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a b s t r a c t 

In this manuscript, the fractional-in-time NoyesField model for Belousov-Zhabotinsky re- 

action transport is considered with a novel numerical technique, which was used to ap- 

proximate the Atangana-Baleanu (ABC) operator which models the subdiffusion partial 

derivative in time. The effect of the ABC operator is observed and captured more inter- 

esting physical behavior of some real-life phenomena. Applicability and suitability of the 

adopted method were carried out on some cases of nonlinear Belousov-Zhabotinsky sub- 

reaction-diffusion models, their dynamic behaviors with respect to fractional-order param- 

eters were displayed in figures. 
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Introduction 

Nonlinear phenomena, which are so critical for nature and society, are in contrast to linear systems which cannot be ex- 

plained by a linear relationship between two variables. Together with its rapid development field in applied physics, it has 

a noteworthy role in various fields of science and engineering [3–5,11–14,20,28,29,31] . In particular, nonlinear phenomena 

are observed in the environment or in living organisms such as chemical physics and biology as a Chemical reaction that

evolves in time and is observed in the environment or in living organisms such as chemical physics and biology. Specifically,

the Belousov-Zhabotinsky reaction is a noteworthy example of the non-linear behavior of chemical reaction systems occur- 

ring inhomogeneous media. In the early, 1950s, Belousov-Zhabotinsky’s reaction was discovered by Belousov and developed 

by Zhabotinsky. It is described as autocatalytic oxidation of organic acid by potassium bromate [15,35] . While he was work-

ing on the Krebs cycle, he put together bromate and cerium ions with citric acid. After an induction period, the color of

the compound oscillated between colorless and pale yellow with a characteristic period. It was a remarkable result affected 
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Belousov proudly. Belousov carefully characterized the phenomenon and submitted his results, with recipes included, to a 

number of journals, all of them rejected his results on the grounds that such a thing could not exist [16,17] . After a decade,

Zhabotinsky who is a Soviet scientist worked on the experiments of Belousov and procreate them once more. His researches 

persuaded more chemists to accept the idea of chemical oscillators. In 1972, the FKN mechanism which is a mechanism 

describing the Belousov-Zhabotinsky reaction was brought to public attention by Field, K örös and Noyes [18] . The FNK

mechanism had a handicapped, it was too complex to do the numerical analysis of the system via computers belonging to

those days. After 2 years, namely in 1974, Field and Noyes suggested a reduced model for the FNK system. It was consisting

5 chemical reactions instead of 11 reactions. When the Field-Noyes system, known as Oregonator, is evaluated numerically, 

The system produces the same oscillatory behavior as the Belousov-Zhabotinsky reaction. 

The simplified Noyes–Field fractional model for this Belousov-Zhabotinsky reaction is read as [1] 

ABC 
t 0 

D 

αu ( x, t ) = ξ1 u xx ( x, t ) + βδv ( x, t ) + u ( x, t ) − u 

2 ( x, t ) − δu ( x, t ) v ( x, t ) 

ABC 
t 0 

D 

αv ( x, t ) = ξ2 v xx ( x, t ) + γ v ( x, t ) + λu ( x, t ) v ( x, t ) 

(0.1) 

where ξ1 , β, δ, ξ2 , γ and λ are positive parameters. ξ1 and ξ2 are the diffusing constant for the concentration u and

v , respectively. Before focusing on the motivation of the manuscript, it will be useful to touch on some studies on Noyes-

Filed model. Akinyemi [1] have considered the fractional Noyes- Field model and applied q-Homotopy analysis transform 

method and Laplace transform to obtain efficient numerical solution. Wang et al. [34] have obtained explicit traveling wave 

front solutions of the Noyes field model. In [32] , Stanshine and Howard have used asymptotic methods to obtain solutions

of the model. the approximate solutions of time-fractional nonlocal reaction-diffusion equation have been investigated by 

Arqub et al. [10] 

In this manuscript, we are going to bring out a new outlook to fractional Noyes Field model defined using Atangana-

Baleanu (AB) fractional derivative which introduced in 2016 by Atangana and Baleanu for the first time [6] . The new gen-

uine fractional derivative based on using the generalized MittagLeffler function as non-local and non-singular kernel and it 

naturally appears in several physical problems and the field of science and engineering [7–9] .It is obvious that many works

were done around this new finding with great success. This motivated us to investigate the reaction models with Mittag 

Leffler kernel and present the effectiveness and efficiency of the new fractional definition to scholars and show off the ef- 

fect of AB derivative on the fractional Noyes Field model. Atangana Baleanu derivatives having Mittag Leffler kernel captured 

the attention of many scientists; Qureshi et al. [30] have investigated, and analyzed nonlinear Duffing oscillators via integer 

and non-integer order differential operators known as the Caputo, CaputoFabrizio, and the AtanganaBaleanu taken in the 

Caputo sense. Modanlı [21] has obtained numerical solutions of telegraph equation defined by Caputo fractional derivative 

and by AtanganaBaleanu fractional derivative are obtained using difference scheme method. Heydari et al. [19] have inves- 

tigated fractional optimal control problems with ABC fractional derivative using Chebyshev cardinal wavelets. Owolabi et al. 

[26] have considered breast cancer model and extended to a system of fractal fractional partial differential equations and 

Owolabi and Atangana [27] have formulated fractional version of the Adams-Bashforth method using the Atangana-Baleanu 

derivative. 

Considering the explanations presented above, this manuscript is structured as follows: Section 1 describes a brief intro- 

duction to the aim of the manuscript and the model which will be discussed. The existence and uniqueness of the model

under AB derivative is going to be proof using Picard-Lindelöf theorem in Section 2. The following section, i.e. Section 3

includes constructing a numerical scheme which is obtained by using polynomials and application to the fractional Noyes 

field model for analyzing and understanding the behavior of the model. The results of numerical results in different cases 

are presented in Section 4. Additionally, some stability results are presented in Section 4 as well. In the end, the conclusion

and a brief summary of the manuscript take place in Section 5. 

Existence and uniqueness of solutions for fractional Noyes-Field model 

The goal of this segment is to establish the existence and uniqueness of solutions for the fractional Noyes-Field model. For

this purpose, we are going to adapt the major fixed point theorem by Picard named “Picard Lindelöf” theorem. The theorem 

gives sufficient but not necessary conditions for the existence of the unique solution to initial value problems. The general 

existence and uniqueness theory describes the features of a differential equation which makes it tractable for computation 

both numerical and theoretical. Picard Lindelöf theorem establishes conditions under which a differential equation has a 

solution and guarantees that its solution is unique. Before beginning to adapt the theorem, Let 

C ε,r = I ε ( t 0 ) × B r ( x 0 ) (0.2) 

where 

I ε ( t 0 ) = [ t 0 − ε, t 0 + ε ] 

B r ( x 0 ) = [ x 0 − b, x 0 + b ] . 
(0.3) 

This is a compact cylinder where f is defined. Let 

M = sup 

C ε,r 

‖ 

	 i ‖ 

(0.4) 
2 
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is equivalent to the supremum norm. 

Step 1: Transform Noyes Field model into an integral equation 

Now, recall the Noyes Field model given in Eq. (0.1) and apply Atangana-Balenau integral to the two side of model. So,

we get 

u ( x, t ) − u ( x, 0 ) = 

1 −α
AB ( α) 

[
ξ1 u xx ( x, t ) + βδv ( x, t ) + u ( x, t ) − u 

2 ( x, t ) − δu ( x, t ) v ( x, t ) 
]

+ 

α
AB ( α) 
( α) 

t ∫ 
t 0 

( t − τ ) 
α−1 

[
ξ1 u xx ( x, τ ) + βδv ( x, τ ) + u ( x, τ ) − u 

2 ( x, τ ) − δu ( x, τ ) v ( x, τ ) 
]
dτ, 

v ( x, t ) − v ( x, 0 ) = 

1 −α
AB ( α) [ ξ2 v xx ( x, t ) + γ v ( x, t ) + λu ( x, t ) v ( x, t ) ] 

+ 

γ
AB ( α) 
( α) 

t ∫ 
t 0 

( t − ξ ) 
αγ −1 

[ ξ2 v xx ( x, τ ) + γ v ( x, τ ) + λu ( x, τ ) v ( x, τ ) ] dξ . 

(0.5) 

For convenience; 

	 1 ( u, v , t ) = ξ1 u xx ( x, t ) + βδv ( x, t ) + u ( x, t ) − u 

2 ( x, t ) − δu ( x, t ) v ( x, t ) 

	 2 ( u, v , t ) = ξ2 v xx ( x, t ) + γ v ( x, t ) + λu ( x, t ) v ( x, t ) 

(0.6) 

and 

�( u, v , t ) = 

[
	 1 ( u, v , t ) 
	 2 ( u, v , t ) 

]
, U(u, v , t) = 

[
u ( x, t ) 
v ( x, t ) 

]
, U 0 = 

[
u 0 

v 0 

]
, (0.7) 

hence we can write; 

u ( x, t ) = u 0 + 

1 −α
AB ( α) 

	 1 ( u, v , t ) + 

α
AB ( α) 
( α) 

t ∫ 
t 0 

( t − τ ) 
α−1 	 1 ( u, v , τ ) dξ , 

v ( x, t ) = v 0 + 

1 −α
AB ( α) 

	 2 ( u, v , t ) + 

α
AB ( α) 
( α) 

t ∫ 
t 0 

( t − τ ) 
α−1 	 2 ( u, v , α) dξ . 

(0.8) 

Step 2: Applying the Picard-Lindelöf theorem to Noyes-Field model 

We define a nonlinear operator 

χ : C ε,r → C ε,r 

χ( U(u, v , t) ) = U 0 + 

1 −α
AB ( α) 

�( u, v , t ) + 

α
AB ( α) 
( α) 

t ∫ 
t 0 

( t − τ ) 
α−1 �( u, v , τ ) dτ. 

(0.9) 

In order to make sure that �( u, v , t ) maps C ε,r into itself, we make sure that κ is small enough to quarantenee that

χ( U(u, v , t) ) ∈ C ε,r for all t ∈ I ε . If we use bound M to obtain; we get 

‖ 

χ( U(u, v , t) ) − U(u, v , t 0 ) ‖ C ε,r 
= 

∥∥∥∥U 0 + 

1 −α
AB ( α) 

�( u, v , t ) + 

α
AB ( α) 
( α) 

t ∫ 
t 0 

( t − τ ) 
α−1 �( u, v , τ ) dτ. 

∥∥∥∥
≤

∥∥ 1 −α
AB ( α) 

�( u, v , t ) 
∥∥ + 

∥∥∥∥ α
AB ( α) 
( α) 

t ∫ 
t 0 

( t − τ ) 
α−1 �( u, v , t ) dτ

∥∥∥∥
≤ 1 −α

AB ( α) ‖ 

�( u, v , t ) ‖ 

+ 

α
AB ( α) 
( α) 

∥∥∥∥ t ∫ 
t 0 

( t − τ ) 
α−1 �( u, v , t ) dτ

∥∥∥∥
< 

1 −α
AB ( α) 

M + 

α
AB ( α) 
( α) 

MT α−1 
max 

= 

M 

AB ( α) 

(
( 1 − α) + 

αT α−1 
max 


( α) 

)
= κ

(0.10) 

Thus; 

‖ 

χ( U(u, v , t) ) − U(u, v , t 0 ) ‖ C ε,r 
< 

M 

AB ( α) 

(
( 1 − α) + 

αT 
γ −1 

max 


( α) 

)
(0.11) 

we need 

‖ 

χ( U(u, v , t) ) − U(u, v , t 0 ) ‖ C ε,r 
< b (0.12) 
3 
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thus; 

M 

AB ( α) 

(
( 1 − α) + 

αT α−1 
max 


( α) 

)
< b 

T max < 

{

( α) 

α

(
bAB ( α) 

M 

+ α − 1 

)}1 −α

(0.13) 

This means; χ maps C ε,r into itself. Furthermore; we get for 

‖ 

χ( U 1 (u, v , t) ) − χ( U 2 (u, v , t) ) ‖ C ε,r 
= 

∥∥∥∥
(

U 

1 
0 + 

1 −α
AB ( α) 

�1 ( u, v , t ) + 

α
AB ( α) 
( α) 

t ∫ 
t 0 

( t − ξ ) 
α−1 

�1 ( u, v , τ ) dτ

)

−
(

U 

2 
0 + 

1 −α
AB ( α) 

�2 ( u, v , t ) + 

α
AB ( α) 
( α) 

t ∫ 
t 0 

( t − τ ) 
α−1 �2 ( u, v , τ t ) dτ

)∥∥∥∥
≤

∥∥U 

1 
0 − U 

2 
0 

∥∥ + 

1 −α
AB ( α) ‖ 

�1 ( u, v , t ) − �2 ( u, v , t ) ‖ 

+ 

α
AB ( α) 
( α) 

∥∥∥∥ t ∫ 
t 0 

( t − τ ) 
α−1 

( �1 ( u, v , τ ) − �2 ( u, v , τ ) ) 

∥∥∥∥dτ

≤ 1 −α
AB ( α) 

ω + 

αγ
AB ( α) 
( α) 

T α−1 
max ω 

= 

ω 
AB ( α) 

(
( 1 − α) + 

γ T α−1 
max 


( α) 

)

(0.14) 

Any such ω is referred to as a Lipschitz constant for the function �( u, v , t ) . 
Here, we need 

ω 

AB ( α) 

(
( 1 − α) + 

γ T α−1 
max 


( α) 

)
< 1 (0.15) 

So the equation has unique solution if 

T max ≤
{


( α) 

α

(
AB ( α) 

w 

+ α − 1 

)}1 −α

(0.16) 

Application of numerical scheme to Noyes-Field model 

In this segment, the application of numerical method to Noyes-Field model is considered. At the first stage, Let us recall

the model in the sense of the Atangana-Balenau derivative definition as follow [3] 

ABC 
t 0 

D 

αu ( x, t ) = ξ1 u xx ( x, t ) + βδv ( x, t ) + u ( x, t ) − u 

2 ( x, t ) − δu ( x, t ) v ( x, t ) 

ABC 
t 0 

D 

αv ( x, t ) = ξ2 v xx ( x, t ) + γ v ( x, t ) + λu ( x, t ) v ( x, t ) 

(0.17) 

using the fundamental theory of calculus, we get; 

u ( x, t ) − u ( x, t 0 ) = 

1 −α
AB ( α) 

[
ξ1 u xx ( x, t ) + βδv ( x, t ) + u ( x, t ) − u 

2 ( x, t ) − δu ( x, t ) v ( x, t ) 
]

+ 

α
AB ( α) 
( α) 

t ∫ 
t 0 

( t − τ ) 
α−1 

[
ξ1 u xx ( x, τ ) + βδv ( x, τ ) + u ( x, τ ) − u 

2 ( x, τ ) − δu ( x, τ ) v ( x, τ ) 
]
dτ

(0.18) 

and 

v ( x, t ) − v ( x, t 0 ) = 

1 −α
AB ( α) [ ξ2 v xx ( x, t ) + γ v ( x, t ) + λu ( x, t ) v ( x, t ) ] 

+ 

α
AB ( α) 
( α) 

t ∫ 
t 0 

( t − τ ) 
α−1 

[ ξ2 v xx ( x, τ ) + γ v ( x, τ ) + λu ( x, τ ) v ( x, τ ) ] dτ. 
(0.19) 

For convenience, we can rewrite above integral as 

u ( x, t ) = u 0 + 

1 − α

AB ( α) 
[ 	 1 ( u, v , t ) ] + 

α

AB ( α) 
( α) 

t ∫ 
t 0 

( t − τ ) 
α−1 

[ 	 1 ( u, v , τ ) ] dτ (0.20) 

and 

v ( x, t ) = v 0 + 

1 − α

AB ( α) 
[ 	 2 ( u, v , t ) ] + 

α

AB ( α) 
( α) 

t ∫ 
t 0 

( t − τ ) 
α−1 

[ 	 2 ( u, v , τ ) ] dτ (0.21) 
4 
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where 	 1 ( u, v , t ) = ξ1 u xx ( x, t ) + βδv ( x, t ) + u ( x, t ) − u 2 ( x, t ) − δu ( x, t ) v ( x, t ) 	 2 ( u, v , t ) = ξ2 v xx ( x, t ) + γ v ( x, t ) + 

λu ( x, t ) v ( x, t ) and u ( x, t 0 ) = u 0 , v ( x, t 0 ) = v 0 are initial conditions. At the point t = t n +1 = (n + 1)�t, we get 

u ( x, t n +1 ) = u 0 + 

1 −α
AB ( α) [ 	 1 ( u, v , t n ) ] + 

α
AB ( α) 
( α) 

t n +1 ∫ 
t 0 

( t n +1 − τ ) 
α−1 

[ 	 1 ( u, v , τ ) ] dτ

v ( x, t n +1 ) = v 0 + 

1 −α
AB ( α) [ 	 2 ( u, v , t n ) ] + 

α
AB ( α) 
( α) 

t n +1 ∫ 
t 0 

( t n +1 − τ ) 
α−1 

[ 	 2 ( u, v , τ ) ] dτ

(0.22) 

Therefore, we can rewrite above integrals as 

u ( x, t n +1 ) = u 0 + 

1 − α

AB ( α) 
[ 	 1 ( u, v , t n ) ] + 

α

AB ( α) 
( α) 

n ∑ 

j=2 

t j+1 ∫ 
t j 

( t n +1 − τ ) 
α−1 

[ 	 1 ( u, v , τ ) ] dτ (0.23) 

and 

v ( x, t n +1 ) = v 0 + 

1 − α

AB ( α) 
[ 	 2 ( u, v , t n ) ] + 

α

AB ( α) 
( α) 

n ∑ 

j=2 

t j+1 ∫ 
t j 

( t n +1 − τ ) 
α−1 

[ 	 2 ( u, v , τ ) ] dτ. (0.24) 

Now, we can construct an approximate values for functions under the integrals, that is 	 1 ( u, v , t ) and 	 2 ( u, v , t ) , respectively

P 1 n ( τ ) = 	 1 ( u, v , t n −2 ) + ( ( 	 1 ( u, v , t n −1 ) − 	 1 ( u, v , t n −2 ) ) / �t ) ( τ − t n −2 ) 

+ 

(
( 	 1 ( u, v , t n ) − 2 	 1 ( u, v , t n −1 ) + 	 1 ( u, v , t n −2 ) ) / 2 ( �t ) 

2 
)
( τ − t n −2 ) ( τ − t n −1 ) 

(0.25) 

and 

P 2 n ( τ ) = 	 2 ( u, v , t n −2 ) + ( ( 	 2 ( u, v , t n −1 ) − 	 2 ( u, v , t n −2 ) ) / �t ) ( τ − t n −2 ) 

+ 

(
( 	 2 ( u, v , t n ) − 2 	 2 ( u, v , t n −1 ) + 	 2 ( u, v , t n −2 ) ) / 2 ( �t ) 

2 
)
( τ − t n −2 ) ( τ − t n −1 ) 

(0.26) 

when Eqs. (0.25) and (0.26) substitute into Eqs. (0.23) and (0.24) , we get 

v ( x, t n +1 ) = v 0 + 

1 −α
AB ( α) [ 	 2 ( u, v , t n ) ] 

+ 

α
AB ( α) 
( α) 

n ∑ 

j=2 

	 2 

(
u, v , t j−2 

)
�t 

t j+1 ∫ 
t j 

( t n +1 − τ ) 
α−1 dτ

+ 

α
AB ( α) 
( α) 

n ∑ 

j=2 

((
	 2 

(
u, v , t j−1 

)
− 	 2 

(
u, v , t j−2 

))
/ �t 

) t j+1 ∫ 
t j 

(
τ − t j−2 

)
( t n +1 − τ ) 

α−1 dτ

+ 

γ
AB ( γ ) 
( γ ) 

n ∑ 

j=2 

((
	 2 

(
u, v , t j 

)
− 2 	 2 

(
u, v , t j−1 

)
+ 	 2 

(
u, v , t j−2 

))
/ 2 ( �t ) 

2 
)

×
t j+1 ∫ 
t j 

(
τ − t j−2 

)(
τ − t j−1 

)
( t n +1 − τ ) 

α−1 dτ. 

(0.27) 

It is almost finished. Now, we need to calculate integrals 

I 1 = 

t j+1 ∫ 
t j 

( t n +1 − τ ) 
α−1 dτ

I 2 = 

t j+1 ∫ 
t j 

(
τ − t j−2 

)
( t n +1 − τ ) 

α−1 dτ

I 3 = 

t j+1 ∫ 
t j 

(
τ − t j−2 

)(
τ − t j−1 

)
( t n +1 − τ ) 

α−1 dτ. 

(0.28) 

For calculation we need an auxiliary variable such as y = t n +1 − τ, so we get dy = −dτ ; 

I 1 = 

t n +1 −t j+1 ∫ 
t n +1 −t j 

y α−1 (−dy ) = 

(
1 
α y α

)t n +1 −t j 

t n +1 −t j+1 

= 

1 
α

((
t n +1 − t j 

)α −
(
t n +1 − t j+1 

)α
)

= 

1 
α

(
( ( n + 1 ) �t − j�t ) 

α − ( ( n + 1 ) �t − ( j + 1 ) �t ) 
α
)

= 

( �t ) 
α

( ( n − j + 1 ) 
α − ( n − j ) 

α) . 

(0.29) 
α

5 
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When we use same auxiliary variable for I 2 , we obtain; 

I 2 = 

t j+1 ∫ 
t j 

(
τ − t j−2 

)
( t n +1 − τ ) 

α−1 dτ

= 

t j+1 ∫ 
t j 

(
τ − t j−2 

)
( t n +1 − τ ) 

α−1 dτ

= 

t n +1 −t j+1 ∫ 
t n +1 −t j 

(
t n +1 − y − t j−2 

)
y α−1 ( −dy ) 

= 

t n +1 −t j+1 ∫ 
t n +1 −t j 

( ( n + 1 ) �t − y − ( j − 2 ) �t ) y α−1 ( −dy ) 

= 

t n +1 −t j+1 ∫ 
t n +1 −t j 

( ( n − j − 3 ) �t − y ) y α−1 ( −dy ) 

(0.30) 

after some calculations, we obtain 

I 2 = 

( �t ) 
α+1 

α( α+1 ) 

(
( n − j + 1 ) 

α
( n − j + 3 + 2 α) − ( n − j ) 

α
( n − j + 3 + 3 α) 

)
(0.31) 

If integral I 3 calculate using auxiliary variable y, we obtain 

I 3 = 

t j+1 ∫ 
t j 

(
τ − t j−2 

)(
τ − t j−1 

)
( t n +1 − τ ) 

α−1 dτ. 

= 

t n +1 −t j+1 ∫ 
t n +1 −t j 

(
t n +1 − y − t j−2 

)(
t n +1 − y − t j−1 

)
y α−1 ( −dy ) . 

= 

t n +1 −t j+1 ∫ 
t n +1 −t j 

( ( n + 1 ) �t − y − ( j − 2 ) �t ) ( ( n + 1 ) �t − y − ( j − 1 ) �t ) y α−1 ( −dy ) . 

= 

t n +1 −t j+1 ∫ 
t n +1 −t j 

( ( n − j + 3 ) �t − y ) ( ( n − j + 2 ) �t − y ) y α−1 ( −dy ) . 

(0.32) 

after calculating above integral, I 3 can be obtained as 

I 3 = 

( �t ) 
α+2 

α( α+1 ) ( α+2 ) ( n − j + 1 ) 
α
[
2 ( n − j ) 

2 + ( 3 α + 10 ) ( n − j ) + 2 α2 + 9 α + 12 

]
−( n − j ) 

α
[
2 ( n − j ) 

2 + ( 5 α + 10 ) ( n − j ) + 6 α2 + 18 α + 12 

]
. 

(0.33) 

substituting I 1 , I 2 and I 3 into Eqs. (11) and (12), we can obtain the following 

u ( x, t n +1 ) = u 0 + 

1 −α
AB ( α) [ 	 1 ( u, v , t n ) ] 

+ 

α
AB ( α) 
( α) 

n ∑ 

j=2 

	 1 

(
u, v , t j−2 

)
�t 

(
( �t ) 

α

α ( ( n − j + 1 ) 
α − ( n − j ) 

α) . 
)

+ 

α
AB ( α) 
( α) 

n ∑ 

j=2 

((
	 1 

(
u, v , t j−1 

)
− 	 1 

(
u, v , t j−2 

))
/ �t 

)
×
(

( �t ) 
α+1 

α( α+1 ) 

(
( n − j + 1 ) 

α
( n − j + 3 + 2 α) − ( n − j ) 

α
( n − j + 3 + 3 α) 

))
+ 

α
AB ( α) 
( α) 

n ∑ 

j=2 

((
	 1 

(
u, v , t j 

)
− 2 	 1 

(
u, v , t j−1 

)
+ 	 1 

(
u, v , t j−2 

))
/ 2 ( �t ) 

2 
)

×
[ 

( �t ) 
α+2 

α( α+1 ) ( α+2 ) ( n − j + 1 ) 
α
(
2 ( n − j ) 

2 + ( 3 α + 10 ) ( n − j ) + 2 α2 + 9 α + 12 

−( n − j ) 
α2 ( n − j ) 

2 + ( 5 α + 10 ) ( n − j ) + 6 α2 + 18 α + 12 . 
)]

(0.34) 

and 

v ( x, t n +1 ) = v 0 + 

1 −α
AB ( α) [ 	 2 ( u, v , t n ) ] 

+ 

α
AB ( α) 
( α) 

n ∑ 

j=2 

	 2 

(
u, v , t j−2 

)
�t 

(
( �t ) 

α

α ( ( n − j + 1 ) 
α − ( n − j ) 

α) . 
)

+ 

α
AB ( α) 
( α) 

n ∑ 

j=2 

((
	 2 

(
u, v , t j−1 

)
− 	 2 

(
u, v , t j−2 

))
/ �t 

)
×
(

( �t ) 
α+1 

α( α+1 ) 

(
( n − j + 1 ) 

α
( n − j + 3 + 2 α) − ( n − j ) 

α
( n − j + 3 + 3 α) 

))
+ 

γ
AB ( γ ) 
( γ ) 

n ∑ 

j=2 

((
	 2 

(
u, v , t j 

)
− 2 	 2 

(
u, v , t j−1 

)
+ 	 2 

(
u, v , t j−2 

))
/ 2 ( �t ) 

2 
)

×
[ 

( �t ) 
α+2 

α( α+1 ) ( α+2 ) ( n − j + 1 ) 
α
(
2 ( n − j ) 

2 + ( 3 α + 10 ) ( n − j ) + 2 α2 + 9 α + 12 

−( n − j ) 
α2 ( n − j ) 

2 + ( 5 α + 10 ) ( n − j ) + 6 α2 + 18 α + 12 

)]

(0.35) 
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During above process, time discretization is completed. The space discretization process can be done using finite differ- 

ence approximation easily, see [22–25] . We refer our readers to [2,18,33] for detailed analytical studies for a class of diffusive

Noyes-Field model for the Belousov-Zhabotinskii reaction where the global existence, boundedness and the asymptotic be- 

haviors of the solutions have been considered. 

Applications 

In this part, application of the suggested method is carried-out on the fractional Noyes-Field (Belousov-Zhabotinsky) 

model (0.17) and its variants are considered in the following cases: 

Case 1 

With γ = 0 and β = 0 in nonlinear time-fractional Belousov-Zhabotinsky reaction-diffusion system (0.17) reduces to 

ABC 
t 0 

D 

αu ( x, t ) = ξ1 u xx ( x, t ) + u ( x, t ) − u 

2 ( x, t ) − δu ( x, t ) v ( x, t ) 
ABC 
t 0 

D 

αv ( x, t ) = ξ2 v xx ( x, t ) + λu ( x, t ) v ( x, t ) 
(0.36) 

using the initial conditions 

u (x, t = 0) = 

1 (
e 

√ 

λ
6 

x +1 

)2 , 

v (x, t = 0) = 

(1 −λ) e 

√ 

λ
6 

x 

(
e 

√ 

λ
6 

x +2 

)

δ

(
e 

√ 

λ
6 

x +1 

)2 . 

(0.37) 

When α = 1 , the exact solution of Eq. (0.36) is given as 

u (x, t) = 

e 
5 λ
3 

t (
e 

√ 

λ
6 

x + e 5 λ6 t 

)2 , 

v (x, t) = 

(1 −λ) e 

√ 

λ
6 

x 

(
e 

√ 

λ
6 

x +2 e 
5 λ
6 

t 

)

δ

(
e 

√ 

λ
6 

x + e 5 λ6 t 

)2 , 

(0.38) 

where δ > 0 and λ > 0 , but λ � = 1 . It should also be mentioned that the exact solution (0.38) can be written as: 

u (x, t) = 

e 
5 λ
3 

t (
e 

√ 

λ
6 

x + e 5 λ6 t 

)2 = 

1 
4 

(
tanh 

2 
[ √ 

λ
24 

x − 5 λ
12 

t 

] 
− 1 

)2 

, 

v (x, t) = 

(1 −λ) e 

√ 

λ
6 

x 

(
e 

√ 

λ
6 

x +2 e 
5 λ
6 

t 

)

δ

(
e 

√ 

λ
6 

x + e 5 λ6 t 

)2 

= 

λ−1 
4 δ

(
tanh 

2 
[ √ 

λ
24 

x − 5 λ
12 

t 

] 
− 2 tanh 

[ √ 

λ
24 

x − 5 λ
12 

t 

] 
− 3 

)
. 

(0.39) 

In the numerical experiment, we set �x = 0 . 25 and �t = 0 . 01 , ξ1 = 1 . 00 and ξ2 = 1 . 00 . The corresponding numerical

results for various value of α and other parameters is shown in Figs. 1–3 . The dynamic evolution in Figs. 2 and 3 are

obtained with initial conditions 

u (x, t = 0) = 1 − exp (−10(x − μ/ 2) 2 ) , 
v (x, t = 0) = exp (−10(x − μ/ 2) 2 ) . 

(0.40) 

Case 2 

Consider the case γ = λ and β = 1 , so that the time-fractional Belousov-Zhabotinsky reaction-diffusion system in the 

sense of Atangana-Baleanu derivative of order 0 < α ≤ 1 becomes 

ABC 
t 0 

D 

αu ( x, t ) = ξ1 u xx ( x, t ) + δv (x, t) + u ( x, t ) − u 

2 ( x, t ) − δu ( x, t ) v ( x, t ) 
ABC 
t 0 

D 

αv ( x, t ) = ξ2 v xx ( x, t ) + λv ( x, t ) − u ( x, t ) v ( x, t ) , 
(0.41) 

subject to the initial conditions 

u (x, t = 0) = 

1 (
e 

√ 

λ
6 

x +1 

)2 , 

v (x, t = 0) = 

(1 −λ) 

δ

(
e 

√ 

λ
6 

x +1 

)2 . 
(0.42) 
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Fig. 1. Fractional distribution of system (0.36) with δ = 2 and λ = 2 for different α. 

 

 

 

The exact solution of (0.41) when α = 1 is given as 

u (x, t) = 

e 
5 λ
3 

t (
e 

√ 

λ
6 

x + e 5 λ6 t 

)2 = 

1 
4 

(
tanh 

[ √ 

λ
24 

x − 5 λ
12 

t 

] 
− 1 

)2 

, 

v (x, t) = 

(λ−1) e 

√ 

5 λ
3 

t 

δ

(
e 

√ 

λ
6 

x + e 5 λ6 t 

)2 = 

λ−1 
4 δ

(
tanh 

[ √ 

λ
24 

x − 5 λ
12 

t 

] 
− 1 

)2 

, 

(0.43) 

where λ � = 1 . The simulation experiment results for two values of α are reported in Figs. 4 and 5 . Other parameters are

given in the captions. 

Case 3 

Here, consider the solution nonlinear fractional reaction-diffusion model (0.17) using the initial conditions in (0.40) and 

the computer random initial condition computed as u 0 = 0 . 1 ∗ ones (N, 1) , v 0 = 0 . 2 ∗ ones (N, 1) , with N = 200 and zero-flux

boundary conditions. The corresponding results are given in Figs. 6 and 7 , respectively. In Fig. 7 , Rows 1 to 3 correspond to

α = 0 . 45 , 0 . 55 , . 0 . 65 , 1 . 00 , respectively. 

Case 4 

In this case, consideration is given to the spatially homogeneous Belousov-Zhabotinskii fractional-order reaction model 

ABC 
t 0 

D 

αu = f 1 (u, v , w ) = u (1 − u − σv ) , t > 0 , 
ABC 
t 0 

D 

αv = f 2 (u, v , w ) = φw − v − ϕu v , t > 0 

ABC 
t D 

αw = f 3 (u, v , w ) = ψ(u − w ) , t > 0 , 

(0.44) 
0 

8 
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Fig. 2. Fractional evolution of system (0.36) with μ = 0 . 5 , δ = 2 , λ = 2 , α = 0 . 93 and initial conditions in (0.40) . 

 

 

 

 

 

where f i , i = 1 , 2 , 3 is nonlinear local kinetic or simply the reaction terms, σ, φ, ϕ and ψ are positive parameters related to

the speed of species reactions, and u > 0 , v > 0 , w > 0 denote the concentration of chemical reactants or biological popula-

tions. In the presence of diffusion, Eq. (0.44) becomes 

ABC 
t 0 

D 

αu (x, t) = u (1 − u − σv ) + d 1 �u, x ∈ �, t > 0 , 
ABC 
t 0 

D 

αv (x, t) = φw − v − ϕu v + d 2 �v , x ∈ �, t > 0 

ABC 
t 0 

D 

αw (x, t) = ψ(u − w ) + d 3 �w, x ∈ �, t > 0 , 
∂u 
∂ν

= 0 , ∂v 
∂ν

= 0 , ∂w 

∂ν
= 0 , x ∈ ∂�, t ≥ 0 , 

(u, v , w ) = (u 0 , v 0 , w 0 ) , x ∈ �̄, t = 0 , 

(0.45) 

where d i , i = 1 , 2 , 3 are diffusion constants, � ⊂ R 

n is bounded domain with boundary ∂�. The no-flux boundary condition

is applied to assume no external flux into the domain. The stationary problem which corresponds to (0.45) is given as 

0 = u (1 − u − σv ) + d 1 �u, x ∈ �, 

0 = φw − v − ϕu v + d 2 �v , x ∈ �, 

0 = ψ(u − w ) + d 3 �w, x ∈ �, 
∂u 
∂ν

= 0 , ∂v 
∂ν

= 0 , ∂w 

∂ν
= 0 , x ∈ ∂�. 

(0.46) 

Let E = (u, v , w ) be the solution of (0.46) , it is not difficult to see that model (0.46) has just a solution 

ˆ E = ( ̂  u , ̂  v , ˆ w ) : 

ˆ u = 

ˆ w = 1 − σ ˆ v , 
ˆ v = 

φσ+ ϕ +1 −
√ 

(φσ+ ϕ +1) 2 −4 σφϕ 
2 σϕ . 

(0.47) 

Though we are primarily concerned with the evolution of diffusive system, but many chemists or biologists are interested to 

see the dynamic behaviour of system (0.44) . Hence, we set the parameters as σ = 4 , φ = 1 . 5 , ϕ = 1 and ψ = 0 . 5 to obtain

the time series plots and attractors for chemical species in Fig. 8 for different values of α. It was observed all states of

reaction oscillates in phase regardless of the chosen value of α or computational time. 
9 
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Fig. 3. Fractional evolution of system (0.36) with μ = 0 . 5 , δ = 2 , λ = 2 , α = 0 . 75 and initial conditions in (0.40) . 

 
Next, we carry out the linear stability of problem (0.44) at point ˆ E . With E = (u, v , w ) independent of variable x , one

writes model (0.44) in the general form 

E t = F (E) , (0.48) 

where 

F (E) = F (u, v , w ) = 

( 

u (1 − u − σv ) 
φw − v − ϕu v 

ψ(u − w ) 

) 

. (0.49) 

Obviously, 

F E ( ̂  E ) = 

( 

1 − 2 ̂

 u − σ ˆ v −σ ˆ u 0 

−ϕ ̂

 v −(1 + ϕ ̂

 u ) φ
ψ 0 −ψ 

) 

= 

⎛ 

⎝ 

(φσ−ϕ +1) −ϑ 
2 ϕ 

σ [(φσ−ϕ+1) −ϑ] 
2 σ 0 

−(φσ+ ϕ +1)+ ϑ 
2 ϕ 

σ [(φσ−ϕ−1) −ϑ] 
2 

0 

ψ 0 −ψ 

⎞ 

⎠ , 

(0.50) 

where ϑ = 

√ 

(φσ + ϕ + 1) 2 − 4 σφϕ . With ease, one can verify that the corresponding characteristic equation of F E ( ̂  E ) is 

ρ(r) = r 3 + A r 2 + Br + C, (0.51) 
10 



B. Karaagac, K.M. Owolabi and E. Pindza Scientific African 17 (2022) e01384 

Fig. 4. Simulation results for system (0.41) with δ = 2 , λ = 2 . 3 and α = 0 . 48 . 

 

 

 

 

where 

A = 

[(ϕ 2 +2 ϕ−1) −(ϕ+1) φσ+2 ϕψ+(ϕ+1) ϑ] 
2 ϕ > 0 , 

B = [(ϕ + 1) 2 + (3 + 2 σφ − 3 ϕ) σφ + [ ϕ 

2 + 2 ϕ − 1 − φσ (ϕ + 1)] ψ 

+[ ϕ − 2 φσ − 1 + (ϕ + 1) ψ ] ϑ ] 1 
2 ϕ , 

C = 

ψ[ φ2 σ 2 −2 σφ(ϕ −1)+(ϕ +1) 2 +(ϕ −σφ−1) ϑ] 
2 ϕ > 0 . 

(0.52) 

The roots of polynomial ρ(r) = 0 satisfies the following inequalities 

A = −(r 1 + r 2 + r 3 ) > 0 , B = r 2 r 3 + r 3 r 1 + r 1 r 2 , C = −r 1 r 2 r 3 > 0 . (0.53)

Based on the Routh-Hurwitz criteria, necessary and sufficient conditions for the solution E to be stable is that AB − C > 0 .

Other stability conditions are omitted here. 

To observe the dynamic behaviour of full fractional system (0.45) under the Atangana-Baleanu derivative in the Caputo 

sense, we utilize the zero-flux boundary conditions and the random initial condition 

u0 = u ∗(ones(N,1)), 
v0 = v ∗(ones(N,1)), 
w0 = w ∗(ones(N,1)), where N = 200 with small noise (u ∗, v ∗, w ∗) = (0 . 5 , 0 . 1 , 0 . 1) . Other parameters used are; σ =

3 . 5 , φ = 1 . 5 , ϕ = 1 . 2 , ψ = 0 . 05 , d 1 = 0 . 007 , d 2 = 0 . 001 , d 3 = 0 . 002 . Simulation runs for t = 100 to obtain the results in Figs. 9

and 10 . A number of spatiotemporal oscillations were observed. 
11 
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Fig. 5. Simulation results for system (0.41) with δ = 2 , λ = 2 . 3 and α = 0 . 65 . 

Fig. 6. Evolution of fractional model (0.17) with The upper and lower rows correspond to α = 0 . 82 and α = 0 . 89 , respectively. 

12 



B. Karaagac, K.M. Owolabi and E. Pindza Scientific African 17 (2022) e01384 

Fig. 7. Simulation results for system (0.41) the computer random initial condition for different α. 
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Fig. 8. Chaotic attractors and time-series solution for system (0.44) . Rows 1-3 correspond to α = (0 . 45 , 0 . 65 , 0 . 85) , respectively. 
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Conclusion 

Finding the numerical solution to fractional-in-time reaction-diffusion equations is one of the major challenges in the 

field of applied mathematics. This manuscript suggests a reliable technique for analyzing and investigating the time- 

fractional Noyes-Field model for the Belousov-Zhabotinskii reaction which is defined in the sense of the Atangana-Baleanu 

fractional operator. Primarily, the existence and uniqueness of the model are investigated via Picard-Lindelöf theorem. Af- 

terward, we constructed a numerical scheme to investigate the numerical behavior of the solution of the time-fractional 

Noyes-Field model and the stability conditions are presented. The significant impact of fractional-order parameters was jus- 

tified via graphical results. Observation from numerical results in Figs. 9 and 10 shows that the variant of the Noyes-Field

model can give rise to chaotic and spatiotemporal distribution under certain conditions and parameters. The methodology 

reported in this paper can be extended to solve other real-life phenomena. In future researches, numerical methods will 

be use in order to improve the approximation to Reaction-diffusion models, especially we will focus on two-dimensional 

fractional order diffusion models. 
Fig. 9. Dynamic evolution of model (0.45) with α = 0 . 53 . 
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Fig. 10. Dynamic evolution of model (0.45) with α = 0 . 76 . 
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