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Abstract 

This study examines probabilistic prediction of the standardized precipitation index (SPI) categories (i.e., 

dry, normal and wet conditions) in Iran regressed onto the combination of the North Atlantic Oscillation (NAO) index 

and several sea-surface temperature (SST) indices including Niño4, Niño3.4, Niño3, Niño1+2, western Pacific (WP; 

0º-15ºN, 130Eº-160ºE), the eastern Mediterranean Sea (EM; 30ºN-38ºN, 20ºE-35ºE) and the Indian Ocean Dipole 

(IOD). The ordinal regression models (ORM) based on the logistic function are applied to determine the best predictor 

variables. Seasonal precipitation during the two wet seasons of October-December (OND) and January-March (JFM) 

for 50 synoptic stations across Iran for the period 1967-2017 are used in this research.  3-month SPI at the end of 

December and March, which provides SPI values over OND and JFM, is constructed based on the Gamma probability 

distribution. The SPI categories for OND and JFM precipitation averaged over Iran are considered as the predictand 

variables in the ORM.  The linear trend analysis of JFM SPI values indicates that the risk of drought has been enhanced 

in this season. Among all individual predictors, the SST anomalies over the central Pacific Ocean has the strongest 

teleconnection with OND SPI categories. Based on the minimum Akaike information criterion (AIC), the combination 

of Niño3.4 and WP gives the best model for probabilistic prediction of wet and dry events in OND. Unlike the OND, 

the SST anomalies over different parts of the Pacific Ocean are not strongly related to the SPI values of the JFM 

season in Iran. Among all indices, only the SST anomaly variations over the eastern Mediterranean Sea are statistically 

teleconnected to JFM SPI categories and can be used to predict dry and wet events probability in Iran.  
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1. Introduction 

The El Niño-Southern Oscillation (ENSO) phenomenon is a well-known variable climate mode which 

impacts on the seasonal climate variability across the planet (Mason and Goddard 2001) . The teleconnection between 

ENSO and precipitation variability has been studied in various regions of the world (e.g., Northern Arabian/Persian 

Gulf: (Al Senafi and Anis 2015); Iran: (Alizadeh-Choobari et al. 2018; Nazemosadat and Ghasemi 2004); Saudi 

Arabia: (Athar 2015); southwest Asia: (Barlow et al. 2002); northwest Indian Ocean: (Hoell et al. 2014a); northern 

hemisphere: (Hoell et al. 2014b); Mediterranean region: (Krichak et al. 2014); southwest central Asia: (Mariotti 2007); 

UAE: (Niranjan Kumar and Ouarda 2014); Israel: (Price et al. 1998); central southwest Asia: (Syed et al. 2006); east 

Asia and central Asia: (Yin et al. 2014)). ENSO has a large contribution in seasonal forecast skill (Balmaseda and 

Anderson 2009; Goddard and Dilley 2005; Landman and Beraki 2012; Weisheimer et al. 2009; Shirvani and Landman 

2016). It has also been found that the seasonal prediction skill level is dependent on the strength of the teleconnection 

between ENSO and seasonal variability (Landman et al. 2019). Seasonal precipitation predictability over Iran is 

mainly restricted to October-December (OND) when ENSO states are strongly linked to Iranian precipitation 

variability (Shirvani and Landman 2016).  

Raziei et al. (2012) studied the relationship between daily mean 500 hPa geopotential height fields and the 

occurrence of winter dry/wet spells in western Iran. They reported that wet events in central and southwestern Iran are 

related to the occurrence of a deep and large trough over the eastern Mediterranean Sea and the Red Sea, while dry 

conditions tend to be related to a ridge located over Turkey and the Balkans. Zarei et al. (2017) applied Markov chain 

models to monitor and predict SPI classes time series in Iran. They showed that in most synoptic stations, normal, 

moderately dry, and severe dry classes of drought have the highest frequency of occurrence. SPI values time series in 

the Karkheh river basin in Iran have been predicted using auto-regressive integrated moving average (ARIMA) models 

(Karimi et.al. 2019).   

The occurrence of two severe droughts over the Middle East and central south Asia during 1998-2001 and 

2007-2008 were associated with La Niña conditions and warm sea-surface temperature (SST) over the western Pacific 

(Agrawala et al. 2001; Barlow et al. 2002; Hoell et al. 2012; Hoell et al. 2014a). Another drought, during November 

2013–April 2014, over an area extending from the Mediterranean coastal Middle East, northward through Turkey and 

eastward through Kazakhstan, Uzbekistan, and Kyrgyzstan, was also associated with La Niña conditions and warm 

SST over the western Pacific (Barlow and Hoell 2015). The teleconnection between ENSO and precipitation during 

January-March (JFM) over Iran is weak, but it is strong during OND (Nazemosadat and Cordery 2000; Nazemosadat 

and Ghasemi 2004; Shirvani and Landman 2016). The impact of central Pacific El Niño on the annual precipitation 

in Iran is not statistically significant, but both La Niña and the eastern El Niño impacts significantly on the annual 

precipitation (Alizadeh-Choobari et al. 2018). Rana et al. (2018) reported that much of seasonal precipitation 

predictability over the central southwest Asia (CSWA) during November-April is from preceding (September-

October) SST variations in the Pacific related to ENSO and the Pacific decadal oscillation (PDO). These studies 

indicate that precipitation variability over the Middle East and CSWA can be modelled by using SST climate indices. 

In the present study, the combination of several SST climate indices- including Niño4, Niño3.4, Niño3, Niño1+2, 

western Pacific, eastern Mediterranean Sea and the Indian Ocean Dipole (IOD)- and the North Atlantic Oscillation 
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(NAO) are considered to predict the standardized precipitation index (SPI) categories (i.e., dry, normal and wet 

conditions) in Iran. Ordinal regression models (ORM) are examined here for the probabilistic prediction of dry, normal 

and wet categories using these SST indices. The ORM have been employed to characterize drought categories in U.S. 

Drought Monitor based on several drought indices (Hao, 2016). The other classifier models, such as artificial neural 

network (ANN) and support vector machine (SVM; Bazrkar and Chu, 2022), can be employed for drought prediction. 

The prediction skill of these models is generally higher than regression models. However, the interpretation and 

explanation of relationships between predictor variables and drought, based on these models, is not straightforward. 

Moreover, probabilistic drought prediction, which has been popular for decision making when the skill of drought 

prediction is low (Demargne et al., 2014), is not the target variable in these models. The predictability of SPI categories 

over Iran has not been studied before. The ORM are separately developed for two wet seasons (OND as autumn and 

JFM as winter) because their seasonal variability in response to SST over the Pacific Ocean, Indian Ocean and eastern 

Mediterranean Sea differs, unlike previous studies (Barlow and Hoell 2015; Rana et al. 2018; Barlow et al. 2021) that 

considered November-April as a single season. The main goal of this work is to identify and model the important 

factors which impact on dry and wet conditions in OND and particularly in JFM season, while the teleconnections 

between JFM precipitation over Iran with SST over the Pacific Ocean is weak. 

 

 

Figure 1. The geographical location of the synoptic stations 
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2. Datasets 

2.1.  Observed precipitation data 

The monthly precipitation data for fifty synoptic stations are extracted from the website of the Islamic 

Republic of Iran Meteorological Office (IRIMO, http://www.irimo.ir/). The precipitation data set is quality controlled 

by the IRIMO. Figure 1 indicates the geographical locations of the selected stations over Iran. In this study, OND (as 

autumn season) and JFM (as winter season) time series precipitation data are studied for the two 50-year periods of 

1967-2016 and 1968-2017, respectively. These seasons are two main rainy seasons in Iran such that about 60% of the 

annual precipitation over Iran occurs in these seasons, based on the IRIMO data for the period 1967-2017. Like the 

works of  Hoell et al. 2014b, Hoell et al. 2015 and Barlow et al. 2021, which studied the area averaged over the Middle 

East, the spatial average of synoptic stations in Iran is considered for prediction of dry, normal and wet events in Iran.  

 

2.2. SST data 

The monthly NOAA Extended Reconstructed sea-surface temperature anomalies (SSTA) version 5 (ERSST) 

at a 2°×2° spatial resolution (Huang et al. 2017) are extracted from the International Research Institute (IRI) for 

Climate and Society (http://iridl.ldeo.columbia.edu/) for the period 1967-2017. SST anomalies over the 50 years for 

the OND and JFM seasons are then constructed over the western Pacific (WP) (SSTA averaged over 0º-15ºN, 130Eº-

160ºE) and eastern Mediterranean Sea (EM) (SSTA averaged over 30ºN-38ºN, 20ºE-35ºE).  

Also, several established climate indices including the Niño3 index (SSTA averaged over 5ºS-5ºN, 150ºW-

90ºW), Niño3.4 index (SSTA averaged over 5ºS-5ºN, 170ºW-120ºW; which representing the central part (CP) ENSO 

influence), Niño4 index (SSTA averaged over 5ºS-5ºN, 160ºE-150ºW), Niño1+2 index (SSTA averaged over 10ºS-

0º, 90ºW-80ºW; which representing the eastern part (EP) ENSO influence), North Atlantic Oscillation (NAO), Indian 

Ocean Dipole (IOD) are simultaneously examined as the candidate predictors in regression models to identify their 

respective influences on seasonal precipitation variability over Iran. These SST climate indices and the following 

reanalysis data are also extracted from the IRI data library. 

 

2.3. Reanalysis specific humidity, winds data and mean sea level pressure 

Monthly reanalysis specific humidity (𝑞), zonal (𝑢) and meridional (𝑣) components of winds are taken from 

the NCEP-NCAR reanalysis data (Kalnay et al. 1996). This study uses these variables to calculate vector wind and 

precipitable water (PW; column-integrated water vapour amount). The PW is defined as the total atmospheric water 

vapour contained in a vertical column from the surface to the specified height in the atmosphere (Glickman, 2000). In 

the present study, the PW is considered as the integrated total atmospheric water vapour from the surface to the top of 

the atmosphere. The units of PW and wind components are 𝑘𝑔𝑚  and 𝑚𝑠 , respectively.   

 

3. Methods 

The standardized precipitation index (SPI) (McKee et al. 1993) is applied to drought monitoring  around the 

world and recommended by WMO (Svoboda et al. 2012). Table 1 which is available from WMO library 

(https://library.wmo.int/pmb_ged/wmo_1090_en.pdf) shows the SPI value classification system which is used to 
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define dry and wet conditions, including drought intensities. This classification system is used here to define dry and 

wet conditions. According to Table 1, those SPI values which are less (more) than -1 (+1) are considered here as the 

dry (wet) condition. The dry and wet conditions are also obtained from the percentiles of the SPI values. Three month 

SPI at the end of December and March is considered in this study. This time scale provides SPI values over OND and 

JFM. The 3-months SPI values for both OND and JFM based on the Gamma probability distribution are constructed.     

 

Table 1. SPI classification 

 

 

The linear trend and Mann- Kendall test, respectively, as the parametric and nonparametric methods are employed to 

investigate the properties of the trend in SPI values and SSTA. The assumption of the regression models is that the 

data series have no statistically significant trend. In the regression models, the assumption of stationary in the mean 

helps to understand the relationship between the fluctuation of predictors and predictand. If a series has a significant 

linear trend, then this series is not stationary in the mean and a de-trended series using the corresponding fitted linear 

trend is utilized before constructing the ordinal regression models to be used here.  The SPI categories have a natural 

ordering to their classes such that low, normal, and high precipitation amounts can be classified using categories of 

dry, normal and wet. These categories can be arranged so that 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1 𝑑𝑟𝑦 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2 𝑛𝑜𝑟𝑚𝑎𝑙

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 3 𝑤𝑒𝑡  represent the scale of the precipitation amount. The cumulative probabilities for these categories 

are modeled using an ordinal regression model through logit transformation. The cumulative probabilities for category 

𝑗 of SPI is  

𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 𝑗 𝜋 𝜋 𝜋 ,        𝑓𝑜𝑟 𝑗 1, 2, 3,                                                                (1) 

where 𝜋  is the probability for category 𝑗 (𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 𝑗 𝜋 ),𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 0 0, 𝑎𝑛𝑑 𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡

3 1. The summation of probabilities for three categories is equal to one (𝜋 𝜋 𝜋 1 . Therefore, the 

following equations are expressed only for categories 1 and 2 because the probability for category 3 can be calculated 

from the summation of probabilities for categories 1 and 2 ( 𝜋 1 𝜋 𝜋 ). Ordinal regression models can 

examine the effect  of predictor variables 𝑋 , 𝑋 , … , 𝑋  (e.g., ) on the log-odds of SPI categories cumulative 

probabilities,  

𝑙𝑜𝑔𝑖𝑡 𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 𝑗 log
𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 𝑗

1 𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 𝑗
log

𝜋 ⋯ 𝜋
1 𝜋 ⋯ 𝜋

,   𝑗 1,2.     2  

As ordinal regression model for predicting these logits cumulative can be written as 

𝑙𝑜𝑔𝑖𝑡 𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 𝑗 𝛼 𝛽 𝑋 𝛽 𝑋 ⋯ 𝛽 𝑋 ,    𝑗 1,2.                                               3  

Probabilities for a particular SPI categories 𝑗 are obtained by 
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   𝜋 𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 1 𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 1 ,                                                                                (4) 

𝜋 𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 2 𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 2 𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 1 ,                                                         5  

and  

𝑃 𝑆𝑃𝐼_𝐶𝑎𝑡 𝑗
 ⋯

 ⋯
,      𝑗 1,2                                                        (6) 

More details for ordinal regression models can be found in statistical texts such as (Bilder 2014). In the 

present study, the 𝑝𝑜𝑙𝑟 function from the 𝑀𝐴𝑆𝑆  R package is used for parameters estimation using the maximum 

likelihood method. The logistic method is applied to perform the logit transformation in the  𝑝𝑜𝑙𝑟 function. The 

surrogate approach (Liu and Zhang 2018) is applied to residual diagnostic for validating the ordinal regression 

assumptions. The surrogate approach is implemented using the 𝑆𝑈𝑅𝐸 package in R software.  The ordinal regression 

model that gives the minimum Akaike Information Criterion (AIC) and follows the assumptions of residual 

independence is selected as the best model. The cross validation (Wilks 2011) ordinal regression model using a one-

year-out window is applied for evaluating the selected model. The confusion matrix is computed to show the 

performance of the cross validation ordinal regression model.  

 

4. Results and Discussions  

4.1. Trend analysis of SPI values over Iran 

The p-value of the one sample Kolmogorov-Smirnov (KS) test based on the Gamma distribution for OND 

(JFM) precipitation data is 0.6 (0.42), indicating that seasonal precipitation follows a Gamma distribution. The KS 

test p-value is 0.001 for a Normal distribution for both seasons, indicating that the Normal distribution is not 

appropriate for seasonal precipitation data over Iran. So, the SPI values of OND and JFM precipitation time series are 

subsequently computed based on the Gamma distribution. The SPI values time series for OND and JFM seasons are 

plotted in Fig. 2. The fitted linear regression for these times series were placed in this Figure. For example, the fitted 

linear regression equation for JFM season is expressed as follows.   

𝑆𝑃𝐼_𝑣𝑎𝑙𝑢𝑒𝑠 𝑡 0.029 𝑡 58 𝑧 ,                   𝑡 1968,1983, … ,2017,                       7  

where the estimated slope 𝛼 0.029 with t-statistic and probability value of -3.2 and 0.002, indicating a significant 

downward trend at 5% significance level in SPI for the period 1968-2017. So, winter drought index over Iran has 

decreased about -1.4 during the last five decades. The applied linear regression for OND SPI time series indicates a 

non-significant trend at the 5% significance level (Table 2). Figure 2 (b) and Table 2 indicate that the JFM SPI values 

have significantly decreased over Iran based on observed precipitation data. However, autumn (OND) drought index 

over Iran does not have a statistically significant trend. The nonparametric Mann-Kendall test also confirms these 

results (Table 2).  
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Figure 2. Time series plot of OND (a), JFM (b) and JFM de-trended (c) SPI values. The red dash lines show the corresponding 

linear trends. The horizontal blue dot lines show thresholds for dry and wet conditions 
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Table 2. The estimated parameters of linear trend and MK tests for OND and JFM for the periods 1967–2016 and 1968–

2017, respectively 

 

 

If a time series has a significant linear trend, then this series is not stationary in the mean. In constructing 

statistical relationships between predictors and predictand variables, the assumption of stationary in mean helps to 

extract the relationship between the fluctuations of predictors and predictand. Before constructing ordinal regression 

models, the de-trended JFM SPI time series are obtained using the abovementioned fitted linear regression and plotted 

in Fig. 2 (c). This de-trended SPI time series is considered for SPI categories.  Also, if a significant linear trend is 

observed in the predictor variables (e.g., OND WPSSTA and JFM EMSSTA), a de-trended series is utilized before 

performing ordinal regression models.   

 

4.2. Fitted models for SPI categories 

The specified SPI categories (i.e., dry, normal and wet conditions) according to classification system in 

Table1 are consistent with classifying based on the percentiles of the SPI values such that dry and wet conditions are 

the lower and upper 20th and 80th percentile of the SPI values. This ordinal variable (i.e., SPI categories) is considered 

as the predictand (or response) variable in ordinal regression models. The SST climate indices described above are 

combined as the predictor variables in these models. After removing the non-significant variables among predictors 

and performing backward stepwise regression, the following ordinal regression model with minimum values of AIC 

(68.3) and residual deviance (60.3) is the best model for predicting the OND SPI categories. 

𝑙𝑜𝑔𝑖𝑡 𝑃 𝑂𝑁𝐷_𝑆𝑃𝐼_𝐶𝐴𝑇 𝑗 𝛼 1.15𝑂𝑁𝐷 ñ . 5.25𝑂𝑁𝐷 ,     𝑗 1,2                 (8) 

or 

𝑃 𝑂𝑁𝐷_𝑆𝑃𝐼_𝐶𝐴𝑇 𝑗
exp 𝛼 1.15𝑂𝑁𝐷_𝑁𝑖ñ𝑜3.4 5.25𝑂𝑁𝐷_𝑊𝑃𝑆𝑆𝑇𝐴

1 exp 𝛼 1.15𝑂𝑁𝐷_𝑁𝑖ñ𝑜3.4 5.25𝑂𝑂𝑁𝐷_𝑊𝑃𝑆𝑆𝑇𝐴
,       𝑗 1,2               9  

where 𝛼 =-2.1 and 𝛼 =3.4 . The d superscript in  𝑂𝑁𝐷_𝑊𝑃𝑆𝑆𝑇𝐴 indicates de-trended series. The standard error of 

the estimated coefficients 𝑂𝑁𝐷_𝑁𝑖ñ𝑜3.4 and 𝑂𝑁𝐷_𝑊𝑃𝑆𝑆𝑇𝐴  are, respectively,   0.42 and 2.25, indicating the 

corresponding  t statistic values are  
.

.
2.7 and  

.

.
2.3  which are greater than the quintile of the t-

distribution with alpha=0.05 (i.e., t 1.96). Also, the corresponding p-values are 0.002 and 0.012 and therefore, the 

estimated coefficients are statistically significant at 5% significance level. So, there is sufficient statistical evidence 

that SSTA over the central and eastern parts of the Pacific Ocean are important factors for predicting OND SPI 

categories over Iran because of the significant and large t statistic values for these predictors. Moreover, the association 

between OND SPI categories and 𝑂𝑁𝐷_𝑁𝑖ñ𝑜3.4  in comparison with 𝑂𝑁𝐷_𝑊𝑃𝑆𝑆𝑇𝐴  is in an opposite direction.  

This result suggests that the SSTA over the tropical Pacific Ocean act as a dipole in predicting OND SPI categories.  
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The autocorrelation function of the model’s surrogate residuals was plotted in Fig. 3a and used to test if the 

surrogate residual time series are serially correlated. Figure 3a indicates that the correlation coefficients at all lags are 

not statistically significant at 5% significance level and therefore, surrogate residual series are not serially correlated. 

The scatter plots of surrogate residual and 𝑂𝑁𝐷_𝑁𝑖ñ𝑜3.4 and 𝑂𝑁𝐷_𝑊𝑃𝑆𝑆𝑇𝐴  with fitted nonparametric curve 

plotted in Figs. 3b and 3c, which indicate no pattern between surrogate residual and individual predictor variables. 

Therefore, these assumptions, serially uncorrelated correlated surrogate residual and no relationship between surrogate 

residual and predictors, about the nature of the surrogate residual are met. 

 

 

Figure 3. Autocorrelation function of the surrogate residuals (a); the dash lines indicate the confidence interval which is ±   

The scatter plots of surrogate residual and  (b) and  (c) with a nonparametric smooth (red 

curve) 
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The prediction of probabilities for each OND SPI category and year can be computed using equations (4-6). 

The estimated probabilities of SPI categories conditioned on the individual predictor variable (e,g., 𝑂𝑁𝐷_𝑁𝑖ñ𝑜3.4)  

are computed by holding the other predictor variable (e.g., 𝑂𝑁𝐷_𝑊𝑃𝑆𝑆𝑇𝐴) as a constant value in the model for 

understanding of the role of the individual predictor variable in the model. Fig 4 shows plot of these estimated 

probabilities for individual predictor.  The occurrence of dry (wet) OND season in Iran is high when SSTA over the 

central tropical Pacific Ocean are in the cold (warm) phase (Fig. 4a).   

 

 

Figure 4. The estimated probabilities for individual predictor;  (a),  (b) and 

 (c). The red lines, black dots and blue dashes show dry, normal and wet conditions, respectively 

 

The estimated coefficients, t statistic values and AIC of the fitted ordinal regression based on the individual 

predictor are presented in Table 3. All single predictor (except EM) are statistically significant at the 5% level for 

predicting OND SPI categories. However, among the individual candidate predictors, the best predictor is 

𝑂𝑁𝐷𝑁𝑖ñ𝑜3.4  because of the maximum of t statistic value and minimum of AIC, which are -3.8 and 72.6, respectively. 

As two predictor variables are included in the ordinal regression models, both predictors in the following combinations 

(1) 𝑂𝑁𝐷_𝑁𝑖ñ𝑜4 and  𝑂𝑁𝐷_𝑊𝑃𝑆𝑆𝑇𝐴  , (2) 𝑂𝑁𝐷_𝑁𝑖ñ𝑜3.4 and  𝑂𝑁𝐷_𝑊𝑃𝑆𝑆𝑇𝐴  , (3) 

𝑂𝑁𝐷_𝑁𝑖ñ𝑜3 and  𝑂𝑁𝐷_𝑊𝑃𝑆𝑆𝑇𝐴, are significant at the 5% level. The corresponding AICs are 69.65, 68.33 and 71, 

respectively, indicating that the combination of 𝑂𝑁𝐷_𝑊𝑃𝑆𝑆𝑇𝐴   with 𝑂𝑁𝐷_𝑁𝑖ñ𝑜3.4 as predictors is the best of all 

the models. Also, combined predictors produce lower AIC than a single predictor. Moreover, these results indicate 

that SSTA variations over the western parts is an important factor in combination with 𝑁𝑖ñ𝑜 indices for the prediction 

of OND SPI categories in Iran. These results are consistent with previous works (Agrawala et al. 2001; Barlow et al. 

2002; Barlow and Hoell 2015; Hoell et al. 2012; Hoell et al. 2014a; Hoell et al. 2014b), which state that the occurrence 

of severe droughts over the Middle East and central south Asia are associated with La Niña conditions and warm SST 
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over the western Pacific. In this study, not only drought occurrences, but also normal and wet occurrences are 

probabilistic modeled using SST climate indices. 

A one-year-out cross-validation ordinal multiple regression model based on the 

𝑂𝑁𝐷_𝑁𝑖ñ𝑜4  and  𝑂𝑁𝐷_𝑊𝑃𝑆𝑆𝑇𝐴  as predictor is reconstructed to evaluate the predicted categories. The computed 

confusion matrix of the cross-validated model is 30% for the misclassification error, which implies that the model 

identifies correctly categories in 70% times. 

Like OND, ordinal regression models are developed for predicting probabilities of JFM SPI categories. The 

following ordinal regression model with minimum values of AIC (81.9) and residual deviance (75.9) is the best model 

for prediction JFM SPI categories. 

𝑙𝑜𝑔𝑖𝑡 𝑃 𝐽𝐹𝑀_𝑆𝑃𝐼_𝐶𝐴𝑇 𝑗 𝛼 1.4𝐽𝐹𝑀_𝐸𝑀_𝑆𝑆𝑇𝐴 ,         𝑗 1,2                                        10  

or 

         𝑃 𝐽𝐹𝑀_𝑆𝑃𝐼_𝐶𝐴𝑇 𝑗
 . _ _

 . _ _
 ,          𝑗 1,2                                    (11) 

where 𝛼 =-2 and 𝛼 =1.77. The estimated t statistic value which is 1.79, indicating that the estimated coefficient of 

𝐽𝐹𝑀_𝐸𝑀_𝑆𝑆𝑇𝐴  is statistically significant at 10% significance level. The surrogate residual diagnostic for this model 

indicates that the assumptions about the nature of the surrogate residual are met (Figures not shown). Therefore, SSTA 

variations over the eastern Mediterranean Sea is an important factor in prediction of JFM SPI categories. However, 

the SSTA variations over different parts of the Pacific Ocean are not related to JFM SPI categories in Iran (Table 3). 

The probabilistic prediction of JFM SPI categories using the fitted model based on the significant predictor are plotted 

in Fig. 4c. In JFM season, the chance of wet (dry) condition in Iran is low when SSTA over the eastern Mediterranean 

is in the warm (cold) phase (Fig. 4c).  Using the confusion matrix, the misclassification error for the cross-validated 

model for JFM season is 41%, which is higher than found for OND.  

 

4.3. Circulation characteristics affecting precipitation 

We compare the OND and JFM circulation patterns to highlight why the same Niño indices are not teleconnected with 

JFM season. The anomalies data, which are computed by subtracting the climatological mean from the data, are 

considered here to evaluate the deviation from the long-term average. The low (850 hPa), mid (500 hPa),  and upper 

level (200 hPa) atmospheric large scale circulation pattern anomalies during OND season for dry and wet conditions 

in Iran are shown in Figures 5, 6, and 7, respectively. During OND season for these conditions, the precipitable water 

anomalies also composited with vector winds anomalies are shown in Figure 5. By comparing Fig. 5a with Fig. 5b, it 

is observed that the wind directions are different for dry and wet OND seasons over Saudi Arabia, Iran and those areas 

which are important to supply the moisture for Iran. The main source of supplied moisture is mostly located over the 

southern and eastern water bodies such as Arabian and Oman Seas, Persian Gulf, Indian Ocean for OND precipitation 

over Iran. Fig. 5a and 5b also indicate that the amount of precipitable water anomalies during dry and wet OND season 

are, respectively, below- and above- normal over abovementioned source of moisture. Therefore, vector wind direction 

and amount of moisture over the above mentioned water bodies play important roles in dry and wet condition in Iran. 

The 850 hPa circulation patterns are connected with the 500 and 200 hPa circulation patterns (Fig. 6a, b and Fig. 7a, 
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b). The mid-level vector wind anomalies during dry (wet) OND season are outflow (inflow) over Iran (Fig. 6a, b). The 

200 hPa upper level wind anomalies during dry (wet) OND seasons indicate easterly (westerly) wind at approximately 

0-30N, which are associated with the changes in Rossby wave patterns (Glatt and Wirth 2014). On the other hand, 

previous studies (Niranjan Kumar and Ouarda 2014; Niranjan Kumar et al. 2016) reported that the Rossby wave 

pattern is related to ENSO. The composite map (Fig not shown) of vector wind at 850 hPa and PW anomalies for La 

Niña years is similar to Fig. 5a, because 6 out of the 7 coldest OND Niño3.4 SST anomalies are concurrent with dry 

OND conditions. These results support the physical mechanism that SSTA variations over the Pacific and Indian 

Oceans are important variables in the estimated ordinal regression equation to predict OND SPI categories.  
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Figure 5. The composite maps of vector wind anomalies at 850 hPa and PW anomalies for dry (a) and wet (b) OND season 
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Figure 6. The vector wind anomalies at 500 hPa for dry (a) and wet (b) OND season 
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Figure 7. The vector wind anomalies at 200 hPa for dry (a) and wet (b) OND season 
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The composite map of 850 hPa vector wind and PW anomalies for dry and wet JFM seasons is shown in Fig. 

8a, b. The wind flow over the northern parts of Africa, the Red Sea, and the eastern parts of the Mediterranean Sea 

transfers above-normal PW anomalies over these areas into Iran during wet JFM seasons (Fig. 8b). The wet JFM 

seasons in Iran are concurrent with the low-level cyclones between the eastern Mediterranean Sea and southern the 

black Sea-center over the Turkish- and a low-level anti-cyclone centered over the northeastern of the Indian Ocean 

(Fig. 8b). However, the wind has a southerly direction over the southwest of Iran and amount of PW anomalies is 

anomalously low during dry JFM seasons (Fig. 8). The dry JFM seasons are concurrent with a low-level anti-cyclone 

over the eastern Mediterranean Sea- centered over Iran and low-level cyclone centered over the Arabian Sea (Fig. 8a). 

These low-level patterns are connected with the 500 and 200 hPa circulation patterns (Figs. 9 and 10) such that a high 

(low) upper-level pressure - centered between the eastern Mediterranean Sea and Iran- is concurrent with dry (wet) 

JFM seasons in Iran. During dry (wet) JFM season, the mid-level vector wind anomalies are outflow (inflow) over 

Iran (Fig. 9a, b). Figure 11 (12) indicates areas in which the Pearson correlation between OND (JFM) precipitation 

over Iran and circulation patterns are significant at 5% level for the whole period. By comparing Figure 9 with Figure 

10, it is seen that the areas in which the correlation is significant are different for OND and JFM seasons. These results 

suggest that –unlike OND seasons - from a synoptic perspective the role of circulation patterns over the Black and 

eastern Mediterranean Sea and also moisture over these areas and north of Africa are important for dry and wet JFM 

seasons in Iran.  
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Figure 8. The composite maps of vector wind anomalies at 850 hPa and PW anomalies for dry (a) and wet (b) JFM season 
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Figure 9. The vector wind anomalies at 500 hPa for dry (a) and wet (b) JFM season 
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Figure 10. The vector wind anomalies at 200 hPa for dry (a) and wet (b) JFM season  
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Figure 11. The Pearson correlation maps of 850 (a) and 200 (b) hPa wind magnitude with OND precipitation over Iran. White 
parts indicate non-significant area 
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Figure 12. Iran. White parts indicate non-significant area 
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5. Summary and Conclusions 

The teleconnection between the SST climate indices and seasonal SPI categories over Iran has been examined 

using state-of-the-art ordinal regression models. These models were constructed over a long period of observed 

precipitation and SSTA datasets. Those time series (such as JFM SPI values, EMSTA) which indicated a significant 

trend, were subsequently de-trended before constructing ordinal regression models. In this manner, the variations of 

SPI categories are realistically connected by climate indices through the models and the established teleconnections 

are reliable and also the assumptions of regression models will be met.   

The time series of OND and JFM SPI values over Iran indicate a non-significant and significant downward 

trend over a long period, respectively. This result suggests that the risk of drought in the JFM season has been enhanced 

in Iran. The NAO and oceanic indices over the tropical Pacific-including Niño4, Niño3.4, Niño3, Niño1+2-, western 

Pacific, and Indian Ocean are each significant in their own right for predicting the OND SPI categories. Moreover, 

the Niño3.4 and WP produces the best combined indices for estimating probabilities of wet and dry OND seasons. 

Among all predictors in the ordinal regression models, the SST anomalies variations over the eastern Mediterranean 

Sea are teleconnected significantly with JFM SPI categories. Therefore, unlike OND seasons, the SST anomalies over 

different parts of the Pacific Ocean are not strongly related to JFM seasons in Iran. Probabilistic drought prediction, 

which is important and popular for decision making, over Iran has been modeled and the relationships between SSTA 

and drought can be explained using the ordinal regression models.  The OND circulation patterns in Section 4.3 explain 

why SSTA variations over the Pacific and Indian Oceans are important variables for predicting OND SPI categories, 

that is Black and Mediterranean Seas for JFM. The mid and upper level vector wind is causes outflow of moisture 

over Iran during dry seasons, and inflow of moisture for wet seasons.   
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