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Abstract

The Sterile Insect Technique (SIT) is a promising technique to control mosquitoes, vectors of
diseases, like dengue, chikungunya or Zika. However, its application in the field is not easy, and its
success hinges upon several constraints, one of them being that the treated area must be sufficiently
isolated to limit migration or re-invasion by mosquitoes from the outside. In this manuscript we study
the impact of males and (fertile) females migration on SIT. We show that a critical release rate for
sterile males exists for every migration level, in the context of continuous or periodic releases. In
particular, when (fertile) females migration is sufficiently low, then SIT can be conducted successfully
using either open-loop control or closed-loop control (or a combination of both methods) when
regular measurements of the wild population are completed. Numerical simulations to illustrate our
theoretical results are presented and discussed. Finally, we derive a threshold value for the females
migration rate, when viruses are circulating, under which it is possible to lower the epidemiological
risk in the treated area, according to the size of the human population.

Keywords: Sterile Insect Technique; migration rates; Periodic impulsive control; Open-loop and closed-
loop control; critical release rate
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1 Introduction

Vector control has become an important challenge throughout the world, as diseases-carrying mosquitoes
are spreading and establishing in several parts of the world where a majority of the population is fully
susceptible to dengue, chikungunya, zika and other arthropod-borne diseases. It is now a Public Health
issue to find appropriate control methods, that is having the property of being sustainable, of impacting
only preferentially the targeted vectors, and, of course, of being efficient.

The Sterile Insect Technique (in short, SIT) might verify these three conditions. SIT has been
developed since the 1940s. It has been used more or less successfully in the field against various kinds of
pests or vectors [11]. Classical or standard SIT consists of mass releases of males sterilized by ionizing
radiation. Mating with wild females, these males will transfer their sterile sperms to wild females,
resulting in a progressive decay of the targeted population. It is also possible to sterilize mosquito males
using either genetics, with the controversial RIDL (“Release of Insects carrying Dominant Lethal gene”)
technology [20], or Wolbachia bacteria [23]. However, whatever the sterilization technique, SIT, while
conceptually very simple, is complex to conduct in the field, at an industrial scale. Indeed, it not only
requires mass rearing and sterilization facilities, but also necessitates to follow a quite complex protocol,
intended to guarantee the quality of the sterile males in terms of competitiveness, lifespan, residual
fertility, etc. and to minimize the amount of sterile females inadvertently introduced, through the use
of sexing method. Based on these information, releases strategies have to be developed, modelling may
become a precious tool to derive control scenarios best fitted to the actual mosquito and epidemiological
parameters. Since the places where SIT can be used are quite diverse, it is important to consider models
that are, as much as possible, generic, and amenable to theoretical analysis, in order to derive threshold
parameters and to find the best combination of parameters values (related, for instance, to the sterile
males parameters) to ensure the success of SIT campaigns. Theoretical results are also important because
they are helpful to choose adequate numerical algorithm to achieve numerical simulations of SIT systems:
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wrong choice in the numerical method can drive to false (numerical) results, misinterpretation, and thus
inadequate responses in the field.

In previous works, we highlighted several issues in SIT that were poorly addressed, like residual fer-
tility (the fact that sterile males are not 100% sterile) [3], or accidental release of sterile females during
virus circulation [10], which both have the capacity to drive SIT to failure. Here, we consider the issue
of migration of mosquitoes from the exterior towards the interior of the domain under treatment, and its
negative impact on SIT when this migration is not controlled or mitigated. The present paper extends
the results published in [5] to the occurrence of wild mosquitoes migration, as well as the epidemiological
analysis provided in [10].

It is now acknowledged that Ae. albopictus spreads rapidly, and this fact explains that this species
is now well established in Southern Europe and all over the world, while this was not the case a couple
of decades ago. However, while global estimates on its annual spread are certainly valuable, it is also
quite important to have estimates of its daily behavior, at a local scale. Indeed, the mosquitoes, and in
particular the female mosquitoes, are looking for places that will favor their establishment or their growth,
seeking either for hosts, breeding sites, matings or resting places. In general, in many publications, it is
affirmed that Ae. albopictus has a low-dispersal capacity, with a daily Mean Traveled Distance (MTD)
between 35 m and 70 m in tropical areas [15], and over 200 m in urban area in temperate regions (see
[16, 17] and references in [25]). Other dispersal estimates obtained in [26], using a partial differential
approach and Mark-Release-Recapture data, confirm the previous values. However, recent Mark-Release-
Recapture studies conducted in Switzerland showed that most of Ae. albopictus individuals can travel
more than 250 m, and some individuals more than 700 m [25]. Other field experiments, in central Texas,
suggest a male-biased dispersal, more precisely that males can disperse farther than females [19]. As
indicated in [14], the range of dispersal is influenced by the environment, location, and local strain. This
dispersal ability, and thus the migration, is particularly important when the area treated or controlled
by SIT is surrounded by one or several areas where intervention is, for some reason, impossible. If the
controlled area is not isolated, it is of paramount importance to establish whether the control can be
achieved without prior reduction of the migration, or at least to determine what would be, in such an
eventuality, the negative impact of this migration on the efficacy of the control.

It is well known that Aedes albopictus population fluctuations are due to environmental parameters,
like temperature [7], wind, and also rainfall. As an example, in previous modeling works [8, 9], en-
vironmental parameters, like temperature or wind were taken into account, as they play a role in the
lifecycle of the insect and in the transport of odors attracting mosquitoes, respectively. In particular, the
simulations provided in [8] showed that wind direction can impact mosquitos’ displacements and thus
entail adaptation of the spatialization of the control (SIT) strategies.

On the other hand, integrating variable climate influence is not systematically useful in an entomolog-
ical models. First, this increases the mathematical complexity of the model, which must be compensated
by substantial gain in the description and understanding of the dynamics. Second, most of the tempera-
ture or environmental-dependent parameters are deduced from laboratory experiments, during which it
is quite difficult to reproduce real environmental conditions. Last, the solution of a model with variable
parameters (through, say, the temperature. . . ) can usually be lower and upper bounded by solutions
of some constant parameter problems, so that considering extreme constant parameters models may be
relevant in practice. This is definitely our option in the present work: our aim is to understand the
key phenomena and provide first quantitative outlook, using a simple framework permitting genuine
demonstrations of the results and didactic exposition.

Leaving the mosquito population evolve freely leads to population settling at a level characteristic to
the carrying capacity of the environment. We present here various control methods, providing more and
more realistic description at the price of more and more complex analysis, namely: permanent release of
constant amplitude; impulsive periodic releases of constant amplitude; and impulsive periodic releases
based on feedback. All of them allow to reduce the male and female populations below some values
depending linearly upon the migration inflows. We use this analysis to enlighten the existence, for any
vector-borne disease, of some migration threshold, above which the epidemic risk cannot be contained.

More precisely, the organization of the paper is as follows. We propose in Section 2 a controlled
sex-structured model describing the implementation of Sterile Insect Technique in presence of male and
female migration. This model (system (1) below) is an extension of a model previously studied in [5], and
constitutes the basis of the paper. Some general properties are provided in the same section. Model (1)
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is first applied in Section 3 to study the natural evolution of a mosquito population subject to migration,
in absence of treatment by sterile males. Sterile insects are then introduced in the remaining of the
paper, to analyze their impact. First, Section 4 considers the effects of constant permanent releases. The
reason for considering this setting, admittedly quite unrealistic in practice, is that it allows for a complete
study of the mechanisms of SIT, whose analysis is more involved in the more realistic cases studied in the
sequel. Section 5 then considers the case of periodic impulsive releases of constant amplitude, and Section
6 the case of periodic impulsive releases of an amplitude computed in accordance with the measure of
the wild population at the date of release. Last, Section 7 applies the previous results to the reduction of
epidemiological risk by SIT, in presence of migration. Concluding remarks are given in Section 8. Notice
that in order to ease readability, all demonstrations have been gathered in Appendix at the end of the
paper.

2 Model and properties

The contribution of this section is twofold. First, the model used in this article is introduced in Section
2.1. Second, key properties that relate the evolution of the wild populations to the size of the release
rate Λ in general conditions are given in Section 2.2.

2.1 A controlled model for SIT in presence of migration

We first introduce and explain the announced model, extended from [5]. It contains three populations,
namely the wild male and female adult mosquitoes M and F , and the sterile males MS .

9M “ rρF
M

M ` γMS
e´βpM`F q ´ µMM `mM ptq, t ě 0 (1a)

9F “ p1 ´ rqρF
M

M ` γMS
e´βpM`F q ´ µFF `mF ptq, t ě 0 (1b)

9MS “ Λptq ´ µSMS , t ě 0 (1c)

The positive constants r, ρ and β represent respectively the primary sex ratio, the mean number of eggs
deposited per female per day and the effects of competition in the preliminary (aquatic) phases of life.
The mean death rates, denoted µM , µF , µS , are also positive. The nonnegative number γ, usually smaller
than 1, is the relative reproductive efficiency of the sterile males, compared to the wild males. Λptq ě 0
is the rate of release of the sterile males per time unit.

Remark 1. Model (1) only considers a wild adult stage, taking into account the impact of sterile males
in the birth rate terms. We overlooked the non-adult stages, in order to obtain a simple (but not too
much) model incorporating migration rates and mathematically tractable. Improvements are of course
possible. As an example, the duration of the non-adult stages may be taken into account as a delay τ , as
in the following variant of (1):

$

’

&

’

%

9M “ rρFτ
Mτ

Mτ `γMS,τ
e´βpMτ `Fτ qe´τµA ´ µMM `mM ptq, t ě 0

9F “ p1 ´ rqρFτ
Mτ

Mτ `γMS,τ
e´βpMτ `Fτ qe´τµA ´ µFF `mF ptq, t ě 0

9MS “ Λptq ´ µSMS , t ě 0,

(2)

where e´τµA represents the proportion of individuals that survived the non-adult stages, and the index τ
in Mτ , Fτ ,MS,τ indicates delayed values. The dynamics of this system is more difficult to study, and the
benefit in the considered situations, in terms of description accuracy and gains in the definition of the
control strategies, must be assessed. This is left for further studies.

Male and female migrations are modeled here through the daily ratesmM ptq andmF ptq. From a tech-
nical point of view, we assume that the migration rates are bounded, that is mM ,mF P L8p0,`8;R`q,

and define the quantities 0 ď mlow
M ď mhigh

M , 0 ď mlow
F ď mhigh

F as

mlow
M :“ lim inf

tÑ`8
mM ptq, mlow

F :“ lim inf
tÑ`8

mF ptq, mhigh
M :“ lim sup

tÑ`8

mM ptq, mhigh
F :“ lim sup

tÑ`8

mF ptq. (3)

4



Last, as in [5], we define the following reduced quantities:

NF :“
p1 ´ rqρ

µF
, NM :“

rρ

µM
,

and assume that
NF ą 1, µS ě µM ě µF . (4)

The inequality on NF is necessary to ensure viability of the species [5]. The two other ones are consistant
with observations (and used at the margin to simplify some demonstrations in Section 6).

2.2 General effects of the releases

We first introduce the set of release inputs Λ considered in this paper.

Definition 1. We call admissible input any map Λ defined on p0,`8q equal to the sum of a locally
integrable nonnegative function and of some Dirac functions with positive weights for which there exists
T ą 0 such that

Λhigh :“ lim sup
tě0

1

T

ż t`T

t

Λpsq ds ă `8.

For any admissible input, define 0 ď Λlow ď Λhigh by

Λlow :“ lim inf
tě0

1

T

ż t`T

t

Λpsq ds ě 0.

We now present a result that provides general estimates of the asymptotic values of the population,
according to the migration rates. Its proof is given in Section A.1 of the Appendix.

Theorem 1. For any admissible input Λ and any trajectory of (1), the following properties are true:

T

eµST ´ 1
Λlow ď lim inf

tÑ`8
MSptq ď lim sup

tÑ`8

MSptq ď
T

eµST ´ 1
Λhigh (5a)

lim inf
tÑ`8

Mptq ě
mlow

M

µM
, lim inf

tÑ`8
F ptq ě

mlow
F

µF
(5b)

lim sup
tÑ`8

Mptq ď
mhigh

M

µM
` φpΛlowq, lim sup

tÑ`8

F ptq ď
mhigh

F

µF
` φpΛlowq, (5c)

for some decreasing function φ : R` Ñ R` vanishing at infinity.

Formula (5a) shows that the asymptotic values of MS are bounded (from above, resp. below) by
asymptotic (upper, resp. lower) bounds on the mean value of Λ on time intervals of a given duration.
Formula (5b) indicates that persisting migration of males or females implies persistance of the corre-
sponding population, whatever the releases. This is of course a troublesome constraint in the context
of population reduction. Formula (5c) expresses that the male and female populations are bounded
from above by quantities that depend upon the lower bound Λlow of the release rate Λ. The function
φ introduced in the statement being decreasing, these quantities are at least equal to the constants
mhigh

M

µM
` φp0q,

mhigh
F

µF
` φp0q obtained when Λlow “ 0. But for large enough releases, the population is

reduced to the values
mhigh

M

µM
,
mhigh

F

µF
, due to the fact that φ vanishes at infinity. These latter values realize

the best achievable population reduction, met for very large releases. Notice that, if necessary, an explicit
expression of φ may be deduced from equation (A.4), page 28.

We stress the fact that the previous estimates are valid under time-varying migration rates mM ,mF

and release rate Λ. The sequel of the paper is devoted to refining qualitatively and quantitatively
these estimates. More precisely, the effects of the releases will be studied in details, first when applied
permanently and at a constant rate (Section 4), and then more realistically when applied from time
to time with a periodic pace (Sections 5 and 6). In order to gain a precise view of the situation, the
migration rates will be taken constant in these future developments.

Remark 2. The map T ÞÑ T
eµST ´1

is decreasing, with thus a maximal value equal to 1
µS

when T Ñ 0.

Remark 3. One may see from the proof that Theorem 1 does not need to assume that NF ą 1.
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3 Analysis of the entomological model (Λ ” 0)

Putting Λ ” 0 in system (1), the uncontrolled system writes

9M “ rρFe´βpM`F q ´ µMM `mM , t ě 0 (6a)

9F “ p1 ´ rqρFe´βpM`F q ´ µFF `mF , t ě 0 (6b)

It models the evolution of a population of mosquitoes subjected to migrations of males and females,
respectively at non-negative rates mM ,mF .

We investigate here more particularly the behavior when the rates mM ,mF are constant and obtain
estimates more precise than the general ones given in Section 2.2, which are valid when the latter are
time-varying. Section 3.1 studies the equilibrium points of system (6) and their stability. The results
are illustrated in Section 3.2 through numerical simulations.

3.1 Equilibrium points and asymptotic behavior of the uncontrolled model

The issue of existence of the equilibrium points of the uncontrolled system (6) is assessed in the following
result.

Theorem 2 (Equilibria of the entomological model (6) with migration).
‚ If mF “ 0, then system (6) possesses the equilibrium point pM˚˚, F˚˚q, with

F˚˚ :“ 0, M˚˚ :“
mM

µM
.

Moreover, it also possesses an equilibrium point pM˚, F˚q with F˚ ą 0, if and only if

logNF ą β
mM

µM
. (7)

In this case, the latter is unique and given by

F˚ :“
1

´

1 ` NM

NF

¯

ˆ

1

β
logNF ´

mM

µM

˙

, M˚ :“
NM

NF
F˚ `

mM

µM
. (8)

‚ If mF ą 0, then system (6) has a unique equilibrium point pM˚, F˚q. The latter is such that F˚ ą 0,
and is defined as follows: F˚ is the unique positive solution of the equation

ˆ

NF exp

ˆ

´β

ˆ

1 `
NM

NF

˙

F˚ ´ β
mM

µF
` β

NM

NF

mF

µF

˙

´ 1

˙

F˚ `
mF

µF
“ 0, (9a)

and M˚ is deduced as

M˚ “
NM

NF

ˆ

F˚ ´
mF

µF

˙

`
mM

µM
. (9b)

The proof of Theorem 2 is the subject of Section A.2.1 of the Appendix.

We now consider the issue of stability of the equilibrium points previously exhibited. The proof of
the next result, Theorem 3, is given in Section A.2.2 of the Appendix.

Theorem 3 (Stability properties of the entomological model (6) with migration).
‚ Assume mF “ 0. If

logNF ă β
mM

µM
, (10)

then the equilibrium point pM˚˚, F˚˚q of (6) with F˚˚ “ 0 is Globally Asymptotically Stable (GAS).
On the contrary, if (7) holds, the previous equilibrium point is unstable, and the positive equilibrium

point pM˚, F˚q described in (8) is GAS.
‚ Assume mF ą 0. The unique equilibrium point pM˚, F˚q of system (6) displayed in (9) is GAS.
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Thus, in absence of female migration and when NF is smaller than the exponential of βmM

µM
, a unique

equilibrium point exists and it is GAS. Being deprived of females, this equilibrium corresponds to the
artificial maintenance of a male population without native birth, as a consequence of male migration.
When NF is larger than this quantity (which is itself larger than 1), then a larger equilibrium appears
and is GAS. This is due to the fact that the male migration reduces the viability, through the exponential
competition terms present in (1).

In presence of female migration, the situation is simpler, as a unique equilibrium exists and settles
under all conditions.

Remark 4. Inequality (10) is quite restrictive, since in general β is (very) small, while NF is large.
Thus, in practice, the equilibrium pM˚˚, 0q will be (always) unstable.

3.2 Numerical simulations

We illustrate here the findings in Section 3.1, through phase portraits of (6) for several relevant values
of the parameters. For all forthcoming simulations, we consider almost the same parameters values than
in [5] (see Table 2, page 53 therein), recalled in Table 1 below. For the parameter ρ, which represents
the number of hatched eggs that will enter the larvae compartment, we use estimates obtained in [7].
The parameter γ is related to the Fried competitiveness index [12], equal to γ{p1 ` γq. When this index
is equal to 0.5, then γ “ 1 and sterile males are as competitive as wild males. This index may take quite
different values, according to estimates obtained in [21], we take γ “ 1.

Parameter Value Description unit
ρ 8.15 Oviposition rate of viable hatched eggs per female day´1

r 0.5 r : p1 ´ rq expresses the primary sex ratio in offspring -
β 3.93 ˆ 10´4 Inter-individual competition parameter Ind´1

µM 0.04 Mean mortality rate of wild adult male mosquitoes day´1

µF 0.03 Mean mortality rate of wild adult female mosquitoes day´1

µS 0.04 Mean mortality rate of sterile adult male mosquitoes day´1

γ 1 Competitiveness of sterile adult male mosquitoes -
mM - Male migration rate Ind/day
mF - Female migration rate Ind/day

Table 1: Aedes spp parameter values

Note that the male mortality rate is larger than the female mortality rate, because the male lifespan
is shorter than the female lifespan. This is well acknowledged for Aedes albopictus, see for instance [7].
With these parameter values, we have NF « 135.83 and NM « 101.87 (in particular, the inequalities
in (4) are fulfilled). When pmM ,mF q “ p0, 0q, the mosquito population at equilibrium is defined by
E˚ “ pM˚, F˚q with M˚ « 5, 358, F˚ « 7, 144 mosquitoes per hectare. As observed in the phase
portraits, obtained using the software Matlab [18], given in Fig. 1, page 8, migration necessarily impacts
the positive equilibrium: having only female migration leads to a large number of females at equilibrium,
and the control effort will be more intense. Last, migration of males and females yields a positive
equilibrium larger than the equilibrium without migration: this is likely to necessitate an increase of the
size of the sterile males releases.

4 Control by permanent release of constant amplitude Λ ą 0

We analyze in this section the effects of release, under the simplistic assumptions that the latter are
permanently applied with a constant rate Λ ą 0, that is:

9M “ rρFe´βpM`F q ´ µMM `mM ptq, t ě 0 (11a)

9F “ p1 ´ rqρFe´βpM`F q ´ µFF `mF ptq, t ě 0 (11b)

9MS “ Λ ´ µSMS , t ě 0 (11c)
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Figure 1: Phase Portrait for model (6), when NF ą 1, in different situations: (a) no migration, (b) with
males migration only, (c) with females migration only, (d) with male and female migration.

In such conditions, according to (11c) the number of sterile males converges towards an asymptotic
value. One is thus led to consider, instead of (11), the following stationary system:

9M “ rρF
M

M ` γMS
e´βpM`F q ´ µMM `mM , (12a)

9F “ p1 ´ rqρF
M

M ` γMS
e´βpM`F q ´ µFF `mF , (12b)

MS :“
Λ

µS
. (12c)

As already mentioned at the end of Section 2, we assume that the migration rates mM ptq,mF ptq are
constant in (12), in order to gain tighter estimates than the ones provided in Theorem 1. The existence
and stability of the equilibrium points is analyzed in Section 4.1, as a function of the release rate Λ and
of the migration rates, and the corresponding findings are illustrated by numerical simulations in Section
4.2.

4.1 Equilibrium points and asymptotic behavior under permanent constant
releases

We first recall the following result related to the migration-free case, adapted from [5], see therein the
Theorems 1 and 2 for the case Λ “ 0, and the Theorems 3 and 4 for the case Λ ą 0.

Theorem 4 (Equilibrium points in the case pmM ,mF q “ p0, 0q). Assume NF ą 1 and mM “ 0, mF “ 0.

8



There exists Λcrit ą 0 such that, on top of the zero extinction equilibrium which always exists, (12)
admits two positive distinct equilibria if 0 ă Λ ă Λcrit, one positive equilibrium if Λ “ 0 or Λ “ Λcrit,
and no positive equilibrium if Λ ą Λcrit.

Moreover, the extinction equilibrium is GAS if Λ ą Λcrit, unstable if Λ “ 0 or Λ “ Λcrit, and
LAS whenever 0 ă Λ ă Λcrit; while when two positive distinct equilibria exist, one of them has larger
components than the other and is LAS, while the latter is unstable.

This summarizes the key phenomena in the case where no migration is present. As we will see in
the remainder of Section 4.1, the migration only modifies this situation at the margin. We will first
characterize the equilibrium points (Section 4.1.1), then determine the equilibrium points in the case
where only one migration rate is nonzero (Section 4.1.2), and finally consider the general case mM ‰ 0,
mF ‰ 0 (Section 4.1.3).

4.1.1 Characterization of the equilibrium points

We first study in whole generality the question of the equilibria of (12). Denote

a :“ γMS “
γΛ

µS
, b :“

mM

µM
, c :“

mM

µM
´
mF

µF

NM

NF
, d :“ β

ˆ

1 `
NF

NM

˙

, g :“ NF exp

ˆ

β
NF

NM
c

˙

. (13)

Notice that
0 ď a, 0 ď b, c ď b, 0 ă d, 0 ă g. (14)

Theorem 4 treated the case where b “ c “ 0, that is mF “ mM “ 0, for any value of Λ ě 0, that is of
a ě 0. We will now assess the issue of existence of equilibrium points when pmM ,mF q ‰ p0, 0q. We first
state the following result, which translates the preceding issue into the resolution of a scalar algebraic
equation on a given interval.

Lemma 1. Assume mM ,mF ě 0 with pmM ,mF q ‰ p0, 0q. The equilibria of (12) are in one-to-one
correspondence with the roots of the equation

px` aqpx´ bq “ gxpx´ cqe´dx in the interval rb,`8q. (15)

Lemma 1 is demonstrated in Section A.3.1.

4.1.2 Equilibrium points of (12) for a unique positive migration rate

Recall that we have made the assumption pmM ,mF q ‰ 0, that is pb, cq ‰ p0, 0q. Exploiting the char-
acterization in Lemma 1, we consider now two special cases, before treating the general one in Section
4.1.3.

The case b “ 0 ą c. This case corresponds to mM “ 0 ă mF . The solutions of (15) are then exactly
x “ 0, which corresponds to the equilibrium point pM˚˚, F˚˚q, with

M˚˚ :“
mM

µM
“ 0, F˚˚ :“

mF

µF
; (16)

and every solution, if any, of the equation

x` a

x´ c
edx “ g in the interval r0,`8q. (17)

The map x ÞÑ x`a
x´c e

dx admits the derivative

dpx` aqpx´ cq ´ pa` cq

px´ cq2
edx “

ˆ

x2 ` pa´ cqx´ ac´
1

d
pa` cq

˙

dedx

px´ cq2
,

whose possible real roots have positive or negative product (as c ă 0 ă a), so that it possesses zero or
one local extremum, and (17) may have 0, 1 or 2 positive solutions, according to the parameter values.
System (12) may thus have 1, 2 or 3 equilibrium points.

Notice that, for large enough values of a (corresponding to large values of Λ, see (13)), equation (17)
has no positive solution, and pM˚˚, F˚˚q defined in (16) is the only equilibrium point of (12).
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The case b “ c ą 0. This situation corresponds to mM ą 0 “ mF . Here, the solutions of (15) are
given by x “ b “ c, yielding the equilibrium point pM˚˚, F˚˚q, with

M˚˚ :“
mM

µM
, F˚˚ :“

mF

µF
“ 0; (18)

plus any solution of the equation

x` a

x
edx “ g in the interval rb,`8q. (19)

The expression in the left-hand side is decreasing and then increasing on r0,`8q, and as in the previous
case, there may 0, 1 or 2 positive solutions to (19), yielding globally 1, 2 or 3 equilibrium points for (12).

Again, only the equilibrium pM˚˚, F˚˚q defined in (18) is present for large values of Λ (represented
by large values of a).

The general case, corresponding to mM ą 0, mF ą 0, is studied in the next Section.

4.1.3 Equilibrium points of (12) in the general case

The case b ‰ c, b ‰ 0. This general case corresponds to mM ą 0, mF ą 0. The solutions of (15) are
then the solutions of

px` aqpx´ bq

xpx´ cq
edx “ g in the interval rb,`8q. (20)

The analyse of this case is more complicated. It is done through the following auxiliary result, which
gathers useful facts. Its proof is given in Section A.3.2.

Lemma 2. Assume hypothesis (14) fulfilled, then

1. Equation (20) possesses 1, 2 or 3 solutions.

2. The largest equilibrium solution of (20) is a decreasing function of a ą 0, and converges towards b
when a Ñ `8.

3. There exists a˚ ą 0 such that for any a ą a˚, equation (20) possesses exactly 1 solution.

Putting together the results in Lemma 2 (case (b ‰ c, b ‰ 0) and the analysis developed in Section
4.1.3 (b “ c or b “ 0), one deduces the following result, which offers a quite clear vision of the effects of
constant permanent releases, complementary to Theorem 4.

Theorem 5 (Equilibrium points in the case pmM ,mF q ‰ p0, 0q). Assume NF ą 1 and pmM ,mF q ‰

p0, 0q. System (12) admits one, two or three equilibrium points.
Moreover there exists Λcrit ą 0 such that, for any Λ ą Λcrit, (12) admits a unique equilibrium point

pM˚˚, F˚˚q, and

lim
ΛÑ`8

pM˚˚, F˚˚q “

ˆ

mM

µM
,
mF

µF

˙

.

Proof of Theorem 5. Theorem 5 is a mere consequence of Lemma 2. The fact that x Ñ b when a Ñ `8

in the latter statement means that M˚˚ Ñ mM

µM
when Λ Ñ `8. From this and formula (A.15), given in

the proof of Lemma 1, one deduces that F˚˚ Ñ mF

µF
.

4.2 Numerical simulations

All forthcoming simulations are done using a standard finite difference method, the ode23tb solver of
Matlab [18] which solves system of stiff ODEs using a trapezoidal rule and second order backward
differentiation scheme (TR-BDF2) [13, 4].

We estimated the critical rate Λcrit numerically, for each migration sub-cases presented in Fig. 2,
page 11. It is quite interesting to observe that to reach the extinction in absence of migration, or to
reach the equilibrium pM˚˚, F˚˚q when migration exists, the amounts of sterile males are far different.
Without migration, it suffices to choose Λ ą Λcrit “ 2, 138 Ind/day to drive (more or less rapidly) the
wild population to extinction. With migration, the critical value Λcrit is quite different, and indeed much
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larger: with male migration only, Λcrit “ 4, 988 Ind/day, with female migration only, Λcrit “ 3, 667
Ind/day, while for the case with male and female migrations, a very large amount is needed to reach
pM˚˚, F˚˚q, here up to 105 Ind/day. In fact, this latter case shows clearly that situations in which
migration of both males and females occur may be quite challenging: in such conditions, the wild
population is likely to stay quite large, in spite of the releases.

Figure 3, page 12, shows the evolution of Λcrit as a function of mM and mF : this value increases
rapidly as mM and mF increase. This clearly demonstrates that, when too large, the migration can be
responsible of SIT failure. Migration control or reduction may thus be needed to achieve successful SIT
campaigns, through isolation of the targeted area in order to reduce mF and mM as much as possible.
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Figure 2: Continuous constant SIT-system (12). Evolution of the positive equilibrium pM˚, F˚q as
function of Λ, using (20): (a) no migration, (b) with males migration only, (c) with females migration
only, (d) with male and female migration. Λcrit, when reached, is estimated numerically. The dashed
lines stand for the migration equilibria pM˚˚, 0q, p0, F˚˚q, or pM˚˚, F˚˚q.

5 Control by periodic impulsive releases of constant amplitude

Instead of (12) considered in Section 4, we now discuss the more realistic situation of periodic impulsive
releases of period τ ą 0 and constant amplitude τΛ, Λ ě 0. This situation is modelled by the following
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Figure 3: Continuous constant SIT-system (12). Λcrit versus mM and mF , for constant continuous
releases.

variant of system (1).

9M “ rρ
FM

M ` γMS
e´βpM`F q ´ µMM `mM ptq, t ě 0 (21a)

9F “ p1 ´ rqρ
FM

M ` γMS
e´βpM`F q ´ µFF `mF ptq, t ě 0 (21b)

9MS “ ´µSMS for any t P
ď

nPN

`

nτ, pn` 1qτ
˘

, (21c)

MSpnτ`q “ τΛ `MSpnτ´q, n “ 1, 2, 3, . . . (21d)

The numberMS of sterile males fulfils the piecewise linear differential system (21c)–(21d). The latter
admits a unique τ -periodic solution, which may be computed explicitly (see (22c) below) and is globally
attracting. One is thus led to study the asymptotic behavior of the following τ -periodic system:

9M “ rρF
M

M ` γMper
S ptq

e´βpM`F q ´ µMM `mM ptq, (22a)

9F “ p1 ´ rqρF
M

M ` γMper
S ptq

e´βpM`F q ´ µFF `mF ptq, (22b)

Mper
S ptq :“

τΛe´µSpt´t t
τ uτq

1 ´ e´µSτ
. (22c)

Asymptotic bounds on the male and female populations are provided in Section 5.1, and illustrated
by adequate simulations in Section 5.2.
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5.1 Effects of periodic impulsive releases of constant amplitude

The following result, demonstrated in Section A.4, gives ultimate bounds on the trajectories of system
(22). Notice in particular that the latter are uniform: they do not depend upon the initial conditions.

Theorem 6 (Sufficient condition for robust control by periodic impulses). For any given τ ą 0, assume
that Λ is chosen such that Λ ě Λcrit

per , where

τΛcrit
per :“

cosh pµSτq ´ 1

µSτ

1

eβγ
min

"

2NM , 2NF ,maxtr, 1 ´ rumax

"

NM

r
,
NF

1 ´ r

**

. (23)

Then there exist two nonnegative vectors cM,perpΛq, cF,perpΛq P R2 such that every solution of system
(22) fulfils

lim sup
tÑ`8

Mptq ď cTM,per

ˆ

mhigh
M

mhigh
F

˙

, lim sup
tÑ`8

F ptq ď cTF,per

ˆ

mhigh
M

mhigh
F

˙

. (24)

Moreover,

cM,perpΛq ě

ˆ

1
µM

0

˙

, cF,perpΛq ě

ˆ

0
1
µF

˙

, (25a)

and one may choose cM,perpΛq, cF,perpΛq in such a way that

lim
ΛÑ`8

cM,perpΛq “

ˆ

1
µM

0

˙

, lim
ΛÑ`8

cF,perpΛq “

ˆ

0
1
µF

˙

. (25b)

Precise value of cM,per, cF,per may be obtained from the details in proof, see formulas (A.21), (A.25),
(A.29) below.

Theorem 6 provides results of the same nature than formula (5c) in Theorem 1, but with tighter
estimates. An important feature is that for large enough releases (i.e. Λ Ñ `8), one obtains

lim sup
tÑ`8

Mptq ď
mhigh

M

µM
, lim sup

tÑ`8

F ptq ď
mhigh

F

µF
,

which is the “best possible worst case”. Notice also that Λcrit
per does not depend upon the migration rates

mhigh
M ,mhigh

F .

5.2 Numerical simulations

Using (22c), it is possible to derive a rough value for Λcrit
per , like the one obtained for the continuous

constant releases in Fig. 2, page 11, by solving (20) with a “ γminr0,τq M
per
S ptq “ γ τΛe´µSτ

1´e´µSτ .

The initial value is taken at pMp0q, F p0qq “ p1000, 1000q for all simulations. Since the control starts
at time t “ 100 days, the population has sufficient time to reach practically the positive equilibrium, as
seen in the Figures.

Fig. 4 shows the value of the positive equilibrium as a function of τΛ, for several values of the
migration rates. The decreasingness is apparent, as well as the critical value Λcrit

per The critical values
obtained from Fig. 4 are used afterwards for the next simulations, as they allow to select appropriate
size for the releases, in order to have pM˚

per, F
˚
perq close to the migration equilibrium pM˚˚, F˚˚q: taking

larger values for Λ, that is τΛ " τΛcrit
per , does not modify the asymptotic values, but only speeds up the

convergence.
Fig. 5, page 15, provides simulations of weekly periodic impulsive SIT control for different values of

the migration rates. The applied release rates Λ are chosen according to the numerical estimates of τΛcrit
per

given in Fig. 4, page 14, such that τΛ ą τΛcrit
per , and their values are indicated in the pictures. Without

migration, controlling wild males and wild females is relatively easy in a reasonable amount of time.
When only female migration or male migration occurs (Fig. 5(b)-(c)), massive releases are necessary.
However, it is interesting to notice that male migration requires larger releases of sterile males, in order
to almost eliminate the female population (Fig. 5(b)). Finally, when both male and female migrations
occur, i.e. mM ą 0 and mF ą 0, the combined effect of these migrations is quite detrimental (Fig. 5(d)):
even with massive releases, the wild population is maintained. The SIT release effort to reach pM˚˚, F˚˚q
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Figure 4: Periodic impulsive SIT-system (22). Open loop control. Evolution of the positive equilibrium
pM˚, F˚q as function of τΛper: (a) no migration, (b) with males migration only, (c) with females migra-
tion only, (d) with male and female migration. The critical parameter τΛcrit

per is estimated numerically.
The dashed lines stand for the migration equilibria pM˚˚, 0q, p0, F˚˚q, or pM˚˚, F˚˚q.

would be so large (see Fig. 5(b), where 10 times more sterile males are released), that it clearly shows
the necessity to control or reduce the migrations, in case the latter are important: otherwise, SIT is
ineffective.

6 Control by feedback-based periodic impulsive releases

We now consider periodic impulsive releases Λptq, modeled by the following variant of system (1):

9M “ rρ
FM

M ` γMS
e´βpM`F q ´ µMM `mM ptq, t ě 0 (26a)

9F “ p1 ´ rqρ
FM

M ` γMS
e´βpM`F q ´ µFF `mF ptq, t ě 0 (26b)

9MS “ ´µSMS for any t P
ď

nPN

`

nτ, pn` 1qτ
˘

, (26c)

MSpnτ`q “ τΛn `MSpnτ´q, n “ 1, 2, 3, . . . (26d)

Several feedback control laws are proposed in Section 6.1, and their asymptotic properties are estab-
lished. Related numerical simulations are then shown and analyzed in Section 6.2.

6.1 Feedback-based periodic impulses with sparse measurements

The principle of construction of the feedback control, based on periodic measurement of the ambiant
population, is provided in Section 6.1.1. The effect of releasing mosquitoes according to the proposed
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Figure 5: Periodic impulsive SIT-system (22). Open-loop control: (a) no migration, (b) with male
migration only, (c) with female migration only, (d) with male and female migration. The dashed lines
stand for one of the migration equilibria pM˚˚, 0q, p0, F˚˚q, or pM˚˚, F˚˚q.

law is formally stated and demonstrated in Section 6.1.2. Section 6.1.3 is concerned with the amplitude
of the control when applying this policy. The result given in Section 6.1.2 is then extended in Section
6.1.4, in order to permit measurement frequency lower than the release frequency, resulting in significant
cost reduction. Last, we expose in Section 6.1.5 how saturation of the control may be implemented, in
order to reduce the control amplitude peak that appears especially in the beginning of the campaigns,
while keeping the desired large-time behavior. This result is obtained on the basis of the findings in
Sections 5.1 and 6.1.4.

6.1.1 Principle of the method

The principle of the method that we introduce now is based on two steps. The first one consists in
finding out how to obtain desired behavior of the system by adequate direct actuation on MS . The
second one assesses how to produce, through adequate choice of Λn, the behavior of MS prescribed in
the first phase.

Step 1 – Setting directly the sterile population level We begin with the following result, demon-
strated in Section A.5.1.

Proposition 7. Let k be a real number such that 0 ă k ă 1
NF

. Then every solution of (1) such that

Mptq

Mptq ` γMSptq
ď k, t ě 0 , (27)
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fulfils the following property:

lim sup
tÑ`8

Mptq ď
1

µM
mhigh

M `
rρk

µM pµF ´ p1 ´ rqρkq
mhigh

F , lim sup
tÑ`8

F ptq ď
1

µF ´ p1 ´ rqρk
mhigh

F . (28)

Proposition 7 states that, if one succeeds in maintaining permanently below a sufficiently small value

the ratio Mptq
MSptq , then asymptotically the male and female wild population decrease below some levels

that are proportional to the external migration intake. These levels, given in the right-hand side of the

two inequalities in (28), converge respectively towards
mhigh

M

µM
and

mhigh
F

µF
when the gain k goes to 0. This

is coherent with the effects previously observed.

Step 2 – Shaping an impulsive control compliant with Step 1 We now want to ensure that
condition (27) is fulfilled, through an adequate choice of the impulse amplitude Λn. In virtue of (26c)-
(26d), the value of MS on the interval

`

nτ, pn` 1qτ
‰

is given by

MSptq “ MSpnτ`qe´µSpt´nτq “
`

τΛn `MSpnτq
˘

e´µSpt´nτq,

and we would like to choose Λn in such a way that (27) stays in force. However, instead of computing
the (nonlinear) evolution of Mptq on the interval

`

nτ, pn ` 1qτ
‰

, we will impose, rather than (27), the
stronger condition

γMSptq ě

ˆ

1

k
´ 1

˙

M 1ptq, t ě 0, (29)

where M 1ptq refers to the super-solution of Mptq introduced in the proof of Proposition 7. The values of
M 1, F 1 are given analytically by the following statement.

Lemma 3. The solution of system (A.30) on pnτ, pn ` 1qτ s with initial values
`

M 1pnτq, F 1pnτq
˘

“
`

Mpnτq, F pnτq
˘

is given by
ˆ

M 1ptq
F 1ptq

˙

“ P pt´ nτq

ˆ

Mpnτq

F pnτq

˙

`Qpt´ nτq

ˆ

mhigh
M

mhigh
F

˙

(30a)

where

P ptq :“

¨

˝

e´µM t rρk

µM ´ µF ` p1 ´ rqρk

`

e´pµF ´p1´rqρkqt ´ e´µM t
˘

0 e´pµF ´p1´rqρkqt

˛

‚ (30b)

Qptq :“

¨

˝

1´e´µMt

µM

rρk

µM ´ µF ` p1 ´ rqρk

´

1´e´pµF ´p1´rqρkqt

µF ´p1´rqρk ´ 1´e´µMt

µM

¯

0 1´e´pµF ´p1´rqρkqt

µF ´p1´rqρk

˛

‚ (30c)

The proof of Lemma 3 is shown in Section A.5.2.

6.1.2 A robust control result

Applying the previous principle and arguing as in [5], it is sufficient, in order to ensure (29), to take

@s P r0, τ s, γ
`

τΛn `MSpnτq
˘

e´µSs ě

ˆ

1

k
´ 1

˙

`

1 0
˘

ˆ

P psq

ˆ

Mpnτq

F pnτq

˙

`Qpsq

ˆ

mhigh
M

mhigh
F

˙˙

. (31)

Assuming as in [5] that the second series of inequalities in (4) holds, it suffices, in order to ensure (31),
to verify this inequality at s “ τ . One is led, after adequate transformations, to enforce for n “ 1, 2, . . . ,

τΛn ě

ˇ

ˇ

ˇ

ˇ

K

ˆ

Mpnτq

F pnτq

˙

` L

ˆ

mhigh
M

mhigh
F

˙

´MSpnτq

ˇ

ˇ

ˇ

ˇ

`

(32a)

K :“
1

γ

˜

1´k
k epµS´µM qτ

rρp1´kq

µM´µF `p1´rqρk

`

epµS´µF `p1´rqρkqτ ´ epµS´µM qτ
˘

¸T

(32b)

L :“
1

γ

˜

1´k
k eµSτ 1´e´µMτ

µM

rρp1´kq

µM´µF `p1´rqρke
µSτ

´

1´e´pµF ´p1´rqρkqτ

µF ´p1´rqρk ´ 1´e´µMτ

µM

¯

¸T

(32c)
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As a conclusion, one has the following result.

Theorem 8. For a given k P

´

0, 1
NF

¯

assume that for any n P N, Λn is chosen according to (32). Then

every solution of system (26) fulfils property (28).

Theorem 8 provides a control law that ensures, when enforced, that the wild mosquito population
obeys the asymptotic inequalities in (28). It is expressed as a state-feedback control, computed from the

state
`

Mpnτq F pnτq
˘T

of the system at the time of the release.
Theorem 8 is indeed an extension of Theorem 10 below and is provided here mostly for didactic

purpose. Its proof is subsumed in the proof of the former result.

Remark 5. Notice that all components of the matrix L tend towards 0 when τ Ñ 0`, so that for small
values of τ ą 0, the right-hand side of (32a) only depends upon the value of Mpnτq, F pnτq. This doesn’t
mean of course that the lower bound on Λn will go to zero when n Ñ `8, as Mpnτq, F pnτq depend upon

the bounds mhigh
M ,mhigh

F .

6.1.3 Asymptotic behavior of the control

Applying the robust control law exposed in Theorem 8 yields ultimate uniform bound on the evolution
of the state

`

Mptq F ptq
˘T
. One shows in the following statement that such behavior may be obtained

with a control input ultimately uniformly bounded as well. The proof of Theorem 9 is given in Section
A.5.3.

Theorem 9. For a given k P

´

0, 1
NF

¯

, assume that for any n P N, Λn is chosen according to (32), with

equality in (32a) except possibly on a bounded subset of R`. Then, for every solution of system (26),
one has

lim sup
nÑ`8

Λn ď Λfeed, τΛfeed :“
1 ´ k

γµM

ˆ

1

k
mhigh

M `
rρ

µF ´ p1 ´ rqρk
mhigh

F

˙

. (33)

Notice that, despite some conservatism, the estimate in (33) is linear with respect to the migration

rate upper bounds, guaranteeing its nullity when mhigh
M “ mhigh

F “ 0. On the other hand, it becomes
quite imprecise for larger values of k, tending to infinity when the latter gets close to 1

NF
.

Define now the values

a :“
rmhigh

F

p1 ´ rqmhigh
M

, b :“
1

NF
, c :“

mhigh
M

γµM
,

and apply the following result.

Lemma 4. Let a, b, c be positive real numbers, with b ă 1. The map

Φ : p0, bq Ñ R`, k ÞÑ cp1 ´ kq

ˆ

1

k
`

a

b´ k

˙

admits a unique minimal value. The latter is reached at

k˚ :“
b

1 `
a

ap1 ´ bq
, (34)

and is worth
c

b

´?
a`

?
1 ´ b

¯2

. (35)

This shows that, when mhigh
F ą 0 and mhigh

M ą 0, there exists a unique smallest value of Λfeedpkq in
(33), seen as a function of k P p0, 1

NF
q. The latter is attained at

k˚ :“

b

p1 ´ rqmhigh
M

NF

b

p1 ´ rqmhigh
M `

b

mhigh
F NF pNF ´ 1q

,
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and is worth

Λfeed˚ :“
NF

γµM

˜

c

r

1 ´ r
mhigh

F `

d

ˆ

1 ´
1

NF

˙

mhigh
M

¸2

.

Before ending this section, we shortly demonstrate Lemma 4.

Proof of Lemma 4. Rewriting

Φpkq “ c

ˆ

1

k
´ 1 `

ap1 ´ bq

b´ k
` a

˙

and differentiating this expression of Φ, one gets

1

c

dΦ

dk
pkq “ ´

1

k2
`
ap1 ´ bq

pb´ kq2
. (36)

Therefore, the derivative of Φ is null at k P p0, bq iff b´ k “
a

ap1 ´ bqk, that is k “ k˚ defined in (34).
One checks easily that this value pertains to the interval p0, bq, and constitutes the unique minimum of
Φ in this domain.

Taking advantage of the fact that k˚ cancels the right-hand side of formula (36), one has

1

b´ k˚
“

1
a

ap1 ´ bq

1

k˚
,

and thus

Φpk˚q “ c

˜

1

k˚
´ 1 `

a

ap1 ´ bq

k˚
` a

¸

“ c

˜

1 `
a

ap1 ´ bq

k˚
´ 1 ` a

¸

“ c

˜

p1 `
a

ap1 ´ bqq2

b
´ 1 ` a

¸

“
c

b

´

1 ` 2
a

ap1 ´ bq ` ap1 ´ bq ´ b` ab
¯

“ “
c

b

´

a` 2
a

ap1 ´ bq ` 1 ´ b
¯

“
c

b

´?
a`

?
1 ´ b

¯2

,

that is (35).

6.1.4 Extension to the case of sparse measurements

Theorem 8 assumes that measurements and releases are systematically conducted with the same peri-
odicity. In the following statement we generalize this result to the more general situation where the
measurements are achieved only once every p releases, for a positive integer p. This extends [5, Theorem
7] in presence of vector migration (and corrects some typos therein).

Theorem 10 (Stabilization by impulsive control with sparse measurements). Let p P N˚. For a given

k P

´

0, 1
NF

¯

, assume that for any n P N, m “ 0, 1, . . . , p´ 1, Λn is chosen according to

τΛnp`m ě

ˇ

ˇ

ˇ

ˇ

ˇ

Kp

ˆ

Mpnpτq

F pnpτq

˙

` Lp

ˆ

mhigh
M

mhigh
F

˙

´MSpnpτqe´mµSτ ´ τ
m´1
ÿ

i“0

Λnp`ie
´µSpm´iqτ

ˇ

ˇ

ˇ

ˇ

ˇ

`

(37a)

Kp :“
eµSτ

γ

˜

1´k
k e´pm`1qµMτ

rρp1´kq

µM´µF `p1´rqρk

`

e´pµF ´p1´rqρkqpm`1qτ ´ e´µM pm`1qτ
˘

¸T

(37b)

Lp :“
eµSτ

γ

¨

˝

1´k
k

1´e´pm`1qµMτ

µM

rρp1´kq

µM´µF `p1´rqρk

´

1´e´pµF ´p1´rqρkqpm`1qτ

µF ´p1´rqρk ´ 1´e´µM pm`1qτ

µM

¯

˛

‚

T

(37c)

instead of (32). Then every solution of system (26) fulfils property (28).

As announced previously, one retrieves Theorem 8 by taking p “ 1 in Theorem 10. The latter is
proved in Section A.5.4.
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6.1.5 Control by mixed impulsive strategies

A key benefit of the control law exhibited in Section 6.1.4 is its capacity to adapt the amplitude of
the release to the size of the wild population present at the time of its achievement. But this method
usually yields large amplitudes at the beginning of the treatment. On the other side, releases of constant
amplitude like in Section 5.1 guarantee satisfying action with a moderate amplitude. However, by
definition, they do not scale to the wild population still present, and may therefore prescribe uselessly
large releases. Taking advantage of the assets of both approaches, it is possible to consider, like in [5], a
mixed strategy. The latter consists simply in taking the release amplitude equal to the least of the values
supplied by the two strategies, namely the value Λcrit

per given in (23) and the one given by the right-hand
side of (37a). The properties of this mixed strategy may be studied like in [5], by use of a common
Lyapunov function (of type (A.26)). The details do not present specific interest or originality, and are
skipped here for sake of space. However, numerical essays are provided in the sequel, see Section 6.2.2.

6.2 Numerical simulations

We present here numerical essays corresponding to the control with sparse measurements developed in
6.1.4 (Section 6.2.1), and to the mixed control presented in Section 6.1.5 (Section 6.2.2).

6.2.1 Feedback-based impulsive control with sparse measurements

The closed-loop control methods developed in Theorems 8 and 10 ensure the inequalities (28) are fulfilled
for any trajectory. Apart from the biological parameters of the model, the latter depend upon the upper
bounds mhigh

M ,mhigh
F on the migration rates, and on appropriate choice of k. Indeed, the smaller k, the

larger γMS , ensuring a substantial decay in the wild population or at least its proximity to the migration

equilibrium pM˚˚, F˚˚q. On the contrary, if k is close to
1

NF
, then the decrease in the wild population

will be not sufficient, i.e. the latter will not necessarily come close from pM˚˚, F˚˚q, except, of course, if

mhigh
F “ 0. On the other hand, the amount of sterile males to be used to reach this less satisfying result

will be smaller than the one dictated by a value of the gain k closer to 0.
It is also important to highlight the important role of female migration in (28). Clearly, if this

specific migration can be controlled, i.e. reduced, the control will be tighter, even if male migration
arises. This is is directly linked to the fact that the main genuine target of the control, at least for
mosquito population, is the female population as only females transmit arboviruses (and, even without
this, are source of nuisance through their blood meals).

When mhigh
F “ mhigh

M “ 0, (28) confirms that, whatever the choice of k P p0,
1

NF
q, the system can be

driven to 0 (see [5]). Also, as already explained, when mhigh
F “ 0, then the wild female population can

be driven to 0. However, when mhigh
F ą 0 and mhigh

M ą 0, then (28) shows that, for large times, the wild
population may remain at significant level, generally speaking at least equal to

1

µM
mlow

M `
rρk

µM pµF ´ p1 ´ rqρkq
mlow

F and
1

µF ´ p1 ´ rqρk
mlow

F

for the male and female populations respectively.
In case of constant migration rates mM ,mF , the values M˚˚

` , F˚˚
` defined as

M˚˚
` “

1

µM
mM `

rρk

µM pµF ´ p1 ´ rqρkq
mF , F˚˚

` “
1

µF ´ p1 ´ rqρk
mF , (38)

are such that M˚˚
` ě M˚˚ and F˚˚

` ě F˚˚. We will illustrate this through the forthcoming simulations.
We first illustrate for a mild migration rates, say mF “ mM “ 10 Ind/day, how the choice of

the gain k influences the completion of the desired objective. As seen in Figs. 6(a,b), page 20, for
small values of k, pM˚˚

` , F˚˚
` q is “close” to pM˚˚, F˚˚q; while for large k (that is for k close to, but

smaller than, 1{NF ), pM˚˚
` , F˚˚

` q remains distant from pM˚˚, F˚˚q (Figs. 6(c,d)). In such situations,
while pM,F q ă pM˚˚

` , F˚˚
` q asymptotically, as predicted by (28), the population levels do not converge

to pM˚˚, F˚˚q. In addition, Table 6.2.1 shows that reaching pM˚˚, F˚˚q, when k is small, has an
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Figure 6: Periodic impulsive SIT-system (26). Closed-loop control for different values of k and
pmM ,mF q “ p10, 10q. The straight lines stand for the migration equilibrium pM˚˚, F˚˚q, while the
dotted lines stand for the upper bounds pM˚˚

` , F˚˚
` q given in (38).

important cost in terms of the total amount of released sterile males: around 53 times more sterile males
are necessary when k is small (k “ 0.01{NF ) than when k is large (k “ 0.99{NF ).

When mF “ 0 Ind/day and mM “ 100 Ind/day, as predicted, M converges to M˚˚
` « M˚˚, while

F converges to 0 whatever k, but more or less rapidly according to k: see Fig. 7, page 21. However SIT
control with k “ 0.01{NF needs 56.74 more sterile males than SIT control with k “ 0.99{NF , even if the
duration of the control is shorter.

When mF “ 100 Ind/day and mM “ 0 Ind/day, F converges to F˚˚ whatever k, see Fig. 8, page
21. However, like before, SIT control with k “ 0.01{NF requires the release of a larger number of sterile
males (namely 26.47 times) than the SIT control with k “ 0.99{NF . It is interesting to observe F˚˚

` in
Fig. 8(b): F not only verifies (28) but also converges to F˚˚.

6.2.2 Mixed impulsive control

As demonstrated by the previous simulations, migration impacts severely the amount of sterile males
to release, in particular when closed-loop control is used, including after the initial decrease of the wild
population. In fact, except in the case of (very) small migration rates, the volume of released mosquitoes
specified by the closed-loop control method may remain higher than the critical value Λcrit

per prescribed for
constant impulsive control. In such situations, the mixed control method may be ineffective, contrary to
what occurs in absence of migration, where this method yields appreciable benefits [5]. In Figure 9, page
22, we show the impact of k on the mixed control. Clearly, in order to lower the wild population close
to the migration equilibrium, it is necessary to choose k small. Otherwise, when k is large, the system
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k 0.01{NF 0.1{NF 0.9{NF 0.99{NF

Total amount 2.0229311256 ˆ 108 2.123998134 ˆ 107 3.7159193 ˆ 106 3.5605414 ˆ 106

of sterile males

Table 2: Total amount of sterile insects over 1000 days for different values of k and pmM ,mF q “ p10, 10q.
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Figure 7: Periodic impulsive SIT-system (26). Closed-loop control for different values of k and
pmM ,mF q “ p100, 0q. The straight lines stand for the migration equilibrium pM˚˚, 0q, while the dotted
lines stands for the upper bounds pM˚˚

` , 0q defined in (38).
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Figure 8: Periodic impulsive SIT-system (26). Closed-loop control for different values of k and
pmM ,mF q “ p0, 100q. The straight lines stand for the migration equilibrium p0, F˚˚q, while the dotted
lines stands for the upper bounds p0, F˚˚

` q given in (38).

switches from open-loop control to closed-loop control, and asymptotically pM,F q verifies (28), but does
not converge to pM˚˚, F˚˚q: the size of the wild population is still large, even for small migration rate.
For larger values of the migration, open-loop control is systematically chosen, with τΛ “ 21, 000 for
these simulations. This shows that the closed-loop method is really useful once the wild population has
become small enough, through initial massive releases with the open-loop method, and, of course, when
the migration rates are not too large.
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Figure 9: Period SIT mixed-loop control for different values of k and pmM ,mF q “ p1, 1q. The straight
lines stand for the migration equilibrium pM˚˚, F˚˚q, while the dotted lines stands for the upper bounds
pM˚˚

` , F˚˚
` q given in (38).

7 Reduction of the epidemiological risk in presence of migration

Sterile Insect Technique is not only useful to prevent or control the establishment of mosquitos, it is also
essential to reduce the epidemiological risk when an (arthropod) virus, like dengue or chikungunya, is
circulating, carried by vector population of mosquitoes (Aedes aegypti and Aedes albopictus in the case of
these diseases). In order to tackle this important application of SIT, we now consider the implementation
of the methods previously exposed to mitigate epidemiological risk. Following [10], we consider more
precisely the following SIR-SEI model of dengue transmission, like e.g. in La Réunion island, in the case
where only one strain of Dengue is circulating.

The evolution of the human population is given by the following SIR model:

9Sh “ µhNh ´ βvFI
Sh

Nh
´ µhSh, (39a)

9Ih “ βvFI
Sh

Nh
´ pηh ` µhqIh, (39b)

9Rh “ ηhIh ´ µhRh, (39c)

where Sh, Ih, Rh represent respectively the susceptible, infected and recovered (and permanently immune)
human population. The positive parameter µh represents the mortality and natality rate. No disease-
induced mortality is assumed, so that the total human population is assumed to have reached stationary
level Nh ą 0 (and 1{µh represents the average lifespan of human). The parameter βv is the daily
transmissible biting rate [1]. Last, 1{ηh ą 0 is the average viremic period.
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Extending the model of evolution of the mosquito population described in the previous sections, we
use here the following SEI model for the wild mosquitoes (which, as before, is a controlled model subject
to male and female migrations), adapted from (1):

9M “ rρ
M

M ` γMSptq
e´βpM`FS`FE`FIqpFS ` FE ` FIq ´ µMM `mM ptq (40a)

9FS “ p1 ´ rqρ
M

M ` γMSptq
e´βpM`FS`FE`FIqpFS ` FE ` FIq ´ βvFS

Ih
Nh

´ µFFS `mF ptq (40b)

9FE “ βvFS
Ih
Nh

´ pνm ` µF qFE (40c)

9FI “ νmFE ´ µIFI . (40d)

Last, the evolution of the sterile males is described by the following formula:

9MS “ Λ ´ µSMS (41)

As before M and MS denote respectively the wild and sterile males. For the female mosquitoes, one
distinguished between the susceptible, exposed and infected females, denoted respectively FS , FE , FI .
Their mean mortality rates are denoted respectively µF , µE , µI (while µM , µS represent respectively
the mean mortality rates of the wild and sterile males). The constant 1{νm ą 0 represents the average
extrinsic incubation period, and the other parameters of the model have the same meaning than in model
(1). Our aim is to study the evolution, from an epidemiological point of view, of system (39)-(40)-(41).

We consider for example the framework of permanent releases developed in Section 4 (taking constant
values for the male and female migration rates mM ,mF ), and study the behavior around the disease-free
equilibrium with mosquitoes defined by

pSh, Ih, Rhq “ pNh, 0, 0q, pM,FS , FE , FIq “ pM˚, F˚, 0, 0q, (42)

where pM˚, F˚q characterizes the equilibrium point of system (12).
Using the next generation matrix approach, straightforward computations lead to the basic reproduc-

tion number R0 of the disease-free equilibrium of system (39)-(40)-(41) (see for instance [24] for further
details of the derivation), given as

R2
0 “

νmβv
2

pνm ` µF qµI pηh ` µhq

F˚

Nh
.

It has been shown in the previous sections that in any case, at an equilibrium point one should have

F˚ ě
mF

µF
.

For the more realistic case where the migration rates depend upon time, it has been established (Theorem
1) that, for any trajectory,

lim inf
tÑ`8

F ptq ě
mlow

F

µF
.

As a corollary, one deduces the key fact that one cannot control the epidemics if

νmβv
2

pνm ` µF qµI pηh ` µhq
ą
µFNh

mlow
F

. (43)

Formula (43) is quite an appreciable result, as it gives, as a function of characteristics of the life cycle of
the mosquitoes and of the transmission of the vector-borne disease, the maximal female migration rate
for which the epidemic may be maintained below the epidemic threshold with the help of Sterile Insect
Technique, thanks to the size of human population, Nh.

Using the numerical values borrowed from [10] and recalled in Table 3, page 24, one gets numerically:

mlow
F ą 4.57 ˆ 10´2 ˆNh
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Symbol βv µF µI νm µh ηh Nh

Value 0.375 0.03 0.03 1/8 1{p365 ˆ 78q 1/7 2, 000
Unit day´1 day´1 day´1 day´1 day´1 day´1 Ind

Table 3: DENV epidemiological parameter values (extracted from [1, Table 2])

i.e. for Nh “ 2, 000 inhabitants,
mlow

F ą 92 individuals day´1,

to be compared with F˚ “ 7, 144 individuals per ha.
It is important to emphasize that the rates of migration between distinct locations can be very different

in practice, according to environmental parameters and the life cycle of the adult mosquitoes [8, 9].
Indeed, after mating with males, females are seeking for blood meals before going to rest. Afterwards,
they start seeking for breeding sites to deposit eggs. Thus depending at which stage they are within the
gonotrophic cycle, female mosquitoes have a different behavior and thus a different spreading/migration
behavior. Clearly, in places where the number of human hosts is large (villages, cities), they dramatically
attract female mosquitoes looking for blood meals, and the (female) migration rate can be large. For
male mosquitoes, the objective is to mate and transfert their sperms, so that they look for places to
find females, typically near hosts or breeding sites. As indicated in the introduction, so far, the mean
spreading distance for Ae. albopictus is considered to be between 100 and 200 meters. In fact, they can
spread faster, and the issue of migration has to be considered. Unfortunately, field experiments to study
this phenomenon, including its fluctuations along the year and its relation with the biological state of
the insects, are quite few. Our theoretical results and the related simulations show that this issue is
indeed an important issue to be studied for the success of SIT campaigns.

Remark 6. As explained previously, we considered constant parameters values to derive our preliminary
results. Taking into account environmental parameters, like temperature and rainfall, will most certainly
show changes between years and within years. This could be done numerically, at least, and is left for
further studies. We also have developed a SIT-entomological temperature-dependent model (in prepara-
tion) where rainfall is taken into account in the (time) evolution of the aquatic carrying capacity, through
the breeding sites. We show that in places like Réunion, rainfall is crucial in the dynamics because it can
vary drastically within a year (and even between years), and an SIT treatment can be successful or not,
last a long time or not, according to the period of the year where it has started.

8 Conclusion

According to our knowledge, migration is rarely studied in SIT modeling while, from the experimental
point of view, it can be responsible of SIT failures. In this work, we showed that wild population with
“small” migration can be controlled by SIT (in addition with other control methods). An important
point is that having too large migration rates can be problematic from the epidemiological point of view:
even with small amount of female mosquitoes in the targeted area, female migration has the capacity to
maintain a high epidemiological risk, i.e. to keep the basic reproduction number R0 above 1.

Thus, to the extent that migration, and in particular female migration, is important, it is necessary
to consider “buffer zones” around the targeted area, in order to minimize the entry of external insects.
In this buffer zones, sterile insects may be released in combination with the use of other control tools,
including traps (ovitraps and adult traps), mechanical control to reduce te breeding sites, etc. From the
experimental point of view, either the targeted area is naturally isolated, like for motu or islands; or,
when the targeted area is large, it is necessary to consider corridors where SIT are released to contain
the arrival of wild insects and to protect the targeted area, like in [2].

Last, our work also emphasizes the importance of being able to estimate the migration rates in the
field, in order to have the capacity to provide an effective control strategy and thereby increase the
chance of success of SIT. Such migration rate estimates could be done by, for instance, Mark-Release-
Recapture [6, 15], in order to estimate flux between the targeted area and its neighborhood. This kind
of experiment is long and difficult, and not necessarily successful, but it seems necessary in order to
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minimize the risk of SIT failure and to set-up appropriate buffer zones to reduce the migration rates in
the domain under treatment.

A precious outcome of the project TIS 2B ”SIT feasibility project against Aedes albopictus in Réunion
Island” (2020-2022), jointly funded by the French Ministry of Health and the European Regional De-
velopment Fund (ERDF), is that estimation the migration rates is an important but difficult issue to
conduct in the field. Migration in SIT being a complex issue, our model constitutes a first step towards
its understanding and importance. However, we firmly believe that more complex models should be
developed, for instance to take into account buffer zones, and the fact that sterile males, released in
the targeted domain, can also leave the domain and, thus, have an impact in the buffer zones or in the
neighboring domains, reducing thereby the migration of fertile females.
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A Appendix

A.1 Proof of Theorem 1

‚ To show the right inequality in (5a), assume first that

@t ě 0,
1

T

ż t`T

t

Λpsq ds ď Λhigh. (A.1)

Then, for any t ě 0,

MSptq “ e´µStMSp0q `

ż t

0

e´µSpt´sqΛpsq ds

“ e´µStMSp0q `

ż t´t t
T uT

0

e´µSpt´sqΛpsq ds`

t t
T u´1
ÿ

i“0

ż pi`1qT

iT

e´µSpt´sqΛpsq ds. (A.2)

Due to the fact that Λ ě 0, the last term is bounded from above by

t t
T u´1
ÿ

i“0

ˆ

max
sPriT,pi`1qT s

e´µSpt´sq

˙
ż pi`1qT

iT

Λpsq ds ď TΛhigh

t t
T u´1
ÿ

i“0

e´µSpt t
T u´iqT

“ TΛhigh
1 ´ e´µSt t

T uT

eµST ´ 1
ď

T

eµST ´ 1
Λhigh.

As the first two terms in (A.2) vanishes when t Ñ `8, one deduces the rightmost inequality in (5a).
‚ If (A.1) doesn’t hold, then according to the assumptions in the statement, for any ε ą 0, there exists
Tε ě 0 such that

@t ě Tε,
1

T

ż t`T

t

Λpsq ds ď Λhigh ` ε,

and the same argument than below permits to say that, for any ε ą 0,

lim sup
tÑ`8

MSptq ď
T

eµST ´ 1
pΛhigh ` εq.

Making ε Ñ 0 shows that the rightmost inequality in (5a) holds under the assumption of the statement.
The demonstration of the leftmost inequality in (5a) is conducted along the same lines.
‚ The proof of the formulas in (5b) is straightforward, and comes by integration from the inequalities
9M ě ´µMM `mM , 9F ě ´µFF `mF .

‚ In order to prove (5c), we first state the following technical result, whose demonstration is postponed
to the end of this proof.

Lemma A.1. For any value γMS ě 0, σ ě 0, one has

sup

"

FM

M ` γMS
: M ą 0, F ě 0,M ` F “ σ

*

“

´

a

γMS ` σ ´
a

γMS

¯2

ď σ. (A.3)

A supremum is put in (A.3) and only positive values of M are considered, in order to avoid any
problem of definition of the fraction in the case where γMS “ 0.

Let now σptq :“ Mptq`F ptq. Summing up the first two equations of system (1) and taking advantage
of Lemma A.1 and inequality (4), one has

9σ “ ρ
FM

M ` γMS
e´βσ ´ mintµM ;µF uσ `mhigh

M `mhigh
F

ď
`

ρe´βσ ´ µF

˘

σ `mhigh
M `mhigh

F

“

˜

ρe´βσ `
mhigh

M `mhigh
F

σ
´ µF

¸

σ,
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The first factor in the previous expression is a decreasing function of σ on p0,`8q, with negative limit
when σ Ñ `8. There thus exists a unique

σ˚ :“ min

#

σ ě 0 : ρe´βσ1

`
mhigh

M `mhigh
F

σ1
´ µF ă 0 for any σ1 ą σ

+

,

and the previous differential inequality implies that, for any trajectory, Mptq ` F ptq “ σptq fulfils

lim sup
tÑ`8

pMptq ` F ptqq ď σ˚.

This estimate is now improved, as follows, in the case where Λlow ą 0. For any x ě 0, one has
?
1 ` x ě 1 `

1

2
x´

1

8
x2, therefore

´

a

γMS ` σ ´
a

γMS

¯2

“ σ ` 2γMS ´ 2
a

γMSpγMS ` σq

ď σ ` 2γMS

ˆ

1 ´

ˆ

1 `
1

2

σ

γMS
´

1

8

σ2

γ2M2
S

˙˙

“
σ2

4γMS
ď

σ˚2

4γMS
.

The previous inequality might be used to study the asymptotic behavior, because Λlow ą 0 implies
0 ă lim inf

tÑ`8
MSptq, see (5a). Introducing this inequality in (1a), one obtains

9M ď rρ
σ˚2

4γMS
´ µMM `mhigh

M ď rρ
σ˚2µS

4γΛlow
`mhigh

M ´ µMM,

and thus

lim sup
tÑ`8

Mptq ď
1

µM

ˆ

rρ
σ˚2µS

4γΛlow
`mhigh

M

˙

,

and similarly

lim sup
tÑ`8

F ptq ď
1

µF

ˆ

p1 ´ rqρ
σ˚2µS

4γΛlow
`mhigh

F

˙

.

Taking for φ any decreasing function larger or equal than

min

"

σ˚,
1

µM

ˆ

rρ
σ˚2µS

4γΛlow
`mhigh

M

˙

,
1

µF

ˆ

p1 ´ rqρ
σ˚2µS

4γΛlow
`mhigh

F

˙*

(A.4)

demonstrates (5c). It now remains to prove Lemma A.1.

Proof of Lemma A.1. Let M ą 0. The derivative of the map f : r0, σs Ñ R` defined by

fpMq :“
Mpσ ´Mq

M ` γMS

is equal to

f 1pMq :“
pσ ´ 2MqpM ` γMSq ´Mpσ ´Mq

pM ` γMSq2
“ ´

M2 ` 2γMSM ´ σγMS

pM ` γMSq2
.

It possesses a unique positive zero, namely M̃ :“
a

pγMSqpγMS ` σq ´ γMS , so that the optimal, and
indeed maximal, value of f on r0, σs is attained at that point, and is equal to

p
a

γMSpγMS ` σq ´ γMSqpγMS ` σ ´
a

γMSpγMS ` σqq
a

γMSpγMS ` σq
“

´

a

γMS ` σ ´
a

γMS

¯2

,

that is (A.3).

With the end of this proof, the demonstration of Theorem 1 is now completed.
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A.2 Proofs of Theorems 2 and 3

A.2.1 Proof of Theorem 2

‚ The equilibrium points are exactly those nonnegative pairs pM˚, F˚q that verify

rρF˚e´βpM˚
`F˚

q ´ µMM
˚ `mM “ 0, p1 ´ rqρF˚e´βpM˚

`F˚
q ´ µFF

˚ `mF “ 0 (A.5)

In particular, eliminating F˚e´βpM˚
`F˚

q from these two formulas shows that one has necessarily

M˚

NM
´
F˚

NF
“

1

NM

mM

µM
´

1

NF

mF

µF
, (A.6)

that is (9b) (or the 2nd part of (8) whenever mF “ 0). Introducing the corresponding expression of
M˚ in the second formula in (A.5) yields equation (9a). It is clear that the nonnegative solutions F˚ of
(9a) for which identity (9b) yields a nonnegative value M˚, are in one-to-one correspondence with the
nonnegative solutions pM˚, F˚q of (A.5), that is to the equilibrium points of (6).
‚ Consider first the case where mF “ 0. There clearly exists a unique solution pM˚˚, F˚˚q of (9a) with
F˚˚ “ 0, for which M˚˚ ą 0 is given in the statement.

On the other hand, any positive solution F˚ of (9a) fulfils necessarily

exp

ˆ

´β

ˆ

1 `
NM

NF

˙

F˚ ´ β
mM

µM

˙

“
1

NF
, (A.7)

which yields the first formula in (8). The obtained expression of F˚ is positive if and only if (7) holds.
In such case, the value of M˚ provided by the second formula in (8) is also positive, because mM ě 0.
‚ Consider now the case where mF ą 0. Clearly there exists no equilibrium with F˚ “ 0, so that every
equilibrium has to fulfil (9a), that we rewrite here as

ΦpF˚q :“

ˆ

NF exp

ˆ

´β

ˆ

1 `
NM

NF

˙

F˚ ´ β
mM

µM
` β

NM

NF

mF

µF

˙

´ 1

˙

F˚ “ ´
mF

µF
. (A.8)

The map Φ possesses two roots in R (possibly identical), namely 0 and the value

1

1 ` NM

NF

ˆ

1

β
logNF ´

mM

µM
`

NM

NF

mF

µF

˙

,

whose sign is undefined. On the other hand, Φ is positive between its roots, and negative otherwise.
From this observation, one deduces any positive solution of (A.8) is indeed larger than the largest of
the two roots of Φ. In other words, any positive solution pertains indeed to the semi-infinite interval
ph,`8q, where

h :“ max

#

0;
1

1 ` NM

NF

ˆ

1

β
logNF ´

mM

µM
`

NM

NF

mF

µF

˙

+

. (A.9)

The function Φ is the product of two terms. On the interval ph,`8q, the first one is a decreasing
negative function of F˚, while the linear term is a positive increasing function of F˚: Φ is thus negative
and decreasing on ph,`8q, with Φphq “ 0. As this map is unbounded, (A.8) thus admits a unique
solution on ph,`8q.

It now remains to show that the corresponding value M˚, given by (9b), is nonnegative, that is

F˚ ě ´
NF

NM

mM

µM
`
mF

µF
“: h1. (A.10)

Assume first that
h1 ď h.

As necessarily one has h ď F˚, one gets directly (A.10).
If on the contrary

h1 ą h ě 0,

29



then, both h1 and F˚ are located in the interval rh,`8q on which Φ is decreasing. In order to prove
(A.10), it is thus sufficient to establish that Φph1q ě ΦpF˚q “ ´mF

µF
. One has

Φph1q “

ˆ

NF exp

ˆ

´β

ˆ

1 `
NM

NF

˙

h1 ´ β
mM

µM
` β

NM

NF

mF

µF

˙

´ 1

˙

h1 “
`

NF exp
`

βh1
˘

´ 1
˘

h1.

Therefore,

Φph1q`
mF

µF
“
`

NF exp
`

βh1
˘

´ 1
˘

h1`
mF

µF
“ NF exp

`

βh1
˘

h1`

ˆ

mF

µF
´ h1

˙

“ NF exp
`

βh1
˘

h1`
NF

NM

mM

µM
.

Both terms of the previous expression are nonnegative, due to the fact that h1 ě 0. One thus obtained
that the unique solution F˚ of (A.8) on rh,`8q fulfils the inequality (A.10). It thus provides an
equilibrium point for (6). As a conclusion, there exists a unique equilibrium point for (6) when mF ą 0,
as announced in the statement. This achieves the proof of Theorem 2.

A.2.2 Proof of Theorem 3

‚ Recall for further use that the Jacobian matrix of system (6) is

JpM,F q “

ˆ

´βrρFe´βpM`F q ´ µM rρp1 ´ βF qe´βpM`F q

´βp1 ´ rqρFe´βpM`F q p1 ´ rqρp1 ´ βF qe´βpM`F q ´ µF

˙

. (A.11)

‚ Consider first the case mF “ 0. The Jacobian matrix at the point pM˚˚, 0q is the triangular matrix

JpM˚˚, 0q “

˜

´µM rρe´βM˚˚

0 p1 ´ rqρe´βM˚˚

´ µF

¸

,

whose local stability follows from the fact that M˚˚ “
mM

µM
and (10), while (7) implies instability.

Global asymptotic stability of pM˚˚, 0q is then straightforward: introducing the change of variable
M Ð M `M˚˚, we have, for all F ą 0

9F “ p1 ´ rqρFe´βpM`F q´βM˚˚

´ µFF ď

´

e´βpM`F q ´ 1
¯

µFF ă 0,

thanks to (10) again. We deduce that F is decreasing to 0, and thus that M converges to M˚˚.
Assume now that (7) holds. At the equilibrium pM˚, F˚q, (8) yields

M˚ ` F˚ “

ˆ

1 `
NM

NF

˙

F˚ ` NMm̃M “
1

β
plogNF ´ βNMm̃M q ` NMm̃M “

1

β
logNF ,

and the Jacobian matrix at this point is equal to

JpM˚, F˚q “

˜

´
βrρ
NF

F˚ ´ µM
rρ
NF

p1 ´ βF˚q

´
βp1´rqρ

NF
F˚ p1´rqρ

NF
p1 ´ βF˚q ´ µF

¸

“

˜

´
βrρ
NF

F˚ ´ µM
rρ
NF

p1 ´ βF˚q

´
βp1´rqρ

NF
F˚ ´

βp1´rqρ
NF

F˚

¸

.

The trace of this matrix is obviously negative, while its determinant is

βp1 ´ rqρ

NF
F˚

ˆ

µM `
rρ

NF

˙

ą 0.

The equilibrium pM˚, F˚q is therefore LAS.
In order to show Global Asymptotic Stability of pM˚, F˚q, we now apply Dulac criterion. Let

ψ1pF q :“
1

F
, f1pM,F q :“ rρFe´βpM`F q´µMM`mM , g1pM,F q :“ p1´rqρFe´βpM`F q´µFF`mF .

We study the sign of the function

D1pM,F q :“
B

BM

´

ψ1pF qf1pM,F q

¯

`
B

BF

´

ψ1pF qg1pM,F q

¯

.
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We have

B

BM

´

ψ1pF qf1pM,F q

¯

“ ´βrρe´βpM`F q ´
µM

F
,

B

BF

´

ψ1pF qg1pM,F q

¯

“ ´βp1 ´ rqρe´βpM`F q ´
mF

F 2
,

and thus
D1pM,F q “ ´βρe´βpM`F q ´

µM

F
´
mF

F 2
ă 0

for all pM,F q P D such that F ą 0. Therefore, Dulac criterion [22] applies, demonstrating that system
(6) possesses no nonconstant periodic solutions when mF “ 0. Thus, using the fact that pM˚, F˚q is
LAS, by the Poincaré-Bendixson theorem, all trajectories in DztpM, 0q : M ě 0u converge towards this
point.
‚ Let us now consider the case mF ą 0. Thanks to (A.5)2, at equilibrium pM˚, F˚q we have,

NFF
˚e´βpM˚

`F˚
q `

mF

µF
“ F˚,

and we get from the fact that mF ą 0, that

NFF
˚e´βpM˚

`F˚
q ă F˚.

Thus, since F˚ ą 0, we deduce that

NF e
´βpM˚

`F˚
q ă 1. (A.12)

According to (A.11), we have

J˚ “ JpM˚, F˚q “

˜

´βrρF˚e´βpM˚
`F˚

q ´ µM rρp1 ´ βF˚qe´βpM˚
`F˚

q

´βp1 ´ rqρF˚e´βpM˚
`F˚

q p1 ´ rqρp1 ´ βF˚qe´βpM˚
`F˚

q ´ µF

¸

,

so that

detpJ˚q “

´

βrρF˚e´βpM˚
`F˚

q ` µM

¯´

µF ´ p1 ´ rqρp1 ´ βF˚qe´βpM˚
``F˚

q
¯

`βp1 ´ rqρF˚e´βpM˚
`F˚

qrρp1 ´ βF˚qe´βpM˚
`F˚

q

“

´

βrρF˚e´βpM˚
`F˚

q ` µM

¯

µF ´ µM p1 ´ rqρp1 ´ βF˚qe´βpM˚
`F˚

q

“ βrρF˚e´βpM˚
`F˚

qµF ` µMµF ´ µFµMNF p1 ´ βF˚qe´βpM˚
`F˚

q

“ βrρF˚e´βpM˚
`F˚

qµF ` µMµF ´ µFµMNF e
´βpM˚

`F˚
q ` µFµMNFβF

˚e´βpM˚
`F˚

q.

Then, using (A.12), we deduce that

detpJ˚q ě βrρF˚e´βpM˚
`F˚

qµF ` µFµMNFβF
˚e´βpM˚

`F˚
q ą 0.

In addition, computing the trace trpJ˚q of J˚, we derive

trpJ˚q “ ´βrρF˚e´βpM˚
`F˚

q ´ µM ` p1 ´ rqρp1 ´ βF˚qe´βpM˚
`F˚

q ´ µF

“ ´βρF˚e´βpM˚
`F˚

q ´ µM ` p1 ´ rqρe´βpM˚
`F˚

q ´ µF

“ ´βρF˚e´βpM˚
`F˚

q ´ µM ` µFNF e
´βpM˚

`F˚
q ´ µF ă ´βρF˚e´βpM˚

`F˚
q ´ µM ă 0.

We deduce the Local Asymptotic Stability of pM˚, F˚q.
The same argument than in the case mF “ 0 above allows to deduce Global Asymptotic Stability

from its local counterpart. This achieves the demonstration of Theorem 3.
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A.3 Proofs of Lemmas 1 and 2

A.3.1 Proof of Lemma 1

The equilibrium points of (12) are exactly the nonnegative values pM,F q such that

ρF
M

M ` γMS
e´βpM`F q “

1

r
pµMM ´mM q , ρF

M

M ` γMS
e´βpM`F q “

1

1 ´ r
pµFF ´mF q .

(A.13)
This yields immediately the necessary conditions

M ě
mM

µM
, F ě

mF

µF
. (A.14)

Eliminating the exponential term in the two formulas in (A.13) yields the following expression for F :

F “
1

µF

ˆ

1 ´ r

r
pµMM ´mM q `mF

˙

“
NF

NM

ˆ

M ´
mM

µM

˙

`
mF

µF
. (A.15)

Inserting now this identity in the first formula in (A.13), we obtain successively the equivalent forms

ˆ

NF

NM

ˆ

M ´
mM

µM

˙

`
mF

µF

˙

Me
´β

¨

˝M`
NF

NM

˜

M´
mM

µM

¸

`
mF

µF

˛

‚

“
1

ρr
pµMM ´mM q pM ` γMSq ,

ˆ

NF

NM

ˆ

M ´
mM

µM

˙

`
mF

µF

˙

Me
´β

¨

˝M`
NF

NM

˜

M´
mM

µM

¸

`
mF

µF

˛

‚

“
1

NM

ˆ

M ´
mM

µM

˙

pM ` γMSq ,

ˆ

NF

ˆ

M ´
mM

µM

˙

` NM
mF

µF

˙

Me
´β

¨

˝M`
NF

NM

˜

M´
mM

µM

¸

`
mF

µF

˛

‚

“

ˆ

M ´
mM

µM

˙

pM ` γMSq ,

that is finally

NF

ˆ

M ´

ˆ

mM

µM
´
mF

µF

NM

NF

˙˙

Me
´β

¨

˝M`
NF

NM

¨

˝M´

¨

˝

mM

µM
´
mF

µF

NM

NF

˛

‚

˛

‚

˛

‚

“

ˆ

M ´
mM

µM

˙

pM ` γMSq .

Denoting x :“ M yields (15), for the constants a, b, c, d, g defined in (13).
Reciprocally, from what was previously established, any nonnegative pair pM,F q, where x “ M fulfils

(15) and F is obtained by (A.15), is an equilibria of (12). As F in (A.15) is nonnegative if and only if
M ě c, while by construction M ě b ě c (see (A.14) and (A.15)), any nonnegative pair pM,F q, where
x “ M fulfils (15) and x ě b is an equilibrium of (12). This achieves the demonstration of Lemma 1.

A.3.2 Proof of Lemma 2

‚ Let us study the function

Θ : rb,`8q Ñ R`, x ÞÑ Θpxq :“
px` aqpx´ bq

xpx´ cq
edx.

Observe that Θpbq “ 0 and Θp`8q “ `8, so that there always exists at least one solution to (20) on
rb,`8q. We are interested in counting the number of minima of Θ, as (20) is equivalent to Θpxq “ g.

The map x ÞÑ
px`aqpx´bq

xpx´cq
is not always increasing on rb,`8q, so we study the variations of Θ. One

has

Θ1pxq “
1

x2px´ cq2
rp2x` a´ bqxpx´ cq ´ px` aqpx´ bqp2x´ cq ` dpx` aqpx´ bqxpx´ cqs edx.

With a 4th-order polynomial governing the sign of Θ1, positive at x “ b and x “ `8, the number of
zeros of Θ1 in rb,`8q may be any number from 0 to 4, and the number of solutions of (20) any number
from 1 to 5.
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Let us show that in fact, (20) cannot have more than 3 solutions. Let

P pxq :“ p2x` a´ bqxpx´ cq ´ px` aqpx´ bqp2x´ cq ` dpx` aqpx´ bqxpx´ cq.

The following identities are true:

P p´aq “ ´apa` bqpa` cq, P p0q “ ´abc, P pcq “ cpa` cqpb´ cq, P pbq “ bpa` bqpb´ cq. (A.16a)

and, due to the fact that d ą 0,
lim

xÑ˘8
P pxq “ `8. (A.16b)

Remind that we consider here the generic case where, on top of (14), we have b ą c, b ą 0, and a ą 0.
To summarize,

´a ă 0 ă b, c ă b, 0 ă b.

We will now show that the 4th degree polynomial P has at most two zeros on rb,`8q. For this, consider
the two following distinct cases.

• If c ą ´a, then P p´aq ă 0 and P pbq ą 0. Due to (A.16b), P has at least one zero on p´8,´aq,
another one on p´a, bq, and therefore at most two on pb,`8q.

• If c “ ´a ă 0, then P p´aq “ P pcq “ 0, while P pbq “ bpa` bq2 ą 0. Let us show that P 1p´aq “ 0.
Indeed, when c “ ´a, P pxq “ p2x ` a ´ bqxpx ` aq ´ px ` aqpx ´ bqp2x ` aq ` dpx ` aq2px ´ bq.
The last term has zero derivative at x “ ´a, while the sum of the two first terms is px` aqpp2x`

a ´ bqx ´ px ´ bqp2x ` aqq, i.e. bpx ` aq2, whose derivative also vanishes at x “ ´a. Due to the
existence of a double root at this point, P has at most two zeros on pb,`8q.

Therefore the polynomial P , and thus the map Θ1, possess at most two zeros on pb,`8q. One deduces
that the equation Θpxq “ g possesses at most three solutions on pb,`8q, which is the point 1. of Lemma
2.
‚ To establish the point 2. , let us now study the dependance with respect to the parameter a. For this,
we write more explicitly

Θapxq :“ Θpxq “
px` aqpx´ bq

xpx´ cq
edx.

Let 0 ă a ă a1. One then has

Θa1 pxq ´ Θapxq “ pa1 ´ aq∆pxq, ∆pxq :“
px´ bq

xpx´ cq
edx,

where ∆pxq ą 0 for any x ą b. Let x˚ ą b be the largest solution of (20) for the value a. By definition,
Θapx˚q “ g, and Θapxq ą g for any x P px˚,`8q. Due to the fact that a1 ą a, one then has Θa1 pxq ą g
for any x P px˚,`8q. This implies that all solutions of the equation Θa1 pxq “ g are smaller than a,
including the largest one. We deduce that the largest solution of the equation Θapxq “ g is a decreasing
function of a.

Also, due to the fact that ∆pxq Ñ `8 when x Ñ `8 (as d ą 0), one has, for any ε ą 0, mint∆pxq :
x ą b ` εu ą 0. Using this property, one sees that the largest solution of the equation Θapxq “ g
converges to b` when a Ñ `8.
‚ Let us now demonstrate the point 3. One may see straightforwardly that, for ∆ defined above,

∆1pbq “
edb

bpb´ cq
ą 0.

One has, say, Θapxq “ Θ0pxq ` a∆pxq. Due to the fact that ∆1pbq ą 0, for the large values of a, Θapxq is
not only positive, but also increasing, in an interval right of b. Consequently, for large enough values of
a, there is only one solution to the equation Θapxq “ g in the interval rb,`8q. This demonstrates the
point 3. and achieves the proof of Lemma 2.
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A.4 Proof of Theorem 6

‚ 1. Notice that, for any M,F ě 0 and any t ě 0,

M

M ` γMper
S

e´βpM`F q ď
M

M ` γMper
S

e´βM ď
1

eβ

1

M ` γMper
S

ď
1

eβγ

1

Mper
S

,

where we used the fact that max
␣

xe´βx : x ě 0
(

“ 1
eβ . Therefore one deduces from (22b) that

9F ď

ˆ

p1 ´ rqρ
1

eβγ

1

Mper
S

´ µF

˙

F `mhigh
F .

Let us now state the following technical result.

Lemma A.2. Let x be a solution of the differential inequality

9x ď aptqx` b, (A.17)

for a nonnegative number b and a τ -periodic function a such that

I :“

ż τ

0

aptq dt ă 0. (A.18)

Then,
lim sup
tÑ`8

xptq ď bΨras, (A.19a)

where

Ψras :“ p1 ´ e
şτ
0
aptq dtq´1 max

tPr0,τs

ż τ

0

e
şt`τ
t`s

apσq dσ ds

“ ´
1

max
!

aptq : t P r0, τq, aptq
şτ

0
e
şt`τ
t`s

apσq dσ ds “ eI ´ 1
) . (A.19b)

Notice that the denominator of (A.19b) is negative, so that the right-hand side is positive.
Provided that

p1 ´ rqρ
1

eβγ

B

1

Mper
S

F

ă µF ,

that is
B

1

Mper
S

F

ă eβγ
1

NF
, (A.20)

one has, by use of Lemma A.2:

lim sup
tÑ`8

F ptq ď Ψ

„

p1 ´ rqρ
1

eβγ

1

Mper
S

´ µF

ȷ

mhigh
F , (A.21a)

for the function Ψ defined in (A.19b).
Incidentally, due to Lemma A.2, there exists a time instant t˚ P r0, T q such that

Ψ

„

p1 ´ rqρ
1

eβγ

1

Mper
S

´ µF

ȷ

“
1

µF ´ p1 ´ rqρ
1

eβγ

1

Mper
S pt˚q

,

and this permits to verify that

mhigh
F

µF ´ p1 ´ rqρ
1

eβγ

1

Mper
S pt˚q

ě
mhigh

F

µF
.
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From (22a), one now obtains that

lim sup
tÑ`8

p 9M ` µMMq ď rρmhigh
F Ψ

„

p1 ´ rqρ
1

eβγ

1

Mper
S

´ µF

ȷ

`mhigh
M ,

so that finally

lim sup
tÑ`8

Mptq ď
1

µM
mhigh

M ` NMΨ

„

p1 ´ rqρ
1

eβγ

1

Mper
S

´ µF

ȷ

mhigh
F . (A.21b)

Notice that this value is clearly at most equal to
1

µM
mhigh

M .

To establish (A.21), it remains to show Lemma A.2.

Proof of Lemma A.2. The case where b “ 0 is obtained straightforwardly. To tackle the case b ą 0, we
assume in the sequel with no loss of generality that b “ 1 (otherwise argue on 1

bx).
‚ First, any trajectory of (1) is bounded from above on r0,`8q by the solution of the differential equation

9y “ aptqy ` 1 (A.22)

such that yp0q “ xp0q. Therefore, using comparison principle, it is sufficient to establish (A.19a) for any
solution y of (A.22).
‚ Equation (A.22) admits a unique τ -periodic solution. As a matter of fact, any solution fulfils

p 9y ´ aptqyq e´
şt
0
apσq dσ “ e´

şt
0
apσq dσ.

Thanks to (A.18), one has by integration over any interval pt, t` τq:

ypt`τq “ yptqe
şt`τ
t

apσq dσ`

ż t`τ

t

e
şt`τ
s

apσq dσ ds “ yptqeI`

ż t`τ

t

e
şt`τ
s

apσq dσ ds “ yptqeI`

ż τ

0

e
şt`τ
t`s

apσq dσ ds.

One has used first the fact that, due to the τ -periodicity of a, the map t ÞÑ e
şt`τ
t

apσq dσ is constant; and
a change of variables to modify the second term.

Therefore, necessarily any τ -periodic solution yτ of (A.22) fulfils

yτ ptq “ p1 ´ eIq´1

ż τ

0

e
şt`τ
t`s

apσq dσ ds “ Ψras. (A.23)

Reciprocally, it is straightfoward to show that the previous formula defines a τ -periodic solution of (A.22).
Notice that (A.19a) holds for yτ defined in (A.23).
‚ We now show that the τ -periodic function yτ defined in (A.23) attracts all solutions of (7). Let y be
any solution of (7), then, by linearity, one has

9y ´ 9yτ “ aptqpy ´ yτ q,

so that
yptq ´ yτ ptq “ e

şt
0
apσq dσpyp0q ´ yτ p0qq,

which vanishes when t Ñ 8, due to (A.18). The periodic trajectory yτ is thus globally asymptotically
stable.
‚ From the fact that (A.19a) holds for yτ , together with the global asymptotic stability of this solution,
one deduces that this property holds indeed for any solution y of (A.22), and finally for any solution x
of inequality (A.17).
‚ It remains to show the equality between the two expressions in (A.19b).

The map t ÞÑ
şτ

0
e
şt`τ
t`s

apσq dσ ds that appears in the definition of Ψ is evidently τ -periodic. To find its
maximal value, notice that its derivative vanishes whenever

ż τ

0

papt` τq ´ apt` sqq e
şt`τ
t`s

apσq dσ ds “ 0,
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that is

aptq

ż τ

0

e
şt`τ
t`s

apσq dσ ds “ apt`τq

ż τ

0

e
şt`τ
t`s

apσq dσ ds “

ż τ

0

apt`sqe
şt`τ
t`s

apσq dσ ds “

”

´e
şt`τ
t`s

apσq dσ
ıs“τ

s“0
“ eI´1.

Therefore,
ż τ

0

e
şt`τ
t`s

apσq dσ ds “
eI ´ 1

aptq

at any point where
şτ

0
e
şt`τ
t`s

apσq dσ ds is extremal, and reciprocally this identity holds only at points where

the derivative of the map t ÞÑ
şτ

0
e
şt`τ
t`s

apσq dσ ds vanishes. Inserting this expression in the definition of Ψ
yields:

Ψras “ max

"

´
1

aptq
: t P r0, τq, aptq

ż τ

0

e
şt`τ
t`s

apσq dσ ds “ eI ´ 1

*

“ ´
1

max
!

aptq : t P r0, τq, aptq
şτ

0
e
şt`τ
t`s

apσq dσ ds “ eI ´ 1
) ,

which is (A.19b) when b “ 1. This achieves the demonstration of Lemma A.2.

‚ 2. We now proceed with the proof of Theorem 6. The same argument may be conducted from (22a)
rather than (22b), leading to the estimate:

F

M ` γMper
S

e´βpM`F q ď
1

eβγMper
S

.

If
B

1

Mper
S

F

ă eβγ
1

NM
, (A.24)

one then has

lim sup
tÑ`8

Mptq ď Ψ

„

rρ
1

eβγ

1

Mper
S

´ µM

ȷ

mhigh
M . (A.25a)

It may then be shown as before that the coefficient of mhigh
M is at least equal to 1

µM
.

From (22b), one then gets

lim sup
tÑ`8

F ptq ď NFΨ

„

rρ
1

eβγ

1

Mper
S

´ µM

ȷ

mhigh
M `

1

µF
mhigh

F . (A.25b)

‚ 3. We now introduce a third and last estimate. Define the positive definite function

VpM,F q :“
1

2
pM2 ` F 2q. (A.26)

Its derivative along the trajectories of (22) fulfils

9V “ M 9M ` F 9F ď ´µMM
2 ´ µFF

2 ` ρ
FMprM ` p1 ´ rqF q

M ` γMper
S

e´βpM`F q `mhigh
M M `mhigh

F F. (A.27)

On the one hand, we have

´µMM
2 ´ µFF

2 ď ´mintµM , µF upM2 ` F 2q “ ´2mintµM , µF uV.

On the other hand,

FMprM ` p1 ´ rqF q

M ` γMper
S

e´βpM`F q ď maxtr, 1 ´ ru
FMpM ` F q

M ` γMper
S

e´βpM`F q

ď maxtr, 1 ´ ru
1

eβ

FM

M ` γMper
S

ď maxtr, 1 ´ ru
1

eβ

1

M ` γMper
S

V

ď maxtr, 1 ´ ru
1

eβγ

1

Mper
S

V.
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Coming back to (A.27), we deduce that

9V ď

ˆ

maxtr, 1 ´ ru
1

eβγMper
S

´ 2mintµM , µF u

˙

V ` 2maxtmhigh
M ,mhigh

F uV1{2,

that is

1

2

dV1{2

dt
ď

ˆ

maxtr, 1 ´ ru
1

eβγMper
S

´ 2mintµM , µF u

˙

V1{2 ` 2maxtmhigh
M ,mhigh

F u.

Using again Lemma A.2, provided that

maxtr, 1 ´ ruρ
1

eβγ

B

1

Mper
S

F

ă 2mintµM , µF u,

that is,
B

1

Mper
S

F

ă 2eβγ
mintµM , µF u

maxtr, 1 ´ ruρ
“ 2eβγ

1

maxtr, 1 ´ ru
min

"

r

NM
,
1 ´ r

NF

*

, (A.28)

one gets that the function V1{2 “ pM2 ` F 2q1{2 fulfils

lim sup
tÑ`8

V1{2ptq ď 4Ψ

„

2

ˆ

maxtr, 1 ´ ru
1

eβγMper
S

´ 2mintµM , µF u

˙ȷ

maxtmhigh
M ,mhigh

F u. (A.29)

‚ 4. Putting together the sufficient conditions in (A.20), (A.24) and (A.28) yields the following sufficient
condition for existence of an inequality of type (24):

B

1

Mper
S

F

ă eβγmax

"

1

NM
,

1

NF
,

2

maxtr, 1 ´ ru
min

"

r

NM
,
1 ´ r

NF

**

.

Arguing as in [5, Proof of Theorem 5], one expresses the mean value of
1

Mper
S

as a function of Λ, and

transforms the previous inequality to get formula (23).
‚ 5. Last, for large enough Λ, each one of the three estimates may be used. Consider e.g. (A.21). As

1

Mper
S

converges to 0 when Λ Ñ `8, one deduces the formulas in (25), by invoking continuity of Ψ

(relatively to the uniform convergence). This concludes the proof of Theorem 6.

A.5 Proofs of Proposition 7, Lemma 3, Theorems 9 and 10

A.5.1 Proof of Proposition 7

Applying condition (27) to (1) yields the following differential inequalities on p0,`8q:

9M “ rρ
FM

M ` γMS
e´βpM`F q ´µMM`mM ptq ď rρ

FM

M ` γMS
´µMM`mhigh

M ď ´µMM`rρkF `mhigh
M

and
9F “ p1 ´ rqρ

FM

M ` γMS
e´βpM`F q ´ µFF `mF ptq ď pp1 ´ rqρk ´ µF qF `mhigh

F .

The linear, non-homogeneous, autonomous system

ˆ

9M 1

9F 1

˙

“

ˆ

´µM rρk
0 ´µF ` p1 ´ rqρk

˙ˆ

M 1

F 1

˙

`

ˆ

mhigh
M

mhigh
F

˙

, t ě 0 (A.30)

involves a Metzler matrix, and is thus monotone. As such, it may serve as a comparison system for the
evolution of (1), yielding

0 ď Mptq ď M 1ptq, 0 ď F ptq ď F 1ptq, t ě 0,
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where pM 1, F 1q is the solution of (A.30) generated by the same initial values as the underlying solution
pM,F q of (1).

For k ă 1
NF

, ´µF ` p1´ rqρk ă 0, so that the linear system (A.30) is asymptotically stable, yielding:

lim sup
tÑ`8

ˆ

Mptq
F ptq

˙

ď lim
tÑ`8

ˆ

M 1ptq
F 1ptq

˙

“ ´

ˆ

´µM rρk
0 ´µF ` p1 ´ rqρk

˙´1ˆ
mhigh

M

mhigh
F

˙

“
1

µM pµF ´ p1 ´ rqρkq

ˆ

µF ´ p1 ´ rqρk rρk
0 µM

˙ˆ

mhigh
M

mhigh
F

˙

,

and the formulas in (28). This achieves the proof of Proposition 7.

A.5.2 Proof of Lemma 3

Using superposition principle, write M 1 “ M 1
1 `M 1

2, F
1 “ F 1

1 ` F 1
2, where

ˆ

9M 1
1

9F 1
1

˙

“

ˆ

´µM rρk
0 ´µF ` p1 ´ rqρk

˙ˆ

M 1
1

F 1
1

˙

,

ˆ

M 1
1p0q

F 1
1p0q

˙

“

ˆ

Mpnτq

F pnτq

˙

ˆ

9M 1
2

9F 1
2

˙

“

ˆ

´µM rρk
0 ´µF ` p1 ´ rqρk

˙ˆ

M 1
2

F 1
2

˙

`

ˆ

mhigh
M

mhigh
F

˙

,

ˆ

M 1
2p0q

F 1
2p0q

˙

“

ˆ

0
0

˙

.

One then checks easily that, for any t P pnτ, pn` 1qτ s,

ˆ

M 1
1ptq

F 1
1ptq

˙

“ P pt´ nτq

ˆ

Mpnτq

F pnτq

˙

,

ˆ

M 1
2ptq

F 1
2ptq

˙

“ Qpt´ nτq

ˆ

mhigh
M

mhigh
F

˙

,

for

P ptq :“ exp

ˆˆ

´µM rρk
0 ´µF ` p1 ´ rqρk

˙

t

˙

(A.31a)

Qptq :“

ż t

0

P psq ds “

ˆ

´µM rρk
0 ´µF ` p1 ´ rqρk

˙´1

pP ptq ´ I2q. (A.31b)

The formulas in the statement of Lemma 3 are then obtained directly by application of the following
result.

Lemma A.3. For real scalars a, b, c with a, b ‰ 0, let

N :“

ˆ

a c
0 b

˙

P R2ˆ2.

Then, denoting I2 P R2ˆ2 the identity matrix, one has, for any real number t,

eNt “

ˆ

eat c
a´b peat ´ ebtq

0 ebt

˙

“ eat
ˆ

1 c
a´b

0 0

˙

` ebt
ˆ

0 ´ c
a´b

0 1

˙

(A.32a)

N´1peNt ´ I2q “
1

a
peat ´ 1q

ˆ

1 c
a´b

0 0

˙

`
1

b
pebt ´ 1q

ˆ

0 ´ c
a´b

0 1

˙

(A.32b)

Proof. One checks directly that the expression provided for eNt in (A.32a) is equal to I2 for t “ 0, and
is such that

d

dt
eNt “ NeNt.

Formula (A.32b) is then obtained straightforwardly, noticing that

N´1peNt ´ I2q “

ż t

0

Npsq ds,

and achieving termwise integration of the right-hand side. This proves Lemma A.3.
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A.5.3 Proof of Theorem 9

The estimate (28) holds, therefore when equality is taken in (32a), there exists Λfeed ą 0 for which the
uniform estimate in (33) holds. Moreover, one deduces from (31) that

τΛn ď
1

γ

ˆ

1

k
´ 1

˙

`

1 0
˘

ˆ

P pτq

ˆ

Mpnτq

F pnτq

˙

`Qpτq

ˆ

mhigh
M

mhigh
F

˙˙

ď
1

γ

ˆ

1

k
´ 1

˙

`

1 0
˘

˜

P pτq

ˆ

µM ´rρk
0 µF ´ p1 ´ rqρk

˙´1

`Qpτq

¸

ˆ

mhigh
M

mhigh
F

˙

“
1

γ

ˆ

1

k
´ 1

˙

`

1 0
˘

ˆ

µM ´rρk
0 µF ´ p1 ´ rqρk

˙´1ˆ
mhigh

M

mhigh
F

˙

(by use of (A.31b))

“
1

γ

ˆ

1

k
´ 1

˙

1

µM

´

1 rρk
µF ´p1´rqρk

¯

ˆ

mhigh
M

mhigh
F

˙

which gives the value of Λfeed expressed in formula (33).

A.5.4 Proof of Theorem 10

Let us establish that, under the hypotheses of the statement, one has for every n P N,

γMSptq ě

ˆ

1

k
´ 1

˙

M 1ptq, t P pnpτ, pn` 1qpτ s, (A.33)

where M 1 is the solution of (30) initialized according to
`

M 1pnτq, F 1pnτq
˘

“
`

Mpnτq, F pnτq
˘

.
Let us first evaluate the value of MS on the interval pnpτ, pn ` 1qpτ s of length pτ , at a date t “

s ` pnp ` mqτ , where m P t0, 1, . . . , p ´ 1u and s P p0, τ s. Here, npτ represents the date where the last
measurement was achieved, and pnp`mqτ the date of the last release. The value of MSps` pnp`mqτq

is given by:

MS

`

s` pnp`mqτ
˘

“

´

Λnp`mτ `MS

`

pnp`mqτ
˘

¯

e´µSs

“

´

Λnp`mτ ` Λnp`m´1τe
´µSτ ` ¨ ¨ ¨ ` Λnpτe

´mµSτ `MSpnpτqe´mµSτ
¯

e´µSs.

On the other hand, using a formula analogous to (30a), one finds that at time t “ s` pnp`mqτ ,

M 1ps` pnp`mqτq “
`

1 1
˘

ˆ

M 1ps` pnp`mqτq

F 1ps` pnp`mqτq

˙

“
`

1 1
˘

ˆ

P ps`mτq

ˆ

Mpnpτq

F pnpτq

˙

`Qps`mτq

ˆ

mhigh
M

mhigh
F

˙˙

“

ˆ

e´µM ps`mτq
rρk

µM ´ µF ` p1 ´ rqρk

`

e´pµF ´p1´rqρkqps`mτq ´ e´µM ps`mτq
˘

˙ˆ

Mpnpτq

F pnpτq

˙

`

ˆ

1´e´µM ps`mτq

µM

rρk

µM ´ µF ` p1 ´ rqρk

´

1´e´pµF ´p1´rqρkqps`mτq

µF ´p1´rqρk ´ 1´e´µM ps`mτq

µM

¯

˙ˆ

mhigh
M

mhigh
F

˙

Inequality (A.33) is thus fulfilled on pnpτ, pn` 1qpτ s iff for any m P t0, 1, . . . , p´ 1u and s P p0, τ s,

γ
´

Λnp`mτ ` Λnp`m´1τe
´µSτ ` ¨ ¨ ¨ ` Λnpτe

´mµSτ `MSpnpτqe´mµSτ
¯

e´µSs

ě

ˆ

1

k
´ 1

˙„ˆ

e´µM ps`mτq
rρk

µM ´ µF ` p1 ´ rqρk

`

e´pµF ´p1´rqρkqps`mτq ´ e´µM ps`mτq
˘

˙ˆ

Mpnpτq

F pnpτq

˙

`

ˆ

1´e´µM ps`mτq

µM

rρk

µM ´ µF ` p1 ´ rqρk

´

1´e´pµF ´p1´rqρkqps`mτq

µF ´p1´rqρk ´ 1´e´µM ps`mτq

µM

¯

˙ˆ

mhigh
M

mhigh
F

˙ȷ

,
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that is:

Λnp`mτe
mµSτ ` Λnp`m´1τe

pm´1qµSτ ` ¨ ¨ ¨ ` Λnpτ `MSpnpτq

ě
1

γ

ˆ

1

k
´ 1

˙

eµSps`mτq ˆ

„ˆ

e´µM ps`mτq
rρk

µM ´ µF ` p1 ´ rqρk

`

e´pµF ´p1´rqρkqps`mτq ´ e´µM ps`mτq
˘

˙ˆ

Mpnpτq

F pnpτq

˙

`

ˆ

1´e´µM ps`mτq

µM

rρk

µM ´ µF ` p1 ´ rqρk

´

1´e´pµF ´p1´rqρkqps`mτq

µF ´p1´rqρk ´ 1´e´µM ps`mτq

µM

¯

˙ˆ

mhigh
M

mhigh
F

˙ȷ

.

From the fact that
µF ´ p1 ´ rqρk ď µF ď µM ď µS ,

one deduces that the right-hand side of the previous formula is increasing with respect to s. Therefore,
it is fulfilled for any s P p0, τ s iff it is fulfilled for s “ τ ; that is iff

Λnp`mτ ě ´MSpnpτqe´mµSτ ´

m´1
ÿ

i“0

Λnp`iτe
´pm´iqµSτ `

eµSτ

γ
ˆ

„

1 ´ k

k
e´µM pm`1qτMpnpτq

`
rρp1 ´ kq

µM ´ µF ` p1 ´ rqρk

´

e´pµF ´p1´rqρkqpm`1qτ ´ e´µM pm`1qτ
¯

F pnpτq

`
1 ´ k

k

1 ´ e´µM pm`1qτ

µM
mhigh

M

`
rρp1 ´ kq

µM ´ µF ` p1 ´ rqρk

ˆ

1 ´ e´pµF ´p1´rqρkqpm`1qτ

µF ´ p1 ´ rqρk
´

1 ´ e´µM pm`1qτ

µM

˙

mhigh
F

ȷ

holds. One recognizes condition (37). The proof of Theorem 10 is then achieved as for [5, Theorems 6
and 7].
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