L1(R+; (1 + x)α dx), Xα := L1(R+; xαdx) (α > 0) (2)

with nonnegative total fragmentation rate

a(·) ∈ L1
loc(0, +∞)

and a measurable fragmentation kernel b(·, ·) such that b(x, y) = 0 if x ≥ y,
∫ y

0
xb(x, y)dx = y (3)

and

the support of (x,+∞) ∋ y → a(y)b(x, y) is unbounded (x > 0) . (4)

This assumption is required for irreducibility of the growth-fragmentation semigroup, which we
also prove under an alternative assumption that a(y) > 0 for y ∈ (0,∞) and

there is p ∈ [0, 1) such that for any y > 0, inf supp b(·, y) ≤ py. (5)

We note that assumptions (4) and 5 have different physical meaning. If (4) is satisfied, we allow
for particles of some sizes not to fragment. This must be offset, however, by the requirement that
particles of any size can be obtained by fragmentation of arbitrarily large particles. In this way,
non-fragmenting sizes always can be jumped over by daughter particles of parents of a bigger size.
Assumption 5 has different interpretation. The fact that a(y) > 0 means that particles of any size
must split and the second part says that the sizes of daughter particles cannot be too close to the
parent’s size. In physically realistic situations we expect that fragmentation produces at least two
daughter particles whose sizes cannot be both close to the parent’s size and thus in such a case this
assumption is always satisfied. In particular, a common case of the homogeneous fragmentation

kernel b(x, y) = 1
y
h
(

x
y

)
with h of bounded support, is covered by (5).

Our assumptions on the growth rate are

r ∈ C(0,+∞), r(x) > 0 ∀x > 0 (6)

and ∫ 1

0

1

r(τ)
dτ < +∞,

∫ ∞

1

1

r(τ)
dτ = +∞ (7)

or ∫ 1

0

1

r(τ)
dτ = +∞,

∫ ∞

1

1

r(τ)
dτ = +∞. (8)
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In the case (7), we complement (1) with the boundary condition

lim
y→0

r(y)u(y, t) = 0.

The kinetic equation (1) is the linear part of the growth–coagulation–fragmentation equation
where, in the full form, the coagulation part is represented by a quadratic integral term, see [6].
Coagulation and fragmentation processes lay at heart of many fundamental phenomena in ecology,
human biology, polymer and aerosol sciences, astrophysics and the powder production industry;
see [5] for further details and references, and [11] for the probabilistic context. A common feature of
these processes is that each involves a population of inanimate or animate agents that are capable
of forming larger or smaller aggregates through, respectively, coalescence or breakup. Coagulation
and fragmentation are conservative processes. In many cases, however, they occur alongside other
events that result in the growth of the ensemble. For example, in chemical engineering applications
we often observe a precipitation of matter from the solute onto the surface of the aggregates. In
biological applications, the growth of the aggregates can occur due to births of new individuals with
neonates staying inside the parent’s aggregate, see e.g. [1] for the application to phytoplankton or
[31] in a general context. The interplay of growth and fragmentation plays also an important role
in prion proliferation, see e.g. [18].

In (1), the unknown u(x, t) represents the concentration at time t of “agregates” with mass
x > 0 while b(x, y) (x < y) describes the distribution of mass x aggregates, called daughter ag-
gregates, spawned by the fragmentation of a mass y aggregate. The local mass conservation
in the fragmentation process is expressed by (3); we say that the fragmentation kernel b(·, ·) is

conservative.
In a preliminary step, we provide explicit formulas of the C0-semigroups (U(t))t≥0 (with gen-

erator T ) governing the transport equation

∂

∂t
u(x, t) +

∂

∂x
[r(x)u(x, t)] + a(x)u(x, t) = 0 (9)

in the functional spaces X = Xα or X0,α and discuss the effect of the conditions on the growth
rate r(·) on them. This direct approach complements a resolvent Hille-Yosida approach [6]; see
also [5] Chapter 5 and [10]. It turns out, at least for bounded total fragmentation rate a(·), that
under Assumption (7), the problem (9) is not well-posed in Xα in the sense of C0-semigroups;
see Remark 3 below. (This does not prevent a generation theory for suitably singular functions
a(·) but, in this case, the whole construction of the paper would need new technicalities; to keep
the coherence of the paper, this special case is treated separately [28].) Hence, in general, under
Assumption (7), a C0-semigroup (U(t))t≥0 governing (9) is defined only in X0,α and we restrict our

spectral gap construction to this space. The situation is much more complex under Assumption (8).
Indeed, the problem (9) is well-posed in both Xα and X0,α (with suitable assumptions depending
on the space) but the full spectral gap theory is completed only in Xα. Indeed, in X0,α, although
all the preliminary results we need can be proved, two of them are based on assumptions which
are not compatible: indeed, by using the confining role of singular absorptions [26], the resolvent
compactness of T (which plays a key role in our construction) follows from the unboundedness of
the total fragmentation rate a(·) at infinity and at zero, while the existence of a C0-semigroup
(V (t))t≥0 with generator

T + B : D(T ) → X

(B is the fragmentation operator (10)) depends on the boundedness of a(·) near zero. Hence,
under Assumption (8), we need to restrict our construction to the space Xα.

In summary, two spectral gap theories are given in this paper: one in Xα under Assumption (8)
and another one in X0,α under Assumption (7). A spectral gap theory in Xα under Assumption
(7) needs additional technicalities and is given in [28]. Finally, the existence of a spectral gap
in X0,α under (8) is an open problem; see Remark 12. Our main results are given in Theorem
3.8 and Theorem 4.9 and are consequences of many preliminary results of independent interest.
Furthermore, various examples of fragmentation kernels (homogeneous or separable) are given to
illustrate the relevance of our assumptions.

The aim of this paper is twofold. The first aim is well-posedness of (1) in the sense of C0-
semigroups. Indeed, because of the unboundedness of the total fragmentation rate a(·), the frag-
mentation operator (10) is not a bounded operator on X (where X is either Xα or X0,α). Under
suitable assumptions, depending on the space we consider, a generation result is obtained by using
a perturbation theorem by W. Desch specific to positive semigroups in L1-spaces (see below) where
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the perturbation is given by the fragmentation operator

B : D(T ) ∋ ϕ 7→ Bϕ ∈ X, (Bϕ)(x) :=

∫ +∞

x

a(y)b(x, y)ϕ(y)dy, (10)

and T is the generator of (U(t))t≥0 in X. The second aim of this work is proving the existence of

a spectral gap of the C0-semigroup (V (t))t≥0 governing (1), i.e., showing that

ress(V (t)) < rσ(V (t)) (11)

(ress and rσ are respectively the essential spectral radius and the spectral radius). If, additionally,
(V (t))t≥0 is irreducible, then, by [29], Corollary 3.16 of Chapter C-III, the spectral bound λ of

its generator is its dominant eigenvalue and a simple pole of the resolvent. Moreover, by [17],
Proposition 3.4 of Chapter VI, λ is a simple eigenvalue, that is, its eigenspace is one-dimensional.
Hence (V (t))t≥0 has the asynchronous exponential growth property,

∥∥∥e−λtV (t) − P
∥∥∥
L(X)

= O(e−εt) (12)

(for some ε > 0), where P is a one-dimensional spectral projection relative to the isolated alge-
braically simple dominant eigenvalue λ of the generator, see e.g., [17], Theorem 3.5 of Chapter
VI, defined as P = 〈e, ·〉f , where f and e are strictly positive eigenvectors of, respectively, the
generator and its dual, and 〈·, ·〉 is the pairing between X and its dual. A summary of these
results can also be found in [34], Appendix C.

The main mathematical ingredients behind the occurrence of the spectral gap are a local
weak compactness property satisfied by general growth-fragmentation equations (due to the one-
dimensionality of the state variable) and the confining effect of singular total fragmentation rates
ensuring the compactness of the resolvent.

There is an large body of literature dealing with the long term dynamics of solutions to (1) and,
in particular, with the asynchronous exponential growth property and the existence of spectral
gap. The case when the state space is bounded has been well understood since [14], though the
cases with unbounded rates can be tricky, [4]. When the state space is unbounded, a number of
results have been obtained by the powerful General Relative Entropy method introduced in [22].
While the method caters for a large class of coefficients in weighted Lp spaces, the exponential

rate of convergence has only been established in [32], see also [20], and extensively studied since
then. Due to its physical interpretation it is important to study the problem in L1 spaces. Some
results have been established by probabilistic methods, see e.g., [11][12] but we are focused on
operator–theoretic results for which we refer to the recent works [23][9][10][13][7]. In particular,
quantitative estimates of the gap are obtained by means of Harris’s theorem, [13], while [7] contains
a comprehensive theory for the discrete case written in the spirit of this paper. A special mention
should be given to [16], where the Perron eigenvector and eigenvalue were found and analysed for
(1) with fairly general coefficients. That paper has stimulated an active research along these lines,
culminating in recent works [9][10].

We note also that most of the known literature on spectral gaps deals with Assumption (7),
see however [13]. Our paper is close in spirit to [10] even if our statements are not the same and
our constructions are different and more systematic; see below.

We note that ∫ +∞

0
u(x, t)xdx,

∫ +∞

0
u(x, t)dx,

are respectively the total mass and the total number of agregates at time t ≥ 0. The existence of
spectral gaps in the natural functional spaces

X1 = L1(R+; xdx), X0 = L1(R+; dx), X0,1 = L1(R+; (1 + x) dx),

has been dealt with systematically in [27] but at the expense of suitable additional mass loss
∫ y

0
xb(x, y)dx = (1 − η(y)) y, (0 ≤ η(y) ≤ 1)

or death assumptions. These assumptions seem to be necessary and play a key role in well-posedness
(via W. Desch’s perturbation theorem) of growth-fragmentation equations in these natural spaces.
Fortunately, W. Desch’s theorem can be applied in higher moment spaces without such additional
assumptions (see [6], Theorem 2.2). Actually, we adapt the argument of the proof of ([6], Theorem
2.2) in our construction. This allows for a significant extension of the general theory of [27] to
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higher moment spaces (2) by following a similar construction (without resorting to mass loss or
death assumptions) provided that α > α̂ for a suitable threshold

α̂ ≥ 1,

depending on the functional space we consider. This is consistent with the existence of thresholds
known in the literature [23][10][13]. As in [27], our analysis is based upon few structural assump-
tions and provides a systematic functional analytic construction relying on weak compactness tools
and the Frobenius theory of positive operators.

We recall a fundamental perturbation theorem in L1 spaces, [15] (see also [35], [24] Chapter 8
or [3] Chapter 5).

Theorem 1.1. (W. Desch’s theorem) Let (U(t))t≥0 be a positive C0-semigroup on some L1(µ)

space with generator T and let B : D(T ) → L1(µ) be positive (i.e. Bϕ ∈ L1
+(µ) if ϕ ∈ L1

+(µ) ∩

D(T )). Then

T + B : D(T ) → L1(µ)

is a generator of a positive C0-semigroup on L1(µ) if and only if T + B is resolvent positive or,
equivalently, if limλ→+∞ rσ

(
B(λ− T )−1

)
< 1.

1.2. Main results.

1.2.1. Fully singular growth rates (8).
Let us describe first our main results in the spaces Xα and X0,α under Assumption (8).

Properties of the growth–absorption semigroup in Xα.
The transport C0-semigroup (U(t))t≥0 governing (9) exists in Xα (resp. in X0,α) and is given

by

U(t)f = e
−

∫ y

X(y,t)
a(p)
r(p)

dp
f(X(y, t))

∂X(y, t)

∂y

(X(y, t) is defined by
∫ y

X(y,t)
1

r(τ)
dτ = t) provided that

̟ := sup
z>0

r(z)

z
< +∞

(
resp. sup

z>1

r(z)

z
< +∞

)
. (13)

In addition, Assumptions (13) turn out to be also necessary. Note that under (8), the generation
theory in X0,α needs no condition on the growth rate at the origin. The resolvent of T is given by

(
(λ− T )−1f

)
(y) =

1

r(y)

∫ y

0
e
−

∫
y
x

λ+a(τ)
r(τ)

dτ
f(x)dx (ℜλ > s(T ))

in both spaces Xα and X0,α. We show the pointwise estimate in Xα,

∣∣(λ − T )−1f
∣∣ (y) ≤

1

yαr(y)
‖f‖Xα

(λ > α̟).

If we replace the natural condition supz>1
r(z)
z

< +∞ by the stronger one,

C̃ := sup
z>0

r(z)

1 + z
< +∞, (14)

then we can show the pointwise estimate in X0,α,

∣∣(λ − T )−1f
∣∣ (y) ≤

1

(1 + y)α r(y)
‖f‖X0,α

(λ > αC̃). (15)

We show that (λ− T )−1 has a smoothing effect in Xα in the sense of improving the integrability
of the input, that is, for λ > α̟,

∫ +∞

0

∣∣(λ − T )−1f
∣∣ (y)a(y)yαdy ≤

∫ +∞

0
|f(y)| yαdy.

In X0,α, if we replace the natural condition supz>1
r(z)
z

< +∞ by (14), we show the smoothing

effect in X0,α: for λ > αC̃
∫ +∞

0

∣∣(λ− T )−1f
∣∣ (y)a(y)(1 + y)αdy ≤

∫ +∞

0
|f(y)| (1 + y)αdy. (16)
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The above estimates, combined with the general theory, [26], on compactness properties in L1

spaces induced by the confining effect of singular absorptions, show that if the sublevel sets of the
total fragmentation rate

Ωc = {x > 0; a(x) < c} (c > 0)

are “thin near zero and near infinity relatively to r” in the sense
∫ +∞

0

1Ωc
(τ)

r(τ)
dτ < +∞ (c > 0), (17)

where 1Ωc
is the indicator function of Ωc (note that 1

r(·)
/∈ L1(0,+∞)), then T has a compact

resolvent in both spaces Xα and X0,α. Note that (17) precludes a(·) to be bounded near zero or
at infinity. Note also that (17) occurs for instance if

lim
y→0+

a(y) = +∞, lim
y→+∞

a(y) = +∞.

Properties of the full growth–fragmentation semigroup in Xα.
In Xα, we introduce

nα(y) :=

∫ y

0
xαb(x, y)dx.

We note that n0, abbreviated as

n(y) :=

∫ y

0
b(x, y)dx, (18)

is the mean number (which can be infinite) of daughter aggregates spawned by the fragmentation
of a mass y aggregate.

We show that if

sup
y>0

nα(y)

yα
< +∞

(note that it is automatically satisfied if α ≥ 1), then the fragmentation operator (10) is T -bounded
in Xα and

lim
λ→+∞

∥∥B(λ − T )−1
∥∥
L(Xα)

≤ lim sup
a(y)→+∞

nα(y)

yα
,

where

lim sup
a(y)→+∞

nα(y)

yα
:= lim

c→+∞
sup

{y; a(y)≥c}

nα(y)

yα
.

In particular, by W. Desch’s perturbation theorem (Theorem 1.1),

T + B : D(T ) ⊂ Xα → Xα

generates a positive C0-semigroup (V (t))t≥0 on Xα provided that

lim sup
a(y)→+∞

nα(y)

yα
< 1. (19)

In addition

T + B : D(T ) ⊂ Xα → Xα

is resolvent compact if T is. By exploiting strict comparison results of spectral radii of positive
operators in domination contexts [21] and the convex (weak) compactness property of the strong
operator topology [33][25] (see below), we deduce that (V (t))t≥0 has a spectral gap (11) and

exhibits the asynchronous exponential growth (12) in Xα provided (4) is satisfied (see Theorem
3.8). We conjecture that no spectral gap can occur in Xα if a(·) is bounded near zero as suggested
by [10, Theorem 4.1].

One shows the α-monotony

nα′ (y)

yα′
≤

nα(y)

yα
(y > 0) (α′ > α)

as well as the α-convexity while, obviously,
n1(y)

y
= 1.

It follows that if a(·) is unbounded at infinity then (19) is never satisfied for α ≤ 1. Furthermore,
if

lim sup
y→+∞

nα(y)

yα
< 1 (20)
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for some α > 1, then it is satisfied for all α > 1 so that if (19) is satisfied in some Xα, it is satisfied
in any Xα, α > 1. Of course, our construction is meaningful only if (20) holds. This can be directly
checked for instance in the case of homogeneous fragmentation kernels

b(x, y) =
1

y
h

(
x

y

)
with

∫ 1

0
zh(z)dz = 1 (21)

for some

h ∈ L1
+ ((0, 1) ;xdx) .

Indeed, the local conservativeness property
∫ y

0
xb(x, y)dx =

∫ y

0

x

y
h

(
x

y

)
dx = y

∫ 1

0
zh(z)dz = y

is satisfied and, for all α > 1,
∫ y
0 xαb(x, y)dx

yα
= y−1

∫ y

0

(
x

y

)α

h

(
x

y

)
dx =

∫ 1

0
zαh(z)dz <

∫ 1

0
zh(z)dz = 1

so

lim sup
a(y)→+∞

nα(y)

yα
=

∫ 1

0
zαh(z)dz < 1 (α > 1).

We can also check (20) for separable (conservative) fragmentation kernels

b(x, y) = β(x)y

(∫ y

0
sβ(s)ds

)−1

, (22)

introduced in [2], or even by any convex combination of such kernels, see Section A.

Analysis in X0,α — open problems.
The analysis in X0,α follows the same strategy but the construction fails under Assumption

(8). Indeed, we introduce

n1,α(y) :=

∫ y

0
(1 + x)α b(x, y)dx (23)

and show that if

sup
y>0

n1,α(y)

(1 + y)α
< +∞, (24)

then the fragmentation operator (10) is T -bounded in X0,α and

lim
λ→+∞

∥∥B(λ − T )−1
∥∥
L(X0,α)

≤ lim sup
a(y)→+∞

n1,α(y)

(1 + y)α
(25)

so W. Desch’s perturbation theorem shows that if

lim sup
a(y)→+∞

n1,α(y)

(1 + y)α
< 1, (26)

then

A := T + B : D(T ) ⊂ X0,α → X0,α (27)

generates a positive C0-semigroup (V (t))t≥0 on X0,α. Unfortunately, if a(·) is unbounded near
zero,

lim sup
a(y)→+∞

n1,α(y)

(1 + y)α
≥ lim sup

y→0

n1,α(y)

(1 + y)α
= lim sup

y→0
n1,α(y)

and (26) is not satisfied since

n1,α(y) ≥

∫ y

0
b(x, y)dx =

1

y

∫ y

0
yb(x, y)dx ≥

1

y

∫ y

0
xb(x, y)dx = 1.

On the other hand, under (8), the compactness of the resolvent of T in X0,α (which plays a key
role in our construction) depends on the unboundedness of a(·) near zero. This is why, under
Assumption (8), the existence of a spectral gap in X0,α is an open problem and our construction
is restricted to the space Xα.
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1.2.2. Partly singular growth rates (7).
Let us describe now our main results under Assumption (7).

Negative results in Xα.
We show first, at least for bounded total fragmentation kernels, that (9) is not well-posed in

Xα in the sense of C0-semigroups and consequently, we cannot expect a generation theory in
Xα for the full problem (1) and therefore we restrict ourselves to the space X0,α. The growth
C0-semigroup (U(t))t≥0 governing (9) with boundary condition

lim
x→0

r(x)u(x, t) = 0 (28)

exists in the space X0,α and is given by

U(t)f = χ{∫ y
0

1
r(τ)

dτ>t
}e

−
∫ y

X(y,t)
a(p)
r(p)

dp
f(X(y, t))

∂X(y, t)

∂y
(29)

(X(y, t) is defined by
∫ y

X(y,t)
1

r(τ)
dτ = t for

∫ y
0

1
r(τ)

dτ > t) provided that (14) is satisfied. This

sufficient condition is also “partly necessary”.

Properties of the growth–absorbtion semigroup in X0,α.
We show the estimates (15)(16) in X0,α. These estimates, combined with the general theory

[26] on compactness properties in L1 spaces induced by the confining effect of singular absorptions,
show that if the sublevel sets of the total fragmentation rate

Ωc = {x > 0; a(x) < c} (c > 0)

are “thin near infinity relatively to r” in the sense
∫ +∞

1

1Ωc
(τ)

r(τ)
dτ < +∞ (c > 0),

where 1Ωc
is the indicator function of Ωc (note that 1

r(·)
/∈ L1(1,+∞)), then T has a compact

resolvent in X0,α. This occurs for instance if

lim
y→+∞

a(y) = +∞.

We introduce (23) and show that under (24) the fragmentation operator is T -bounded in X0,α

and (27) generates a positive C0-semigroup (V (t))t≥0 on X0,α provided that (26) is satisfied.

Properties of the full growth–fragmentation semigroup in X0,α.
By restricting ourselves to the case where a(·) is unbounded at infinity only, (26) amounts to

lim sup
y→+∞

n1,α(y)

(1 + y)α
< 1. (30)

Under (30), the generator (27) is resolvent compact in X0,α if T is. By arguing as previously, we
show that (V (t))t≥0 has a spectral gap (11) and exhibits the asynchronous exponential growth

(12) in X0,α provided (4) is satisfied (see Theorem 4.9).
We show the α-monotony

n1,α̂(y)

(1 + y)α̂
≤

n1,α(y)

(1 + y)α
(y > 0) (0 < α < α̂)

as well as the α-convexity, and

lim sup
y→+∞

n1,1(y)

1 + y
≥ 1.

This implies that (30) is never satisfied if α ≤ 1. It follows that if

lim
α→+∞

lim sup
y→+∞

n1,α(y)

(1 + y)α
< 1, (31)

then there exists a unique threshold

α̃ := inf

{
α > 1; lim sup

y→+∞

n1,α(y)

(1 + y)α
< 1

}
≥ 1

such that (30) is satisfied if and only if α > α̃. Similarly, our construction is meaningfull only if
(31) holds. To this end, we show that if the growth of (18) at infinity is at most polynomial, i.e.,
if

η := inf

{
α > 1;∃cα > 0,

∫ y

0
b(x, y)dx ≤ cα(1 + y)α

}
< +∞, (32)
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then

lim sup
y→+∞

∫ y
0 (1 + x)α b(x, y)dx

(1 + y)α
≤ lim sup

y→+∞

∫ y
0 xαb(x, y)dx

yα
(∀α > η)

and, using α-convexity, we show that in this case 1 ≤ α̃ ≤ η. Again, for a particular example of
homogeneous fragmentation kernels (21)

n(y) =

∫ y

0

1

y
h

(
x

y

)
dx =

∫ 1

0
h(z)dz

and consequently the threshold is exactly one

α̃ = η = 1,

provided
∫ 1
0 h(z)dz < +∞ (note that here η = 1 by definition, as we only consider exponents

bigger than 1). We can also check (31) for separable (conservative) fragmentation kernels (22) or
by any convex combination of such kernels, see Section A. We can summarize the results in the
following table.

Space� growth Assumption (7) Assumption (8)

Xα

No generation in general
Under additional

assumptions, see [28]

Generation
AEG

X0,α
Generation

AEG
Generation

AEG − open problem

2. The method of characteristics.

The explicit formulae for solutions to transport equations (9) can be obtained by the method
of characteristics and belong to the mathematical folklore, see e.g., [6, 10]; a systematic treatment
of them can be found [27]. We recall them for the reader’s convenience.

Proposition 1. ([27, Proposition 44]) Let (6) and (7) be satisfied. Then the partial differential
equation

∂

∂t
u(x, t) +

∂

∂x
[r(x)u(x, t)] = 0, (x > 0, t > 0)

with initial and boundary conditions

u(x, 0) = f(x), lim
y→0

r(y)u(y, t) = 0 (t > 0)

has a unique solution given by

u(y, t) =

{
r(X(y,t))f(X(y,t))

r(y)
= f(X(y, t))∂X(y,t)

∂y
if
∫ y

0
1

r(τ)
dτ > t

0 if
∫ y
0

1
r(τ)

dτ < t

where X(y, t) is defined, for
∫ y

0
1

r(τ)
dτ > t, by

∫ y

X(y,t)

1

r(τ)
dτ = t, X(y, t) ∈ (0, y) .

Proposition 2. ([27, Proposition 2]) Let (6) and (8) be satisfied. Then the partial differential
equation

∂

∂t
u(x, t) +

∂

∂x
[r(x)u(x, t)] = 0, (x > 0, t > 0)

with initial condition u(x, 0) = f(x) has a unique solution given by

u(y, t) =
r(X(y, t))f(X(y, t))

r(y)
,

where X(y, t) (t > 0) is defined by
∫ y

X(y,t)

1

r(τ)
dτ = t, X(y, t) ∈ (0, y) .

3. First construction.

The first construction is based on Assumption (7). It is devoted to asynchronous exponential
growth in the space X0,α only since we cannot expect in general a generation theory in Xα under
(7), see Remark 1 below.
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3.1. Generation theory.

Our first result on the generation of transport semigroups in X0,α is:

Theorem 3.1. Let α > 0 and let (6) and (7) be satisfied. Let y(x, t) be defined by
∫ y(x,t)

x

1

r(τ)
dτ = t. (33)

Then (U0(t))t≥0 with

(U0(t)f) (y) = χ{∫ y
0

1
r(τ)

dτ>t
} r(X(y, t))f(X(y, t))

r(y)

is a C0-semigroup on X0,α if and only if

sup
x>0

1 + y(x, t)

1 + x
< +∞ (t ≥ 0)

and

[0,+∞) ∋ t 7→ sup
x>0

1 + y(x, t)

1 + x

is locally bounded. In this case

‖U0(t)‖L(X0,α) = sup
x>0

(1 + y(x, t))α

(1 + x)α
.

This occurs if there exists C > 0 such that

r(z) ≤ C(z + 1) (∀z > 0). (34)

In this case, ‖U0(t)‖L(X0,α) ≤ eαCt.

Proof. Let us check that U0(t) is a bounded operator on X0,α. Let y0(t) > 0 be defined by
∫ y0(t)

0

1

r(τ)
dτ = t. (35)

Note that for
∫ y
0

1
r(τ)

dτ > t we have
∫ y

X(y,t)

1

r(τ)
dτ = t, (36)

which shows that (for t > 0 fixed) X(y, t) is strictly increasing in y and tends to 0 as y → y0(t).
Note that

(y0(t), +∞) ∋ y 7→ X(y, t) ∈ (0,+∞)

is continuous. Note also that (for t > 0 fixed)

U(y, z) :=

∫ y

z

1

r(τ)
dτ − t

is of class C1 in (y, z) with
∂U(y, z)

∂z
= −

1

r(z)
6= 0,

so that the implicit function theorem shows that X(y, t) is a C1 function in y ∈ (y0(t), +∞).
Thus, differentiating (36) with respect to y we obtain

1

r(y)
−

1

r(X(y, t))

∂X(y, t)

∂y
= 0

so
1

r(y)
=

1

r(X(y, t))

∂X(y, t)

∂y

and

(U0(t)f) (y) = f(X(y, t))
∂X(y, t)

∂y
; y ∈ (y0(t), +∞).

We have

‖U0(t)f‖X0,α
=

∫ +∞

0
|(U0(t)f) (y)| (1 + y)α dy

=

∫ +∞

y0(t)
|f(X(y, t))|

∂X(y, t)

∂y
(1 + y)α dy.
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The change of variable x = X(y, t) gives

‖U0(t)f‖X0,α
=

∫ +∞

0
|f(x)| (1 + y(x, t))α dx,

where y(x, t) is the unique y > x such that x = X(y, t) i.e. (33). Hence

‖U0(t)f‖X0,α
=

∫ +∞

0

(1 + y(x, t))α

(1 + x)α
|f(x)| (1 + x)α dx

and U0(t) is a bounded linear operator in X0,α if and only if

sup
x>0

(1 + y(x, t))α

(1 + x)α
< +∞.

In such a case,

‖U0(t)‖L(X0,α) = sup
x>0

(1 + y(x, t))α

(1 + x)α
.

Moreover,

[0,+∞) ∋ t 7→ U0(t) ∈ L(X0,α)

is locally bounded if and only if

[0,+∞) ∋ t 7→ sup
x>0

(1 + y(x, t))α

(1 + x)α

is. Using the flow property of (y, t) 7→ X(y, t), which follows since it is the solution of an au-
tonomous differential equation, we can prove that the semigroup property U0(s)U0(t) = U0(t +
s), t, s ≥ 0, is satisfied. It is also easy to see that [0,+∞) ∋ t 7→ U0(t) ∈ L(X0,α) is locally
bounded. Then, by [17, Proposition I.1.3], to prove that it is a strongly continuous semigroup on
X0,α, it suffices to check that

U0(t)f → f in X0,α as t → 0

on a dense subspace of L1(R+; (1 + x)α dx), e.g. for f continuous with compact support in
(0,+∞). Note that for any compact set

[
c, c−1

]

∫ y

0

1

r(τ)
dτ > t

for t small enough uniformly in y ∈
[
c, c−1

]
so

(U0(t)f) (y) = f(X(y, t))
∂X(y, t)

∂y
∀y ∈

[
c, c−1

]

for t small enough. In particular
∫ y

X(y,t)

1

r(τ)
dτ = t ∀y ∈

[
c, c−1

]

and

(U0(t)f) (y) =
r(X(y, t))f(X(y, t))

r(y)
∀y ∈

[
c, c−1

]
,

for t small enough. We note that X(y, t) → y as t → 0 for any y > 0 and uniformly in y ∈
[
c
2
, 2c−1

]
.

Hence

(U0(t)f) (y) =
r(X(y, t))f(X(y, t))

r(y)
→ f(y) (t → 0)

and, by the dominated convergence theorem, U0(t)f → f in X0,α as t → 0.
Let us continue with the prove of the last statement of the theorem. For fixed x > 0, the

differentiation in t of
∫ y(x,t)
x

1
r(τ)

dτ = t gives

1

r(y(x, t))

∂y(x, t)

∂t
= 1

i.e.
∂y(x, t)

∂t
= r(y(x, t)) ∀t > 0, with y(x, 0) = x. (37)

Hence,

y(x, t) = x +

∫ t

0
r(y(x, s))ds ≤ x +

∫ t

0
C (y(x, s) + 1) ds,
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where (34) is used in the last step, so

y(x, t) + 1 ≤ x + 1 +

∫ t

0
C (y(x, s) + 1) ds

and Gronwall’s lemma gives
y(x, t) + 1 ≤ (x + 1) eCt.

Finally

sup
x>0

(1 + y(x, t))α

(1 + x)α
≤ eαCt

and ‖U0(t)‖L(X0,α) ≤ eαCt.

Remark 1. Note that we cannot expect a generation theory in Xα. Indeed, U0(t) is bounded in
Xα if and only only if

sup
x>0

y(x, t)

x
< +∞,

while (33) and (35) show that limx→0 y(x, t) = y0(t) > 0.

Remark 2. Assumption (34) is partly necessary for the generation theory in X0,α, see Remark
10 below.

To find the formula of the resolvent of the generator, we take the Laplace transform of
(U0(t))t>0 . We point out that the Laplace integral with respect to t of a continuous L1(R+; (1 +
x)αdx)-valued function t 7→ f(·, t) in the Bochner sense is a.e. in x equal to the Lebesgue integral
with respect to t of f treated as a function of two variables (x, t) → f(x, t), see [3, Example 2.23].
Thus, with some change of variables, we have

Theorem 3.2. Let α > 0, (6), (7) and (34) be satisfied. Let T0 be the generator of (U0(t))t>0 .
Then (

(λ− T0)−1f
)

(y) =
1

r(y)

∫ y

0
e
−

∫
y
x

λ
r(s)

ds
f(x)dx, (f ∈ X0,α) (ℜλ > s(T0))

where s(T0) is the spectral bound of T0.

We note that the last statement follows due to the positivity of (U0(t))t>0, see [30, Theorem
1.4.1].

3.2. A pointwise estimate.

Hereafter we assume that (34) is satisfied.
We give the first key a priori estimate.

Lemma 3.3. Let α > 0, (6), (7) and (34) be satisfied and λ ≥ αC. Then

∣∣(λ − T0)−1f
∣∣ (y) ≤

1

(1 + y)α r(y)
‖f‖X0,α

(f ∈ X0,α).

Proof. Note that (34), i.e.
1

r(τ)
≥

C−1

τ + 1
,

implies

e
−λ

∫
y
x

1
r(τ)

dτ
≤ e

− λ
C

∫
y
x

1
τ+1

dτ
= e

− λ
C

ln( y+1
x+1

)
=

(
x + 1

y + 1

) λ
C

, (38)

so
∣∣(λ− T0)−1f(y)

∣∣ ≤
1

r(y)

∫ y

0
e
−λ

∫
y
x

1
r(τ)

dτ
|f(x)| dx

≤
1

r(y)

∫ y

0

(
x + 1

y + 1

) λ
C

|f(x)| dx

=
1

r(y)

∫ y

0

1

(1 + x)α

(
x + 1

y + 1

) λ
C

|f(x)| (1 + x)α dx

=
1

(1 + y)α r(y)

∫ y

0

(1 + y)α

(1 + x)α

(
x + 1

y + 1

) λ
C

|f(x)| (1 + x)α dx

=
1

(1 + y)α r(y)

∫ y

0

(
x + 1

y + 1

) λ
C

−α

|f(x)| (1 + x)α dx.
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Finally

∣∣(λ − T0)−1f(y)
∣∣ ≤ 1

(1 + y)α r(y)

∫ y

0
|f(x)| (1 + x)α dx ≤

1

(1 + y)α r(y)
‖f‖X0,α

because λ
C

− α ≥ 0 and x+1
y+1

≤ 1 for 0 ≤ x ≤ y.

3.3. The first perturbed semigroup.

We build now a second explicit perturbed C0-semigroup by solving, using the method of char-
acteristics,

∂

∂t
u(x, t) +

∂

∂x
[r(x)u(x, t)] + a(x)u(x, t) = 0

with initial and boundary conditions

u(x, 0) = f(x), lim
x→0

r(x)u(x, t) = 0.

The solution is given by

χ{∫ y
0

1
r(τ)

dτ>t
}e

−
∫ y

X(y,t)
a(p)
r(p)

dp r(X(y, t))f(X(y, t))

r(y)
.

This defines a perturbed C0-semigroup (U(t))t≥0 on X0,α, dominated by (U0(t))t≥0 ,

(U(t)f) (y) = χ{∫ y
0

1
r(τ)

dτ>t
}e

−
∫ y

X(y,t)
a(p)
r(p)

dp r(X(y, t))f(X(y, t))

r(y)
. (39)

Remark 3. We have seen in Remark 1 that for a(·) = 0 we cannot expect a generation theory in
Xα. Hence, by the bounded perturbation theory, we cannot expect a generation theory in Xα for

bounded a(·). But this does not prevent (39) from defining a C0-semigroup in Xα for a suitably
singular a(·). Actually, this is the case if a(·) is sufficiently singular at zero but then the whole
construction of the paper needs additional tehnicalities. For the sake of clarity, this special case is
treated separately [28].

As previously, the Laplace transform of (U(t))t>0 and some change of variables give:

Proposition 3. Let α > 0 and let (6), (7) and (34) be satisfied. Then, the resolvent of its
generator T is given by

(
(λ− T )−1 f

)
(y) =

1

r(y)

∫ y

0
e
−

∫
y
x

λ+a(τ)
r(τ)

dτ
f(x)dx, (f ∈ X0,α) (ℜλ > s(T )).

As in Theorem 3.2, the estimate of the abscissa of convergence of the Laplace integral follows
from the positivity of (U(t))t>0 .

3.4. A smoothing effect of the perturbed resolvent.

The second key a priori estimate is given by:

Lemma 3.4. Let α > 0, (6), (7) and (34) be satisfied and λ ≥ αC. Then
∫ +∞

0

∣∣((λ − T )−1f
)

(y)
∣∣ a(y) (1 + y)α dy ≤

∫ +∞

0
|(f(y)| (1 + y)α dy, ∀f ∈ X0,α.

Proof. It suffices to consider nonnegative f. Using (38), we have
∫ +∞

0

(
(λ − T )−1f

)
(y)a(y) (1 + y)α dy

=

∫ +∞

0

a(y) (1 + y)α

r(y)

(∫ y

0
e
−λ

∫
y
x

1
r(p)

dp
e
−

∫
y
x

a(p)
r(p)

dp
f(x)dx

)
dy

≤

∫ +∞

0

a(y) (1 + y)α

r(y)

(∫ y

0

(
x + 1

y + 1

) λ
C

e
−

∫
y
x

a(p)
r(p)

dp
f(x)dx

)
dy

=

∫ +∞

0

[∫ +∞

x

(
x + 1

y + 1

) λ
C a(y) (1 + y)α

r(y)
e
−

∫
y
x

a(p)
r(p)

dp
dy

]
f(x)dx

=

∫ +∞

0

[∫ +∞

x

1

(1 + x)α

(
x + 1

y + 1

) λ
C a(y) (1 + y)α

r(y)
e
−

∫
y
x

a(p)
r(p)

dp
dy

]
f(x) (1 + x)αdx

=

∫ +∞

0

[∫ +∞

x

(
x + 1

y + 1

) λ
C

−α a(y)

r(y)
e
−

∫
y
x

a(p)
r(p)

dp
dy

]
f(x) (1 + x)α dx
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≤

∫ +∞

0

[∫ +∞

x

a(y)

r(y)
e
−

∫
y
x

a(p)
r(p)

dp
dy

]
f(x) (1 + x)α dx

where x+1
y+1

≤ 1 and λ
C

− α ≥ 0 are used in the last step. Thus

∫ +∞

0

(
(λ− T )−1f

)
(y)a(y) (1 + y)α dy

≤ sup
x>0

∫ +∞

x

a(y)

r(y)
e
−

∫
y
x

a(p)
r(p)

dp
dy

(∫ +∞

0
f(x) (1 + x)α dx

)
.

Finally, the estimate
∫ +∞

x

e
−

∫
y
x

a(p)
r(p)

dp a(y)

r(y)
dy = −

∫ +∞

x

d

dy

(
e
−

∫
y
x

a(p)
r(p)

dp
)
dy

= −

[
e
−

∫
y
x

a(p)
r(p)

dp
]y=+∞

y=x

≤ 1

ends the proof.

3.5. On the full semigroup.

We give now the second perturbed semigroup.

Theorem 3.5. Let α > 0 and let (6), (7) and (34) be satisfied. Define

n1,α(y) :=

∫ y

0
(1 + x)α b(x, y)dx.

If

sup
y>0

n1,α(y)

(1 + y)α
< +∞,

then the fragmentation operator B is T -bounded in X0,α and

lim
λ→+∞

∥∥B(λ − T )−1
∥∥
L(X0,α)

≤ lim sup
a(y)→+∞

n1,α(y)

(1 + y)α
.

In particular, if

lim sup
a(y)→+∞

n1,α(y)

(1 + y)α
< 1, (40)

then

A := T + B : X0,α ⊃ D(T ) → X0,α

generates a positive C0-semigroup (V (t))t≥0 on X0,α.

Proof. We note that for nonnegative ϕ

‖Bϕ‖X0,α
=

∫ +∞

0

(∫ +∞

x

a(y)b(x, y)ϕ(y)dy

)
(1 + x)α dx

=

∫ +∞

0
a(y)

(∫ y

0
(1 + x)α b(x, y)dx

)
ϕ(y)dy

=

∫ +∞

0
a(y)n1,α(y)ϕ(y)dy.

Thus, for nonnegative f ,
∥∥B(λ− T )−1f

∥∥
X0,α

=

∫ +∞

0
a(y)n1,α(y)

(
(λ− T )−1f

)
(y)dy

=

∫ +∞

0
a(y)

n1,α(y)

(1 + y)α
(
(λ− T )−1f

)
(y) (1 + y)α dy. (41)

Let

L := lim sup
a(y)→+∞

n1,α(y)

(1 + y)α
,

that is, for any ε > 0 there exists cε > 0 such that

a(y) ≥ cε =⇒
n1,α(y)

(1 + y)α
≤ L + ε.
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We decompose (41) into two integrals

∫ +∞

0
a(y)

n1,α(y)

(1 + y)α
(
(λ− T )−1f

)
(y) (1 + y)α dy

=

∫

{a(y)≤cε}
a(y)

n1,α(y)

(1 + y)α
(
(λ − T )−1f

)
(y) (1 + y)α dy

+

∫

{a(y)>cε}
a(y)

n1,α(y)

(1 + y)α
(
(λ− T )−1f

)
(y) (1 + y)α dy

= I1 + I2.

We note that

I1 ≤ cε

∥∥∥∥
n1,α(·)

(1 + y)α

∥∥∥∥
L∞

∥∥((λ− T )−1f
)∥∥

X0,α
,

while, using Lemma 3.4,

I2 ≤ (L + ε)

∫ +∞

0
a(y)

(
(λ− T )−1f

)
(y) (1 + y)α dy

≤ (L + ε)‖f‖X0,α
.

Hence,

∥∥B(λ − T )−1f
∥∥
X0,α

≤ cε

∥∥∥∥
n1,α(·)

(1 + y)α

∥∥∥∥
L∞

∥∥(λ− T )−1
∥∥
L(X0,α)

‖f‖X0,α

+ (L + ε) ‖f‖X0,α

and

∥∥B(λ − T )−1
∥∥
L(X0,α)

≤ cε

∥∥∥∥
n1,α(·)

(1 + y)α

∥∥∥∥
L∞

∥∥(λ − T )−1
∥∥
L(X0,α)

+ (L + ε) (∀ε > 0).

Since T is a generator of a semigroup,
∥∥(λ − T )−1

∥∥
L(X0,α)

→ 0 as λ → +∞ and hence

lim
λ→+∞

∥∥B(λ − T )−1
∥∥
L(X0,α)

≤ L + ε (∀ε > 0).

Consequently,

lim
λ→+∞

∥∥B(λ − T )−1
∥∥
L(X0,α)

≤ L.

Finally, if (40) is satisfied, L < 1 and then the generation follows from the Desch theorem, Theorem
1.1.

Remark 4. If a(·) is unbounded near zero, then

lim sup
a(y)→+∞

n1,α(y)

(1 + y)α
≥ lim sup

y→0
n1,α(y) ≥ lim sup

y→0

∫ y

0
b(x, y)dx ≥ 1

because ∫ y

0
b(x, y)dx =

1

y

∫ y

0
yb(x, y)dx ≥

1

y

∫ y

0
xb(x, y)dx = 1,

so (40) is not satisfied. Hence Theorem 3.5 is meaningful if a(·) is unbounded only at infinity; see
below.

Note the useful observation:

Proposition 4. Let (0,∞) ∋ x → f(x) ∈ (0,∞) be a non decreasing function and for some there
are y > 0, α0 > 0 such that ∫ y

0
fα(x)b(x, y)dx < +∞

for any α > α0. Then

(α0,+∞) ∋ α →

∫ y

0
fα(x)b(x, y)dx

fα(y)

is a non increasing and convex function.
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Proof. Since 0 ≤
f(x)
f(y)

≤ 1 for x ∈ (0, y], (0, α) ∋ α →
(

f(x)
f(y)

)α
is non increasing and convex, that

is, for 0 < α1 ≤ α ≤ α2,(
f(x)

f(y)

)α1

≥

(
f(x)

f(y)

)α2

,

(
f(x)

f(y)

)α

≤

(
f(x)

f(y)

)α1

+

(
f(x)
f(y)

)α2
−
(

f(x)
f(y)

)α1

α2 − α1
(α − α1)

and the statement follows by multiplying both sides with b(x, y) ≥ 0 and integrating over (0, y)
with respect to x.

Remark 5. Applying Proposition 4 to f(x) = (1 + y)α we see that if (40) is satisfied for some
α > 0, then it is satisfied for all α̂ > α.

Remark 6. Note first that our assumption (40) precludes the case α = 1 if a(·) is unbounded at
infinity. Indeed

n1,1(y) :=

∫ y

0
(1 + x) b(x, y)dx =

∫ y

0
b(x, y)dx +

∫ y

0
xb(x, y)dx

= n0(y) + y

and then lim supa(y)→+∞
n1,α(y)

(1+y)
≥ 1. It follows from Proposition 4 that

lim sup
a(y)→+∞

n1,α(y)

(1 + y)
≥ 1 (0 < α ≤ 1). (42)

Hence the necessity of higher moments, i.e., α > 1. More precisely, if

lim
α→+∞

lim sup
a(y)→+∞

n1,α(y)

(1 + y)α
< 1,

then the threshold

α̃ := inf

{
α > 1; lim sup

a(y)→+∞

n1,α(y)

(1 + y)α
< 1

}
(43)

is such that (40) holds if and only if α > α̃. See Proposition 5 below for more information about
this threshold.

Remark 7. If a(·) is only unbounded at infinity, then (40) amounts to

lim sup
y→+∞

n1,α(y)

(1 + y)α
< 1 (44)

and (43) is given by

α̃ := inf

{
α > 1; lim sup

y→ +∞

n1,α(y)

(1 + y)α
< 1

}
.

We end this subsection by an upper estimate of the threshold (43).

Proposition 5. We assume that

η := inf

{
α > 1; ∃cα > 0,

∫ y

0
b(x, y)dx ≤ cα(1 + y)α ∀y > 0

}
< +∞. (45)

Then

lim sup
y→+∞

∫ y
0 (1 + x)α b(x, y)dx

(1 + y)α
≤ lim sup

y→+∞

∫ y
0 xαb(x, y)dx

yα
(∀α > η).

In particular, if (45) is satisfied and a(·) is unbounded only at infinity, then α̃ ≤ η, provided α̃ is
finite.

Proof. Note first that

lim sup
y→+∞

∫ y
0
b(x, y)dx

(1 + y)α
= 0 (∀α > η).

Since

n1,α(y)

(1 + y)α
=

∫ y
0 (1 + x)α b(x, y)dx

(1 + y)α

=

∫ y

0
ζ(x)b(x, y)dx

(1 + y)α
+

∫ y

0
b(x, y)dx

(1 + y)α
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with ζ(x) = (1 + x)α − 1,

lim sup
y→+∞

∫ y
0 (1 + x)α b(x, y)dx

(1 + y)α
≤ lim sup

y→+∞

∫ y
0 ζ(x)b(x, y)dx

(1 + y)α
.

Let ε > 0 be arbitrary and Mε be large enough so that

ζ(x)

xα
≤ 1 + ε (x ≥ Mε).

Then for y > Mε

∫ y
0 ζ(x)b(x, y)dx

(1 + y)α
=

∫Mε

0 ζ(x)b(x, y)dx

(1 + y)α
+

∫ y
Mε

ζ(x)b(x, y)dx

(1 + y)α

≤ ζ(Mε)

∫Mε

0 b(x, y)dx

(1 + y)α
+

∫ y
Mε

ζ(x)b(x, y)dx

(1 + y)α

≤ ζ(Mε)

∫ y

0
b(x, y)dx

(1 + y)α
+ (1 + ε)

∫ y

0
xαb(x, y)dx

(1 + y)α
.

Hence

lim sup
y→+∞

∫ y
0 ζ(x)b(x, y)dx

(1 + y)α
≤ (1 + ε) lim sup

y→+∞

∫ y
0 xαb(x, y)dx

(1 + y)α
(∀ε > 0)

or, equivalently,

lim sup
y→+∞

∫ y
0 ζ(x)b(x, y)dx

(1 + y)α
≤ (1 + ε) lim sup

y→+∞

∫ y
0 xαb(x, y)dx

yα
(∀ε > 0).

Hence

lim sup
y→+∞

∫ y
0 ζ(x)b(x, y)dx

(1 + y)α
≤ lim sup

y→+∞

∫ y
0 xαb(x, y)dx

yα
.

To prove the last statement, we apply Proposition 4. If (44) is not satisfied for any α, then α̃ = ∞.
If (44) is satisfied for α < η, then the statement holds. So, we can assume that (44) is satisfied
for some α2 > η. Let us take arbitrary α1 > η and α ∈ (α1, α2). By the convexity, for any y > 0
we have

n1,α(y)

(1 + y)α
≤

n1,α1 (y)

(1 + y)α1
+

n1,α2
(y)

(1+y)α2 −
n1,α1

(y)

(1+y)α1

α2 − α1
(α− α1)

=
n1,α1 (y)

(1 + y)α1

α2 − α

α2 − α1
+

n1,α2 (y)

(1 + y)α2

α− α1

α2 − α1
.

For any ǫ1 > 0 there is y1 such that for y > y1

n1,α2 (y)

(1 + y)α2

α− α1

α2 − α1
< (1 − ǫ1)

α− α1

α2 − α1
.

Next, since
(1+x)α1

1+xα1 → 1 as x → ∞, for any ǫ2 > 0 we pick y2 > y1 such that
(1+x)α1

1+xα1 ≤ 1 + ǫ2
for x ≥ y2 and, since α1 > η, for large y and some 1 ≤ η < α′ < α1, using (45) and

∫ y

y2

xα1b(x, y)dx ≤ yα1−1

∫ y

y2

xb(x, y)dx ≤ yα1−1

∫ y

0
xb(x, y)dx ≤ yα1 ,

we have
∫ y
0 (1 + x)α1b(x, y)dx

(1 + y)α1

≤

∫ y2
0 (1 + x)α1b(x, y)dx

(1 + y)α1
+ (1 + ǫ2)

∫ y

y2
b(x, y)dx +

∫ y

y2
xα1b(x, y)dx

(1 + y)α1

≤ (1 + y2)α1
cα′(1 + y)α

′

(1 + y)α1
+ (1 + ǫ2)

cα′(1 + y)α
′

+ yα1

(1 + y)α1
.

Thus, for any ǫ3 we have y3 > y2 such that for all y > y3 we have
∫ y

0
(1 + x)α1b(x, y)dx

(1 + y)α1
≤ 1 + ǫ3
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and, for such y,

n1,α(y)

(1 + y)α
≤ (1 + ǫ3)

α2 − α

α2 − α1
+ (1 − ǫ1)

α − α1

α2 − α1

= 1 + ǫ3
α2 − α

α2 − α1
− ǫ1

α− α1

α2 − α1
.

Since ǫ3 and ǫ1 are independent, taking ǫ3 =
ǫ1(α−α1)
2(α2−α)

we obtain for the corresponding large y,

n1,α(y)

(1 + y)α
≤ 1 −

ǫ1

2

α− α1

α2 − α1

hence, since α1 > η is arbitrary, we have α̃ ≤ η.

Remark 8. Similar estimates appear in [8, Theorem 2.2] and [6, Theorem 2.2], where W. Desch’s
theorem is used with the weight 1 + xα instead of (1 + x)α .

Remark 9. As noted in Introduction, for homogeneous fragmentation kernels

b(x, y) =
1

y
h

(
x

y

)
with

∫ 1

0
zh(z)dz = 1,

we have ∫ y

0
xαb(x, y)dx

yα
=

∫ 1

0
zαh(z)dz <

∫ 1

0
zh(z)dz = 1 (α > 1)

so,

lim sup
y→+∞

∫ y

0
xαb(x, y)dx

yα
=

∫ 1

0
zαh(z)dz <

∫ 1

0
zh(z)dz = 1 (α > 1)

and α̃ = 1. See Appendix A for more examples.

3.6. Compactness results.

We start with

Theorem 3.6. Let α > 0, (6), (7) and (34) be satisfied. Let the sublevel sets
of a(·) be thin at infinity in the sense that for any c > 0

∫ +∞

1
1{a<c}

1

r(y)
dy < +∞ (46)

(e.g. let limx→+∞ a(x) = +∞ ). Then T is resolvent compact.

Proof. Let λ > αC and let f be in the unit ball of X0,α, i.e.
∫ +∞

0
|f(x)| (1 + x)α dx ≤ 1.

According to Lemma 3.4
∫ +∞

0

∣∣((λ − T )−1f
)

(y)
∣∣ a(y) (1 + y)α dy ≤ 1.

Let c > 0 and ε > 0 be arbitrary. We have

1 ≥

∫ +∞

ε−1

∣∣((λ− T )−1f
)

(y)
∣∣ a(y) (1 + y)α dy

=

∫ +∞

ε−1
1{a<c}

∣∣((λ− T )−1f
)

(y)
∣∣ a(y) (1 + y)α dy

+

∫ +∞

ε−1
1{a≥c}

∣∣((λ− T )−1f
)

(y)
∣∣ a(y) (1 + y)α dy

≥

∫ +∞

ε−1
1{a<c}

∣∣((λ− T )−1f
)

(y)
∣∣ a(y) (1 + y)α dy +

c

∫ +∞

ε−1
1{a≥c}

∣∣((λ − T )−1f
)

(y)
∣∣ (1 + y)α dy,

so

sup
‖f‖E≤1

∫ +∞

ε−1
1{a≥c}

∣∣((λ− T )−1f
)

(y)
∣∣ (1 + y)α dy ≤

1

c
(∀ε > 0).
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On the other hand, according to Lemma 3.3,

∣∣(λ− T )−1f
∣∣ (y) ≤

∣∣(λ− T0)−1f
∣∣ (y) ≤

1

(1 + y)α r(y)
,

so ∫ +∞

ε−1
1{a<c}

∣∣((λ− T )−1f
)

(y)
∣∣ (1 + y)α dy ≤

∫ +∞

ε−1
1{a<c}

1

r(y)
dy

and then
∫ +∞

ε−1

∣∣((λ− T )−1f
)

(y)
∣∣ (1 + y)α dy

=

∫ +∞

ε−1
1{a<c}

∣∣((λ− T )−1f
)

(y)
∣∣ (1 + y)α dy

+

∫ +∞

ε−1
1{a≥c}

∣∣((λ− T )−1f
)

(y)
∣∣ (1 + y)α dy

≤

∫ +∞

ε−1
1{a<c}

1

r(y)
dy +

1

c

can be made arbitrarily small (uniformly in ‖f‖X0,α
≤ 1) by choosing first c large enough and

then ε small enough.
On the other hand on

(
0, ε−1

)
we have the uniform domination

∣∣(λ− T )−1f
∣∣ (y) ≤

1(0,ε−1)(y)

(1 + y)α r(y)
(‖f‖X0,α

≤ 1),

where
1(0,ε−1)(y)

(1 + y)α r(y)
∈ X0,α.

Finally
{

(λ− T )−1f ; ‖f‖X0,α
≤ 1
}

is as close to the relatively weakly compact set

{
1(0,ε−1)(y)(λ − T )−1f ; ‖f‖X0,α

≤ 1
}

as we want and consequently it is weakly compact. This shows that (λ− T )−1 is weakly compact

operator and consequently (see [26, Lemma 14]) (λ− T )−1 is compact.

Corollary 1. Let (6), (7), (34) and (40) be satisfied and let the sublevel sets of a(·) be thin at
infinity in the sense of (46). Then A := T + B : D(T ) → X0,α, where B is defined by (10), is
resolvent compact.

Proof. This follows simply from Theorem 3.6 and the fact that for λ large enough,
∑+∞

n=0

[
B(λ − T )−1

]n
is a bounded operator and

(λ− T − B)−1 = (λ− T )−1
+∞∑

n=0

[
B(λ − T )−1

]n
.

3.7. Spectral gap of (V (t))t>0 in X0,α.

We start with an irreducibility result which extends [5, Theorem 5.2.21] and is based on ideas
from [7, Proposition 2].

Theorem 3.7. Let α > 0, (6), (7), (34) and (40) and either

1. for any x > 0, supp0≤y≤+∞ a(y)b(x, y) is unbounded, or

2. a(y) > 0 for a.a. y > 0 and there is 0 ≤ p < 1 such that for each y > 0, inf supp b(·, y) ≤ py

be satisfied. Then (λ − T −B)−1 is positivity improving, i.e.,

(λ − T −B)−1g > 0 a.e.

for any nontrivial nonnegative g ∈ X0,α or, equivalently, the C0-semigroup (V (t))t≥0 is irreducible

in X0,α.
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Proof. We know that

(
(λ− T )−1g

)
(y) =

1

r(y)

∫ y

0
e
−λ

∫
y
x

1
r(τ)

dτ
e
−

∫
y
x

a(s)
r(s)

ds
g(x)dx

and

(λ− T − B)−1 = (λ− T )−1
+∞∑

n=0

[
B(λ − T )−1

]n
, (47)

Let g > 0 and set zg = sup{z : g(z) = 0 a.a. on [0, z]}. If zg = 0, then obviously (λ− T )−1g > 0.
and the result is valid. Assume then that zg > 0 and observe that

Ψ0(z) := [(λ− T )−1g](z) =





1

r(z)

∫ z
zg

e
−

∫
z
x

λ+a(s)
r(s)

ds
f(x)dx for z ≥ zg,

0 for 0 ≤ z < zg

and [(λ− T )−1g](z) is positive for x > zg. Then, for x < zg,

[(λ− T )−1B(λ − T )−1g](x) = [(λ− T )−1BΨ0](x)

=
1

r(x)

∫ x

0
e
−

∫
x
y

λ+a(s)
r(s)

ds

(∫ ∞

zg

a(z)b(y, z)Ψ0(z)dz

)
dy.

We see that if assumption 1. is satisfied, then the inner integrand is positive for any y > 0 and
hence Ψ1(x) := [(λ − T )−1B(λ − T )−1g](x) > 0 for any x > 0. Otherwise, on using assumption
2, Ψ1(x) > 0 for x > inf supp b(·, zg). Thus, if p = 0 (in particular, if b(x, y) > 0 for all y > 0 and
0 < x < y), then the result is proved. If p > 0, then Ψ1(x) > 0 at least for x > pzg. Next, the
third term of (47) is given by

Ψ2(x) := [(λ− T )−1(B(λ − T )−1)2f ](x) = [(λ− T )−1BΨ1](x)

and thus, by the same argument, Ψ2(x) > 0 for x > p2zg. Using induction and pn → 0, we
conclude that [(λ− T −B)−1f ](x) > 0 almost everywhere.

Corollary 2. Assumption 2. of Theorem 3.7 are satisfied if either

: (i) there is δ > 0 such that for any y > 0 we have n0(y) ≥ 1 + δ, or
: (ii) b ∈ L∞,loc(R+ × R+).

Proof. Assume that (i) is satisfied. If inf supp b(·, y) = 0, then we are done. Otherwise, let for
some y, inf supp b(·, y) = p′y for some p′ ∈ (0, 1); p′ can depend on y. Then

1 + δ ≤ n0(y) =

∫ y

p′y

b(x, y)dx ≤
1

p′y

∫ y

p′y

xb(x, y)dx =
1

p′
,

which implies p′ ≤ (1+δ)−1. Hence, if we select p (independent of y) such that (1+δ)−1 < p < 1,
then for each y > 0, inf supp b(·, y) ≤ (1 + δ)−1y < py. If, instead of (i), assumption (ii) is
satisfied, then the constant p of the proof of Theorem 3.7 may be y dependent and though in
each step we can prove that the positivity of Ψn on [zn,∞) implies the positivity of Ψn+1 on
[zn+1,∞), where zn+1 = p(zn)zn, z1 = zg, this sequence may converge (as a decreasing sequence)
to a z∞ > 0. Then, however, we would have

supp b(·, zn) ⊂ (z∞, zn], n ∈ N;

that is,

zn =

∫ zn

z∞

xb(x, zn)dx.

This, however, leads to a contradiction, since the left-hand side converges to z∞ > 0 and the
right-hand side, by (ii), to 0.

We are ready to show the main result of the first construction.

Theorem 3.8. Under assumptions of Theorem 3.7, let the sublevel sets of a(·) be thin at infinity
in the sense of (46). Then (V (t))t≥0 has a spectral gap, i.e.,

ress(V (t)) < rσ(V (t)),

and it has the asynchronous exponential growth property (12) in X0,α.
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Proof. Let

k(x, y) := 1{x<y}a(y)b(x, y)

be the kernel of B. Let further

k(x, y) := k(x, y) ∧ 1

and

kc(x, y) := k(x, y)p(x)p(y),

where p ∈ C(0,+∞) has a compact support in (0,+∞) and 0 ≤ p(x) ≤ 1. Note that

k(x, y) > kc(x, y)

and

k(x, y) =
(
k(x, y) − kc(x, y)

)
+ kc(x, y)

= k̂(x, y) + kc(x, y),

where

k̂(x, y) := k(x, y) − kc(x, y).

Let B be the integral operator with kernel kc(x, y) and let B̂ be the integral operator with kernel

k̂(x, y). Since

k̂(x, y) ≤ k(x, y),

for λ large enough,
∥∥∥B̂(λ− T )−1

∥∥∥
L(X0,α)

≤
∥∥B(λ − T )−1

∥∥
L(X0,α)

< 1,

so T+B̂ : D(T ) → X0,α generates a positive semigroup (V̂ (t))t>0 . Note that (V (t))t>0 is generated
by (

T + B̂
)

+ B

where B is a bounded operator on X0,α. Actually the kernel of B is compactly supported in

(0,+∞) × (0,+∞) and bounded and consequently B is a weakly compact operator on X0,α. On
the other hand

V (t) = V̂ (t) +

∫ t

0
V̂ (t − s)BV̂ (s)ds

and
∫ t

0
V̂ (t − s)BV̂ (s)ds is a weakly compact operator (see [33] or [25]) so that (V̂ (t))t>0 and

(V (t))t>0 have the same essential spectrum [19] and then the same essential radius

ress(V̂ (t)) = ress(V (t)). (48)

On the other hand, V̂ (t) ≤ V (t),

(λ− T − B̂)−1 ≤ (λ− T − B)−1

and

(λ − T − B̂)−1 6= (λ− T − B)−1,

because B 6= 0. Since, by Theorem 3.7, (λ−T−B)−1 is positivity improving (and thus irreducible)
and compact (by Corollary 1),

rσ
[
(λ− T − B̂)−1

]
< rσ

[
(λ− T − B)−1

]
,

see [21]. Next,

rσ
[
(λ− T − B̂)−1

]
=

1

λ− s(T + B̂)
, rσ

[
(λ − T −B)−1

]
=

1

λ− s(T + B)

(see [29]) implies

s(T + B̂) < s(T + B) (49)

and hence, in particular,

s(T + B) > −∞.

Note that the type of a positive semigroup on L1-spaces coincides with the spectral bound of its
generator, see e.g. [36]. We combine this with (49) to get

ress(V (t)) = ress(V̂ (t)) ≤ rσ(V̂ (t)) = es(T+B̂)t < es(T+B)t = rσ(V (t))

so ress(V (t)) < rσ(V (t)). Finally, as explained in Introduction, the irreducibility of (V (t))t≥0

ensures, by [29, Corollary 3.16 of Chapter C-III], that the dominant eigenvalue is a simple pole
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and, by [17, Proposition 3.4 of Chapter VI], we see that it is simple, that is, its eigenspace is
one-dimensional.

4. Second construction.

This construction is based on Assumption (8).

4.1. Generation results.

We start with the space Xα.

Theorem 4.1. Let α > 0. We assume that (8) is satisfied. Let X(y, t) (t > 0) be defined by∫ y

X(y,t)
1

r(τ)
dτ = t. Then

(U0(t)f) (y) :=
r(X(y, t))f(X(y, t))

r(y)
= f(X(y, t))

∂X(y, t)

∂y

defines a positive C0-semigroup (U0(t))t>0 on Xα if and only if

sup
x>0

y(x, t)

x
< +∞ (t > 0)

and

[0,+∞) ∋ t → sup
x>0

y(x, t)

x
is locally bounded

where y(x, t) > x is defined by
∫ y(x,t)
x

1
r(τ)

dτ = t. In this case,

‖U0(t)‖L(Xα) = sup
x>0

yα(x, t)

xα
.

This occurs if

C := sup
z>0

r(z)

z
< +∞, (50)

in which case ‖U0(t)‖L(Xα) ≤ eαCt.

Proof. We set

U0(t)f :=
r(X(y, t))f(X(y, t))

r(y)

and argue as in the proof of Theorem 3.1. Let us check that U0(t) is a bounded operator on
Xα. Note that ∫ y

X(y,t)

1

r(τ)
dτ = t (51)

and (8) show that (for t > 0 fixed) X(y, t) is strictly increasing in y and

lim
y→0

X(y, t) = 0, lim
y→+∞

X(y, t) = +∞.

Since
1

r(y)
=

1

r(X(y, t))

∂X(y, t)

∂y
,

we have

(U0(t)f) (y) = f(X(y, t))
∂X(y, t)

∂y
, y ∈ (0,+∞)

and

‖U0(t)f‖Xα
=

∫ +∞

0
|f(X(y, t))|

∂X(y, t)

∂y
yαdy.

The change of variable x = X(y, t) yields

‖U0(t)f‖Xα
=

∫ +∞

0
|f(x)| yα(x, t)dx,

where y(x, t) is the unique y > x such that x = X(y, t) i.e.,
∫ y(x,t)
x

1
r(τ)

dτ = t. Since

‖U0(t)f‖Xα
=

∫ +∞

0

yα(x, t)

xα
|f(x)| xαdx,

U0(t) is a bounded operator on Xα if and only if supx>0
y(x,t)

x
< +∞. In this case

‖U0(t)‖L(Xα) = sup
x>0

yα(x, t)

xα
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and

[0,+∞) ∋ t → U0(t) ∈ L(Xα)

is locally bounded if and only if

[0,+∞) ∋ t → sup
x>0

y(x, t)

x

is locally bounded. As in the proof of Theorem 3.1, to show that (U0(t))t>0 is strongly continuous
on Xα it suffices to check that

U0(t)f → f in L1(R+; xαdx) as t → 0

on a dense subspace of L1(R+; xαdx), e.g. for f continuous with compact support in (0,+∞).
Note that (51) shows that X(y, t) → y as t → 0 uniformly in y in compact sets of (0,+∞). By
arguing as in the proof of Theorem 3.1, one sees that

U0(t)f =
r(X(y, t))f(X(y, t))

r(y)
→ f (t → 0)

in L1(R+; xαdx) by the dominated convergence theorem. Finally (37) implies

y(x, t) = x +

∫ t

0
r(y(x, s))ds ≤ x +

∫ t

0
Cy(x, s)ds (52)

so, by Gronwall’s lemma, y(x, t) ≤ xeCt and supx>0
yα(x,t)

xα ≤ eαCt.

Remark 10. One can show (see [27, Proposition 6]) that if

lim
z→0

r(z)

z
= +∞ or lim

z→+∞

r(z)

z
= +∞,

then supx>0
y(x,t)

x
= +∞. In particular we have not a generation theory in Xα. This shows

the “optimality” of Assumption (50) in Xα. This shows also that in Theorem 3.1, (34) is partly
necessary.

We deal now with X0,α.

Theorem 4.2. Let α > 0. We assume that (8) is satisfied. Let X(y, t) (t > 0) be defined by∫ y

X(y,t)
1

r(τ)
dτ = t. Then

(U0(t)f) (y) :=
r(X(y, t))f(X(y, t))

r(y)
= f(X(y, t))

∂X(y, t)

∂y

defines a positive C0-semigroup (U0(t))t>0 on X0,α if and only if

sup
x>0

1 + y(x, t)

1 + x
< +∞ (t > 0)

and

[0,+∞) ∋ t → sup
x>0

1 + y(x, t)

1 + x
is locally bounded,

where y(x, t) ≥ x is defined by
∫ y(x,t)
x

1
r(τ)

dτ = t. In this case

‖U0(t)‖L(X0,α) = sup
x>0

(1 + y(x, t))α

(1 + x)α
.

This occurs if

Ĉ := sup
z>1

r(z)

z
< +∞. (53)

Proof. Arguing as in the previous proof, we obtain

‖U0(t)f‖X0,α
=

∫ +∞

0
|f(X(y, t))|

∂X(y, t)

∂y
(1 + y)α dy,

so

‖U0(t)f‖X0,α
=

∫ +∞

0
|f(x)| (1 + y(x, t))α dx

=

∫ +∞

0

(1 + y(x, t))α

(1 + x)α
|f(x)| (1 + x)α dx



24 MUSTAPHA MOKHTAR-KHARROUBI AND JACEK BANASIAK

and

‖U0(t)‖L(X0,α) = sup
x>0

(1 + y(x, t))α

(1 + x)α
.

Note that
∫ y(x,t)
x

1
r(τ)

dτ = t implies that limx→0 y(x, t) = 0 uniformly for bounded sets of t, so,

for any t > 0,

sup
t∈[0,t]

sup
x<1

1 + y(x, t)

(1 + x)
< +∞.

Since

y(x, t) = x +

∫ t

0
r(y(x, s))ds,

y(x, t) ≥ x and, by (53),

y(x, t) ≤ x +

∫ t

0
Ĉy(x, s)ds (x > 1).

Hence,

1 + y(x, t) ≤ 1 + x +

∫ t

0
Ĉ (1 + y(x, s)) ds (x > 1)

and

1 + y(x, t) ≤ (1 + x) eĈt (x > 1)

by Gronwall’s inequality. Finally,

t → sup
x>0

(1 + y(x, t))α

(1 + x)α
< +∞

is locally bounded. The rest of the proof is the same as the previous one.

Remark 11. As in Remark 10, if

lim
z→+∞

r(z)

z
= +∞,

then supx>0
y(x,t)

x
= +∞. This again shows the “optimality” of Assumption (53) in X0,α.

4.2. A pointwise estimate.

We give now the first a priori estimate in the spaces Xα and X0,α.

Lemma 4.3. Let α > 0 and let (8) be satisfied.
(i) Let (50) be satisfied and λ ≥ αC. Then

∣∣(λ− T0)−1f
∣∣ (y) ≤

1

yαr(y)
‖f‖Xα

(f ∈ Xα).

(ii) Let (14) be satisfied and λ ≥ αC̃. Then

∣∣(λ − T0)−1f
∣∣ (y) ≤

1

(1 + y)α r(y)
‖f‖X0,α

(f ∈ X0,α).

Proof. (i) Note that r(τ) ≤ Cτ (∀τ > 0), that is,

1

r(τ)
≥

1

Cτ

implies

e
−λ

∫
y
x

1
r(τ)

dτ
≤ e−

λ
C

∫
y
x

1
τ
dτ = e−

λ
C

ln( y
x ) =

(
x

y

) λ
C

, (54)

so

∣∣(λ− T0)−1f(y)
∣∣ ≤

1

r(y)

∫ y

0
e
−λ

∫
y
x

1
r(τ)

dτ
|f(x)| dx

≤
1

r(y)

∫ y

0

(
x

y

) λ
C

|f(x)| dx.
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Since f ∈ Xα,

∣∣(λ− T0)−1f(y)
∣∣ ≤

1

r(y)

∫ y

0
x−α

(
x

y

) λ
C

|f(x)| xαdx

=
1

yαr(y)

∫ y

0
yαx−α

(
x

y

) λ
C

|f(x)| xαdx

=
1

yαr(y)

∫ y

0

(
x

y

) λ
C

−α

|f(x)| xαdx

≤
1

yαr(y)

∫ y

0
|f(x)| xαdx ≤

1

yαr(y)
‖f‖Xα

,

on account of x
y
≤ 1 and λ

C
− α ≥ 0.

(ii) Note that

1

r(τ)
≥

1

C̃(τ + 1)
(τ > 0)

and

e
−λ

∫
y
x

1
r(τ)

dτ
≤ e

− λ

C̃

∫
y
x

1
τ+1

dτ
= e

− λ

C̃
ln

(
y+1
x+1

)

=

(
x + 1

y + 1

) λ

C̃
(55)

so that if f ∈ X0,α, then

∣∣(λ− T0)−1f(y)
∣∣ ≤

1

r(y)

∫ y

0
e
−λ

∫
y
x

1
r(τ)

dτ
|f(x)| dx

≤
1

r(y)

∫ y

0

(
x + 1

y + 1

) λ

C̃
|f(x)| dx

=
1

r(y)

∫ y

0

1

(1 + x)α

(
x + 1

y + 1

) λ

C̃
|f(x)| (1 + x)α dx

=
1

(1 + y)α r(y)

∫ y

0

(
x + 1

y + 1

) λ

C̃
−α

|f(x)| (1 + x)α dx

≤
1

(1 + y)α r(y)

∫ y

0
|f(x)| (1 + x)α dx ≤

1

(1 + y)α r(y)
‖f‖X0,α

,

on account of x+1
y+1

≤ 1 and λ

C̃
− α ≥ 0.

4.3. The first perturbed semigroup.

We solve

∂

∂t
u(x, t) +

∂

∂x
[r(x)u(x, t)] + a(x)u(x, t) = 0

by the method of characteristics. The solution is given by

e
−

∫ y

X(y,t)
a(p)
r(p)

dp r(X(y, t))f(X(y, t))

r(y)
.

This defines a perturbed C0-semigroup (U(t))t≥0 on both Xα and X0,α, dominated by (U0(t))t≥0 ,

U(t)f = e
−

∫ y

X(y,t)
a(p)
r(p)

dp r(X(y, t))f(X(y, t))

r(y)
= e

−
∫ y

X(y,t)
a(p)
r(p)

dp
U0(t)f.

As previously, the Laplace transform of (U(t))t>0 and some change of variables give:

Proposition 6. Let α > 0, (8) and (50) (resp. (53)) be satisfied. The resolvent of the generator
T of (U(t))t≥0 in Xα (resp. in X0,α), λ > s(T ), is given by

(
(λ− T )−1 f

)
(y) =

1

r(y)

∫ y

0
e
−

∫
y
x

λ+β(p)
r(τ)

dτ
f(x)dx.
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4.4. A smoothing effect of the perturbed resolvent.

The second a priori estimate in the spaces Xα and X0,α is given by:

Lemma 4.4. Let α > 0 and (8) be satisfied.
(i) Let (50) be satisfied and λ ≥ αC. Then, for any f ∈ Xα,

∫ +∞

0

∣∣((λ− T )−1f
)

(y)
∣∣ a(y)yαdy ≤

∫ +∞

0
|(f(y)| yαdy. (56)

(ii) Let (14) be satisfied and λ ≥ αC̃. Then, for any f ∈ X0,α,
∫ +∞

0

∣∣((λ− T )−1f
)

(y)
∣∣ a(y) (1 + y)α dy ≤

∫ +∞

0
|(f(y)| (1 + y)α dy. (57)

Proof. (i) By using (54) and f ≥ 0
∫ +∞

0

(
(λ − T )−1f

)
(y)a(y)yαdy

=

∫ +∞

0

a(y)yα

r(y)

(∫ y

0
e
−λ

∫
y
x

1
r(p)

dp
e
−

∫
y
x

a(p)
r(p)

dp
f(x)dx

)
dy

≤

∫ +∞

0

a(y)yα

r(y)

(∫ y

0

(
x

y

) λ
C

e
−

∫
y
x

a(p)
r(p)

dp
f(x)dx

)
dy

=

∫ +∞

0

[∫ +∞

x

(
x

y

) λ
C a(y)yα

r(y)
e
−

∫
y
x

a(p)
r(p)

dp
dy

]
f(x)dx

=

∫ +∞

0

[∫ +∞

x

1

xα

(
x

y

) λ
C a(y)yα

r(y)
e
−

∫
y
x

a(p)
r(p)

dp
dy

]
f(x)xαdx

=

∫ +∞

0

[∫ +∞

x

(
x

y

) λ
C

−α a(y)

r(y)
e
−

∫
y
x

a(p)
r(p)

dp
dy

]
f(x)xαdx

≤

∫ +∞

0

[∫ +∞

x

a(y)

r(y)
e
−

∫
y
x

a(p)
r(p)

dp
dy

]
f(x)xαdx,

where x
y
≤ 1 and λ

C
− α ≥ 0 are used in the last step. Thus

∫ +∞

0

(
(λ− T )−1f

)
(y)a(y)yαdy

≤ sup
x>0

∫ +∞

x

a(y)

r(y)
e
−

∫
y
x

a(p)
r(p)

dp
dy

(∫ +∞

0
f(x)xαdx

)
.

Finally,
∫ +∞

x

e
−

∫
y
x

a(p)
r(p)

dp a(y)

r(y)
dy = −

∫ +∞

x

d

dy

(
e
−

∫
y
x

a(p)
r(p)

dp
)
dy

= −

[
e
−

∫
y
x

a(p)
r(p)

dp
]y=+∞

y=x

≤ 1

ends the proof.
(ii) The proof of (57) is the same as that of Lemma 3.4 by using (55).

4.5. On the full semigroup.

The same proof as that of Theorem 3.5 in X0,α gives the following statement which, unfortu-

nately, is not useful for the purpose of spectral gaps, see Remark 12 below.

Theorem 4.5. Let (8) and (53) be satisfied. Define

n1,α(y) :=

∫ y

0
(1 + x)α b(x, y)dx.

If supy>0
n1,α(y)

(1+y)α
< +∞, then B is T -bounded in X0,α and

lim
λ→+∞

∥∥B(λ − T )−1
∥∥
L(X0,α)

≤ lim sup
a(y)→+∞

n1,α(y)

(1 + y)α
.
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In particular, if

lim sup
a(y)→+∞

n1,α(y)

(1 + y)α
< 1, (58)

then

A := T + B : X0,α ⊃ D(T ) → X0,α

generates a positive C0-semigroup (V (t))t≥0 on X0,α.

Remark 12. If a(·) is unbounded near zero, then

lim sup
a(y)→+∞

n1,α(y)

(1 + y)α
≥ lim sup

y→0
n1,α(y) ≥ lim sup

y→0

∫ y

0
b(x, y)dx ≥ 1,

because ∫ y

0
b(x, y)dx =

1

y

∫ y

0
yb(x, y)dx ≥

1

y

∫ y

0
xb(x, y)dx = 1

and hence (58) cannot be satisfied. On the other hand, the compactness result we need in the
sequel demands the unboundedness of a(·) near zero. Hence, under Assumption (8), it is not
possible to finalize our spectral gap construction in the space X0,α. We point out that even if a(·)
is unbounded near zero, we can still define a positive C0-semigroup (V (t))t≥0 on X0,α which

solve the growth fragmentation equations but in some generalized sense (honesty theory), where
the domain of the generator TB is the closure of T + B only, see [5, Chapter 5]. However, in this
case, we cannot infer that TB is resolvent compact when T is and the key argument behind the
existence of the spectral gap fails.

Theorem 4.6. Let α > 0, (8) and (50) be satisfied. Define

nα(y) :=

∫ y

0
xαb(x, y)dx.

If supy>0
nα(y)
yα < +∞, then B is T -bounded in Xα and

lim
λ→+∞

∥∥B(λ− T )−1
∥∥
L(Xα)

≤ lim sup
a(y)→+∞

nα(y)

yα
.

In particular, if

lim sup
a(y)→+∞

nα(y)

yα
< 1, (59)

then

A := T + B : D(T ) ⊂ Xα → Xα

generates a positive C0-semigroup (V (t))t≥0 on Xα.

Proof. We note that for nonnegative ϕ, standard calculations give

‖Bϕ‖Xα
=

∫ +∞

0
a(y)nα(y)ϕ(y)dy.

Thus, for nonnegative f,

∥∥B(λ − T )−1f
∥∥
Xα

=

∫ +∞

0
a(y)nα(y)

(
(λ− T )−1f

)
(y)dy

=

∫ +∞

0
a(y)

nα(y)

yα

(
(λ− T )−1f

)
(y)yαdy. (60)

Let

L := lim sup
a(y)→+∞

nα(y)

yα
.

For any ε > 0 there exists cε > 0 such that

a(y) ≥ cε =⇒
nα(y)

yα
≤ L + ε.
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We split (60) into two integrals
∫ +∞

0
a(y)

nα(y)

yα

(
(λ− T )−1f

)
(y)yαdy

=

∫

{a(y)≤cε}
a(y)

nα(y)

yα

(
(λ− T )−1f

)
(y)yαdy

+

∫

{a(y)>cε}
a(y)

nα(y)

yα

(
(λ− T )−1f

)
(y)yαdy

= I1 + I2.

We note that

I1 ≤ cε

∥∥∥∥
nα(·)

yα

∥∥∥∥
L∞

∥∥(λ− T )−1f
∥∥
Xα

while, using Lemma 4.4,

I2 ≤ (L + ε)

∫ +∞

0
a(y)

(
(λ− T )−1f

)
(y)yαdy

≤ (L + ε)‖f‖Xα
.

Hence,

∥∥B(λ − T )−1f
∥∥
Xα

≤ cε

∥∥∥∥
nα(·)

yα

∥∥∥∥
L∞

∥∥(λ − T )−1
∥∥
L(Xα)

‖f‖Xα

+ (L + ε) ‖f‖Xα

and
∥∥B(λ − T )−1

∥∥
L(Xα)

≤ cε

∥∥∥∥
nα(·)

yα

∥∥∥∥
L∞

∥∥(λ− T )−1
∥∥
L(Xα)

+ (L + ε) .

Since
∥∥(λ− T )−1

∥∥
L(Xα)

→ 0 as λ → +∞,

lim
λ→+∞

∥∥B(λ− T )−1
∥∥
L(Xα)

≤ L + ε (∀ε > 0)

and consequently, if L < 1, then

lim
λ→+∞

∥∥B(λ − T )−1
∥∥
L(Xα)

< 1

and we end the proof by applying Theorem 1.1.

Remark 13. Proposition 4 yields that for each y > 0, α → nα(y)
yα is decreasing and convex. Since

n1(y)

y
=

1

y

∫ y

0
xb(x, y)dx = 1,

lim supa(y)→+∞
n1(y)

y
= 1 and

lim sup
a(y)→+∞

nα(y)

yα
≥ 1 (0 < α ≤ 1),

hence the necessity to consider higher moments, i.e., α > 1. So let 1 < α ≤ α2. By the convexity,

nα(y)

yα
≤

n1(y)

y
+

nα2 (y)

yα2 −
n1(y)

y

α2 − 1
(α − 1) = 1 +

nα2 (y)

yα2 − 1

α2 − 1
(α− 1).

If (59) holds for α2, for any ǫ > 0, there is cǫ such that
nα2 (y)

yα2 ≤ 1− ǫ on {y ∈ (0,∞); a(y) ≥ cǫ}

and hence on this set
nα(y)

yα
≤ 1 − ǫ

α− 1

α2 − 1
.

Thus it follows that if (59) holds for some α2 > 1, then it holds for all α > 1.

As noted in Introduction, for homogeneous fragmentation kernels we have
∫ y

0
xαb(x, y)dx

yα
=

∫ 1

0
zαh(z)dz <

∫ 1

0
zh(z)dz = 1 (α > 1)

and so lim supa(y)→+∞
nα(y)
yα =

∫ 1
0 zαh(z)dz < 1 for all α > 1.

See also Section A for more examples.
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4.6. Compactness results.

By using Lemma 4.3, Lemma 4.4 and arguing as in the proof of Theorem 3.6 we get:

Theorem 4.7. Let α > 0, (8) and (50) (resp. (14)) be satisfied. Let the sublevel sets of a(·) be
thin at zero and at infinity in the sense that for any c > 0

∫ +∞

0
1{a<c}

1

r(y)
dy < +∞

(e.g., let limx→+∞ a(x) = +∞ and limx→0 a(x) = +∞). Then T is resolvent compact in Xα

(resp. in X0,α).

Similarly to Corollary 1 we have

Corollary 3. Let (8), (50) and (59) be satisfied. If the sublevel sets of a(·) are thin at zero and
at infinity (e.g. if limx→+∞ a(x) = +∞ and limx→0 a(x) = +∞), then A := T +B is resolvent
compact in Xα.

4.7. Spectral gap of (V (t))t>0 in Xα.

The same proof as for Theorem 3.7 gives:

Lemma 4.8. Let α > 0 and assumptions 1. or 2. of Theorem 3.7, (8), (50) and (59) be satisfied.
Then (λ − T − B)−1 is positivity improving in Xα or, equivalently, the C0-semigroup (V (t))t≥0

is irreducible in Xα.

Finally, the same proof as for Theorem 3.8 gives the main result of the second construction.

Theorem 4.9. Let α > 0 and assumptions 1. or 2. of Theorem 3.7, (8), (50) and (59) be
satisfied. If the sublevel sets of a(·) are thin at zero and at infinity, (e.g. if limx→+∞ a(x) = +∞
and limx→0 a(x) = +∞), then (V (t))t≥0 has an asynchronous exponential growth in Xα.

Remark 14. We conjecture that the result does not hold without the unboundedness of a(·) at
zero as suggested by [10, Theorem 4.1].
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Poland Grant 2017/25/B/ST1/00051.

Appendix A. Separable fragmentation kernels. We have seen how homogeneous fragmen-
tation kernels satisfy the key assumptions (40) and (59) of our construction. This last section is
devoted to separable fragmentation kernels

b(x, y) = β(x)γ(y),

introduced in [2], see also [3][5]. It is easy to see that separable kernels with mass conservation (3)
are of the form

b(x, y) = β(x)y

(∫ y

0
sβ(s)ds

)−1

(61)

where

0 <

∫ y

0
sβ(s)ds < +∞ ∀y > 0.

A particular case of separable kernels are power law kernels

b(x, y) = (ν + 2)
xν

yν+1
(ν ∈ (−2, 0]).

We can complement Theorem 4.6 by:

Proposition 7. We assume that the fragmentation kernel is of the form (61) and a(·) is only
unbounded at zero and infinity. If

β−
0 := lim inf

x→0
xβ(x) > 0, β+

0 := lim sup
x→0

xβ(x) < +∞

and ∫ +∞

0
xαβ(x)dx < +∞,

then (59) is satisfied provided α >
β
+
0

β
−

0

.
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Proof. Note first that

nα(y) =

(∫ y

0
xαβ(x)dx

)
y

(∫ y

0
xβ(x)dx

)−1

and (59) amounts to

lim sup
y→+∞

1

yα−1

∫ y

0
xαβ(x)dx

∫ y
0 xβ(x)dx

< 1 (62)

and

lim sup
y→0

1

yα−1

∫ y
0 xαβ(x)dx
∫ y

0
xβ(x)dx

< 1. (63)

Let ε > 0 be arbitrary. Then, for y small enough

∫ y

0
xαβ(x)dx ≤

(
β+
0 + ε

)∫ y

0
xα−1dx =

(
β+
0 + ε

)
yα

α

and ∫ y

0
xβ(x)dx ≥

(
β−
0 − ε

)
y,

so
1

yα−1

∫ y
0 xαβ(x)dx
∫ y

0
xβ(x)dx

≤
1

α

β+
0 + ε

β−
0 − ε

.

Therefore,

lim sup
y→0

1

yα−1

∫ y
0 xαβ(x)dx
∫ y

0
xβ(x)dx

≤
1

α

β+
0

β−
0

.

Finally,
1

yα−1

∫ y
0 xαβ(x)dx
∫ y

0
xβ(x)dx

≤
1

yα−1

∫∞
0 xαβ(x)dx
∫ 1
0
xβ(x)dx

(y ≥ 1)

and

lim
y→+∞

1

yα−1

∫ y
0 xαβ(x)dx∫ y
0 xβ(x)dx

= 0.

This ends the proof.

Remark 15. If β0 := limx→0 xβ(x) > 0 exists then β+
0 = β−

0 and both (62) and (63) are satisfied

for any α > 1 such that
∫+∞
0

xαβ(x)dx < +∞.

Similarly, we can complement Theorem 3.5 by:

Proposition 8. We assume that the fragmentation kernel is of the form (61) and a(·) is only
unbounded at infinity. If ∫ +∞

0
β(x)

(
1 + xα

)
dx < +∞ (64)

for some α > 1 then (40) is satisfied for any α > 1 and consequently the threshold is equal to one.

Note first that

n1,α(y) := y

(∫ y

0
xβ(x)dx

)−1 ∫ y

0
β(x) (1 + x)α dx

and hence (40) amounts to

lim sup
y→+∞

y

(1 + y)α

∫ y
0 β(x) (1 + x)α dx
∫ y

0
xβ(x)dx

< 1.

Note that (64) implies that
∫ +∞

0
β(x) (1 + xα) dx < +∞ (0 < α ≤ α).

It is easy to see that (1 + x)α ≤ 2α−1 (1 + xα) so
∫ y

0
β(x) (1 + x)α dx ≤ 2α−1

∫ y

0
β(x) (1 + xα) dx

and consequently, for any 1 < α ≤ α,

y

(1 + y)α

∫ y

0
β(x) (1 + x)α dx
∫ y
0 xβ(x)dx

≤
1

yα−1

2α−1
∫ y

0
β(x) (1 + xα) dx

∫ y
0 xβ(x)dx

→ 0 (y → +∞)
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and this ends the proof.

Remark 16. We note that any convex combination of conservative fragmentation kernels is a
conservative fragmentation kernel so

b(x, y) =
∑

j∈J

λjβj(x)y

(∫ y

0
sβj(s)ds

)−1

,



∑

j∈J

λj = 1


 (65)

(J finite or denumerable) is a conservative kernel and we can check the key conditions lim supa(y)→+∞
nα(y)
yα <

1 or lim supa(y)→+∞
n1,α(y)

(1+y)α
< 1 more generally for (65) by using just the last two propositions

above. We could also consider convex combinations of separable kernels and homogeneous ones.
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