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ABSTRACT 

We provide a new way of deriving a number of dynamic unobserved factors from a 
set of variables. We show how standard principal components may be expressed in 
state space form and estimated using the Kalman filter. To illustrate our procedure we 
perform two exercises. First, we use it to estimate a measure of the current-account 
imbalances among northern and southern euro-area countries that developed during 
the period leading up to the outbreak of the euro-area crisis, before looking at 
adjustment in the post-crisis period. Second, we show how these dynamic factors can 
improve forecasting of the euro exchange rate. 
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1. Introduction 

There has been a long tradition of using either factor models (principal components) or 

dynamic factor models to: (i) derive measures of unobserved effects on key economic 

indicators; and (ii) to concentrate information for the purposes of forecasting. These models 

have been applied, for example, to measure underlying economic activity by Stock and 
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Watson (1989) and Garrett and Hall (1996 ), underlying inflation by Stock and Watson 

(1999) and González, Melo, Monroy and Rojas (2009), global exchange-rate uncertainty by 

Henzel and Wieland (2017), and financial-stress indicators by Ubilava (2019). Applications to 

forecasting include studies by Artis, Banerjee and Marcellino (2001), Zaher (2007) and Ziegler 

and Eickmeier (2008). Key contributions to the development of factor models include Forni, 

Hallin, Lippi and Reichlin (2000) and Stock and Watson (2002a, 2002b). Factor models have 

become increasingly popular as a way of extracting information from data sets that consist of 

a fairly large cross-sectional element as well as a time series dimension. Applications of these 

models include Barnett, Chauvet and Tierney (2009), who use a factor model with a regime-

switching model to separate the common movements underlying monetary-aggregate 

indices from idiosyncratic variations in each series, and Fuleky and Bonham (2015), who use 

indicators observed at various frequencies tied together by cointegration to pass high-

frequency information to low-frequency series.    

In what follows, we focus on the two basic linear approaches to factor analysis that 

have been used in the literature. One approach is based on principal components and its 

variants. The second approach is based on the Kalman filter. Both approaches have 

advantages and disadvantages. The advantage of the principal component approach is that it 

is able to produce more than a single factor from the original series. A disadvantage of the 

approach is that it is inherently static in the sense that the component series at each point in 

time are only a function of the data at that point in time. A key advantage of the Kalman filter 

approach is that it is dynamic, in the sense that the factor produced will be smoothed since it 

is a function of the data, not only in the current period, but also both future and past values. 

Its disadvantage is that it can only be used to produce a single factor from a range of series. 

Hybrid approaches that start from principal components and then apply the Kalman filters to 
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the analysis to smooth the resulting factors also exist; but these approaches are far from 

satisfactory.1 

In this paper, we show: (i) how principal components may be represented in a state space 

form; and (ii) how this representation generalises to a dynamic multi factor model (DMFM). 

We apply this representation in two ways. First, we use it to model the growing structural 

imbalances in the current account to GDP ratios and their subsequent partial reversal which 

occurred between northern European countries (Germany, Austria and the Netherlands) and 

southern European crisis countries (Greece, Ireland, Spain and Portugal) during the periods 

2003:Q1 to 2008:Q1 and 2008:Q2 to 2018:Q1, respectively. Using our method of 

representation, we derive an underlying measure of these imbalances. Second, we show how 

these dynamic factors can improve our ability to forecast exchange rates; our focus here is 

the euro-U.S. dollar exchange rate. 

The paper is structured as follows. Section 2 provides an overview of dynamic factor models 

and of our proposed procedure. Section 3 applies the procedure to the current accounts 

(relative to GDP) of the seven euro-area countries mentioned above over the two sub periods. 

Section 4 uses these dynamic factors to address the issue of forecasting the euro-U.S. dollar 

exchange rate. Section 5 presents our main conclusions. Finally, Appendix 1 provides a 

worked-out example that shows the exact equivalence between principal components and 

the Kalman filter model. 

 

                                                           
1 Specifically, these approaches smooth the principal components in a arbitrary way -- for example, by filtering 

the components. 
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2. A Dynamic Multi  Factor  Model (DMFM)  

2.1 Principle Components and Dynamic Factor Models 

Let tY  be a vector of R variables of interest i=1…R measured over T periods t=1…T, that is ity . 

The objective of factor models is to summarise the information in tY  in a smaller number of 

factors tF , where tF  is a vector containing 
jtf variables where j=1…J, and where J is less than 

or equal to R. Typically, we would want the number of useful factors to be considerably less 

than R, although principal components can produce up to R factors. The assumption we make 

throughout this paper is, therefore, that there exists a set of common factors underlying the 

observed data such that; 

t tY F             (1) 

Principal components proceeds by choosing the first factor to be a series that explains as 

much of the variation in ity as possible. The second factor is then derived as a series that 

explains as much of the remaining variation ity as possible, subject to being orthogonal to the 

first factor. The third factor is chosen so that it explains as much of the remaining variation as 

possible subject to being orthogonal to both of the first two factors, and so on. Formally, this 

is done by first normalizing the variables in the vector ity so that they have a zero mean and 

unit variance; call this vector 
tY . Then, the principal components, P, may be derived in matrix 

form as: 

P YW             (2) 
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where W is an RxR matrix. To construct the first principal component, the idea is that the first 

column of W is chosen so as to maximize the variance of the first principal component 

1 1p Yw . Such a linear combination is given by 
1var( )Yw . Hence, the problem that is solved 

by principal components is to maximise the following equation with respect to the vector 1w  

(see Joliffe and Cardima (2016)). 

1 1 1max var( ) 'Yw w Sw          (3) 

where S is the sample covariance of Y . The solution to this problem is not unique because 

any linear scaling of 1w will produce an equivalent answer, and so we need to identify a unique 

set of weights. The usual way to address this issue is to impose the constraint that 1 1 ' 1w w  . 

We may then go on to sequentially solve for the remaining principal components, with the 

added constraint that each subsequent principal components is orthogonal to the ones that 

come before it. The full W matrix is, in fact, given as the eigenvectors of 'Y Y . Typically, the 

information in the R variable comprising the ity  series2 is explained by a relatively small 

number of factors, or principal components; as mentioned, these may be used either in 

forecasting or as measures of some underlying concept, such as economic activity. The 

disadvantage of this approach is that the factors are inherently static. For example, if we 

wished to model underlying economic activity, we might believe that the economy evolves 

smoothly. If the data are erratic, or even seasonal, then the principal components (or factors) 

will remain erratic or seasonal. Following Doz, Giannone and Reichlin (2011), it has been 

common practice to regress time series models on these factors in order to produce smoother 

                                                           
2 For simplicity of notation we will henceforth drop the bar notation in ty   and will simply note when the 

variables are normalised. 
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versions of the factors and to make them dynamic. Doz, Giannone and Reichlin (2012) give 

this procedure a quasi-maximum likelihood interpretation. Our procedure, below, derives a 

full maximum likelihood estimator for the dynamic factors and, thus, should achieve the 

Cramer-Rao lower bound. It is, of course, the case that deriving a maximum likelihood 

estimator is not a necessary condition for achieving this result.  

The Kalman filter approach is inherently dynamic from the start. Following the procedure 

originated by Stock and Watson (1989) and Garratt and Hall (1996), a state space form is set 

up under which a set of R measurement equations are specified as a function of an 

unobservable common factor. The R measurement equations are: 

1 1 1

2 2 2

.

.

.

~ (0, ) 1...

t t t

t t t

Rt R t Rt

it i

y f

y f

y f

N i R

 

 

 

 

 

 

 



          (4) 

where the ε’s are measurement errors, with zero means and constant variances, and the state 

equation is given by: 

1( )

~ (0, )

t t t

t

f L f e

e N





 
           (5) 

where te  is the state equation error with zero mean and constant variance, and where ( )L  

is a lag polynomial. The Kalman filter smoothing algorithm produces an optimal estimate of 

the factor f  that explains as much of the movement in ity as possible; the factor f is 

smoothed over time to allow for the dynamics of the process. In contrast to the various 
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extensions to principal components, which produces smoothing in an ad hoc way, the Kalman 

filter produces the optimal level of smoothing.3 

As mentioned, the main disadvantage of this approach is that it has not been possible to 

directly estimate more than one factor. Specifically, generalizing equation (1) to many factors 

produces a system that is not identified and, thus, cannot be estimated. It is possible to 

identify the model by imposing various constraints on the parameters of the model (see 

Harvey (1989)); indeed, this is, in effect, what we do below in a way that allows us to replicate 

what happens in principal components within the Kalman filter. 

 

2.2 Principal Components as a Special Case of the Kalman filter 

Before turning to the dynamic model, it will be useful to show how the Kalman filter can 

exactly reproduce static principal components. That is, we will show that the Kalman filter can 

be used to derive precisely the same factors as those produced by principal components. To 

do this we set up the following state space form. The measurement equations are: 

1 1 1

2 2 2

1

.

.

.

... ~ (0,1)
t

t t t

t t t

Rt R t Rt

t R

y f

y f

y f

N

 

 

 

 

 

 

 

             (6) 

                                                           
3 See Cuthbertson, Hall and Taylor (1992). 
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where, in contrast to model (2), all the errors have the same constant variance. The state 

equation is given by: 

2~ (0, )

t t

t

f e

e N 


           (7) 

where tf  is the state variable, 2  is the variance of the state equation which is to be 

estimated, 1 .. Ry y  are the variables as before, which have been standardised so that they 

have a zero mean and unit standard error, following the first stage of principal components. 

We normalise the state variable on 1y  using an identification assumption (without loss of 

generality) and estimate the remaining i . The error terms in the state equation have the 

same variance which we normalise to 1; this mimics the principle component approach of 

giving equal weights to all the series;4 te  is the error term in the state equation. Note that 

there are no dynamics in the state equation, which is unusual, but permissible, under the 

Kalman filter. The smoothed state variable will now give the maximum possible explanation 

of the variation in all the variables, which, intuitively, is exactly the same thing done by the 

first factor in the principal component procedure. More formally, the problem which the 

Kalman filter solves is to minimise the squared errors in the measurement equations 

(Jazwinski (1970) or Harvey (1989)), that is to 

2

1 1

min
T R

kt

t k

z 
 

           (8) 

                                                           
4 If different variances are assigned to each measurement equation then this is equivalent to weighted principal 

components where variables can have unequal weights in the construction of the principal components. 



 

9 

 

This is minimised with respect to the unknown parameters of the state space form, in this 

case 2

2 ... R and   .This is simply the dual of the principal components problem (3) -- if we 

maximise the variance of the factor we minimise the variance of the errors. We can see this 

is we define the sum of the squared normalised data as 2

1 1

T R

ij

i j

y
 

   where 
ijy  are the 

elements of Y (as defined above (2)) then we can see that 

1 1' 'w Sw               (9) 

 , is fixed from the data. Principal components maximises the first term on the right hand 

side of (9), which, of course, minimises the second term. The Kalman filter minimises the 

second term, which maximises the first term. 

Again, we have an identification problem in that the state variables are only unique up to a 

multiplicative factor; and, again, we need an arbitrary normalisation. In this case, the 

normalization often takes the form of setting 1 1  . Apart from this normalisation scaling 

factor, the first principal component and the static state variable both contain the same 

information. Indeed, if the first state equation is normalised to the value of the first principal 

component’s loading weight, then the two will be identical. Further, if we regress the first 

principal component on the first state variable, we will get an R2 of exactly 1. Appendix 1 

provides an example using artificial data that illustrates the equivalence between principal 

components and the Kalman filter model outlined above. 

Now, in order to derive the second state variable under model (3), we create a set of variables 

based on the state variable as follows: 
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11 1

12 2

1

.

.

.

t t

t t

Rt R t

f

f

f

 

 

 







                     (10) 

where 𝛾11𝑡, is the effect of the first state variable on 1ty  ; that is, 𝛾11𝑡 is equal to the 

component extracted for 1ty  Similarly, 𝛾12𝑡 is the component extracted for 2ty , etc. We now 

set up the following state space form to derive the second state variable: 

1 2 11 1

2 2 2 12 2

2 1

1

.

.

.

... ~ (0,1)

t t t t

t t t t

Rt R t Rt Rt

t Rt

y f

y f

y f

N

 

  

  

 

  

  

  

                   (11) 

and the state equation is again given by: 

2

2~ (0, )

t t

t

f e

e N 


                     (12) 

This formulation provides the best explanation of the variables after removing the effect of 

the first state variable. Again, it will be identical to the second principal component except for 

the scaling given by the normalisation. This process may be repeated to derive as many state 

variables as required, thus demonstrating the equivalence of the static Kalman filter approach 

and the principal component procedure. But, of course, there is little reason to perform this 

procedure since principal components are quicker and easier to perform than the iterated set 

of Kalman filter models.  
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2.3 The Dynamic Multiple Factor Model (DMFM) 

To briefly summarize, we have shown how a state space form can exactly replicate principal 

components. The key restriction made to achieve this result is to make the state equation 

static. To generate a dynamic factor model, we relax that restriction. That is, what we need 

to do to generate a succession of dynamic factors is to repeat the process given above, but 

with a dynamic set of state equations. 

To demonstrate, we begin by estimating the single factor Kalman filter, given as model (2) 

above. We then create a set of new variables which are given by the factor multiplied by its 

loadings: 

11

12 2

1

.

.

.

t t

t t

Rt R t

f

f

f



 

 







                    (13)  

where the λ’ s are the loading weights. Then, we modify the Kalman filter state equations by 

adding these variables to each state equation and perform a second Kalman filter estimation 

to estimate a second factor. Thus: 

1 2 11 1

2 22 2 12 2

2 2 1

1

.

.

.

... ~ (0,1)

t t t t

t t t t

Rt R t Rt Rt

t Rt

y f

y f

y f

N

 

  

  

 

  

  

  

                             (14) 
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This procedure produces a second factor which explains as much of the variation in the 

observed variables as possible not explained by the first factor. This produces a set of 

components that is analogous to principal components, except that the components are 

dynamic. That is, as in equation (3), the factors have a dynamic structure.  

We can then proceed to another iteration to extract a third dynamic factor by again defining 

a new set of variables as: 

22 2

22 22 2

2 2 2

.

.

.

t t

t t

Rt R t

f

f

f



 

 







                               (15) 

and then estimating a standard Kalman filter with these variables added. 

1 13 3 11 21 1

2 23 3 12 22 2

3 3 1 2

1

.

.

.

... ~ (0,1)

t t t t t

t t t t t

Rt R t Rt Rt Rt

t Rt

y f

y f

y f

N

   

   

   

 

   

   

   

                             (16) 

This will then produce a third dynamic factor and the process can be repeated as many times 

as we wish. 

An obvious way to choose between these models would be in terms of a likelihood ratio test; 

we should continue producing more factors until the final factor produced does not produce 

a significant rise in the likelihood function following the addition of the last factor. Given that 
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we have the likelihood function, it would also be straightforward to construct one of the 

standard information criteria, such as the AIC or the SBC criteria. 

 

3.  A DMFM for the Current-Account Positions of Northern and Southern Euro-area 

Countries 

We utilize the above multiple dynamic factor model to derive an indicator of the degree of 

current-account imbalance between the groups of northern and southern euro-area 

countries. We expect the first dynamic factor (as the dominant one) to capture the growing 

imbalances that developed during the early part of the euro period up to the onset of the 

2008 financial crises. Specifically, we focus on the current account to GDP ratios (CB) of three 

northern countries -- Germany Austria and the Netherlands -- and four southern countries 

which experienced a sovereign debt crises -- Portugal, Spain, Greece and Ireland.5 The data 

are quarterly; the sample period is 2003:Q1 to 2018:Q4. The source of the current account 

and GDP data is Eurostat. Figures 1a and 1b illustrates the paths of the current account 

balances in periods before and after the outbreak of the crisis in 2008. The Figures reveal 

several distinct patterns. First, during the sub period 2003:Q1 to 2008:Q1, the current account 

positions of the three northern countries rose sharply; for example Germany’s surplus rose 

from 2 per cent of GDP at the beginning of the period to about 6 per cent of GDP at the end 

                                                           
5 The specific countries were selected because the three “northern” countries had the largest current-account 

surpluses relative to GDP in the euro area during 2001 and 2008, and the four “southern” countries had the 

largest deficits. The four “southern” countries experienced self-fulfilling crises between their banking systems 

and their sovereign-bond markets following the outbreak of the euro-area crisis in 2010. See Gibson, Hall, and 

Tavlas (2016; 2017) and Gibson, Hall, Petroulas and Tavlas (2020).   
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of the period. Second, whereas the current-account surpluses of Austria and Germany 

exhibited steady rises in the first sub period, the current-account surplus of the Netherlands 

exhibited more erratic behavior, rising from about 0 per cent at the beginning of the period, 

peaking at 8 ½ per cent in 2006:Q3, and then falling to 6 per cent in 2008:Q1. This 

circumstance is related to its position as a producer of natural resources and an exporter of 

crude oil and processed petroleum products. Its current account is heavily influenced by oil 

and gas prices. Third, each of the four southern countries experienced large deteriorations in 

their current-account deficits in the first sub period. Fourth, in the second sub period, the 

current-account surpluses of the three northern countries evolve in different ways -- the 

current-account surplus of Austria initially fell (from about 4 per cent to about 2 per cent) and 

then fluctuated around 2 per cent in a steady way; that of Germany rose from about 6 per 

cent to about 8 per cent steadily, while that of the Netherlands exhibited erratic behavior, 

rising from 4 per cent to over 10 per cent, then falling to 4 per cent, before rising to 8 per 

cent. Fifth, after 2008, the southern countries adjusted and reduced their deficits 

considerably, typically moving either to a balanced current account or to surpluses; the 

northern countries either maintained stable surpluses (Austria) or increased their surpluses 

in either a steady way (Germany) or a somewhat erratic way (the Netherlands). 

Period from 2003:Q2 to 2008:Q1 

We begin by examining the common factor structure underlying the seven countries over the 

first sub period when we believe the fundamental imbalances were building up. To do this we 
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begin by seasonally adjusting the current account balance data6 and standardising each 

variable. We then set up the following state space form; the measurement equations are7: 

1 1

1 1 2

2 1 3

3 1 4

4 1 5

5 1 6

6 1 7

1 7... ~ (0, )

GE

AU

NL

IR

PT

ES

GR

CB

CB

CB

CB

CB

CB

CB

N

 

  

  

  

  

  

  

  

 

 

 

 

 

 

 

                               (17) 

Where CB is the observed ratio of the current-account position relative to GDP for Germany 

(GE), Austria (AU), the Netherlands (NL), Ireland (IR), Portugal (PT), Spain (ES) and Greece 

(GR). The state equation is: 

1 1

~ (0,1)

t it t

t

e

e N

   
                                (18) 

This produces the following state variable, or the first dynamic factor, which is our index of 

structural imbalance (Figure 2). This shows a fairly smooth increasing level of imbalance over 

the period.  The coefficients on the measurement equations are given in Table 1, where the 

German coefficient is normalised to 1.0 as an identification condition; hence, there is no Z-

statistic available for Germany. The key result here is that the loading weights on Germany, 

Austria and the Netherlands are positive while those of the other four countries are all 

                                                           
6 It is critical to work with seasonally adjusted current account data, especially in the case of the southern 

European countries where, because of the importance of tourism, inter alia, the current account is highly 

seasonal. 

7 We suppress the obvious time subscript for notational simplicity. 
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negative. This result implies that as the dynamic common factor rises, the German, Austrian 

and Netherlands current balances move further into surplus while the other four countries 

move further into deficit, demonstrating the growing divergence of the external positions 

between the northern and the southern countries during this period. 

We can see how much of each of the current balance for each country is explained by this 

first dynamic factor by running a simple regression of the first dynamic factor on the CB for 

each country. This is shown in the final column of Table 1 as the R2 from this regression. The 

imbalance index has a very high degree of explanatory power for all countries except the 

Netherlands. The low (i.e., 0.01) R2 for the Netherlands reflects the nature of the procedure 

used to obtain the factor. As discussed, the evolution of the current account-to-GDP ratio of 

the Netherlands has little in common (in terms of a common factor) with the other countries. 

Hence, the common factor found for the other countries has little effect on the Netherlands, 

producing the low R2.  

As mentioned, the first dynamic factor is identical to what is derived under the standard factor 

model. We can now proceed to derive the second dynamic factor, which cannot be derived 

under the standard model. As described above, this is done by adding the first factor 

multiplied by its coefficient to each of the measurement equations and then re-running the 

Kalman filter. This procedure produces the second dynamic factor shown in Figure 3. There is 

no clear trend in this factor, as we would expect, since it should be orthogonal to the first 

factor. The coefficients on the second dynamic factor no longer have the clear pattern found 

for the first factor. The coefficient on the second dynamic factor is again normalised to unity 

on Germany (Table 2). The coefficients of three countries, Austria, Ireland, and Portugal have 

the same (positive) sign as Germany while the other three countries have the opposite 
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(negative) sign. This factor is, therefore, picking-up some differences among the countries 

rather than something they experience in common. The R2 rises substantially for three 

countries: the Netherlands (from 0.01 to 0.78), Austria (from 0.64 to 0.83), and Portugal (from 

0.60 to 0.78). The loading weight for the Netherlands also has a high Z statistic relative to 

most of the other countries. This factor would then seem to be mainly picking up something 

that is largely specific to the Netherlands and which does not have the same general 

applicability as the first dynamic factor. In short, there is clear and strong evidence that over 

this period there is an underlying common factor that links the rises in the current account 

surpluses of Germany and Austria, to the rising deficits in Spain, Greece and Ireland. 

 

Period from 2008:Q2 to 2018:Q1 

We now turn to the second sub period. During this period the four crisis countries had to 

undertake sharp fiscal contractions, to eliminate their current account deficits; the upshot of 

those measures were reductions in domestic demand and sharp improvements in their 

current-account positions. We would, therefore, expect to see that their current accounts 

were moving in line with those of the northern countries, which were not subjected to 

contractionary policies and which tended to exhibit increases in their surpluses in the second 

period (Figure 1a). Again applying the dynamic factor analysis we derive the first factor which 

is presented in Figure 4. The first dynamic factor continues to have an upward slope although 

it levels off after 2013. The difference between this and the earlier period comes in the form 

of the loading weights shown in Table 3. In this case, all the coefficients are positive with the 

exception of Austria, meaning that the current balance to GDP ratios of all four crisis countries 

improve (i.e., move either from deficits to surpluses, or from relatively-high deficits to lower 
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deficits) over this period -- see Figure 1). However, as mentioned, the current-account surplus 

of Germany rose. The first dynamic factor has little explanatory power for Austria and the 

Netherlands, which experienced either slowly falling surpluses (Austria) or, behaved 

somewhat erratically (the Netherlands) relative to the other countries. 

We now turn to the second dynamic factor presented in Figure 5. This factor seems to largely 

reflect differences among the three northern countries -- the erratic behaviour of the 

Netherlands in 2014 and 15 (see Figure 1) and the divergence of Germany from Austria over 

the first half of the period. We can see from the factor loadings in Table 4 that this factor 

almost exclusively explains developments in the north; this circumstance is evidenced in the 

sharp increases in the (cumulated) R2 for each of the northern countries -- from 0.68 (with a 

single factor) to 0.81 (with two factors) for Germany; from 0.11 to 0.52 for Austria; and from 

0.14 to 0.60 for the Netherlands. All the crisis countries have very small loading weights which 

are insignificant; and, the cumulated R2 for these countries hardly rises from the simple R2 in 

Table 3. 

The broad conclusion from this section is that the first sub period was one of growing 

imbalances in which the first dynamic factor dominated developments in Austria and 

Germany, in a positive way, while it also dominated in the four crisis countries but in a 

negative way. This factor is then a good measure of the growing imbalances which developed 

between the north and the south and could usefully act as a summary variable of the 

phenomenon in econometric models. The second sub period did not see a reversal of this 

imbalance in the sense that Germany continued to have a rising surplus, while the 

Netherlands and Austria did not reduce their surpluses. The crisis countries turned around 

their current account deficits by internal adjustments to economic activity and domestic 
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prices; the surplus countries did not contribute to narrowing imbalances. In each of the sub 

periods, our dynamic multi factor method substantially increased the explanatory power for 

three countries -- Austria, the Netherlands and Portugal in the first sub period, and Austria, 

Germany and the Netherlands in the second sub period -- compared to what was obtained 

under the standard method. Again, the factor could be used to summarise current account 

adjustment during the crisis. In the following section we provide an example of just such a 

use. 

 

4. Forecasting the Euro-Dollar Exchange Rate 

Since the seminal work of Meese and Rogoff (1983), who convincingly demonstrated that a 

simple random walk model could outperform virtually all other exchange rate models in 

forecasting accuracy, exchange rate forecasting has been a notable area of forecast failure. 

This finding has been replicated many times since the study by Meese and Rogoff -- see, for 

example, the surveys by Rossi (2013) and Caraiani (2017). Given this general failure, it seems 

appropriate to ask if the dynamic factors generated above can provide useful information in 

a simple forecasting exercise for the euro exchange rate. To provide context, it seems 

reasonable that current-account balances should influence the exchange rate. Yet, it would 

not be sensible to enter the current-account balances of all euro-area members into a 

forecasting equation for the euro because such a model would be highly over-parameterised. 

By deriving the dynamic common factors, however, we can concentrate the information 

contained in the large number of current-account variables into a much more parsimonious 

form. 
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To this end, we begin by estimating a simple autoregressive model of the log of the euro 

exchange rate against the US dollar (dollars per euro) over the two sub-periods specified 

above, and then we add the lagged dynamic factors derived earlier (here called DF1 and DF2, 

respectively). We then undertake one-step-ahead, static, forecasts and assess the forecasting 

performances of three model (discussed below) based on three criteria  -- the root mean 

square error (RMSE), the mean absolute error (MAE), and Theil’s inequality coefficient -- over 

the two periods used above to derive the dynamic factors. The exchange-rate data are from 

the ECB’s statistical Data Warehouse. 

The results of this exercise are reported in Table 5. For both periods we start from a simple 

AR(2) model which seems to be a good basic model, passing a range of standard diagnostics.8 

For the period 2003-2008, when we add the first dynamic factor alone, it is significant, but 

does not produce improvement in the forecast diagnostics (in fact, it produces a small 

deterioration in the RMSE and the MAE). We then add both dynamic factors; the first is 

significant, and the second, while not significant (with a t-stat of 1.2), does improve the 

forecasting performance of the equation; the RMSE, the MAE and the Theil inequality 

coefficient all fall substantially, indicating that the second dynamic factor produces a 

significant improvement in forecasting ability. The results are even stronger for the 2008-2018 

period, where the first factor alone is not significant and adds little to the forecasting 

performance. When we include the two factors, however, both are highly significant and 

together produce a substantial improvement in forecast performance. To sum up, for both 

periods, the inclusion of two dynamic factors improve forecasting performance on the basis 

                                                           
8 For each sub period, we lose two observations because of the AR(2) specifications. The diagnostics are available 

from the authors. 
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of the three criteria considered compared with both the baseline AR(2) model and with the 

single-factor model. 

The intuition underlying this result is the following. While the first factor captures the broad, 

smooth, trend-like behaviour in the current balances, this effect is probably well captured by 

the AR(2) time series component of the model. Hence, the first factor adds little to the 

explanation of the exchange rate. The second factor, however, picks up sharp, sudden 

movements in the current balances, which would not be proxied by the simple time series 

model. Thus, this factor contributes significantly to the forecast. This example, therefore, 

demonstrates the importance of using more than one factor. 

 

5. Conclusions 

We have demonstrated that principle components can be generated from a state space 

representation using the Kalman filter, thus making the generalization to a dynamic multi 

factor model (DMFM) straightforward. We illustrated this approach by looking at the 

underlying dynamic factors for the current-account balance to GDP ratios for seven euro-area 

counties, deriving an index of current-account imbalance based on this approach for two sub 

periods. We then used these dynamic factors in a forecasting exercise for the euro-dollar 

exchange rate and demonstrated that these factors enhance the forecasting ability of a simple 

AR model. In addition, in both periods considered it is the second dynamic factor -- a factor 

which has previously not been possible to calculate -- that brings about the major 

improvement in the forecast diagnostics.  



 

22 

 

References 

Artis, M., Banerjee, A. & Marcellino, M. (2001). Factor forecasts for the UK. Working Papers 

203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University. 

Barnett, W., Chauvet, M., & Tierney, H. (2009). Measurement error in monetary aggregates: 

a Markov switching factor approach. Macroeconomic Dynamics, 13(S2), 381-412. 

Cuthbertson K. Hall S.G. & Taylor M.P. (1992). Applied econometric techniques. University of 

Michigan Press, Ann Arbour. 

Doz, C., Giannone, D. & Reichlin, L. (2011). A two-step estimator for large approximate 

dynamic factor models based on Kalman filtering. Journal of Econometrics, 164 (1), 188-205. 

Doz, C., Giannone, D. & Reichlin, L. (2012). ‘A Quasi-Maximum Likelihood Approach for Large 

Approximate Dynamic Factor Models’ The Review of Economics and Statistics, 94 (4), 1014-

1024 

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2000). The generalized dynamic-factor model: 

identification and estimation. The Review of Economics and Statistics, 82 (4), 540-554. 

Fuleky, P., & Bonham, C. (2015). Forecasting with mixed-frequency factor models in the presence 

of common trends. Macroeconomic Dynamics, 19 (4), 753-775. 

Garratt A. & Hall S.G. (1996). Measuring underlying economic activity. Journal of Applied 

Econometrics, vol. II, p 135-151. 

Giannone, D., Reichlin L. & Small, D. (2008). Nowcasting: the real time informational content of 

macroeconomic data releases. Journal of Monetary Economics, 55, 665– 676. 

https://ideas.repec.org/p/igi/igierp/203.html
https://ideas.repec.org/s/igi/igierp.html
https://ideas.repec.org/a/eee/econom/v164y2011i1p188-205.html
https://ideas.repec.org/a/eee/econom/v164y2011i1p188-205.html
https://ideas.repec.org/s/eee/econom.html
https://ideas.repec.org/a/tpr/restat/v82y2000i4p540-554.html
https://ideas.repec.org/a/tpr/restat/v82y2000i4p540-554.html
https://ideas.repec.org/s/tpr/restat.html
https://ideas.repec.org/p/ulb/ulbeco/2013-6409.html
https://ideas.repec.org/p/ulb/ulbeco/2013-6409.html


 

23 

 

Gibson, H.D., Hall, S.G., Petroulas, P. & Tavlas, G.S. (2020). On the effects of the ECB’s funding 

policies on bank lending. Journal of International Money and Finance, 102(C). 

Gibson, H.D., Hall, S.G. & Tavlas, G.S. (2016). How the euro-area sovereign-debt crisis led to a 

collapse in bank equity prices. Journal of Financial Stability, 26(C), 266-275. 

Gibson, H.D., Hall, S.G. & Tavlas, G.S. (2017). Self-fulfilling dynamics: The interactions of 

sovereign spreads, sovereign ratings and bank ratings during the euro financial crisis. Journal 

of International Money and Finance, 73, 371-385. 

González E., Melo, L. F., Monroy, V. & Rojas, B. (2009). A dynamic factor model for the 

Colombian inflation. Borradores de Economia, 549, Banco de la Republica de Colombia. 

Harvey A. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge, 

U.K.: Cambridge University Press. 

Henzel, S., & Wieland, E. (2017). International synchronization and changes in long-term inflation 

uncertainty. Macroeconomic Dynamics, 21(4), 918-946. 

Jazwinski A.H. (1970). Stochastic Processes and Filtering Theory. New York: Academic Press, isbn 

0-12-381550-9 

Joliffe I. T. & Cadima J. (2016). ‘Principal Component Analysis: A Review and Recent 

Developments’ Philosophical Transactions A374 Royal Society, 

dx.doi.org/10.1098/rsta.2015.0202 

Meese R.A & Rogoff K. (1983). Empirical exchange rate models of the seventies: Do they fit out 

of sample. Journal of International Economics, 14 (1-2), 3-24. 

Rossi B. (2013). Exchange rate predictability. Journal of Economic Literature, 51 (4), 1063-1119. 

https://ideas.repec.org/p/bdr/borrec/549.html
https://ideas.repec.org/p/bdr/borrec/549.html
https://ideas.repec.org/s/bdr/borrec.html


 

24 

 

Stock J.H. & Watson M.W. (1989). New indexes of coincident and leading economic indicators. 

NBER Chapters in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National 

Bureau of Economic Research. 

Stock J.H. & Watson M.W. (1999). Forecasting inflation. Journal of Monetary Economics, 

44(2), 293-335. 

Stock J.H. & Watson M.W. (2002a). Forecasting using principal components from a large 

number of predictors. Journal of the American Statistical Association, 97 (460), 1167-1179. 

Stock J.H. & Watson M.W. (2002b). Macroeconomic forecasting using diffusion indexes. 

Journal of Business and Economics Statistics, 20 (2), 147-62. 

Ubilava, D. (2019). On the relationship between financial instability and economic 

performance: stressing the business of nonlinear modeling. Macroeconomic Dynamics, 23 (1), 

80-100. 

Zaher, F. (2007). Evaluating factor forecasts for the UK: The role of asset prices. International 

Journal of Forecasting, 23 (4), 679-693. 

Ziegler, C. & Eickmeier, S. (2008). How successful are dynamic factor models at forecasting 

output and inflation? A meta-analytic approach. Journal of Forecasting, 27, 237–265.  

https://ideas.repec.org/h/nbr/nberch/10968.html
https://ideas.repec.org/s/nbr/nberch.html
https://ideas.repec.org/a/eee/intfor/v23y2007i4p679-693.html
https://ideas.repec.org/s/eee/intfor.html
https://ideas.repec.org/s/eee/intfor.html


 

25 

 

Figure 1a: Current account balances as % GDP in the North 

 

Data source: Eurostat. 

Figure 1b: Current account balances as % GDP in the South 

 

Data source: Eurostat. 
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Figure 2: the first dynamic factor
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Table 1: Loading weights of the dynamic factor for each country. 

 Coefficient Z-Statistic R2 

GE 1 - 0.82 

AU 0.92 2.2 0.64 

NL 0.41 1.9 0.01 

IR -1.0 3.9 0.9 

PT -0.75 3.2 0.6 

GR -0.99 3.5 0.7 

ES -1.0 1.5 0.96 

 

The R2 is derived from regressing the factor on the current-account balance (relative to GDP) 

for each country’s current-account balance. 

 

Table 2: Loading weights of the second dynamic factor for each country.  

 Coefficient Z-Statistic Cumulated R2 

GE 1 - 0.83 

AU 0.8 2.3 0.83 

NL -1.5 3.8 0.78 

IR 0.17 0.3 0.9 

PT 0.7 2.7 0.78 

GR -0.37 1.0 0.71 

ES -0.05 0.9 0.96 

 

The R2 is derived from a simple regression of the first and second factor onto each country’s 

current-account balance. 
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Table 3: Loading weights of the dynamic factor for each country.  

 Coefficient Z-Statistic R2 

GE 1 - 0.68 

AU -0.23 1.9 0.11 

NL 0.04 1.7 0.14 

IR 0.6 6.4 0.32 

PT 1.0 3.1 0.93 

GR 1.0 3.6 0.91 

ES 0.96 4.0 0.92 

 

The R2 is derived from a simple regression of the factor on each country’s current-account 

balance. 

Table 4: Loading weights of the second dynamic factor for each country.  

 Coefficient Z-Statistic  Cumulated R2 

GE 1 - 0.81 

AU 0.74 4.5 0.52 

NL -0.9 4.4 0.60 

IR -0.002 0.01 0.33 

PT -0.0001 0.002 0.94 

GR -0.06 0.01 0.92 

ES -0.1 0.4 0.92 

 

The R2 is derived from a simple regression of the first and second factor on each country’s 

current-account balance. 
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Table 5: Forecasting the Dollar-Euro Exchange Rate 

Period 2003q2-2008q1 2008q3-2018q1 

 AR(2) One factor Two 

factors 

AR(2) One 

factor 

Two 

factors 

constant 0.03(1.2) 0.09(2.44) 0.102(2.25) 0.037(2.3) 0.07(2.8) 0.093(4.2) 

LEUROt-1 1.15(4.9) 1.03(4.55) 0.984(4.3) 1.24(8.44) 1.19(8.17) 1.07(8.06) 

LEUROt-2 -0.24(1.1) -0.39(1.84) -0.386(1.6) -0.41(2.85) -

0.49(3.23) 

-0.473(3.7) 

DF1 - 0.027(2.07) 0.03(2.2) - -

0.02(1.66) 

-0.035(3.1) 

DF2 - - 0.02(1.2) - - -0.033(3.4) 

RMSE 0.040623 0.043328 0.025974 0.036716 0.035343 0.0300568 

MAE 0.032881 0.037143 0.022152 0.029788 0.028798 0.025673 

Theil 

inequality 

0.087914 0.087297 0.051694 0.072202 0.06947 0.060017 

Dependent variable is the log of dollar-euro exchange rate. ‘t’ statistics are in parenthesis. 

Forecast diagnostics are based on one step ahead static forecasts. 

Data sources: Eurostat and ECB Statistical Data Warehouse. 
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Appendix 1: A step by step application showing the equivalence of the Kalman filter and 

Principal Components 

In this appendix we give a worked example which shows the equivalence of our Kalman filter 

model and principal components. We take an artificial data set of 1000 observations and two 

variables where we construct the data in such a way that there is a common factor underlying 

both series but also a considerable amount of noise in each series. The example has been 

worked in EVIEWS and the EVIEWS workfile is available from the authors upon request. 

We set up an EVIEWS workfile which is undated and has 1000 observations. 

1. We generate three variables which are standard normal random numbers with N(0,1), 

1 2 3,x x and x . 

2. We then generate two variables from these three random variables as follows: 

1 1 2

2 1 3

y x x

y x x

 

 
 

which means that both variables have a common factor but also quite a large idiosyncratic 

part. 

3. We the apply standard principal components, using the EVIEWS procedure and derive the 

first principal component, 1P , which is graphed in Figure A1. 

 

 

 

Figure A1: First Principal Component 
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4. We now turn to the Kalman filter procedure. We begin by creating a state space object 

(Sspace): 

4.1 The first step is to create two new series which are normalised to have a zero mean 

and unit variance. This is done simply as: 

( ) /
ii i i yys y y SE   

This is important because we are trying to mimic what happens in PCA and the first 

stage here is to normalize each variable. 

4.2 We then set up the following state space form: 

@signal y1s = sv1 + [var = 1] 

@signal y2s =c(1)*sv1 + [var = 1] 

 

@state sv1 =  [var = exp(c(2))] 
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There are two signal equations for the two observed variables. The variance for the 

two signal equations is set to 1 to mimic what happens in principal components. The 

coefficient of the first signal equation is normalised to 1. There is an estimated 

parameter (c(1)) in the second signal equation and we estimate the variance of the 

state equation (c(2)). This is then estimated by maximising the likelihood function to 

produce the results in the Table A1. 

Table A1: Kalman Filter Estimation 

 
Sspace: SS01    
Method: Maximum likelihood  (BFGS / Marquardt steps) 
Included observations: 1000   
Convergence achieved after 16 iterations  
Coefficient covariance computed using outer product of gradients 

     
      Coefficient Std. Error z-Statistic Prob.   
     
     Estimated 

parameter, C(1) 1.000 0.219 4.566 0.00 
Variance of state 

equation, C(2) -1.357 0.258 -5.254 0.00 
     
      Final State Root MSE z-Statistic Prob.   
     
     SV1 0.000 0.507 0.000 1.00 
     
     Log likelihood -2787.14      Akaike info criterion 5.58 

Parameters 2      Schwarz criterion 5.59 
Diffuse priors 0      Hannan-Quinn criter. 5.58 

     
      

 

4.3 We then form the smoothed state series sv1, which we present in Figure A2. 

 

 

 

Figure A2: Smoothed State Series from Kalman Filter Estimation 
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4.4 This state variable now contains exactly the same information as the first principal 

components. We can demonstrate this by regressing SV1 on P1. 

Table A2: Equivalence of Principal Components with Kalman Filter technique 

 
Dependent Variable: P1   
Method: Least Squares   
Included observations: 1000   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -1.88E-07 1.41E-07 -1.332 0.18 

SV1 4.164 4.78E-07 8711630. 0.00 
     
     R-squared 1.00     Mean dependent var -3.86E-17 

Adjusted R-squared 1.00     S.D. dependent var 1.231947 
S.E. of regression 4.47E-06     Akaike info criterion -21.797 
Sum squared resid 1.99E-08     Schwarz criterion -21.787 
Log likelihood 10900.26     Hannan-Quinn criter. -21.793 
F-statistic 7.59E+13     Durbin-Watson stat 1.003 
Prob(F-statistic) 0.00    
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It should be noted that the R-squared is exactly equal to 1 as stated in the main text of the 

paper. 

Finally, we rescale the state variable by 1.2921020/0.310325 to make the first observation of 

SV1 equal the first principal component. We then graph the two variables together. For clarity 

we show the first 110 observations only in the Figure A3. 

Figure A3: The Two Series Compared 
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It is impossible to see any difference between the two scaled series. Looking at the spread 

sheet, the two series are equivalent to at least the 4th decimal point. 

 
 

 

 




