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ABSTRACT

Remotely sensed imagery is a valuable source of data for studying barchan morphology. How-

ever, manual methods of data extraction constrain both the spatial and temporal resolution of

studies because they are time consuming to carry out. Therefore, to effectively use the increasing

availability of remotely sensed imagery, novel methods need to be developed that can extract the

desired data from imagery automatically. Convolutional Neural Networks (CNNs) have shown

promise in identifying landforms from imagery, but its suitability for barchan research remains

untested. Since CNNs are strongly influenced by the texture of the image, it can be questioned

whether the classification is based on the image’s texture (which can vary due to solar angles

and atmospheric disturbances) or the geometry of the landform. Additionally, deviations in

shape and other morphometric properties can manifest as subtle alterations to the barchan’s

geometry. This poses a challenge for CNNs which have difficulty in distinguishing between simi-

larly shaped landforms. Using a small sample of dunes from the Kunene region in Namibia, it is

shown that CNNs can: distinguish between different morphologic classes of barchans in the ab-

sence of image texture with accuracies exceeding 80%, and distinguish between similarly shaped

landfroms. When used along with methods of barchan outline extraction, a suitably trained

CNN can automatically extract barchan morphologic data from remotely sensed imagery. This

can increase both the temporal and spatial resolution of barchan research.
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Research Outputs

Journal Articles

During the course of this study two peer reviewed articles have been published along with five

oral conference presentations at both a national and an international level. A list of these is

provided below. Additionally, the portions of the thesis which they relate to are indicated. For

both articles and presentations, the material covered is not directly copied from the thesis but

involves a reworking of the data to fit the topic of the article or presentation.

1. Van der Merwe, B.J., 2021: The relationship between barchan size and barchan mor-

phology: a case study from Northern Namibia, South African Geographical Journal, 103,

119 – 138..

This article covered the following aspects of the study:

(a) It provides a description of the wind regime of the study site (§5.2).

(b) It formalises the concept and method of bilateral asymmetry. This was needed to

create suitable labels for training data and to develop suitable tasks (§1.5).

(c) It describes the morphometric parameters of the barchans within the study site (§6.2).

This is needed in order to prepare the data for use in a CNN (§1.5).

(d) It adds supporting evidence on the influence of size on barchan asymmetry (§2.4.5).

2. Van der Merwe, B., Pillay, N., and Coetzee, S., 2022: An application of CNN to classify

barchan dunes into asymmetry classes, Aeolian Research, 56, 100801.

This article covered the following aspects of the study:

(a) It provides a summary of the different measurements carried out on barchans. Such

a summary has not yet been published in the barchan literature. It also forms part

of the motivation for the development of the research tasks (§1.5).

(b) It motivates for the use of the different CNNs that are used in this study (§5.10).

(c) It provides details on how the models are constructed, trained, and evaluated (§5.9).

ii

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



iii

(d) It provides and contextualizes the results of four out of the six tasks: barchan shape,

side of elongation, magnitude of elongation, and bilateral asymmetry (§6.4.1, §6.5.1,

§6.8.1, and §6.9.1).

Conference Presentations

1. Using Geometric Morphometrics to Quantify Barchan Shape from Satellite Imagery, Oral

Presentation, South African Association of Geomorphologists (SAAG) 2015 Conference,

19-20 September, Sani Mountain Lodge, Lesotho.

This presentation introduces the idea of using geometric morphometrics (GM) as a method

for describing barchan shape. GM is a central part of calculating the bilateral asymmetry

used in this study (§5.7.6).

2. Barchan shape as an aid to process explanation: An historical overview, Society of South

African Geographers (SSAG) centennial conference 2016, 25-28 September, Stellenbosch,

South Africa.

This presentation reviews the different approaches to describing the shape of barchan

dunes. It formed the foundation upon which the more detailed investigation of barchan

shape description (§2.2.2) is built.

3. A bibliometric study of the role of artificial intelligence in geomorphology, Oral Presen-

tation, South African Association of Geomorphologists (SAAG) 2017 Conference, 25-28

July, University of Swaziland, Kwaluseni, Swaziland.

In this presentation, an overview of the use of artificial intelligence within geomorphology

was presented. While it was not specifically focussed on AI, it formed a starting point

upon from which §4.2.1 was developed.

4. The performance of different CNN architectures on barchan asymmetry classification,

Webinar Presentation, International Association of Geomorphologists, IAG Webinar Africa,

2 March 2021.

The results of the CNN on classifying barchan asymmetry was presented for four out of

the six tasks (Chapter 6).

5. Classifying barchan shape and asymmetry using convolutional neural networks, Oral Pre-

sentation, Society of South African Geographers & Southern African Association of Geo-

morphologists 2021 Joint Biennial Conference (6-8 September).

The results of the CNN on classifying barchan asymmetry was presented for four out of

the six tasks (Chapter 6).
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1.2 Problem Background

The shape of a landform contains information on the functionality, composition and genesis of

that landform (Minár and Evans, 2008; MacMillan and Shary, 2009). For barchans, studies

have found potential links between the shape, or asymmetry, of the dune and environmental

variables associated with the genesis, composition, and processes operating on the dune (Table
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Category Variable Example Study

Processes
Winds Bourke (2010)
Landform transition Tsoar and Parteli (2016)
Sediment Zhang et al. (2014)

Genesis

Sediment supply Parteli et al. (2014)
Collisions Lv et al. (2016)
Topography Parteli et al. (2014)
Wind regime Bourke (2010)

Composition Soil conditions Zhang et al. (2018)

Table 1.1: Variables that have been linked to either the shape and asymmetry of a barchan, or to changes in the shape
or asymmetry. A more detailed overview is provided in Chapter 2.

1.1). This suggests that it is possible, in principle, to infer these variables based on the analysis

of a barchan’s shape. This is, admittedly, an oversimplification of reality but this approach has

been used on Mars where environmental data is limited (Hayward et al., 2007; Gardin et al.,

2012; Bourke and Goudie, 2009). The interpretative value of barchan shape and asymmetry is

expanded upon in Chapter 2. Aside from interpreting the environment on planetary surfaces,

more data on barchan morphology can also contribute to an improved understanding of barchan

processes (Bourke and Goudie, 2009). For example, the different barchan width and height

relationships that are present within the literature (Hesp and Hastings, 1998) suggest that a

more useful generalization can be achieved when using a more diverse data set.

It is, therefore, evident that increasing the sample size can lead to improvements in under-

standing. This stems from both improved generalizations based on statistical methods (Richards,

1996) and from improvements in the predictive availability of geomorphological models (Hjort

and Marmion, 2008). However, there are challenges associated with increasing the sample size.

Data on shape can either be collected through field visits (e.g. Elbelrhiti, 2012), or by using

remotely sensed imagery (see Hugenholtz et al., 2012). Field work provides valuable data but,

unfortunately, is very time consuming and expensive (Azzaoui et al., 2020; Parteli et al., 2014;

Moosavi et al., 2014). Extracting data from remotely sensed data can overcome some of these

constraints. Continuous technological advancement has led to an increase in the amount of

available remotely sensed data (Maggiori et al., 2017; de Lima and Marfurt, 2020; Boulila et al.,

2021; Kattenborn et al., 2021). This makes it possible to collect data on barchans faster and

with less cost than conventional field visits. However, even though data can be more rapidly

collected than with field surveys, the extraction of morphological data from remotely sensed

imagery is still dominated by manual methods (Maxwell et al., 2020). Therefore, it is still a

time consuming task (Gafurov and Yermolayev, 2020; Aydda et al., 2020; Azzaoui et al., 2020).
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This is particularly problematic when the scales of observations are large (Parteli et al., 2014)

or when the frequency of observations is high (Azzaoui et al., 2019).

This has led to the development of automated data extraction methods. These methods

attempt to combine the interpretive abilities of a human analyst with the processing volume of

automated systems (i.e. computer software). Earlier studies have been successful in automati-

cally extracting landform data for a variety of different landforms. These studies used techniques

such as object based image analysis (e.g. Vaz et al., 2015) and machine learning algorithms, such

as Convolutional Neural Networks (CNNs) (e.g Carbonneau et al., 2020), to rapidly and accu-

rately extract feature information from imagery. In the case of barchans, however, little work has

been done. Azzaoui et al. (2020) used AlexNet (a type of CNN) to detect barchans and barchan

collisions in high resolution imagery. Rubanenko et al. (2021) combined image segmentation

techniques with a mask regional CNN to detect and outline barchan dunes on Mars. Other

studies have also placed emphasis on detecting barchans and generating outlines (Azzaoui et al.,

2019; Dakir et al., 2016) although these studies did not make use of neural networks. Although

progress has been successful on detecting and isolating barchan dunes in imagery, it remains to

be seen whether CNNs are capable of extracting morphological information about the barchans.

1.3 Problem Statement

It has been demonstrated that CNNs can be used to delineate barchans from remote sensing

imagery, however, it remains to be shown that they are capable of extracting usable morpho-

metric data from individual dunes. This is a necessary step in order to effectively use remote

sensing big data to drive data intensive research on barchan dynamics.

1.4 Research Aim

The aim of this research is to determine if barchan shape and asymmetry information can be

automatically extracted by a CNN from a simplified image of a barchan and, if so, how the

performance of the network can, potentially, be enhanced. It is important to emphasise that

this project is a proof of concept. It should not be viewed as complete model that can extract

data from any image of a barchan. To achieve this would require a substantial investment of

time and resources. However, that being said, it is argued that before large programs should

be implemented, small–scale trials should be conducted in order to assess the feasibility of the

project. It is this need that the present study seeks to fulfill.

The type of shape data to be extracted must be usable in conventional studies on barchan

morphology in order to ensure its relevance to the large aeolian geomorphology community.

Barchans were selected for several reasons:
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1. The majority of studies emphasise identifying the location of features (e.g. Palafox et al.,

2017; Huang et al., 2018; Robson et al., 2020), or detecting the sub-categories of a landform

(Gao et al., 2021), leading to a relative deficit in research focusing on classifying landform

attributes such as shape.

2. Previous studies (Dakir et al., 2016; Azzaoui et al., 2019) have already shown promise in

extracting the outlines of barchans from imagery.

3. Barchans are relatively simple dunes (Sauermann et al., 2000; Qian et al., 2021) with

a similar overall planform, but considerable amounts of variations in within this form.

Since high levels of similarity can pose a challenge for CNNs (Cheng et al., 2018; Li and

Hsu, 2020), the classification of barchans provides a suitable benchmark against which the

performance of CNNs can be assessed.

4. Barchan asymmetry serves a proxy for several important environmental variables: lo-

cal wind regime (Lv et al., 2016; Zhang et al., 2018), geomorphologically effective winds

(Bourke, 2010), local sediment dynamics (Bourke and Goudie, 2009; Parteli et al., 2014)

planetary soil conditions (Zhang et al., 2018), the presence of dune collisions (Wang and

Anderson, 2018; Tsoar and Parteli, 2016), and inclined topography (Bourke, 2010). Al-

though asymmetry should not be the sole source of information, it is nonetheless useful in

cases where other data may be lacking.

5. Barchans are considered one of the most studied types of dunes (Lv et al., 2016; Tsoar and

Parteli, 2016; Livingstone et al., 2007) and a considerable amount of literature is already

in place regarding the causes of asymmetry.

6. The widespread distribution of barchans on Earth (Goudie, 2020; Breed and Grow, 1979)

increases the likelihood of obtaining good quality imagery using Google Earth TM.

7. Due to the migratory nature of barchans they are considered a natural hazard (Hamdan

et al., 2016; Aydda et al., 2020) that pose a risk to residential areas (Moosavi et al., 2014)

and irrigation schemes (Abdu, 1976). Although Bourke (2010) found that asymmetry

does not impact barchan migration, an image of dune calving, where new barchans form

at the horns of mature barchans, provided by Worman et al. (2013) clearly shows calving

associated with an asymmetrical barchan.

Although there are many types of neural networks, CNNs have been identified as a useful

tool in studying remote sensing imagery (Shakya et al., 2021; Bhuiyan et al., 2020). CNN

models serve as benchmarks for image classification tasks due to their efficiency and success
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rate (Kalita and Biswas, 2019; de Lima and Marfurt, 2020). These models recognise objects by

identifying the spatial features that best describe a feature (such as edges, corners, and textures)

with a target feature (Kattenborn et al., 2021). This makes it possible for CNNs to identify

features based on their shape (Kubilius et al., 2016). There is some uncertainty, however, about

whether they can relate distant features of an image to each other or whether it is restricted

to local considerations only (Baker et al., 2018, 2020). Nevertheless, CNNs are useful tools in

geomorphology for identifying features within the landscape (Gao et al., 2021).

1.5 Objectives

The following objectives are needed in order to evaluate the suitability of CNNs to classify

barchan asymmetry:

1. Collate data on the type of morphometric data that is typically used within the literature.

2. Develop tasks that cover a wide range of barchan morphological investigations with an

emphasis on those that rely on barchan shape and asymmetry.

3. Identify the various hyperparameters that are known to significantly influence the perfor-

mance of CNNs.

4. Select a suitable site that meets the following criteria: it must have high resolution imagery

so that small barchans can be clearly delineated and it must contain isolated barchans.

5. Prepare the imagery obtained from the site in order to remove the potential textural bias

and to meet the input requirements of the CNNs.

6. Develop and train several different CNN architectures that encompass the ”from scratch”

and transfer learning approaches. The former consists of variations in model architecture

using the hyperparameters identified in objective 3.

7. Evaluate the performance of each model against a defined set of criteria.

8. Interpret the results and make recommendations regarding the use of CNNs in barchan

research.

1.6 Related Work

A similar comparative study was carried out by de Lima and Marfurt (2020) who also compared

CNNs trained ”from scratch” with those that were pretrained on a different dataset. They found

that pretrained CNNs performed better than CNNs that were trained by the user. The present
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study differs from this study in key aspects. First, rather than subsetting an ”established”

network to create shallower networks (as was done by de Lima and Marfurt (2020)) completely

customized shallow networks are created that do not, necessarily, resemble any established net-

work. Second, the focus in the present study is shifted away from modifications to the optimizer,

which was kept the same for all ”from scratch” networks, to the modification of hyperparam-

eters. The difference is substantial. By altering the optimizer, the strategy that is followed to

reduce the loss function of the network, the primary means through which the network learns,

is modified. The types of features learned by the network is, for the most part1, kept unaltered.

Modifying the hyperparameters alters the capacity of the model to learn features that may aid

in successful classification. Therefore, it is a shift away from the learning process itself, towards

generating the features used during the learning process. A third difference is the application.

The work of de Lima and Marfurt (2020) is aimed at scene classification. Conceptually, this

is similar to the goal in the present study. The difference lies in the scenes that are intended

to be classified. In the earlier study, the scenes were substantially different from each other

(e.g. airplanes vs forest). In the present study, all of the images belong to the same class, i.e.

barchans. The difference, therefore, is in distinguishing between differently shaped barchans

rather than distinguishing a barchan from another unrelated feature class.

Although not directly related to the present work, Cheng et al. (2018) compared the clas-

sification performance of custom regulizer to both transfer learning and CNN with fine tuning.

This work difference from the present work since they modified the learning metric itself. This

was achieved by creating a metric regularization which resulted in a substantial improvement of

the network without requiring the architecture to be altered (Cheng et al., 2018). In the present

study, no customised regularizations are developed and the architectures are the variables that

are modified.

1.7 Outline of Document

The structure of the document is represented in figure 1.1.

Chapter 2 Barchans:

This chapter provides background information on barchan dunes. It covers aspects such

as the distribution, origin, general morphology, and sediment dynamics of barchan dunes.

It also presents the different methods that have been used to describe barchan morphology

(Objective 1), the different causes of asymmetry (Objective 2), and a section discussing

the automatic extraction of barchans from images.

1Because of the stochastic nature of barchans it cannot be said that the capacity is identical in all cases.
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Thesis

Introduction (Ch. 1)

Background on barchans, their shape
and their asymmetry (Ch. 2)

Quantifying the influence of multiple
manifestations of asymmetry (Ch. 3)

Background of Convolutional
Neural Networks (CNNs) (Ch. 4)

Method followed
(Ch. 5)

Results and
Discussion (Ch. 6)

Conclusion (Ch. 7)

Appendices

AI Learning
Processes

Artificial Neural
Networks (ANNs)
(Appx. B)

Convolutional Neural
Networks (CNNs)
(Appx. C)

Barchan Shape
Nomogram (Appx. A)

Figure 1.1: An outline of the structure of the thesis. The solid arrows indicate the main parts of the thesis while the
dashed arrows indicate conceptual relationships between different chapters.
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Chapter 3 Bilateral Asymmetry:

Since no existing method is available to evaluate the combined influence of several different

types of asymmetry (e.g. elongation combined with lateral extension) there is a need to

develop a method that can carry out this form of analysis. The conceptual basis, and

mathematical treatment of this process, termed bilateral asymmetry, are discussed in this

chapter. It forms the basis on which the one of the tasks (Objective 2) is based.

Chapter 4 Convolutional Neural Networks:

Provides general background on Convolutional Neural Networks. The topics covered in-

clude the characteristics of a CNN that differentiate it from other types of neural network,

the data flow within a CNN, and how a CNN improves its performance through train-

ing. The different hyperparameters that play a role in the perfromance of a CNN are also

discussed (Objective 3).

Chapter 5 Method:

This chapter describes the site that was selected as the source of the imagery (Objective

4) in terms of its location, general topography, and wind regime at the time of image

acquisition. The methods used to prepare the imagery is then discussed (Objective 5).

The chapter concludes with a section describing how the architectures of the different

models, the training parameters, and the evaluation criteria that is used to assess model

performance (Objective 6).

Chapter 6 Results and Discussion:

Here, the results of the model evaluation are presented (Objective 7) along with their

respective interpretations (Objective 8). For ease of interpretation, this chapter combines

the results and discussion sections. Each task identified in Objective 2 is discussed sepa-

rately with their own ”results” and ”discussion” subsections. The chapter concludes with

a holistic overview that focuses on common themes related to CNNs that were identified

during the study.

Chapter 7 Conclusion:

The concluding chapter of the thesis provides a synopsis of the research aim, the method

followed, and the results obtained. The significance of the work is then contextualised

within the barchan research community and recommendations are made regarding future

research efforts. This chapter also includes a section on the new contributions made

through this research.
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Chapter 2

Barchans

2.1 Overview

Automatically

Detected From

Imagery

(§2.5)

Barchans

Morphology

(§2.2.1)

Distribution

(§2.2.3)

Shape

(§2.3)

Asymmetry

(§2.4)

Wind-Sediment

Interactions

(§2.3.1)

Dimensions

(§2.2.2)

have a

distinct

have a

wide

attribute of

attribute of

result

from

described

using

can be

This chapter provides a background on barchan dunes as landforms. Their distribution,

general morphology, and emergence from an initial pile of sand is briefly discussed. In spite of,

or potentially because of, their relatively simple shape, a number of different strategies have

been used to describe their morphology (i.e. shape). A brief overview of these is provided. The

9
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CHAPTER 2. BARCHANS 10

chapter then proceeds to discuss barchan shape and asymmetry in more detail, with a focus on

the a
c ratio, and the main causes of asymmetry and the effect they have on barchan shape.

2.2 Introduction

2.2.1 Morphology

Barchans1 are a type of dune (Parteli et al., 2014; Zhang et al., 2018; Bourke and Goudie,

2009; Qian et al., 2021; Tsoar and Parteli, 2016; Worman et al., 2013) (Figure 2.1). Some key

properties of barchans can be extracted from this classification. First, barchans are simple dunes

which, according to the classification scheme by Tsoar (2001), means that individual barchans

are spatially separated from other barchans. This view of barchans is widely present within the

literature (Sauermann et al., 2000; Qian et al., 2021; Barnes, 2001; Bourke and Goudie, 2009).

Second, barchans originate due to surface or aerodynamic roughness (in principle the latter would

result from the former). In this classification, it is used to describe dunes that are unvegetated

and, essentially, are self-accumulating Tsoar (2001). Barchans are also classified as transverse

dunes (Bishop et al., 2002) which are dunes that are formed roughly perpendicular to the

dominant winds within a region and are mobile (Bourke and Goudie, 2009; Bishop et al., 2002;

Worman et al., 2013) meaning that they migrate. This migration has important implications for

asymmetry (§2.4). Therefore, it is to be expected that there exists a strong correlation between

the environmental factors and the shape of the barchans, but also some form of feedback between

the barchan and itself since the barchan is self-accumulating.

The main morphologic components of a barchan dune are the stoss slope, the left and right

horns, the slip face, and the brink line (Figure 2.2). The stoss slope captures sediment from

upwind sources (Worman et al., 2013). Erosion occurs along the stoss slope through wind action

(Lv et al., 2016; Elbelrhiti, 2012; Zhang et al., 2014) which transports sediment to the crest/brink

of the dune and the horns. The brink line represents the beginning of the slip face and introduces

a sharp flow separation in the airflow across the dune (Herrmann et al., 2005; Zhang et al., 2014).

This flow separation results in the localised accumulation of sediment (Elbelrhiti, 2012; Wiggs,

2013) which, when the angle of repose is exceeded, leads to gravitational collapse and avalanching

of sediment down the slip face (Lv et al., 2016; Pelletier et al., 2015; Zhang et al., 2014). This

sediment is then incorporated into the main body of the dune as the barchan migrates (Tsoar,

2001). Sediment on the horns is derived largely from the periphery of the upstream region

(Alvarez and Franklin, 2018; Durán et al., 2010) and can be significantly coarser than the rest

1The term ”barchan” is believed to be of Russian or Turkic origin (Lewin, 2015). Other terms encountered
in the literature include: medanos (Von Tschudi, 1847), burkhan (McMahon, 1906), barkhan (Lessar, 1885),
barchane (Cornish, 1897), barcan (Melton, 1940), and lunar dune (MacDougal and Sykes, 1907).
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CHAPTER 2. BARCHANS 12

1

2

3

4
5

Figure 2.2: A simplified representation of the main morphological components of a barchan dune: Stoss slope (1),
slip face (2), right horn (3), left horn (4), and the direction of the prevailing wind (5). The slip face is
separated from the stoss slope by the brink line. The line tangent to the brink line is used as a reference
point for identifying the horns.

of the dune in cases where the horn is elongated (Barnes, 2001). The low topographical profile

of the horns prevents the formation of a slip face (Zhang et al., 2014) which, in turn, prevents

sediment from being trapped (as is the case on the slip face). This results in sediment being

lost to downwind regions from the tips of the horns (Tsoar, 2001; Elbelrhiti et al., 2008). These

sediment pathways are illustrated in Figure 2.3.

U

U

U

S

Hl

B

Hr

Tl

Tr

D

D

L

Figure 2.3: Sediment pathways along a barchan dune: U = upwind sources, S = stoss slope, B = brink line, Hl =
left horn, Hr = right horn, Tl = left horn tip, Tr = right horn tip, L = slip face, and D = downwind
sediment sources. The gray boxes represents upwind sources of sediment while the gray diamonds represent
downwind sediment sinks. The solid line represents wind transported sediment, the dotted line represents
gravitational processes, and the dash-dot line represents sediment that is contained within the barchan
and exposed later as the barchan migrates.
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CHAPTER 2. BARCHANS 13

The preceding is relevant to this research in several ways. First, it identifies barchans as

individual landforms. This makes it easier to isolate individual forms that can be provided to

the CNN for classification. In cases where the barchans are merged, a separation line becomes

subjective with the obvious correct interpretation (Hugenholtz et al., 2012). This adds an addi-

tional layer of complexity for the CNN that is not warranted at this early stage of development.

Second, it establishes the sediment dynamics that occur on a barchan dune. This has important

implications for the development of asymmetry (§2.4).

2.2.2 Dimensions

A number of different approaches have been used to measure barchan dimensions (Figure, 2.4

and Table 2.1). Reasons for these different approaches are not expressly stated in the literature.

Instead, it appears that the selection of method is largely based on the data required by the

study. The approaches differ in both the number of measurements used to describe the barchan

and the points where these measurements are made. It is also reasonable to assume that the

larger the diversity of approaches that can be automated, the more useful an automated system

will be to the barchan research community. The approaches differ from cases where only a single

measurement is made (e.g. 1a) to nine measurements being made (method 9). The deciding

factor is the goal of the measurement where fewer measurements tend to be used in a descriptive

fashion while more measurements are used when more detailed morphological parameters are

desired.

There is, unfortunately, a substantial disadvantage associated with this diversity. Because

measurements are not guaranteed to be between common points, it does introduce an element of

error when comparisons are made between studies. For example, horn length can be expressed

either using the brink line as a reference (Wang et al., 2007; Burrough et al., 2012), or using

the base of the slip face as a reference (e.g Franklin and Charru, 2011; Ma et al., 2014). Also,

the distance between the horns can be expressed as the straight line, i.e. Euclidean, distance

between the tips of the horns (Norris, 1966) or the perpendicular distance between the tips

(Sauermann et al., 2000). The magnitude of error that this introduces is not evaluated in this

study and, therefore, its impacts on comparative research is unknown.

Bearing the limitations of such comparisons in mind, an analysis of the published literature

(Bourke et al., 2009; Jimenez et al., 1999; Dong et al., 2000; Wang et al., 2007; Hamdan et al.,

2016; Embabi, 1982; Al-Dousari and Pye, 2005; Sauermann et al., 2000; Barnes, 2001; Abdu,

1976; Finkel, 1959; Al-Harthi, 2002; Sagga, 1998; Lorenz et al., 2013; Long and Sharp, 1964;

Norris, 1966) indicates that barchans occur in a variety of different sizes (Figure 2.5 and Table

2.2). Several key points can be observed. There is a considerable variation between different
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1a 1b 1c 2a 2b

2c 2d 2e 2f 3a

3b 3c 3d 3e 3f

4a 4b 4c 5a 5b

6a 6b 6c 6d 8

9

Figure 2.4: Different approaches to recording barchan dimensions. The integer represents the number of measurements
that is made on the dune and the character is used to distinguish between the different approaches based
on the sequence they were encountered in the literature.
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CHAPTER 2. BARCHANS 16

Table 2.2: Means and standard deviations of published barchan dimensions. T = Terrestrial Barchans, M = Marine
Barchans.

Planet Environment Dimension Mean (m) Standard Deviation

Earth M Dune Width 337.66 603.45
Earth M Length of Stoss Slope 878.68 514.39
Earth M Total Length 78.33 92.25

Earth T Dune Width 130.66 108.64
Earth T Length of Stoss Slope 100.49 91.65
Earth T Total Length 56.59 56.26

Mars T Dune Width 127.79 32.29
Mars T Total Length 180.48 39.52

regions in barchan dimensions. The barchans in Peru appear to be smaller than the barchans

in Namibia. The variability in barchan sizes within regions is also not consistent. For example,

the barchans of Peru have a narrower range of sizes than the barchans from Egypt. On Earth,

terrestrial barchans are substantially smaller than marine barchans. Lastly, barchans on Mars

tend to be larger than the barchans on terrestrial environments here on Earth.

This section contributes in two key ways. First, it provides a brief overview of the different

methods that have been used to describe the morphology of barchans (i.e. it completes Objective

1). As stated earlier, the goals of this study is to evaluate the performance of CNNs. In order for

this to be achieved, suitable labels need to be generated that describe the different morphological

categories. These labels, in turn, are obtained based on the methods illustrated in this section.

A second contribution is the description of the different sizes of barchans. This is needed in

order to properly contextualise the role of size in barchan asymmetry (§2.4.5).

2.2.3 Distribution

Barchans have been identified in a number of different countries around the world (Table 2.3).

Additionally, they have been observed on Mars (Bandeira et al., 2013; Chojnacki et al., 2011;

Cardinale et al., 2012), on Saturn’s moon Titan (Ewing et al., 2014; Radebaugh et al., 2010),

and on the dwarf planet Pluto (Parteli and Pöschel, 2017). Barchans can also be found along

the sea floor (Daniell and Hughes, 2007; Lonsdale and Malfait, 1974; Ma et al., 2014).

Within these regions, barchans also exhibit local spatial groupings in the form of dune

fields (Durán et al., 2009; Worman et al., 2013; Elbelrhiti et al., 2008; Sauermann et al., 2000).

Both the size and spatial distribution of barchans differ between dune corridors (Elbelrhiti et al.,

2008). Spatial distribution patterns can also differ within a given dune field (Embabi and Ashour,

1993) but appears to be non-random (Durán et al., 2009; Bishop, 2007). A given corridor can

also contain barchans of varying sizes (Hugenholtz and Barchyn, 2012). Furthermore, there

does appear to be a relationship between the density and size distribution of dune within a
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CHAPTER 2. BARCHANS 19

dune field with narrow size distributions being associated with dense fields and a larger size

distribution occurring in sparse fields (Durán et al., 2009). The spatial proximity of upwind

barchans can influence the shape of downwind barchans (Parteli et al., 2014; Lv et al., 2016),

however, it remains to be examined how the spatial organisation of barchans affect the types of

morphologies that are present within the dune field.

The implications of the barchan distribution on the present research is as follows: it provides

data on the distribution of barchans around the globe which, when combined with the dimension

data, help identify regions where suitable satellite imagery may be found. It also highlights a

potential application of using CNNs in barchan research. By combining the techniques developed

in this study with those used to extract barchans from satellite imagery, it will be possible to

investigate the relationship between spatial organisation of barchans within a dune field and the

accompanying range of morpholgies that are present. This idea is explored further in §6.4.1.

2.3 Barchan shape

For the purposes of this study, it is important to have some understanding about the processes

that lead to the development of the barchan’s characteristic shape. As will be seen later in the

section on asymmetry (§2.4), the processes that result in the development of asymmetry are, in

effect, the same types of processes that lead to the development of the barchan. This is because,

fundamentally, any barchan shape or asymmetry is merely the result of sediment trasnport

along different pathways or with different intensities. Since the envisaged application of this

research is focused on extracting shape information with the goal of inferring environmental

characteristics, it must first be demonstrated that the environment is a determining factor on

the shape (or asymmetry) of a barchan.

2.3.1 Wind and Sediment Interaction

Several different environmental factors need to be in place in order for barchan genesis to occur:

1. The winds need to be either unidirectional (Elbelrhiti et al., 2008; Barnes, 2001; Bourke,

2010; Durán et al., 2010; Sauermann et al., 2000) or narrowly bimodal (Bourke and Goudie,

2009) with low directional variability Wiggs (2013).

2. The region must be sediment limited (Barnes, 2001; Bourke, 2010; Bourke and Goudie,

2009; Durán et al., 2010; Sauermann et al., 2000; Tsoar, 2001; Wiggs, 2013; Hugenholtz

and Barchyn, 2012) on a non-erosive surface (Barnes, 2001; Tsoar, 2001) with an upwind

sediment source (Elbelrhiti et al., 2008).
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Sand patch

Proto-barchan

Barchan

Figure 2.6: Longitudinal profiles for barchan evolution from an initial sand patch.(Adapted from data published in
Elbelrhiti (2012)).

3. The region needs to have low precipitation and sparse vegetation (Barnes, 2001; Bourke

and Goudie, 2009).

As dunes, the genesis of barchans involve the interaction between granular matter and fluid

flow (Alvarez and Franklin, 2018; Durán et al., 2010). Barchans can form from an initial ac-

cumulation of sediment (Lv et al., 2016; Qian et al., 2021; Engel et al., 2018; Kocurek et al.,

1992) (Figure 2.6). The dynamics associated with sand patches are, as yet, not properly under-

stood (Baddock et al., 2018). These sand patches are sub-elliptical to sub-rectangular in shape,

possess a distinct rounded upwind boundary with a less distinct lee boundary2, and their long

axis is orientated along the direction of dominant winds (Lancaster, 1996). Continuous wind

action transports sediment from the windward slope of the dune (Elbelrhiti, 2012; Zhang et al.,

2014) and deposits it on the crest of the dune (Lv et al., 2016; Wiggs, 2013). As this material

continues to accumulate, the angle of repose is eventually exceeded (Lv et al., 2016; Wiggs,

2013). This leads to the formation of a slip face (Zhang et al., 2014) as a result of gravitational

collapse and marks the transition from a protodune into a barchan dune (Elbelrhiti, 2012). It

is worth noting that the angle at which collapse occurs is not constant and is influenced by the

wind speed (Pelletier et al., 2015).

2.3.2 Emergence of Barchan Shape

In the previous section, the emergence of the slip face is discussed. A second key characteristic

of barchan dunes is the presence of horns. The development of a barchan’s horns are a direct

consequence of interaction between the wind and the geometry of the sand pile. Consider the

situation depicted in Figure 2.7 which represents a conical sand pile at an angle of repose (taken

here as 34◦). Although it is unlikely that a sand patch or sand pile in nature will have such a

shape3, this configuration has been used in studies dealing with barchan shape simulation (e.g.

2The lee boundary, in this context, refers to the region of the barchan dominated by the gravitational collapse
of accumulated sediment.

3Sand patches that evolve into barchans are subelliptical to subrectangular in shape (Lancaster, 1996).
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a)

a

b)

b

c)

c

d)

d

Figure 2.7: Sections through a cone shape sand pile. The curves on the right represents the cross sections of the sand
pile in the left of the image.

t0 t1 t2 t3

Figure 2.8: The shape evolution from an initial pile of sand (t0) to a barchan dune (t3) (adapted from Durán et al.
(2010)). At t1 the slip face merges and the horns of the barchan start elongating at t3. The wind direction
is indicated by the arrow above the image.

Wippermann and Gross, 1986; Alvarez and Franklin, 2018; Hersen et al., 2004) and as such can

provide some insights.

Moving from the flanks of the sand pile towards the central peak (i.e. slice a to slice d)

the area underneath each slice increases. In three dimensions, this will equate to an increase

in volume. A larger volume is associated with a larger mass which, in turn, is associated with

a larger reconstitution time (Wiggs, 2013). As a result, the lateral flanks of the barchans are

displaced faster than the central portion4 leading to the development of the barchan’s horns.

Additionally, as the winds moving over the windward slope of the dune get displaced towards

the horns, local acceleration occurs (Tsoar, 2001) leading to further displacement of the horns

downwind. A visual summary of the evolution of a barchan from an initial sand pile is given in

Figure 2.8.

4This has been documented as far back as the work of Forsyth (1876)
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a

c

a)

a

c

b)

Figure 2.9: Two different approaches in calculating the a
c
–ratio: a) expressing the distance between the horns perpen-

dicular to the longitudinal axis, and b) expressing it as the straight line distance.

2.3.3 Description of Barchan Shape

The a
c ratio (Figure 2.9) has been used as a descriptive tool in several studies on barchans

(Hamdan et al., 2016; Bourke and Goudie, 2009; Barnes, 2001; Boulghobra and Dridi, 2016;

Lorenz et al., 2013; Long and Sharp, 1964; Chojnacki et al., 2011; Norris, 1966)5. It relates the

length of the stoss slope to the distance between the tips of the horns. The relationship between

these two variables is illustrated by the nomogram in figure 2.10. By connecting the measurement

obtained for the stoss slope (a) with the measurement of the distance between the horns (c),

the a
c–ratio, and its corresponding shape category, can be determined. Unfortunately, there is

some ambiguity in the original diagrams provided by Long and Sharp (1964), who developed

this method. Their use of a symmetrical barchan as an illustration creates uncertainty since the

distance between the horns can either be interpreted as the straight line distance between the

tips of the horns, or as the distance perpendicular to the central axis.

This ratio has been related to migration speed and sediment dynamics (Parteli et al., 2007).

Hamdan et al. (2016) found that there is an inverse relationship between migration speed and

the a
c ratio with smaller ratios migrating more rapidly than larger ratios. The work of Parteli

et al. (2007) found that as the sediment influx to a barchan increases, the dune transitions from

being slim to becoming fat. This can be demonstrated using the nomogram. Assuming that the

5There is an element of irony in this widespread use since the original authors considered their study to be a
“quick and dirty investigation”(Long and Sharp, 1964, :150)
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a 
(m

et
re

s)
c (m

etres)

fat

pudgy

normal

slim

c

a

Figure 2.10: A nomogram showing the relationship between the a and c dimensions of a barchan and its classification
as being either slim, normal, pudgy, or fat. This nomogram is based on the classification system developed
by Finkel (1959) and expanded upon by Bourke and Goudie (2009). In this example, a barchan with an
a–axis of 100m and a c–axis of 300m resulting in a classification into the slim category. A larger version
of this nomogram is available in Appendix A.
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c–axis remains constant, additional material that enlarges the a–axis, will result in a shift of the

line joining these two points towards the fat category. It must be noted that this is, admittedly,

an over-simplification since any additional material added to the stoss slope will alter the airflow

in that region. This could influence the lateral airflow as well which, in turn, can result in horn

displacement.

The determination of the shape of a barchan (as expressed in its a
c–ratio) is one of the tasks

that the CNN is expected to successfully complete. Therefore, it is important to know how this

value is calculated so that the labels to be used by the CNN can be properly assigned.

2.4 Barchan Asymmetry

As physical objects that cause increased relief, the interaction between barchans and a uniform

fluid flow results in the formation of regions of altered flow (Bauer, 2013). Alterations in fluid

flow are associated with changes in sediment transport capability and therefore the distribution

of granular material is modified. Since the shape of a dune is the result of the distribution of

granular material, any change in the distribution of granular material is also associated with a

change in shape. This change in shape does not have to be to the extent where a reclassification

of the dune is warranted, although this can happen in the case of barchans transitioning into

seif dunes (Tsoar and Parteli, 2016; Lv et al., 2016). However, this change in shape is often

associated with barchan asymmetry.

Symmetrical versions of barchans are not prevalent in nature (Parteli et al., 2014) and the

asymmetric version predominates on both Earth and Mars (Bourke, 2010; Lv et al., 2016; Tsoar

and Parteli, 2016; Zhang et al., 2018). Barchan asymmetry refers to several morphological

changes occurring on the dune. First, one horn can be extended in a downwind direction

(Bourke, 2010). Second, one horn can be wider than the other horn (Elbelrhiti et al., 2008).

Third, the lateral side of a barchan can be extended in the down-slope direction (Parteli et al.,

2014). Lastly, any combination of the preceding forms can be present to different extents. The

following sections will discuss these in more detail.

This section provides support for using asymmetry to interpret sediment processes which

forms part of the practical application of this research. If the relationship between process and

shape is understood, in the absence of equifinality (Haines-Young and Petch, 1983) and using

abductive reasoning (Inkpen, 2005), then it is possible to work ”backwards” and derive processes

from observed shape. Additionally, it also introduces the concepts associated with asymmetry

upon which the different tasks are based.
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2.4.1 Side of Horn Elongation

As mentioned earlier, one of the barchan horns can be elongated relative to the other (Parteli

et al., 2014; Zhang et al., 2018; Lv et al., 2016; Tsoar and Parteli, 2016; Barnes, 2001). These

changes are not consistently present for all dunes within the same dune field (in the sense that it

is always the same horn that is elongated) (Barnes, 2001) and both symmetric and asymmetric

barchans can be present within the same dune field (Abdu, 1976). Several factors have been

identified as causing this elongation: bimodal winds (Bagnold, 1954; Tsoar, 1984; Melton, 1940;

Bourke, 2010), topography (Parteli et al., 2014), collisions (Tsoar and Parteli, 2016; Zhang et al.,

2018; Boulghobra, 2016), modifications to upwind airflow (Barnes, 2001), and changes in the

direction of the prevailing wind direction (Simmons, 1956).

In terms of bimodal winds, three models have been proposed to explain this process (Figure

2.11). One model was proposed by Bagnold (1951). In this model, the barchans are aligned

along the gentler winds and it is a stronger secondary wind that causes the extension of one

of the horns. The extended horn is the one facing closest to the oncoming stronger wind. In

an alternate model, proposed by Tsoar (1984), barchans are orientated along the direction of

the strongest winds and it is the gentler secondary wind that causes the elongation of the horn

opposite the wind. The factor that determines which of these two models will be valid is the

angle between the primary and the secondary wind (Lv et al., 2016). A third model, which

has not been widely discussed in the literature, was proposed by Melton (1940). In this model

the barchans are not aligned to any particular wind and the extension of the horn is directly

downwind of the stronger and gentler winds with the magnitude of elongation depending on

which horn is elongated by which wind.

Asymmetry can also result from an asymmetrical sediment supply (Zhang et al., 2018; Parteli

et al., 2014; Bourke, 2010; Lv et al., 2016). Since barchans are not necessarily isolated features,

and therefore affected by surrounding dunes (Barnes, 2001), they do exist in a state of receiving

sediment from upwind sources and losing sediment to downwind sources (Figure 2.3). There are

two contrasting views with regards to limb elongation under these conditions. Lv et al. (2016)

states that the horn closest to the greater sediment supply will be elongated while Parteli et al.

(2014) demonstrates, based on computer simulations, that the limb opposite to the one receiving

the additional influx will be elongated (Figure 2.12). Considering that the additional influx will

increase the volume of material, and the extension of horns is related to the rate of sediment

displacement, it is more likely that the latter view will occur.

Bachan corridors are characterized by collisions (Hugenholtz and Barchyn, 2012). Barchans

are migratory dunes (Tsoar, 2001) and their rate of migration is inversely proportional to their
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a) b) c)

Figure 2.11: Asymmetry due to wind regime according to: a) Bagnold (1954), b) Tsoar (1984), and c) Melton (1940).
The thick arrow represents the dominant wind direction while the thinner arrow represents the secondary
wind. The coloured arrows show the asymmetry of the dunes in this example with blue representing
the lateral extension and red the extension of the horn in the downwind direction. Solid colour arrows
represent the largest value.

Region of
Increased
Sediment
Supply

Figure 2.12: Asymmetry that resulted from an asymmetrical sand supply. The shaded region represents the region
that is receiving the additional influx of sediment (adapted from Parteli et al. (2014)). The difference
in right and left lateral extension is indicated by the blue arrows, while differences in horn length are
represented by the red arrows. Solid lines indicate the larger value.
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l l l

Figure 2.13: Simulated outcomes of two barchan dunes with different amounts of lateral offset (l) (adapted from
Parteli et al. (2014)). The lateral extension of the resultant barchan is indicated by the blue arrows,
while the red arrows indicate the horn lengths. The solid arrows indicate largest values. As the value of
l increases, the resulting asymmetry increases.

height (Norris, 1966; Abdu, 1976; Sauermann et al., 2000; Worman et al., 2013; Wiggs, 2013;

Gay, 1999). Because a dunefield contains barchans of a variety of different sizes (Durán et al.,

2009; Momiji et al., 2002), the migration rates are unequal. Therefore, faster barchans can

”catch-up” to slower barchans resulting in collisions (Figure 2.13). These collisions lead to the

development of asymmetrical barchans (Parteli et al., 2014; Zhang et al., 2018; Bourke, 2010),

which can manifest as both an elongation of one of the horns and the lateral extension of the

resultant barchan.

2.4.2 Differences in Horn Width

Asymmetry in the context of horn width is understudied. It refers to a situation where the width

of the horns are unequal (Elbelrhiti et al., 2008) (Figure 2.14). Given that sediment is lost from

the horns (Tsoar, 2001; Hersen, 2004; Zhang et al., 2014) for potential intercept by downwind

barchans, this can have a great impact on the morphology of downwind barchans. The work

of Elbelrhiti et al. (2008) related the horn width to the amount of sediment flux between an

upwind dune and a downwind dune. Keeping the distances between these two dunes constant,

wider horns will result in an increase in the amount of sediment flux.
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Figure 2.14: An illustration of the concept of horn width asymmetry used by Elbelrhiti et al. (2008). In this example,
the right horn (red) is wider than the left horn (blue).

a) b) c)

Figure 2.15: Increase in barchan asymmetry associated with an increase in the inclination of the slope (adapted from
Parteli et al. (2014)). The surface tilt of the dunes are: a) 11.3◦, b) 19.8◦, and c) 26.6◦ and the
direction and magnitude of displacement is indicated by the arrows. The dashed line represents an
approximation of the longitudinal axis of the dune.

2.4.3 Lateral Extension of Barchan

The influence of topography in alternating the shape of barchans was first proposed by Finkel

(1959) who linked it to the lateral spread of barchans in Peru. Later studies have also agreed

that the local topography of the surface on which the barchan occurs can lead to asymmetry

(Zhang et al., 2018; Parteli et al., 2014; Bourke, 2010; Lv et al., 2016). In the case of an inclined

surface, computer simulations by Parteli et al. (2014) showed that sediment transport along the

downhill horn has an additional downhill component leading to an extension of the horn in that

direction. In contrast, any downhill movement of the upslope horn will be trapped by the slip

face resulting in no net downslope deformation (Parteli et al., 2014) . As the tilt of the surface

increases, so the level asymmetry observed also increases (Figure 2.15).
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2.4.4 Magnitude of Horn Elongation

The magnitude of horn elongation refers specifically to the differences in length between the

left and the right horn. The mechanisms by which this occurs is the same as those discussed

earlier (Section 2.4.1). Parteli et al. (2014) states that, provided the angle between primary

and secondary winds do not change6, the longer the duration of the secondary wind, the more

elongated a horn becomes. A similar explanation is given by Bourke (2010). Differing sediment

supply can also play a role where an increase in sediment supply can lead to the horn receiving

the additional influx becoming shorter than the horn without the additional influx (Parteli et al.,

2014), or the opposite way around according to Lv et al. (2016). Collisions can also manifest in

severe elongation of one of the horns where a smaller downwind barchan gets ”absorbed” by a

larger upwind barchan at one of its horns (Bourke et al., 2009). Bourke (2010) also discusses

how horns that are funelled through a gap in the topography can exhibit an elongated horn (i.e.

the horn that is being funnelled elongates relative to the other horn).

2.4.5 Influence of Size on Asymmetry

It has been shown that there is a potential relationship between the size of barchans and its

shape and asymmetry (van der Merwe, 2021). The mean shape of barchans tend to change as

the size of the barchan increases hinting at the possibility of barchan allometry. Boulghobra

(2016) also links increasing barchan size with increasing levels of asymmetry. However, Hesp

and Hastings (1998) state that barchans follow scaling laws that tend towards isomtery.

2.5 Automated Detection of Barchans

For reasons that will be discussed in more detail in Chapter 4, the input data used in the CNN

models developed here are intentionally limited in the amount of texture information that they

contain. This is mainly to determine if CNNs are able to classify barchans when only supplied

with images containing outlines. Therefore, to place this work into a larger context, previous

work that attempted to extract barchan outlines from imagery need to be consulted.

Rubanenko et al. (2021) used a Regional Convolutional Neural Network (R-CNN) to detect

and construct outlines of barchans on Mars. The output of their model is a segmented mask

corresponding to the position of the barchan within the image. Image segmentation is a tech-

nique where a collection of neighbouring pixels are homogenised based on some shared attribute

(Lakshmanan, 2005). This, in effect, separates the image into distinct areas based on texture

(Armi and Fekri-Ershad, 2019). This is very different from the outlines used in this study and

does impose a limitation. It is not possible, using a segmentation mask, to distinguish the mor-

6Here, the barchans are aligned along the direction of the primary winds.
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phological components of the barchan such as the stoss slope and the slip face (Figure 2.2). This

would still be the case if the raster image7, which represents the mask, is converted to a vector8

polygon of just the outline. Since a large number of morphometric descriptions are based on

these regions (Figures 2.4 and §2.4), the mask data generated by Rubanenko et al. (2021) cannot

be used here. Similar work was also carried out by Azzaoui et al. (2020) and Vaz et al. (2015).

Although these studies do not directly reproduce the input images required for the CNNs

investigated here, the separate techniques needed have been developed. The barchan masks

that are automatically generated (Rubanenko et al., 2021; Azzaoui et al., 2020; Vaz et al., 2015)

can be converted to vector polygons. This makes it possible to have a planform outline of the

barchan. But, as already mentioned, the morphological components of the barchan cannot be

differentiated under these conditions. The work of Shumack et al. (2020) has demonstrated

that ti is possible to extract dune crests (their work did not focus on barchans) from images.

Therefore, combining these two approaches would, in principle, make it possible to extract the

needed data for the models developed here.

7In a raster image the information is contained in values stored within pixels.
8In a vector image the information is stored as points and the equations of lines connecting different points.
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3.1 Motivation

This section describes the motivation behind developing a new method to describe complex

asymmetry, i.e. the combined influence of several different types of asymmetry such as downwind

elongation and lateral extension. The asymmetry is discussed from a vector-based perpsective

which indicates that changes in shape can be viewed as a displacement of landmarks with an x

and y vector component. Next, the limitations of using existing methods is discussed before the

new proposed method is introduced. The section concludes with a worked example to illustrate

the new method.

3.1.1 A Vector-Based Approach to Barchan Asymmetry

It is highly unlikely that a barchan would experience only one of the asymmetries discussed in

Chapter 2. It is more likely that the asymmetry of a barchan would manifest as complex pattern

of downwind elongation and lateral extension. Using common reference points, the change from

31
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Table 3.1: The results of a linear model where the y–coordinate is the dependent variable and the x–coordinate is the
independent variable.

Region Linear model R2 p–value

Left Horn Tip y = 0.38x + 0.01 0.86 < 0.001

Right Horn Tip y = −0.37x− 0.05 0.68 < 0.001

Left Max Lateral Extent y = 0.3x + 0.44 0.62 < 0.001

Right Max Lateral Extent y = −0.28x− 0.45 0.42 < 0.001

Join between left horn and slip face y = 0.45x− 0.13 0.87 < 0.001

Join between right horn and slip face y = −0.45x + 0.11 0.67 < 0.001

a perfectly symmetrical barchan to an asymmetric barchan is illustrated in Figure 3.1. The

displacement of a landmark1 can be expressed as changes on both x and y components. This

diagonal displacement is therefore the resultant vector of these two components. While not

conclusive, it does provide some prima facie support for the claim being made.

Further support for this claim is provided by plotting corresponding landmarks from the

sampled dunes (Figure 3.2). By using a baseline registration approach (Zelditch et al., 2004;

Rohlf, 2000; Webber and Hunda, 2007) provided by the shapes R package (Dryden and Mardia,

2016), it is possible to depict the positions of the landmarks in relation to fixed points. Here,

the fixed points are the toe of the barchan and a point where the longitudinal axis intersects the

brink line. The result of this transformation is that the influence of size, orientation and position

are removed, and the shape variation is restricted to the points of interest (Webber and Hunda,

2007). In this case, the points of interest are the tips of the horns, the point of maximum lateral

extent, and the meeting point between the slip face and the horns. Although the manner in

which the longitudinal axis is determined (§3.3.1) does have a role in the perceived symmetry

across the longitudinal axis, it is still clear that the all of the dunes have a distinct diagonal

displacement of their landmarks. This is supported by the results of a linear model where the

y–coordinate is predicted as a function of the x–coordinate (Table 3.1).

3.1.2 Limitations of Current Methods

Current approaches to describing barchan morphology (§2.2.2) are based on distances measured

between two points. Although such a distance-based approach can, conceivably, be used to

describe such complex displacements, it does have significant shortcomings. First, the mea-

surement styles only tend to record one vector component of the shape (the vector component

recorded is based on whichever component is associated with the downwind displacement of the

landmark). A notable disadvantage of such an approach is that the lateral displacement of the

landmark can assume any value without altering the measured vector (Figure 3.3). In this ex-

ample, a lateral displacement of a horn tip, which can occur on an inclined surface (Parteli et al.,

1A landmark is a point of correspondence (Dryden and Mardia, 1993) (see §3.3.1).
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Figure 3.1: An example of how barchan asymmetry is a collection of different displacements. a) A perfectly symmetrical
barchan with landmarks indicated. b) An asymmetric barchan with landmarks indicated in red. The blue
circles indicate the positions of the perfectly symmetrical barchan (the toe of the barchan is treated as a
common point) while the dashed arrows indicate the direction of displacement of the landmark between the
two configurations. The labels correspond to regions of interest on the barchan: Hl= left horn tip, Hr=
right horn tip, LEl= most lateral extension of the barchan towards the left, and LEr= the most lateral
extension of the barchan towards the right. The vector components of the displacements are indicated by
the green (x–component) and magenta (y–component) arrows. Note that the images are not in Procrustes
superimposition in order to emphasize the displacement (see Section 3.4).
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Figure 3.2: The position of selected landmarks of the dunes sampled in the Kunene region of northern Nambia. All
samples are plotted using Bookstein baseline registration (Zelditch et al., 2004) using the barchan toe (T )
and the intersection between the brink line and the longitudinal axis (I) as registration points (squares).
Dashed lines represent the results of a generalized linear model fitted to the data (cf. Table 3.1). The
variables used are: Hl, Hr for the left and right horn tips respectively, Ll, Lr for the left and right points
of maximum lateral extent, and Sl, Sr for the left and right points that represent the join between the slip
face and the respective horns.

2014), cannot be determined using a measurement approach that relies on recording only along
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Figure 3.3: When only a single vector is used (in this case the downwind component) any asymmetry associated with
the second vector component, for example lateral displacement, cannot be determined. The x and y axis
represent pixel coordinates. The points L and R indicate the left and right horn tips respectively while the
double-headed arrows represent distance measurements (cf. Figure 2.4). The points L′ and R′ represent
landmarks that have been laterally displaced while still maintaining the same distance measurement.

a single vector (e.g. approaches 5a and 5b (Figure 2.4)). This is because those measurements

are, in effect, made between two parallel lines.

Some approaches, such as 6b record a diagonal distance from an origin point to a designated

landmark. However, this is also not sufficient (Figure 3.4). Because only a single distance mea-

surement is used, a landmark can be located at any point along the boundary of a circle and still

have an apparent equal measurement value. While the single downwind measurement can result

in undetectable fluctuation along one axis, it is possible that this measurement style will miss

displacement along two axes (i.e. both the y and x components). If the distance measurement

is accompanied by a bearing then it is possible to precisely place the point. However, it will

also increase the amount of data that needs to be processed. Alternatively the distances to two

different landmarks may be considered, but since the position of the second landmark cannot

be accurately obtained, since it is susceptible to the same constraints mentioned earlier, this is

not a feasible solution.

It is therefore clear that these approaches is not sufficient to describe the positional change of

a barchan landmark. An alternative approach is to quantify the positions of the landmarks with
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Figure 3.4: When a diagonal line is used to record the distance between two landmarks, the one landmark can be
located on any point along the boundary of a circle whose radius is equal to the distance measured. The x
and y axis represent pixel coordinates. The points L and R indicate the left and right horn tips respectively
while the dashed circles represent their distance from the toe of the barchan (T ) (cf. Figure 2.4). The
points L′ and R′ represent landmarks that have been laterally displaced but are still the same distance
away from the origin.
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regards to each other. In other words, to measure the distance between a landmark and all of the

other landmarks in the configuration repeated across all of the landmarks recorded. Strauss and

Bookstein (1982) found that there are three types of approaches that can be used to completely

describe the configuration of n landmarks: triangulation, truss, and global redundancy. These

approaches rely on the measurement of the distances between pairs of landmarks. Because of

this, such an approach by definition is multi-variable with one variable representing a distance

between two landmarks. As the number of landmarks under consideration increases, so to do

the number of variables (Figure 3.5).

This approach scales rapidly with an increase in the number of landmarks leading to an

increase in the number of distance measurements. While this approach can, in principle, describe

the change based solely on distance measurements, it is susceptible to the influence of size. Larger

dunes will have larger distances. While size can, in principle, be controlled for by calculating

ratios, it is not immediately obvious which value(s) to use as the denominator in these cases.

It is also not easy to use this multi-variate data to describe the asymmetry as a single variable.

Therefore, a new method had to be developed for the purposes of this study.

3.2 Conceptual Foundations

This section describes the conceptual foundations (i.e. geometric morphometrics (GM)) of the

method that was developed to describe complex asymmetry. First, it is necessary to review the

concept of shape from the perspective of GM. Within this framework, shape is considered as

the geometric information of an object that is invariant under the following transformations:

translation, scaling, and rotation (Mitteroecker et al., 2013; Klingenberg, 2013; Slice, 2007;

Adams et al., 2004; Dryden and Mardia, 1993). This definition refers specifically to the spatial

information that is contained within landmark points (Webster and Sheets, 2010; Márquez et al.,

2012).

These are points that can be precisely located on all forms with a clear one-to-one correspon-

dence (Klingenberg, 2010; Viscosi and Cardini, 2011; Richtsmeier et al., 2002) (e.g. the point

that corresponds to the horn tip on one barchan should not be the same point that is consid-

ered the toe of another barchan). Collectively, the landmarks are referred to as a configuration.

Three types of landmark are used: biological landmarks (whereby points correspond by virtue of

their biological function), mathematical landmarks (where correspondence occurs via a common

geometric property), and pseudo-landmarks which are placed in-between other landmarks (such

as points evenly spaced between mathematical landmarks) (Dryden and Mardia, 1993). These

landmarks are often assigned based on specific rules (Jensen, 2003) and highly dependent on the

hypothesis being tested (Viscosi and Cardini, 2011). Further, landmarks should, ideally, be easy
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Figure 3.5: Top: The number of distance measurements needed to describe the landmark configuration as a function
of the number of landmarks present. For 17 landmarks the following number of distance measurements
are needed: triangulation (34), truss (43), and global redundancy (51). Bottom: An example of the
triangulation approach as applied to the landmarks used in this study.

to locate and be abundant enough to adequately describe the morphology of an object (Webster

and Sheets, 2010). Landmarks can either be expressed as two- or three-dimensional coordinates
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(Richtsmeier et al., 2002) and contain information on shape, size, position, and the orientation

of an object (Mitteroecker et al., 2013). Therefore, in order to use landmarks to investigate

shape, the non-shape variables need to be removed.

Generalized Procrustes Analysis (GPA) removes the non-shape variables through superim-

position based on a least-squares criterion (Klingenberg, 2013). In this case, the least-squares

criterion is used to minimise the Euclidean distance between corresponding landmarks (Jensen,

2003; Slice, 2007; Adams et al., 2004). This is achieved via three congruent transformations of

the matrix containing the landmark coordinates. These transformations are scaling, translation,

and scaling mentioned as part of the shape definition earlier. During translation, the centroids

of the respective configurations are moved to the same point (Mitteroecker et al., 2013) which

is typically the origin (i.e. they are assigned an x,y coordinate of (0, 0)(Adams et al., 2004).

Afterwards, the configurations are scaled to a common unit size by dividing with the centroid

size (Adams et al., 2004). The centroid size is the square root of the sum of squared distances

from each landmark to the centroid of the configuration (Mitteroecker and Gunz, 2009; Zelditch

et al., 2004). In effect, this serves to scale all of the configurations so that they have a centroid

size of 1.0 (Klingenberg, 2013). Lastly, the configurations are rotated into an optimal position

by minimising the squared differences between corresponding landmarks (Adams et al., 2004;

Zelditch et al., 2004). At this point, the configurations are in superimposition.

Once in superimposition, the shape difference is quantified by the Procrustes distance which

is the squared distances between landmarks (Mitteroecker et al., 2013; Webster and Sheets, 2010;

Adams et al., 2004). If two objects are identical in shape, then their respective configurations will

have the exact same landmark coordinates once in superimposition (Dryden and Mardia, 1993).

This results in a Procrustes distance of 0 with increasing values reflecting larger deviations from

similarity (Mitteroecker et al., 2013).

Using GM it is possible to avoid the constraints on describing the displacements of land-

marks mentioned earlier. Any point on a plane can be represented by two coordinates (x,y).

As discussed earlier, the displacement of landmarks, on a plane, include both an x–component

vector and a y–component vector. When these component vectors are added to the coordinates

of a landmark (x1, y1) and new coordinate is created (x2, y2) where the changes to the coordi-

nates correspond to the vectors. The new landmark still exists in the plane and as such has

a coordinate. Therefore, following from the previous discussion, it contains information about

the shape (in this case the new shape). It is thus possible to use the information contained

within the landmark to investigate shape and, since asymmetry is just an attribute of shape, it

is possible to investigate asymmetry. The following section elaborates on this in more detail.
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3.3 Proposed Solution

This section describes how the more complex asymmetry is quantified using a new measure:

”bilateral asymmetry”. This nomenclature is intended to reflect the bilateral nature of barchans

along their longitudinal axis. The section starts with a discussion on how landmark points are

to be determined before proceeding to a discussion on how GM can be used to quantify the level

of asymmetry.

3.3.1 Identification of Barchan Landmarks

This section describes the approach used to identify landmarks on the outlines of barchan dunes.

This is a required step in order to generate the labels that are to be used to train the CNNs.

As stated earlier, a key requirement of geometric morphometrics is that landmarks need be

located accurately and consistently. A key challenge, in this regard, is assigning landmarks to

curved surfaces (Slice, 2007). As mentioned previously, landmarks need to be placed consistently

between different specimens in order for the shape comparison to be valid. This is relatively easy

for points of maximum curvature or where two different portions of an object join. However,

on a curve this becomes more complicated since it cannot be ensured that the landmarks will

be placed consistently. Ros et al. (2014) made use of sliding semi–landmarks2 spaced equally

between two landmarks in order to capture the shape information of a curve. Semi–landmarks,

by definition, contains information dependent on the position of another landmark (Claes et al.,

2012). The ”sliding” aspect of the semi–landmarks used by Ros et al. (2014) refers to landmarks

whose positions are allowed to change, based on a specified criterion, during the analysis process

(Slice, 2007). However, for the purposes of this study such a feature is not considered desirable

since it cannot be guaranteed that the positioning of the landmarks will be consistent between

dunes. This would, therefore, introduce a variable that cannot be sufficiently controlled for.

A different strategy based on mathematical landmarks (Dryden and Mardia, 1993). These

landamrks are placed based on a geometric criterion and are suitable for the analysis of outlines

(Dryden and Mardia, 1993). Barchan landmarks were placed on each outline as indicated in

figure 3.6. The benefit of using landmarks in this analysis is that it allows for all of the desired

morphometric variables to be calculated using coordinate geometry3. Seventeen to 18 landmarks

were used per barchan. The reason for the discrepancy is due to the calculation of the a
c–ratio.

The c value requires a distance to be calculated between the two of the barchan and the brink line

along the longitudinal axis. For some dunes, this point coincided with the position of landmark

2A semi–landmark is a landmark that is intended to capture information about an object’s curve (Webster
and Sheets, 2010).

3Coordinate geometry involves the study of geometry by making use of the Cartesian coordinates.
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Figure 3.6: Landmarks used in the description of barchan morphology. Note that landmark 18 was not needed in all
cases since, for some barchans, landmark 18 and 16 were in the same position.

16 and, in those cases, landmark 16 was used in the calculation. In cases were this was not the

case, the 18th landmark was added.

Some points along the barchan are easily identifiable such as the tips of the horns, the toe and

the meeting point between the stoss slope and the horns. Other points located along the curved

portion are harder to identify consistently between specimens using unguided visual assessment.

To place landmarks consistently at these points two assumptions need to be made. First, it is

assumed that the boundary of a barchan can be represented by a polynomial curve (the order of

this is not relevant but has to be ≥ 2). This is not new since barchan dune boundaries have been

broken into separate parabolic curves by earlier authors (Sauermann et al., 2003; Moosavi et al.,

2014). The second assumption is that this curve is differentiable and continuous. With these

two assumptions, the problem of consistently identifying the positions of the landmarks can be

reduced to finding the point along the curve where the first derivative of the function is zero. To

illustrate this, consider the curve in Figure 3.7. Here, a portion of a barchan is represented by a

polynomial function (Eq. 3.1). Using the first derivative of this function (Eq. 3.2) the minima

of this function can be calculated (Eq. 3.3).
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Figure 3.7: Identifying the points of curvature on a barchan boundary. The plotted function is f(x) = 0.09x2 +
0.03x+ 0.44. The minimum of f(x)is indicated by point M . A line (red) through this point is parallel to
the x–axis. The equation of the red dashed line is g(x) = −3.59x − 36.562 and is parallel to AM and
tangent to f(x) at C.

f(x) = 0.09x2 + 0.03x + 0.44 (Eq. 3.1)

f ′(x) = 0.18x + 0.03 (Eq. 3.2)

0 = 0.18x + 0.03

0.18x = −0.03

x = −0.17

(Eq. 3.3)

A property of a line through this minimum is that it is parallel to the x–axis. This makes it

possible to calculate points of curvature along the given curve between two points. For example,

to calculate the point of maximum curvature (i.e. a maxima) along the provided function

between points A = (−40, 143.24) and M = (−0.17, 0.44), the function of the line through these

points (Eq. 3.4) needs to be calculated. Afterwards, the line parallel to the line AM can be

calculated that is also a tangent line to the function f(x) (Eq. 3.5). The point of tangency can

then also be calculated. This process can then be repeated between successive points until the

desired number of points are obtained.

y = −3.59x− 0.1703 (Eq. 3.4)

g(x) = −3.59x− 36.562 (Eq. 3.5)
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Although this process does provide a consistent means of identifying points along a smooth

curve of a barchan, the function which describes a barchan’s outline cannot be known a priori.

Therefore, a different technique was applied to the barchan outlines. As stated earlier, one of

the assumptions of this approach is that the boundary (i.e. the outline) of a barchan is contin-

uous and differentiable. Hesp and Hastings (1998) discuss that barchans are aerodynamically

maintained. This, in itself, suggests that barchans must have a smooth and continuous curva-

ture since: it must exist at all points along its curve (i.e. it is continuous), and any properties

that would make it non-differentiable (such as sharp cusps marking drastic changes in direction)

would be smoothed out. This latter aspect results from the granular nature of a dune which

does not afford substantial resistance, in the way that bedrock does, to the action of winds.

Further support for this assumption is provided by figure 3.8 which shows how different parts

of the barchan’s boundary can be represented by differentiable polynomial functions. Each of

these polynomials is a good generalizations of the barchan’s boundary (based on the R2 values).

Using this information, it is possible to follow a geometric approach to identifying landmarks

(Figure 3.9 and Table 3.2). It is based on the fact that the line through either the minima or

maxima of a function is parallel to the x–axis. Starting from the identification of landmarks

that can be assigned visually (the toe (landmark 6), the horn tips (landmarks 2 and 10), and

the meeting point between the slip face and the horns (landmarks 1 and 11)), the remaining

landmarks can be determined by refining the x–axis locally to exist between each of the known

points. For example, by redefining the z–axis to exist between landmarks 1 and 11 the point of

maximum curvature (i.e. landmark 13) is the point where a line, parallel to a line connecting

landmarks 1 and 11, is tangent to the barchan outline. A full description of the process is given

in Table 3.2 and illustrated in Figure 3.9.

3.3.2 Bilateral Asymmetry

As mentioned earlier, bilateral asymmetry makes it possible to evaluate more complex changes

in barchan shape. Therefore, it is possible to quantify the combined effect of more than one

manifestation of asymmetry. There is no method currently in use within barchan research that

can combine these values, aside from using a form of multi-variable analysis which becomes

increasingly complex the more changes being considered. However, it is possible to use the

principles of geometric morphometrics to quantify this combined effect.

Geometric morphometrics treats shape as a configuration of points, termed landmarks (Web-

ster and Sheets, 2010; Mitteroecker et al., 2013; Márquez et al., 2012). These landmarks are

points that need to be located precisely on all specimens and there must be a one-to-one corre-

spondence for all landmarks between specimens (Klingenberg, 2010). In other words, the toe of
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Figure 3.8: Continuous polynomial functions, along with R2 and significance values, fitted to the different portions
of a barchan dune. The x and y axes refer to measurements on the image with 1 unit representing
approximately 0.08mm.
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Figure 3.8: Cont.
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Step 3 Step 4
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Figure 3.9: The steps involved in assigning landmarks to a barchan. See Table 3.2 for a description of each step. This
was carried out on barchan outlines and is shown here on a satellite image to provide some additional
context.
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Table 3.2: A description of the steps involved in assigning landmarks to the barchan’s boundary (see Figures 3.9 and
3.6).

Step Description

1 Place landmark 6 at the toe of the barchan, 2 and 10 at the horn tips, and landmarks
1 and 11 at the points where the base of the slip face intersects the horns.

2 Construct lines AB,CB connecting the horn tips to the toe. Construct line DB
which bisects the angle ̸ DBC. This line corresponds to the longitudinal axis of
Finkel (1959). Add landmark 18 at the point where the DB intersects the brink line.

3 Construct EF and GH parallel to DB and tangent to the barchan’s boundary. Add
landmarks 4 and 8 at the tangent points.

4 Construct line IJ connecting landmarks 1 and 11. Construct line KL parallel to
IJ and tangent to the base of the slip face. Add landmark 13 to the tangent point.
Construct MN parallel to IJ and tangent to the brink line. Add landmark 16 to the
tangent point.

5 Construct lines OP and QP that connects landmark 13 to landmarks 1 and 11.
Construct RS parallel to OP , and TU parallel to QP , both tangent to the base of
the slip face. At landmarks 14 and 12 to the points of tangency.

6 Construct OV and QV connecting landmarks 1, 16, and 11. Construct XY parallel to
OV , and ZA1 parallel to QV . Add landmarks 15 and 16 where the lines are tangent
to the brink line.

7 Finally, connect the landmark pairs (2, 4), (4, 6), (6, 8), and (8, 10) with segments and
construct the lines B1C1, D1E1, F1G1, and H1I1 parallel to each segment and tangent
to the outer boundary of the barchan. Add landmarks 3, 5, 7, and 9 to the tangent
points.

the dune must be at the same position on the dune for all specimens. Because of the manner in

which each of the landmarks are defined (Table 3.2) this requirement can be easily met.

Once the landmarks have been identified, the shape of each object is then expressed in the

form of a k × m matrix (Eq. 3.6) where k is the number of landmarks and m the number of

dimensions used to express the location of the landmark. In other words, for the two dimensional

case (which is followed here) the number of dimensions is two which corresponds to the xy–plane.

However, in addition to the shape information, this matrix also contains additional non–shape

information such as the position, orientation, and size of the object within the xy–plane. These

non–shape variables need to be removed from the coordinates in order to extract the shape

information. Three steps are used to achieve this (Zelditch et al., 2004): translation to remove

the influence of position, rotation to remove the influence of orientation, and scaling to remove

the influence of size. The shape of an object, therefore, refers to the geometric information

contained within the collection of landmarks that are invariant to the influences of translation,

scaling, and orientation (Slice, 2007; Kendall, 1977; Dryden and Mardia, 1993). An example of

this process is provided in Section 3.4.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. BILATERAL ASYMMETRY 48



176 619

182 629

158 614

125 584

11 379

18 283

75 282

156 341

158 350

156 357

140 359

89 350

66 375

144 579

137 578

56 381

80 335



(Eq. 3.6)

Two objects are considered to have the same shape if these landmarks can be rotated,

scaled, and translated in such a way as to match exactly (Mitteroecker et al., 2013). A popular

method for carrying out this shape comparison is Generalized Procrustes Analysis (GPA) which

is described extensively in the literature (Zelditch et al., 2004; Mitteroecker et al., 2013; Adams

and Otárola-Castillo, 2013; Klingenberg and McIntyre, 1998; Klingenberg, 2010; Slice, 2007).

In GPA, once the shape information of an object has been extracted, the landmarks of each

configuration is reduced to a single point that is embedded on the surface of a hypersphere

(Zelditch et al., 2004), which is termed ”shape space” (Klingenberg, 2010; Mitteroecker et al.,

2013). The difference in shape can then be calculated as the partial Procrustes distance (ρp)

between these points (Webster and Sheets, 2010; Mitteroecker et al., 2013). This can then be

further refined to the full Procrustes distance (ρ) (Zelditch et al., 2004) which is the metric used

in this study. Distances that are 0 occur only for shapes that are identical and values larger

than 0 represents increasing differences in shape (Mitteroecker et al., 2013). An example of ρ

values are given in Figure 3.10 using quadrilaterals as an example.

The ρ value can also be used to express asymmetry by creating a mirror image of the

object and calculating the ρ between the two configurations (Klingenberg and McIntyre, 1998).
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Figure 3.10: The full Procrustes distance (ρ) between quadrilaterals following GPA.

Following this approach, the ρ between each barchan and its mirror image (along the y-axis)

was calculated using the assigned landmarks. A perfectly symmetrical object will, when flipped

across the y-axis, have a ρ = 0 and as ρ becomes larger, it indicates increasing levels of asymmetry

between the object and its mirror image. Because the mirror image of the barchan in figure

3.6 would have the landmark A on the right horn instead of the left horn as in the original

configuration. A one-to-one correspondence does not exist in such a situation requiring the

relabeling of the landmarks (Figure 3.11).
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Figure 3.11: An example of creating a mirror image of a barchan and relabeling the landmarks prior to analysis. The
uncorrected labels are indicated by l′ where l represents the landmark number.
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Figure 3.12: Hypothetical symmetrical and asymmetrical barchans along with their mirror images. For this example,
the y–axis is used as the line of reflection (cf. Figure 3.11).

3.4 Worked Example

The majority of this section is based on the calculations provided in Zelditch et al. (2004) and

the analysis is carried out using the shapes package from R (Dryden and Mardia, 2016). To

illustrate how bilateral asymmetry is determined using GM, the hypothetical4 dunes created in

figure 3.1 are used.

The landmark information for each barchan is contained in a 17 × 2 matrix since there are

17 landmarks whose coordinates consist only of an xy position wihtin the plane. An example

of such a matrix (for the asymmetrical barchan A and its mirror M) is given in (Eq. 3.7). It is

4By hypothetical it is meant barchans that were generated computationally. This is done in order to simplify
the example and draw emphasis to the differing results.
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expected that these matrices would have different values since the barchans differ in position5.

During Procrustes Superimposition these non-shape variable are removed through translation,

rotation, and scaling (Klingenberg, 2013). This converts the ”normal” spatial coordinates into

shape variables (Adams et al., 2004). Although there is no need to remove the influence of

scale and orientation in this example, the underlying approach is still discussed for the sake of

completeness.

A =



75.92 372.31

63.60 382.16

31.57 364.09

29.92 291.81

70.17 185.85

244.00 0.00

378.19 142.32

508.79 295.92

501.40 452.80

490.72 487.30

412.69 345.20

285.37 272.10

244.00 236.78

158.88 264.71

177.77 215.42

244.00 194.89

305.91 231.03



;M =



−412.69 345.20

−490.72 487.30

−501.40 452.80

−508.79 295.92

−378.19 142.32

−244.00 0.00

−70.17 185.85

−29.92 291.81

−31.57 364.09

−63.60 382.16

−75.92 372.31

−158.88 264.71

−244.00 236.78

−285.37 272.10

−305.91 231.03

−244.00 194.89

−177.77 215.42



(Eq. 3.7)

3.4.1 Translation

In translation the barchans are ”moved” so that their centroids correspond to the same point.

Therefore, it is necessary to calculate the current centroids of each barchan. The centroids are

calculated using (Eq. 3.8). The calculated centroid for B is (113, 435) and for R is (212.6, 95.1).

5In this instance orientation and size are not different since the one configuration is just a mirror image of the
other.
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xc =
1

k

k∑
j=1

xj

yc =
1

k

k∑
j=1

yj

(Eq. 3.8)

Translation involves ensuring that the centroids have a coordinate of (0, 0). Therefore, the

calculated centroid for each configuration needs to substracted from the landmarks ((Eq. 3.9)).

By ”moving” the barchans to a common reference point (i.e. having their centroids in the same

position) the effect of differing positions within a plane is removed.

T =


(x1 − xc) (y1 − yc)

(x2 − xc) (y2 − yc)
...

...

(xk − xc) (yk − yc)

 (Eq. 3.9)

3.4.2 Scaling

After the barchans have been translated to a common point, it is necessary to scale them

to a uniform size. The scaling operation involves calculating the centroid size of each barchan

landmark configuration ((Eq. 3.10)) where X is the matrix of landmark points and c the centroid

(0, 0). In order to ensure that the barchans are of the same size, each element within matrix is

divided by the corresponding centroid size.

C =

√√√√ k∑
i=1

m∑
j=1

(Xij − cj)2 (Eq. 3.10)

3.4.3 Rotation

Lastly, the influence of orientation needs to be removed. This is achieved by rotating the

configurations in order to minimize the square error between each of the corresponding landmarks

(i.e. landmark 1 from A and M). This rotation is carried out by choosing one configuration as

the reference and the other as the target. The angle (θ) by which the target should be rotated

in order to minimise the squared difference between the landmarks is given by (Eq. 3.11) where

xRj and xTj refers to the x coordinate of the reference and target configuration respectively and

yRj and yTj refers to the y coordinate. The adjustment that needs to be made to the target

matrix is given by (Eq. 3.12).
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θ = arctan

(∑k
j=1 yRjxTj − xRjyTj∑k
j=1 yRjxTj + xRjyTj

)
(Eq. 3.11)

(x cos θ − y sin θ), (x sin θ + y cos θ) (Eq. 3.12)

3.4.4 Superimposition

Once all of the transformations have been carried out, the configurations are said to be in Pro-

crustes Superimposition. An example of this is given in Figure 3.13. The resultant configurations

now contain only the shape variable since the influence of position, size, and orientation have al-

ready been removed. Note that, for the symmetrical barchan, the landmarks are placed directly

on top of each other. This indicates that the two configurations, the symmetrical barchan and its

mirror, can be considered to be the same shape (Dryden and Mardia, 1993; Mitteroecker et al.,

2013). This is not suprising since the barchan is completely symmetrical along its longitudinal

axis and, therefore, its mirror image should be the same shape. In contrast, the landmarks of

the asymmetrical barchan do not line up perfectly with those of its mirror image, indicating that

they are not the same shape. Following from Klingenberg and McIntyre (1998) this indicates

that the reference configuration (i.e. the asymmetrical barchan) is indeed asymmetrical.

3.4.5 Procrustes Distance

The partial procrustes distance (ρp) is a measure of how well the two configurations are aligned

and is calculated using (Eq. 3.13). The full procrustes distance (ρ) can then be calculated

((Eq. 3.14)) which serves as an indication of the level of similarity between the two configurations

and, by extension, the two barchans. For the symmetrical barchan, the full Procrustes distance

between it and its mirror is 0, while for the asymmetrical barchan it is 0.31. This confirms the

conclusions drawn following superimposition and also quantifies the extent of asymmetry as a

single continuous variable.

ρp =

√√√√ k∑
j=1

((xjR − xjT )2 + (yjR − yjT )2) (Eq. 3.13)

ρ = 2 arcsin
(ρp

2

)
(Eq. 3.14)
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Figure 3.13: Top: The superimposition of the symmetrical barchan with its mirror image. Bottom: The superimposi-
tion of the asymmetrical barchan with its mirror image.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4

Convolutional Neural Networks

4.1 Chapter Overview

Convolutional Neural

Networks

(§4.2)

Hyper-

parameters

(§4.4.1)

Geomorphology

(§4.2.1)

Learn

(§4.5)

Learnable

Parameters

(§4.4.2)

Composite

Function

(§4.3)

contains

contains

used in

is a

can

governs

capacity

to

occurs by

modifying

Convolutional Neural Networks (CNNs) are a specific type of machine learning model that

is specifically designed to classify images into categories. It is a composite mathematical func-

tion that consists of one or more stages, depending on the specifications contained within the

hyperparameters, of image processing. This processing extracts key features within the image

where a feature is a specific arrangement of pixels, such as straight and curved lines. These

features, which form part of a feature map, are used to classify the image into two or more

predefined categories. Since a CNN is a machine learning model, it is capable of updating some

55

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONVOLUTIONAL NEURAL NETWORKS 56

of its internal values (i.e. its learnable parameters) based on exposure to known examples of the

categories. Because of its ability to process image data, and its ability to learn features that are

specific to that image, it is ideally suited to interpret images of barchan outlines.

This chapter provides an overview of the components of a CNN and how the model transforms

data and improves its performance through learning. Since the study focuses on the use of CNNs

to classify barchan outlines, it is important to gain an understanding into the functioning of a

CNN. Additionally, it is only by understanding how a CNN applies image transformations that

the choice of removing texture information, as part of the image preparation process (§1.5), can

be contextualised.

4.2 Overview of CNNs

CNNs are neural networks inspired by human vision that contain convolution operations (Cady,

2017; Niepert et al., 2016). However, it is believed that they differ from human vision in a

key aspect. Baker et al. (2020) considers CNNs to rely more on object texture when making a

classification as opposed to the human vision relying more on shape. This reliance on shape has

also been stated by Geirhos et al. (2019). This reliance on texture has led to the generalization

capabilities of CNNs to be questioned (Nguyen et al., 2015). Such caution is understandable

since CNNs have been found to misclassify images where the texture information has been

altered to a level imperceptible to humans (Carrara et al., 2018; De Cesarei et al., 2021).

In the same way that the nervous system of animals consists of interconnected cells (Flore-

ano and Mattiussi, 2008), neural networks consist of interconnected neurons that transfer data

through the model. As such, they are attempts at imitating the input-output operations of

biological networks (Clarke et al., 2009; Forouzan and Mosharraf, 2012). By input-output it is

meant that, in the same way an organism receives input from its environment which leads to

an action, a neural network receives input from its environment which leads to a specific action

(e.g. classifying, recognising etc.). The reason why this is so useful, is the adaptability that

biological systems demonstrate when encountering a new stimulus. This is achieved through

the process of learning whereby an organism can improve upon itself by acquiring new skills

during its lifetime (Floreano and Mattiussi, 2008). Similarly, a neural network improves its

performance, through learning, by being exposed to new data (Jordan and Mitchell, 2015). In

biology, learning is believed to occur at the synaptic level rather than alterations to the physical

structure of the nervous system (Ertel, 2011; Floreano and Mattiussi, 2008). The strength of

the synaptic connections between neurons in the nervous system dictate the level of interaction

between the neurons and contain the ”intelligence” of the system (Rodvold et al., 2001). These

neurons also follow Hebb’s rule (Floreano and Mattiussi, 2008) which states that when neuron
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A continuously excites neuron B, a metabolic change can occur whereby the efficiency of A to

excite B is increased (Hebb, 2002). As will be seen in this chapter, neural networks follow a

similar process where the weights between connections are analogous to the synaptic weights in

biological nervous systems.

CNNs differ from simple artificial neural networks1 in the replacing of matrix multiplication

(where inputs and weights are multiplied together) with convolution operations (Goodfellow

et al., 2016; Hao et al., 2019). As such, CNNs are ideal for image based learning (Raghu et al.,

2020) achieving human level performance (De Cesarei et al., 2021). This is because they are

able to process information that exists in a grid-like topology (Goodfellow et al., 2016) and can

update several parameters in order to improve performance. The details of how this occurs is

discussed in the respective subsections. However, despite all of this, CNNs are still considered to

be in their infancy (Ghorbanzadeh et al., 2019). This is not because of a lack of understanding

regarding CNNs, but more of a consequence of the complexity of the models. This makes it

impossible, at this stage, to develop an all encompassing set of guidelines that explicitly link the

modifications of the hyperparameters to the performance of the model as measured in metrics

such as accuracy. A consequence of this is that the hyperparameters of a CNN are determined

using a trial and error approach (Thakkar and Lohiya, 2021; Zeiler and Fergus, 2014; Tajbakhsh

et al., 2016).

A CNN can be visualised as a flowchart where an input image proceeds through various

stages of image processing (in this case convolutions) before being classified into one or more

categories (Figure 4.1). In this example, an image (X) is passed to the first convolution layer

where it is transformed through a convolution with a kernel (K). This produces a feature map

(F) which is then sub-sampled using a pooling operation (P). Up until this point the input data

still has a grid-like topology (i.e. it is either a matrix or an n–dimensional array). After the

processing of the image in the last convolution layer, it is transformed from a grid-like topology

into a vector and passed on to the first fully-connected layer. The outputs of each neuron in the

fully connected layer (n) is passed onto all the neurons within the next layer (n + 1) (hence the

name ”fully-connected”). The last vector is the output layer containing neurons that correspond

to the number of categories. The details of these various stages are discussed in the appropriate

sections below.

It is important to have some basic understanding of what a CNN is and what it aims to

achieve. This helps to place the more detailed sections in context. The preceding section,

therefore, contributes to the thesis by providing a high level overview of CNNs, their design

1This term is very vague but is often associated with a multi-layer perceptron. This convention will be followed
here.
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Figure 4.1: A flowchart of a CNN where an input image (X) proceeds to one or more convolution layers (CL). Within
a convolution layer it is transformed by two successive operations: convolution with a kernel (K) which
produces a feature map (F) that is then subsampled in a pooling layer (P). After the input image has been
processed it is passed through several fully connected layers (FC) before an output is produced. Some
connections are represented by dotted lines in order to make the diagram more clear, but these connections
function the same way as those depicted by solid lines. The structure of the data at the various stages is
also indicated.

philosophy, goals, and basic operation. The following sections will elaborate on the operation of

CNNs in more detail. Ultimately, this will provide some idea as to why it can be expected that

CNNs are up to the task of classifying barchan imagery.

4.2.1 Uses Within Geomorphology

Before proceeding to a discussion of the operation of CNNs, some background on their recent

use within geomorphlogy is provided. This serves two purposes. First, it highlights that the

application of CNNs within geomorphology is not new. Therefore, its relevance to the discipline,

at least for some tasks, has been explored and shown to be promising. Second, it points out a

gap that currently exists within the literature. It is this gap that is explored in this thesis.

This ability of CNNs to classify and categorise imagery has led to its use in a number of

different studies of landforms within geomorphology (Table 4.1). These studies used CNNs

mostly as a tool for semantic segmentation. Semantic segmentation attempts too classify the

membership of every pixel within an image to a specified category. For example, the pixel is part

of a dune or part of bare ground. This makes it possible to delineate a landform (i.e. map the

boundary of the landform). It must be noted that a ”standard” CNN cannot perform pixel-level

semantic classification but requires the addition of a deconvolution layer to achieve this task

(Maxwell et al., 2020). A less frequently used application is feature detection. This attempts to

identify whether a landform is present within an image without, necessarily, delineating it (i.e.
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the exact position of the landform in the landscape is not determined). Images, or subsets of

images, are merely classified based on whether the feature of interest is present or not.

U-Net, an architecture that is specifically designed for image segmentation (Ronneberger

et al., 2015), is a popular neural network architecture that has been used in several studies.

Baumhoer et al. (2019) attempts to create a CNN that is capable of detecting the glacial and

ice shelf fronts in Antarctica using a modified U-Net. Du et al. (2021) used U-Net to generate

landslide susceptibility maps, but found it did not perform as well as other architectures such as

DeepLab (Version 3). They speculate that it is possible that the complexity of a model (U-Net

is more complex than DeepLab V3) leads to reduced performance in cases were limited training

data is available (Du et al., 2021). Gafurov and Yermolayev (2020) used U-Net to detect gullies

from DigitalGlobe imagery. A problem that they identified with this approach is that, in a few

cases, the gullies are discontinuous2 because the semantic classification, since it is pixel based,

can be negatively affected by vegetation cover. Another application of U-Net is Prakash et al.

(2020) who applied it to map landslides using a combination of hillshade, derived from LiDAR

rasters, and optical imagery. Like Ghorbanzadeh et al. (2019), they find that the presence of

dense vegetation can hamper the performance of optical image analysis. Also, small landslides

(< 0.21km2) are difficult for CNNs to detect. Shumack et al. (2020) found that U-Net is able to,

when used in conjunction with a Laplacian convolution3, accurately detect linear dune ridges

on Mars.

The suitability of CNNs to identify gullies, in this case thermokarst gullies, is investigated in

Huang et al. (2018). The size of typical satellite imagery is well beyond the capacity of a number

of CNN models. For example, the VGG16 model takes as an input an image of 224× 224 pixels

while a satellite image can be sized in the tens of thousands. To compensate for this, Huang

et al. (2018) made use of overlapping sub-samples of the image in order to process large images.

The work by Gao et al. (2021) used a Mask R-CNN (He et al., 2020) to classify yardangs from

optical imagery. A Mask R-CNN, essentially, performs semantic segmentation. It can, however,

be trained to only focus on specific regions of interest. For example, the model will perform a

semantic classification of the pixels in the image with the express focus of identifying the target

object. All pixels that constitute the target will then be labeled. It therefore follows two steps:

detect the part of the image that contains the object (i.e. it creates a region of interest), and

then classifies all of the pixels within the region of interest based on their membership to the

target object (i.e. determine if they are part of the object or not). Additionally, Gao et al. (2021)

also evaluates the performance of the model to classify the yardang in the image as belonging

2The gullies in the image are not discontinuous.
3This is a type of edge detector that increases the local contrast within an image (Russ, 2006).
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to one of three categories: long-ridge, mesa, and whaleback. This latter part of their study is,

conceptually, the closest to the goal attempted in this thesis. In general they found that CNNs

are able to differentiate between the different types of yardangs, however, they note that one

class (whaleback) was more difficult for the model to classify accurately. It is speculated that the

more complex and diverse morphologies associated with the whaleback class led to an increased

incidence of incorrect classifications and, therefore, poorer classification accuracies (Gao et al.,

2021).

CNNs are not necessarily used in isolation. Witharana et al. (2020) incorporated a Mask

R-CNN in a workflow to extract shapefiles from imagery. In this case, the target feature was ice

wedge polygons and the semantic segmentation derived from the Mask R-CNN was converted to

a shapefile. This makes it possible to not only automatically extract a feature of interest from

an image, but to also retain its spatial context.

Carbonneau et al. (2020) extends the application to of semantic segmentation by incorporat-

ing fuzzy classification. In a typical semantic segmentation task, pixels are assigned membership

to mutually exclusive categories (e.g. a pixel can either be land or ocean, but not both). In a

fuzzy classification system, a pixel has a level of membership to several categories. The higher

the level of memberhip, the more similar to that category the pixel is. Through the use of fuzzy

groupings new insights can be obtained in landscape analysis, particularly when the temporal

dimension is considered. This is because it can identify gradual changes occurring within the

landscape by looking at the changes in membership levels of individual pixels.

A novel application of CNNs is carried out in Chen et al. (2018). Rather than using a single

CNN as a classification tool for a single input image, two separate images are supplied to two

different CNNs. The resultant feature maps are then compared and the Manhattan distance4

between them calculated. The underlying theory is that differences in content between the two

images, in this case evidence of a landslide such as a slip scar, would translate into increased

Manhattan distances between the two images. By using an appropriate threshold, to factor in

non-landslide causes for changes in images such as the presence of clouds, it is then possible to

detect if a landslide occurred in the intervening time between when the images were captured.

Although they made use of a fairly simply CNN architecture, Meena et al. (2021) made

use of K-fold cross-validation during the training process. A key aspect of the development of

a CNN is the creation of data sets containing images to be used for training, validation, and

testing. Theses data sets are mutually exclusive and an image that is within the training set can

not be present within the testing data. With K-fold cross-validation, the data is divided into k

4This Manhattan distance is calculated as the sum of absolute differences between pixels in the same position
within the two images.
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mutually exclusive categories. For each training and testing phase, a different subset is used as

the testing data. As a result, the mean performance across all folds can serve as an indication

of the architecture’s performance on that task.

Ghorbanzadeh et al. (2019) also used a fairly simple CNN to identify landslides, but inves-

tigated the size of the input image (in terms of width and height) into the model. As objects

with a spatial extent, the size of the ”window” through which the CNN ”views” the image

can influence its performance. For example, a small window investigating a large landslide can

be expected to perform differently from a large window investigating a small landslide. Their

results showed that the performance of a CNN, in terms of a reduction in false positive and

false negative cases, improves with increasing window size up until a critical point beyond which

performance degradation results. Given the pixel-dependent behavior of a CNN this can be,

potentially, explained by an increase in the amount of pixels that are not related to a part of the

landslide as the window size increases. This can also potentially explain the findings of Prakash

et al. (2020) where small landslides are difficult to detect.

Also investigating landslides, Ji et al. (2020) made use of attention mechanisms in order to

improve the performance of the semantic segmentation. By using an attention mechanism, it

is possible for the model to learn which features are more important to successfully classify the

image. These useful features are then enhanced while the less useful features are suppressed

(Weng et al., 2020). By incorporating attention mechanisms within the model, Ji et al. (2020)

is able to increase the accuracy of the classifications to above 90%.

Palafox et al. (2017) compared the performance of CNNs against support vector machines

on a semantic segmentation task. Support vector machines are another type of classifier that is

based on a linear function and allows class identity of an input to be determined (Goodfellow

et al., 2016). Palafox et al. (2017) found that their CNN has a higher accuracy than support

vector machines in identifying rootless volcanic cones and transverse aeolian ridges from satellite

imagery.

Using Sentinel-2 data, Robson et al. (2020) used a CNN to identify rock glaciers. Given

the absence of supporting literature, they resort to a trial-and-error determination of optimal

CNN depth and kernel size. A key finding is that landforms that resemble rock glaciers, such as

debris flows, can result in the presence of misclassified regions. This indicates that detection of

landforms from visual imagery is a challenge for CNNs.

Using fairly broad terrain categories, Wilhelm et al. (2020) demonstrated how CNNs can be

used to generate geomorphological maps from optical satellite imagery. The best performing

architecture for their work was DenseNet-161 which was pre-trained on the ImageNet data set.
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The ImageNet data does not include imagery of the landforms of Mars. Therefore, this work

shows that it is possible to use transfer learning for geomorphological applications.

It is therefore clear that there are a number of applications of CNNs within geomorphology.

However, for the most part these applications focuses on a relatively narrow application, namely

semantic segmentation. While this is beneficial, as shown in the studies, it does not investigate

the full potential of CNNs. This leaves a gap in the literature that will be be at least somewhat

addressed in this thesis.

4.3 CNN as a Composite Function

A CNN is essentially just a composite function5 of the form (f1 ◦f2 ◦ . . . fn)[x] where the variable

x is an image and n denotes the number of inner functions. The goal of this composite function

is to map a given input X to the correct category C. A conceptual representation of this

mapping process is given in Figure 4.2. Here, the function f(x) takes as input an image of

a barchan. After all of the image processing has been carried out by the composite function,

the produced output reflects the appropriate category. Technically, the output is a vector of

probability of membership which reflects how likely the input is to correspond to each of the

categories (de Lima and Marfurt, 2020). The variables associated with each of the functions

(f1, f2 . . . fn) are updated during the training process in order to ensure that the mapping of X

to C is accurate.

This classification is achieved by successive inner functions that either process part of an

image, or transform a scalar value into a new scalar value. The latter occurs at individual

neurons while the former occur through the use of kernels in convolution layers. An important

characteristic of these inner functions is that the variables that determine the transformation

and processing gets updated to an ”optimal” value that is specific to that model and data type.

This occurs through a process of learning where the model is exposed to known data from each

category and iteratively adjusts the values within the function in order to match the input to

the correct output. Once the model has learned the appropriate values for each parameter, it

can then be used to classify imagery it has not seen before. This means that it is only necessary

to train a model once and afterwards it can be reused and even distributed to others for their

use.

This section is relevant to the thesis since it highlights the core idea behind CNNs that are

used in classification applications. By realising that a neural network is just a mathematical

function that aims to map an input to an output, it is possible to better understand how the

model can be improved. For example, the CNN has variables that need to be updated in order to

5A composite function is a function that combines two or more functions in a specific order.
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X C

c1

c2

Figure 4.2: A conceptual representation of the mapping process where a barchan image (X) is mapped to its corre-
sponding category C. The category c1 contains barchans where the left horn is elongated while barchans
where the right horn is elongated are placed in c2.

perform optimally. This update is dependent on the hyperparameters of the model’s architecture,

as well the representatives of the training data. While still covering a broad territory of solutions,

such a high level breakdown can form the starting point for improving model performance.

4.4 Model Parameters

The model parameters cover two important aspects of the CNN. First, the learnable parameters

are those values within the composite function that are updated during the model training

process. These include the weights of the connections between neurons, the values within the

kernel that is used to process the input, and the biases of each neuron. The hyperparameters are

the values that determine how the learning is executed, the types of data transformations that are

used, and the amount of variables that the model has access to in order to optimise the composite

function mentioned earlier. They are distinguishable from the learnable parameters in not being

altered during the training process (i.e. the remain static). However, once the training process

has been completed, the hyperparameters become static and do not change during subsequent

use of the model. In the following sections these broad categories of parameters are discussed

in more detail.
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4.4.1 Hyperparameters

The performance of the CNN is determined by the hyperparameters (Ghorbanzadeh et al.,

2019; Shakya et al., 2021). This is, however, only partially correct since the quality of the

training data is also critically import in determining the success of a model. Despite this,

it still takes skill and experience in order to properly select the proper hyperparameters (Gu

et al., 2018). Unfortunately, this means that a crucial aspect of the proper functioning of CNNs

may, potentially, be unavailable to general users thereby limiting the widespread adoption of

CNNs. During a typical use-case where a CNN is defined in TensorFlow6, there are several

hyperparameters that a user can set (Table 4.2). Together, these determine how the training

will be carried out, the extent of image processing that is used, and several other aspects

related to the functioning of the model. These are discussed separately under their respective

subheadings.

4.4.1.1 Network Depth

By increasing the number of convolutional layers within a CNN, it is possible that higher level

features can be extracted (Kattenborn et al., 2021). In this context, a feature refers to a specific

arrangement of pixel values that can include, but are not limited to, vertical, horizontal, and

diagonal lines. Higher level features are therefore combinations of these lower level features (Tran

et al., 2018) similar to how the combination of a horizontal line (”–”), a line that is diagonally

upwards (”/”), and a line that is diagonally downwards (”\”) combine to form either an upwards

triangle (”△”) or a downwards triangle (”▽”) depending on their spatial arrangement. In this

example, the simpler straight line feature is identified earlier in the model while the composite

feature (i.e. triangle) is identified deeper in the model.

Network depth is considered to be an important determining factor in model performance

(He and Sun, 2015) and, in general, it is considered that increasing the depth of the CNN

increases the accuracy of the model Shakya et al. (2021); Simonyan and Zisserman (2015); Wan

et al. (2018); Ciresan et al. (2011). However, adding more layers to a model leads to an increase

in the computational cost (He and Sun, 2015) and may be more difficult to optimise (Gu et al.,

2018). Unfortunately, it is also possible that overly increasing the depth of the network can lead

to poorer performance (He and Sun, 2015; He et al., 2016).

4.4.1.2 Number of Filters

A kernel is used to encode specific features of the input data (Chollet and Allaire, 2018; Tran

et al., 2018). The type of feature that the kernel encodes is determined by the values within the

6Tensorflow is a Python library that allows for the creation, training and execution of neural networks.
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Hyperparameter Description

Number of convolutional layers Also referred to as the depth of the model. The number of
layers can be any integer larger than 0.

Number of filters* The number of kerenels that the relevant convolution layer
uses to process the image. Can be any integer larger than
0.

Size of filters The size of the n × n kernel. In principle it can be any
integer larger than 3 provided the matrix is square.

Type of activation function Any of several different activation functions. All the neu-
rons within the same layer typically have the same activa-
tion function.

Number of epochs The number of times the training data is passed completely
though the model.

Learning rate A constant that governs the magnitude of adjustments for
each paramater during training.

Batch size Specifies the number of samples in a batch.

Type of loss function The function that is used to calculate the amount of error
between the model’s output and the actual data.

Dropout value The fraction of activation functions in the model that out-
puts a value of 0.

Batch normalization Adjusts the outputs of a layer in order to prevent the model
from becoming imbalanced.

Type of optimizer The algorithm that is used to adjust the parameter based
on the value from the loss function.

Pooling Specifies if, and how, the outputs of a given layer should be
sub-sampled.

Regularization Specifies what type of regularization should be added to the
loss function.

Table 4.2: The different hyperparameters that define a CNN (adapted from the list provided by Igonin et al. (2020)).
* In this context the terms ”filter” and ”kernel” are interchangeable
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kernel (Cady, 2017). Therefore, the more kernels within a convolution layer, the more features

are identified within a given input (Gu et al., 2018). The process by which the kernel extracts

features is known as a convolution operation (Traore et al., 2018; Niepert et al., 2016; Lecun

et al., 2015) and occurs over a small region of the image (Russ, 2006; Gu et al., 2018), known as

the receptive field (Bera and Shrivastava, 2020). If the input image is larger than the kernel, the

kernel slides across the input image horizontally and vertically (Tran et al., 2018; Chevtchenko

et al., 2018) performing a convolution at each step (Figure 4.3). The convolution operation

(Eq. 4.1) involves the matrix multiplication of the receptive field (X) with the transpose of the

kernel (GT ) and taking the trace of the resultant matrix to produce a single pixel value F of the

feature map. It is important to mention that although the number of kernels used in a model is

a hyperparameter, the values of the kernel is a learned parameter (Maggiori et al., 2017).

1 1 2

1 2

3

1 2

3 4

Figure 4.3: An example of a 3×3 kernel sliding over a 4×4 input image to produce a 2×2 feature map. The numbers
show the sequence in which the feature map is generated and does not correspond, in this example, with
the values contained within the input.

F = tr(XKT ) (Eq. 4.1)

To illustrate how the kernel indicates the presence of a feature, consider a portion X of

an input image (Eq. 4.2). The values within this input have been scaled from −1 to +1. This

portion contains a diagonal line moving from the top left to the bottom right (indicated by the +1

values). If this input portion is evaluated by kernels with different configurations (K1,K2,K3),

the resulting output values will also differ (Eq. 4.3) to (Eq. 4.5).
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X =


1 −1 −1

−1 1 −1

−1 −1 1

 (Eq. 4.2)

K1 =


1 −1 −1

−1 1 −1

−1 −1 1

 = 9 (Eq. 4.3)

K2 =


−1 −1 1

−1 1 −1

1 −1 −1

 = 1 (Eq. 4.4)

K3 =


−1 1 1

1 −1 1

1 1 −1

 = −9 (Eq. 4.5)

In cases where there is a strong agreement between a portion of the input image and the

kernel (e.g (Eq. 4.3)), the resultant convolution (which ultimately forms part of the feature

map) is high. Conversely if there is no match (i.e. (Eq. 4.5)) the output of the convolution will

be low. Intermediate matches will therefore also have intermediate values (e.g. (Eq. 4.4)).

4.4.1.3 Size of Filters

This hyperparameter specifies the dimensions of the kernel (i.e. its size). In the examples

(Eq. 4.3) to (Eq. 4.5) the size of the kernel is 3 × 3. Although the kernel can be any size, the

sizes of 3× 3 and 5× 5 are typically used. A minimum size of 3× 3 is needed in order to detect

concepts such as left, right, up, down and centre (Simonyan and Zisserman, 2015). In principle

larger kernels can detect more complex features but He and Sun (2015) found that deeper

networks with smaller kernels performed better than shallower networks with larger kernels.

Even though the values inside the kernel is learnable and updates during training, the size of

the kernel is fixed and does not change once the model has been initialised.

4.4.1.4 Type of Activation Function

A number of different activation functions (φ) (sometimes referred to as transfer functions

(Hagan et al., 1996) or an input-output function (Suliman and Zhang, 2015)) are encountered

in the literature (Table 4.3 and 4.4). The activation function determines what the neuron’s

output value will be (Rojas, 1996; Engelbrecht, 2007; Floreano and Mattiussi, 2008). Haykin

(1994) argues that the activation function serves the additional role of limiting the amplitude
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(i.e. range) of the neuron’s output. This is because a number of activation functions, such

as the sigmoid and the hyperbolic tangent, constrain the output values to (0, 1) and (−1, 1)

respectively. However, not all activation functions perform this type transformation. Activation

functions such as linear, Rectified Linear Unit (ReLU) and Exponential Linear Unit (ELU) are

unbounded with positive values that approach infinity.

A second role of activation functions is that it introduces non–linearity into the model

(Ravichandiran, 2019; Engelbrecht, 2007; Güner et al., 2013). The characteristics of the ac-

tivation function, particularly its first derivative, is important in determining how efficient the

Artificial Neural Networks (ANN) is. For example, the weights of the connections that are up-

dated during the training phase of the model (see §4.5) are updated proportionally to the first

derivative of the activation function used (Suliman and Zhang, 2015).

4.4.1.5 Number of Epochs

An epoch is a unit of training during which the entire training data set has passed through

the model once (Chollet and Allaire, 2018; Goodfellow et al., 2016; Farzad et al., 2019). As

training progresses through the specified number of epochs, it is expected that the training

accuracy, i.e. the ability to accurately classify the training images, will increase while the loss

value (which represents the errors in classification) to decrease. A similar pattern is expected

for the validation data. In practice this is not always the case and there can be a considerable

amount of fluctuations between epochs. Additionally, Sinha et al. (2010) found that increasing

the number of epochs that a model is allowed to train from 500 to 1100 increased the perfor-

mance of the model, but beyond this point (i.e. using epochs between 1100 and 2000) lead to

increasingly poorer performance. One possible explanation for this is that, as the number of

epochs increase, the model may be prone to overfitting (Lamm and Unger, 2011) which means

that its generalization ability decreases leading to poor performance.

4.4.1.6 Learning Rate

The learning rate is a scalar quantity (Goodfellow et al., 2016) that determines the magnitude

of an adjustment that is made to a parameter during training (Velasco et al., 2018). If this

value is high, then the model can potentially be optimized more quickly, however, the risk for

oscillating around local minimums is also increased (Ertel, 2011). An example of this process

is given in Figure 4.4. In this example, the optimal value for the parameter w is 2. Starting

from an initial value of 5.19 the model attempts to reduce this value. If the learning rate is low

(e.g. η = 0.01) the adjustment in the parameter is small. Increasing the learning rate results

in larger adjustments and if the value is too large (e.g. η = 1) there is the risk that the weight

will oscillate around the optimal value. Currently, there is no universally applicable solution to
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Name Equation Description

Step

φ =

{
0 : x ≤ 0

1 : x > 0

Forms part of a group of functions known
as hard–limit functions that are typically
used in classification and pattern recog-
nition tasks (Negnevitsky, 2011).

ReLU

φ =

{
0 : x ≤ 0

uk : x > 0

Rectified Linear Unit. Overcomes van-
ishing gradient problem associated with
sigmoid (Zheng et al., 2020). Considered
to be the most popular activation func-
tion (Tripathi et al., 2019; Lu, 2020; Le-
cun et al., 2015).

Leaky ReLU

φ =

{
αx : x ≤ 0

x : x > 0

Designed to counter the dying ReLU
problem (Gu et al., 2018). Performs as
well, or better, than ReLU (Zheng et al.,
2020).

ELU

φ =

{
α exp (x) − 1 : x < 0

x : x ≥ 0

Exponential Linear Unit. Introduced by
Clevert et al. (2016) to increase learning
speed and to improve classification accu-
racies. More robust to noisy data (Gu
et al., 2018) but takes longer to train than
ReLU (Qiumei et al., 2019).

Table 4.4: Examples of piecewise activation functions where x is the output of the summing function.

finding the optimal learning rate and users have to resort to a trial and error approach (Velasco

et al., 2018).

4.4.1.7 Batch Size

This hyperparameter plays an important role during the learning process because of its influence

on the optimisation algorithm. A mini–batch, sometimes simply referred to as batch depending

on the context (Goodfellow et al., 2016), is a small subset of the samples that are used to calculate

the update that should be applied to each parameter (Chollet and Allaire, 2018; Raschka and

Mirjalili, 2019). The batch size determines how many samples should be used within each batch.

This value is often dictated by the available hardware due to the additional computational

demand that larger batch sizes have (Planche and Andres, 2019). By using a sample of images,

as opposed to a single image, during training, it could lead to better convergence7 of the model

during training by reducing the amount of variance in the parameters (Gu et al., 2018). However,

it is also possible that using batches that are too large will result in a decrease in performance

(Keskar et al., 2017).

7Convergence is reached when, after a certain amount of epochs, there is no significant change in the model’s
performance.
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Figure 4.4: A simplified representation for the update of a learnable parameter for three different learning rates:
η = 0.01. η = 0.1, and η = 1.
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Figure 4.5: An example of part of the loss function for the ResNet56 model (Li et al., 2018).

4.4.1.8 Type of Loss Function

During the training of the model it is important that the level of disagreement between the

model’s output and the true value be quantified. When a softmax activation function is used

in the output layer, the CNN produces a probability value which represents the likelihood that

the image belongs to each of the categories that were defined. In supervised learning, the actual

classification of the image is known which means it is possible to quantify the level of correctness

in the model’s classification. This process is carried out by the loss function (Chollet and Allaire,

2018; Traore et al., 2018). It is, essentially, a scalar field that plots the level of correctness (i.e.

the loss)8 for every possible combination of learnable parameters within the model. Also known

as the objective function, cost function, or error function, the model seeks to minimise this

function during training (Goodfellow et al., 2016). The minimum point of an objective function

represents the point where there is as much as possible agreement between the model and reality.

In the context of evaluating remotely sensed data, there are a number of different loss functions

that have been used, but those based on cross-entropy are most commonly used (Neupane et al.,

2021). These functions have been found to have a fast convergence (Maggiori et al., 2017)

suggesting that optimally performing models can be trained using fewer epochs.

It is important to note that this loss function is a high–dimensional, non–convex function

(Li et al., 2018) (Figure 4.5). It is currently not feasible for the majority of users to derive this

surface for their models. This is because of the prohibitive computational costs involved in its

generation (Li et al., 2018). However, because this surface is differentiable, it is possible to use

the principle of surface gradient to calculate the direction of a decease in this surface. This is

carried out by the optimizer and is discussed in §4.4.1.11.

8A low loss value indicates a high level of agreement between the model and the actual classification.
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4.4.1.9 Dropout Value

This hyperparameter is only adjusted when dropout layers are used in the CNN. A dropout

layer assigns a random value of 0 to the output of a set of activation functions in a previous

layer (Agarwal and Mittal, 2019). In other words, it causes the neurons to have an output of 0

thereby forcing the model to adjust other parameters to lower the loss function. Dropout layers

are used to reduce potential overfitting within the model (Shakya et al., 2021; Chevtchenko

et al., 2018) thereby making it possible for the model to become more generalized. The dropout

value determines the fraction of the neurons that will have an output of 0. A typical value for

this hyperparameter is 0.5 (De Cesarei et al., 2021). It has been found that high dropout values

can degrade the accuracy of the model leading to poorer performance (Shakya et al., 2021).

4.4.1.10 Batch Normalization

Batch normalization adjusts the outputs of activation functions within a layer (Ball et al., 2017)

to have a mean of 0 and one unit of variance (Kattenborn et al., 2021). In other words the

outputs are normally distributed. This processes is carried out after each batch during training

(Gu et al., 2018) and can have a big impact on the performance of a CNN (Goodfellow et al.,

2016). In essence, batch normalization prevents the model from becoming imbalanced due to

the presence of either very large or very small activation outputs (Kattenborn et al., 2021).

One of the benefits of this is that it makes the output of the model less sensitive to its initial

configuration (i.e. the initial weights that are randomly assigned) (Ball et al., 2017).

4.4.1.11 Type of Optimizer

Within the context of neural networks, optimization refers to the process of minimising some

function f(x1, x2 . . . xn), which is the loss function, by altering x1, x2 . . . xn (Goodfellow et al.,

2016). In this oversimplified expression, the variables x1, x2 . . . xn represents the learnable pa-

rameters that result in the loss function. This task is carried out by an optimizer function which

determines how the model will be updated (Chollet and Allaire, 2018). It therefore requires

two important aspects to be determined: the direction of the change and the magnitude of the

change. There are a number of different optimizers to choose from, but an example of four dif-

ferent approaches to optimization are presented in Table 4.5. In the first case, gradient descent,

the update of the parameter is based solely upon the current gradient and the leaning rate.

While this is more simple to calculate, it can result in the optimizer getting ”stuck” in a local

minimum (Kneusel, 2022) resulting in sub-optimal training and performance. To compensate

for this a momentum term can be added which adds a scaled version of the previous update to

the new update (Velasco et al., 2018). With Nesterov momentum, the concept of momentum
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is retained, but the position at which the gradient is calculated is changed (Gu et al., 2018).

The effect of this is to prevent any small fluctuations within the cost function to have a large

influence on the direction of parameter adjustment (Pradhan et al., 2020). Lastly, the Adap-

tive Moment Estimation (ADAM) optimizer belongs to a group of optimizers that are adaptive

(Kneusel, 2022). This means that the learning rate is not kept constant throughout the training

process (Bui et al., 2019) leading to improved performance (Kneusel, 2022).

4.4.1.12 Pooling

Pooling is a means by which the data is downsampled in order to reduce the computational

demands of the model (Chevtchenko et al., 2018; Traore et al., 2018; Wang et al., 2019). This

occurs after the convolution layer and provides a condensed feature map (Ghorbanzadeh et al.,

2019). It also aims to provide translation invariance by reducing the resolution of the feature

maps (Bera and Shrivastava, 2020). The most popular pooling operation is max pooling (Bera

and Shrivastava, 2020) which outputs the maximum value within a receptive area (Traore et al.,

2018; Wang et al., 2019). Here, the receptive area is similar in principle to the receptive area

discussed for filters (§4.4.1.2). As illustration, consider a feature map F (Eq. 4.6) that is pro-

cessed by a pooling layer consisting of a 2× 2 kernel. The feature map has a diagonal line from

the upper left to the lower right (elements that are equal to 9). The kernel slides across the

image (horizontally and vertically) with a step interval of one (i.e. similar to the convolution

kernel discussed earlier). If a max pooling approach is used, the kernel will select the highest

value that is present in the 2 × 2 kernel and produce that as an output (Eq. 4.7). The result

is a sub-sampled feature map that, overall, has the same general pattern as the input where

the downwards diagonal line is still present. But the advantage is that there are fewer elements

within the matrix which, in turn, reduces the computational load.

F =


9 −9 −9 −9

−9 9 −9 −9

−9 −9 9 −9

−9 −9 −9 9

 (Eq. 4.6)

Fsub =


9 9 −9

9 9 9

−9 9 9

 (Eq. 4.7)
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4.4.1.13 Regularizations

The regularizations covered by this hyperparameter are different in a very fundamental way from

the dropout hyperparameter. Whereas the dropout hyperparameter is involved in sporadically

changing the outputs of the model during training (by assigning a value of zero as the output

of a neuron), the regularizations associated with this hyperparameter alter the value of the cost

function that needs to be optimised (Gu et al., 2018). This is also used as a strategy to reduce

overfitting within the model (Thakkar and Lohiya, 2021; Tombe and Viriri, 2020; Lancashire

et al., 2009) and to reduce model complexity (Rubanenko et al., 2021; Chollet and Allaire, 2018;

Zhang et al., 2017). In so doing, the model’s predictive performance is increased.

According to (Goodfellow et al., 2016) the term regularization refers to any modification

made to a learning program that is intended to reduce its generalization error (i.e. to make

it more accurate in classifying inputs it has not seen before). Two types of regularization

are commonly used: L1 and L2 regularization. In L1 regularization (Eq. 4.8), also known as

sparsity regularization (Benuwa et al., 2016), the additional cost added to the loss function is

proportional to the absolute values of the weight coefficients (Chollet and Allaire, 2018). For

L2 regularization (Eq. 4.9), known as weight decay generalization (Benuwa et al., 2016), the

added cost is proportional to the square of the weight coefficients (Chollet and Allaire, 2018).

In both cases the regulizer has a regularization strength parameter (λ) (Gu et al., 2018; Tombe

and Viriri, 2020; Thakkar and Lohiya, 2021) that determines the weight of the regularization in

the final cost calculation.

L1 = λ

p∑
j=1

|βj | (Eq. 4.8)

L2 = λ

p∑
j=1

β2
j (Eq. 4.9)

The purpose of this section, within the context of the thesis, is three-fold. First, it provides a

brief overview of the different hyperparameters that can be modified in a typical CNN workflow

(Objective 3). This is an important aspect to take into consideration since the hyperparpamters

ultimately determine the performance of a model on a chosen metric. Second, by discussing the

different hyperparameters and their possible configurations it is, hopefully, shown that there are

many permutations possible when designing models. Much more than can be feasible carried

by a human. Third, in addition to these multiple permutations, it is also not known how these
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configurations interact with each other in order to produce a given output. The combination of

all of these is the primary reason for the trial-and-error approach to CNN studies.

4.4.2 Learnable Parameters

The learnable parameters of a CNN are those parameters that are updated during the training

of the model. Depending on the training strategy followed, these parameters are updated after

a single training example is passed through the model (i.e. stochastic gradient descent) or after

a mini–batch of training samples are passed through. The way in which these adjustments are

made, and when they are made, are governed by the model’s hyperparameters.

4.4.2.1 Weights and Bias

It was mentioned earlier that a neuron receives inputs and produces outputs. These inputs and

outputs are transfers of information to other parts of the model (i.e. the neuron is connected to

other neurons in different parts of the model). Each of these connections has an associate weight

which is, conceptually, similar to the strength of the synaptic connection between biological neu-

rons (Rodvold et al., 2001). Each weight within a neural network has a magnitude (i.e. size) and

a direction (either positive or negative) that determine the contributions of the input parameters

to the output (Olden and Jackson, 2002). Positive weights are analogous to excitatory neurons

in biology while negative weights are analogous to inhibitory neurons (Olden and Jackson, 2002;

Jain et al., 1996; Lancashire et al., 2009). Input variables that are associated with larger weights

contribute more to the output than those associated with smaller weights (Olden and Jackson,

2002). The value and direction of the weights result from the training process (i.e. they are

learned) (Chollet and Allaire, 2018; Belciug and El-Darzi, 2010) and therefore the weights of

the model can be viewed as ”storing” the processing capacity of the model (Gurney, 2010).

There are some important implications from this. First and foremost, since the weights

determine the processing capacity of the model, and they are updated through the training

process, it means that a sufficient amount of training is required in order for the model to make

accurate predictions. Second, it does not require the user to specify in advance which variable

within the input is the most important. This is because, in principle, the model will identify the

features that allow for the best generalization to be obtained. Given the complexity of image

interpretation this self-correcting feature is very useful.

4.4.2.2 Kernel

A kernel is a matrix that is used to convolve a portion of an input image (see §4.4.1.2). Convo-

lutions are mathematical operations that occur in the spatial domain of the image (Russ, 2006)

and are a core component of CNNs (Geum et al., 2020). They are used to extract features from

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. CONVOLUTIONAL NEURAL NETWORKS 79

an input image (Palafox et al., 2017) by transforming an image patch (Figure 4.3) to produce

a feature map (Geum et al., 2020). An important property of the kernel is that it gets updated

during the learning process. This allows the CNN to extract the most useful features from the

input image.

An example of this process is given in Figure 4.6. A barchan outline is fed into the CNN and

in the first convolution layer it is transformed into a feature map by a kernel. This operation can

result in a smaller image (typically a feature map is 2 rows of pixels shorter and two columns of

pixels narrower than the original input). However, the hyperparameters of the convolution layer

can be configured to retain the dimensions of the input by setting the appropriate padding value.

This process continues for all the convolution layers specified with each feature map extracting

features from earlier features. This, in principle, is what allows CNNs to extract more abstract

shape information from an original input.

4.5 Learning

The concept of learning as applied to a CNN refers to the iterative process whereby the perfor-

mance of the model is improved by exposing the model to data (Ertel, 2011). It is this that made

it possible for machines to address real world problems and to make decisions that appear to be

subjective (Goodfellow et al., 2016). Although, technically, the fact that a CNN is a composite

mathematical function means that it is not subjective but rather objective. In this section, the

strategies associated with learning is briefly discussed and the process of learning, as applied to

supervised learning, is elaborated upon. This is necessary information in order to understand

how a CNN improves its performance. Within the context of this research, it is also ensure that

this performance increase can still be traced back to the improved processing of the barchan

image.

4.5.1 Types of Learning

Several different strategies for training a neural network are available (Table 4.6). Supervised

learning is a common learning approach (Jordan and Mitchell, 2015; Chollet and Allaire, 2018)

and is, essentially, a training approach where the model can determine how correct its classifica-

tion is (Abdi et al., 2011). By using labelled data (Kattenborn et al., 2021) the neural network

is shown what type of response should be used for any given input (Goodfellow et al., 2016).

This is achieved via the calculation of the loss function mentioned earlier. In this way, the model

learns the appropriate weights that will allow it to map an input to a given output (Chollet and

Allaire, 2018), i.e. to place an image into a category. In contrast, unsupervised learning does

not make use of labelled data (Jordan and Mitchell, 2015; Goodfellow et al., 2016).
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Input Image

−0.10393258 −0.0170676 0.03132799
−0.11450705 0.10232584 0.02103248
0.01135338 0.1268854 0.10165108


Kernel 1

Feature Map 1

−0.10393258 −0.0170676 0.03132799
−0.11450705 0.10232584 0.02103248
0.01135338 0.1268854 0.10165108


Kernel 2

Feature Map 2

0.02942076 0.0562369 0.10107698
0.06563552 0.0201758 −0.09736546
0.01028652 0.10046399 0.07486505


Kernel 3

Feature Map 3

∗

=

∗

=

∗

=

Figure 4.6: An example of several different kernel convolutions applied to a barchan outline. The input image is
convolved (represented by the ∗ symbol) with the first kernel to produce a feature map. This feature
map is then convolved with the second kernel producing another feature map. Lastly, this second fea-
ture map is then convolved with another kernel to produce the final feature map. Convolutions car-
ried out using ImageMagick (https://imagemagick.org/script/index.php) and contrast stretched in Gimp
(https://www.gimp.org/) for easier interpretation.
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Due to the possibility of a lack of large labelled data sets to train a model (using a supervised

learning approach), unsupervised learning was developed as a means to alleviate the dependency

on lablled data sets (Zhu et al., 2017). The goal of unsupervised learning is to detect an

underlying feature that can be used to place the images into one of several categories (Jordan

and Mitchell, 2015; Atkinson and Tatnall, 1997; Goodfellow et al., 2016). While beneficial, it

does have the limitation in that these categories do not, necessarily, correspond to those assigned

by the community. For example, in the case of barchan research, when tasked with categorising

by shape it is not a given that the defined categories will correspond to the a
c classification

scheme developed by Finkel (1959). It is also believed that humans use an unsupervised learning

approach during the process of classifying natural phenomena (Lamm and Unger, 2011).

Semi-supervised and weakly supervised approaches are methods to combine aspects of both

supervised and unsupervised learning. During a semi-supervised approach the model is trained

by using a small labelled data set (Kattenborn et al., 2021). More specifically, the model is

trained to assign labels to a larger corpus of imagery after it has been trained on the smaller

data set. This larger corpus is then used to improve the model’s performance. In weakly

supervised learning the goal is to use labels of ”lower” quality to train a model (Kattenborn

et al., 2021). Similarly, weak supervision is also used due to the expense, both in time and

money, in obtaining large amounts of training data (Zhou, 2018). Due to the nature of the data

used in weakly supervised approaches, which can be inaccurate, inexact, or incomplete (Zhou,

2018), models trained using this approach often show poor performance (Li et al., 2019). Lastly,

reinforcement learning works on the principle of a feedback loop between the model and the

environment (Goodfellow et al., 2016). It is used in cases where a machine needs to learn to

complete a task such as playing a computer game where it learns the actions to take in order to

maximise its score on the game (Chollet and Allaire, 2018).

4.5.2 The Learning Process

The learning process of a CNN will be discussed within the context of Figure 4.7. This model

takes an image X as input. For this example, the image has only a single channel (i.e it is a

grayscale image). Only a single convolutional layer is present whereby a kernel K converts the

input into a feature map F . The feature map is then passed on to a fully connected layer for

classification into one of two categories.

During the learning process, the model learns the regular patterns that are present within

the training data (De Cesarei et al., 2021). In this case, the model would learn those attributes

that place the input into one of the two categories (i.e. it assigns a label to the input image).

For training to be effective, a label has to be assigned to the input (this occurs during forward
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Table 4.6: A description of the main approaches to machine learning.

Type of Learning Description

Supervised In supervised learning, models learn a mapping from x to y through
exposure to a set of samples (Jordan and Mitchell, 2015; Chollet and
Allaire, 2018).

Unsupervised Used to alleviate the dependence on labelled data sets (Zhu et al.,
2017), unsupervised learning attempts to find patterns in the structure
of the data (Jordan and Mitchell, 2015).

Semi-supervised In semi-supervised learning, both labelled and unlabelled examples are
used in order to train the model (Goodfellow et al., 2016).

Weakly supervised In weakly supervised learning, lower quality, compared to the intended
use, reference data is used (Kattenborn et al., 2021). Typically used
in the absence of precise label information (Li et al., 2019).

Reinforcement In reinforcement learning, the model receives input from its environ-
ment and learns to choose actions that will maximise its reward (Chol-
let and Allaire, 2018) through the use of feedback loops (Goodfellow
et al., 2016).

X

Input K

F

Convolution Layer
n1

n2

...
n3

n4

Flattened Layer

c1

c2

Output

Figure 4.7: A simple CNN with one convolution layer with a single kernel (K) that produces a feature map (F), which
is then placed into one of two output categories.
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propagation) and the correctness of this label needs to be evaluated by the loss function. After-

wards, the model has to adjust the learnable parameters within the model in such a way as to

minimise the error of the model. This occurs during back-propagation.

When a model is created for the first time (i.e. it is initialised) all of the learnable parameters

are assigned a random value based on some distribution. After the intialisation is completed, the

training process starts (Figure 4.8). For each epoch, a training example is passed through the

model (this is known as forward propagation). Since a training example is associated with a label

(or value), the difference between the model’s output and the expected output can be calculated.

This is used to create a loss function for this run of the model. The goal of the training process

is to minimise this loss function by adjusting the learnable parameters (which in this example

is the kernel K and the weights W ) which is carried out during back-propagation. In order to

achieve this, the partial derivatives ( ∂C
∂W

∂C
∂K ) of the learnable parameters with regards to the

loss function needs to be determined. These calculated values are used within the optimizer

function to determine the direction and magnitude of adjustment that needs to be made to the

learnable parameter. After the adjustments have been made, the next training example is used.

Since the kernel and weights are now different values, the output of the model is different and

a new loss function is calculated. This is repeated until all of the training examples have been

used, marking the end of the first epoch. This entire process is then repeated for the amount of

epochs specified in the model’s hyperparameters. After all the epochs have elapsed, the model

is considered trained. The process discussed here relates to a stochastic gradient approach to

training where only a single training example is used each time to update the values. Where mini-

batch training is used, several training examples are used in the forward propagation process

and the average values used for the update process. A more detailed description of this process

is provided in Appendix B and Appendix C.

The main contribution of this section is to provide an overview of how a CNN improves its

performance. As can be seen, a CNN has the capacity to improve the ability of kernels to extract

features that would allow the classification to be as accurate as possible. This is particularly

useful in cases such as barchan outline classification since it is not practical to specify that level

of detail in advance. Through the learning process, the CNN can therefore identify those features

of the outline that best distinguish between the two classes. However, it is also clear that this

process can only modify parameters that were initialised. As such, this section describes, briefly,

why CNNs are considered to be dependent on initial starting conditions. This provides the basis

for the decision to run multiple different versions of the same model (see §5.9) to obtain an

average performance.
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Figure 4.8: A flowchart depicting the training process of the simplified CNN depicted in figure 4.7. For this example,
30 epochs of training (i) was used and 100 training images (j) are available.
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4.6 Transfer Learning

Broadly speaking, transfer learning involves using CNN models that were trained on a primary

task to perform a secondary task (Azzaoui et al., 2019; de Lima and Marfurt, 2020; Torrey and

Shavlik, 2010; Neupane et al., 2021). The rationale is that a model can be trained to extract

features on a primary task where an abundant data set is available. During this phase, the

learnabale parameters of the model is updated (§4.5) in order to allow it to accurately classify

the images of the primary data set. Once this is achieved, it is then possible to leverage this

feature extraction capacity to extract features on a secondary classification task (Ball et al.,

2017; Huang et al., 2018). In practice, this involves removing the fully connected portion of

the model (i.e. the classifier) while retaining the feature extractor (Wan et al., 2018; Wilhelm

et al., 2020). The new model would therefore consist of the weights that the model learned and

that are stored within the different convolutional layers. Essentially, this refers to the learned

kernels which, as discussed previously, are responsible for the extraction of features from the

imagery. A new fully connected layer is then added to this feature extractor that is more suited

to the task. This is often necessary since the classification categories for the secondary task

are likely to be different from those of the primary task. The model is then retrained but, in

contrast to the ”from scratch” scenario, the weights of the feature extractor (i.e. the kernels in

the convolutional layers) are prevented from being updated and it is only the weights of the fully

connected layer that are learnable. Therefore, transfer learning is neither a hyperparameter nor

a learnable parameter. Rather, it represents a different implementation paradigm.

Despite the ”big data” of remote sensing being a reality, suitable data sets upon which a

CNN can be trained to interpret remotely sensed imagery is often limited. In this case, suitable

data refers not to the image itself, but the existence of image-label pairs that can be used

for model training. This can be due to the absence of labelled imagery (Liu et al., 2021), the

logistical constraints associated with ground truthing (Kattenborn et al., 2021), or the preference

for RGB images which lead to a low representation of multi-spectral imagery (Bhuiyan et al.,

2020). Regardless of the reason behind the limited data availability, transfer learning serve as

a usable alternative to ”from scratch models” for applications were the training data may be

limited (Ball et al., 2017; Liu et al., 2021; Kattenborn et al., 2021; Neupane et al., 2021; Wilhelm

et al., 2020).

This section describes the principles of transfer learning which is one of the approaches whose

performance is evaluated in this study. It is a common method to use when data sets are small,

as is the case in this study, and has been frequently applied in remote sensing tasks.
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Category Lower Bound Upper Bound

Slim 0.125 0.375

Normal 0.376 0.625

Pudgy 0.625 0.875

Fat 0.876 ≥ 1

Table 4.7: The classification categories of barchan shape using the a
c
ratio (Bourke and Goudie, 2009).

4.7 Why use CNNs?

Given the preceding sections it is reasonable to assume that CNNs are suited to address the

research problem. The aim of this research is to determine whether morphological data can be

extracted from imagery of barchan outlines. For this to be a reasonable task for a CNN, several

conditions need to be met:

1. An image of a barchan outline must contain morphometric information of that barchan.

2. It must be impractical to ”hard code9” a solution to the problem.

3. The data that is fed into the model must be compatible with the various data processing

stages in order to facilitate learning.

From Chapter 2 it is clear that the first criterion is already met. A number of studies have

made use of remotely sensed barchan imagery in order to obtain morphometric data (e.g. Bourke

and Goudie, 2009; Hamdan et al., 2016; Elbelrhiti et al., 2008). Although it may be stating the

obvious, this does show that morphometric data corresponding to real world landforms can be

extracted from imagery of the landform provided that the imagery is not distorted. Since an

outline of a barchan still contains the information used to determine properties such as shape

(see Figure 2.4) it can be concluded that imagery of barchan outlines do contain morphometric

data about barchans.

The second condition lies at the heart of Artificial Intelligence (AI) related problems. Al-

though neural networks can be developed to solve any problem, they are less suitable to solving

problems that have simpler solutions that can be directly converted to programming. For exam-

ple, consider the classification of barchans into different shape categories based on their a
c ratio

(Table 4.7). Placement inside each of these categories only require that the stoss length of the

dune (a) be divided by the distance between the horns (c). Therefore, if these two variables are

known, there is no need to develop a neural network for the classification task.

However, in cases where the required information is not available beforehand, such as when

images are used as input, it becomes more difficult to use such an approach. This is because the

9Here, hard coding is used as an antithesis to learning. It involves a solution that is pre-programmed and
therefore not able to adjust to new information in order to improve a process.
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program must be configured for any possible combination of inputs. In this case, it needs to be

know, in advance, where all the pixels within the image are located that are needed in order to

classify the image. Because this is impossible, it is easier to develop a program that can learn

the pattern itself (i.e. a neural network).

The last point should be self-evident from the preceding discussion. CNNs are specifically

designed to work with images as an input. Therefore, since images of barchan outlines are

images, they exist in a format that is suitable for CNNs to interpret. However, it can be argued

that other types of neural network can, in principle, handle this information. For example, if

the data is converted from a matrix to a vector format, it should be possible to feed the image

into a multi-layer perceptron. However, this does result in decreased performance10 due to the

absence of the convolution operations.

10Although this is not specifically addressed in this study, earlier versions of the project made use of multi-layer
perceptrons that had worse performance than was obtained for CNNs.
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Chapter 5

Method

5.1 Chapter Overview

To successfully reach the aim of this project, several aspects need to be addressed (Figure 5.1).

It is important that the barchans used are based on the outlines of barchans that are encountered

in nature. Since image texture has been identified as a point of bias in the classification process

of CNNs, this texture component needs to be removed. The works of Dakir et al. (2016) and

Azzaoui et al. (2019) has shown promising results, however, the results are not yet at a level

that matches the requirements for this study. It is also necessary to create several different

classification tasks of varying levels of complexity in order to evaluate the diversity of applications

to which a CNN is suited. Lastly, several different CNN architectures need to be created within

which the influence of some of the hyperparameters that have been discussed can be determined.

It is not possible, within this study, to investigate all of the hyperpaprameters along with their

possible combinations.

5.2 Site Selection

A barchan dune corridor in the Kunene region in northern Namibia, located between the lat-

itudes of 18.8◦S and 19◦S, and between the longitudes 12◦E and 12.5◦E, was chosen as the

source of barchan imagery. This is because the region has a large number of isolated barchans

and imagery of a resolution sufficient to extract detailed outlines. It therefore meets the require-

ments et out in Objective 4. The site has an average elevation of 58 m.a.s.l.1 with a topography

that is gently sloping from the north-east to the south-west (Figure 5.2).

1Meters above sea level
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Figure 5.1: Project workflow along with the associated computational environments. The different sections of this
chapter will follow this outline and discuss the components in more detail.
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a) b)

c)

Figure 5.2: a) The barchan dune field that was used in this study (Image from Google EarthTM ). b) A raster image
of the topography (approx. 30m resolution). c) The location of the Kunene dune field in Namibia.

NCEP/NCAR2 project produces data are consistent with site observations (Bao and Zhang,

2013; Ashkenazy et al., 2012) and have been used in an earlier study on aeolian geomorphology

in the region (Barnes, 2001). Therefore, this data can also be used to describe the wind regime

of the study site. To ensure that the wind data correspond as closely as possible to the dune

configuration at the time the image was taken (12 November 2012), the time period was selected

as starting at 12 November 2011 and ending at 12 November 2012. The pressure level for the

observations was set at 1000 hPa3 to ensure readings as close to the surface as possible and the

data of four observations per day was chosen to increase the accuracy. This yielded 1465 wind

observations for the study period.

The collected wind data was analysed using RStudio. NCEP data is provided in the form of u

and v wind components which needed to be transformed into wind vectors. Using the approach

of Fryberger (1979) the Drift Potential (DP) (Eq. 5.1) was calculated using wind directions

associated with wind speeds between 11 and 40 knots. The variables for this equation are:

average wind velocity (V ), threshold velocity (Vt = 12 knots), and the percentage occurrence of

2National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Com-
merce. 1994, updated monthly. NCEP/NCAR Global Reanalysis Products, 1948-continuing. Research Data
Archive at NOAA/PSL:/data/gridded/data.ncep.reanalysis.html.

3Hectopascals
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wind in each direction (t) (Zamani et al., 2019). The drift potential in an area is an indication

of the relative amount of sand moved by the surface wind, above a threshold velocity, over a

period of time (Fryberger, 1979; Hamdan et al., 2016). The equations provided by Zamani et al.

(2019) was used to transform the DP data into Resultant Drift Potential (RDP) and Resultant

Drift Direction (RDD) values (Eq. 5.2) where θ is the midpoint of each of the orientation classes

used to group the wind data. The RDP value represents the magnitude of the drift potential

while the RDD value refers to the direction in which the sand will be transported (Hamdan

et al., 2016). The ratio, RDP
DP serves as an expression of directional variability with high values

reflecting unimodal winds and low values representing more complex wind regimes (Pearce and

Walker, 2005).

Q ∝ V 2(V − Vt)t (Eq. 5.1)

RDP =
√

(C2) + (D2)

RDD = arctan(
C

D
)

C =
n∑

i=1

(DPi) sin θi

D =

n∑
i=1

(DPi) cos θi

(Eq. 5.2)

Plotted wind vectors (Figure 5.3) show a mean wind direction that is approximately southerly

(179◦) which corresponds to the general south-north alignment , i.e. the horns are ”pointing”

towards the north, of the barchans and is similar to the findings of other studies in Namibia

(Barnes, 2001; Bourke and Goudie, 2009; Scheidt and Lancaster, 2013). The region has a DP of

747.7, an RDP of 629.2, and an RDD of 352◦. This indicates a high energy wind environment

with wind directions that tend to be unimodal (Table 5.1). The RDP value of the study site is

higher than that reported at Walvis Bay by Bourke and Goudie (2009) suggesting a more intense

sand transport environment. Also, an RDP
DP value of approximately 0.84 suggests a high-energy

wind environment with narrow unimodal directional variability (Pearce and Walker, 2005). This

value is similar to that calculated for Luderitz (RDP
DP = 0.85) in southern Namibia (Tsoar, 2001)

and for southern Iran (RDP
DP = 0.84) (Moosavi et al., 2014), but less than that calculated for a

barchan dune field in Morocco (RDP
DP = 0.9) (Elbelrhiti et al., 2008). Approximately 62.2% of

the wind readings were of a speed sufficient to result in particle movement (i.e. they were above

11 knots). This indicates that this area is, a very active region in terms of aeolian processes.
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Figure 5.3: Wind vectors for all wind speeds (n = 1465) in the study site separated into years. Note that the wind
vectors indicate the direction in which the wind is blowing.

Table 5.1: The relationship between DP and RDP
DP

in describing the wind regime of a region. Examples of dunes
associated with the different environments are also provided (adapted from Pearce and Walker (2005)).

DP RDP
DP Wind Energy Directional Vari-

ability
Dunes

< 200 < 0.3 Low Complex to obtuse bi-
modal

Start dunes

200–400 0.3–0.8 Intermediate Obtuse to acute bi-
modal

Linear dunes

> 400 > 0.88 High Wide to narrow uni-
modal

Barchanoid ridges

This section contributes to the thesis by providing some context for the type of environment

from which the barchans were sampled. While not necessary to achieve the aim of this thesis, it

is, nevertheless, useful as an aid to describe the current shape of the barchan dunes. The high

energy nature of the wind environment indicates that this region is currently very active and

that the barchans are actively moving northwards. Additionally, the region has a wide unimodal

nature.

5.3 Satellite Imagery

Images of barchans were obtained using Google EarthTM 4. Although the positional accuracy

of Google EarthTM imagery has been questioned (Mohammed et al., 2013; Paredes-Hernández

et al., 2013) it is still considered a source of data in barchan research (Bourke and Goudie, 2009;

Lorenz et al., 2013; Dakir et al., 2016; Hugenholtz et al., 2012). Only isolated barchans (i.e

4The use of Google EarthTM imagery is covered under the ethics application for this project (Ethics Clearance
Number: 180000081).
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barchans that were not merged nor in a process of merging) were sampled. This is to avoid the

subjectivity associated with delineating merged barchans (Hugenholtz et al., 2012).

This section describes the source of the imagery that was used to train the CNN. Key factors

to consider is the reliability of the data source. Although the positional accuracy is a concern,

it is not considered relevant here since the project does not have a spatial analysis component.

As long as it can be confidently claimed that there are no obvious distortions within an image

that would alter the shape of the barchan, then the data is considered suitable for use. Given

the Google EarthTM data is used frequently by the aeolian research community, it is safe to say

that this distortion is not noticeably present.

5.4 KML Data

To describe the dimensions of the barchans, .kml data was collected from each of the sampled

dunes (Figure 5.4). It is important to note that this data is only used to describe the size

of the barchans that were used in the study and were not used in subsequent analysis. The

data from Google EarthTM is in a geographic projection (WGS84) and, since the determination

of distances between the points used techniques from Euclidean geometry, it was necessary to

convert the points to an appropriate map projection. Since the data was collected in Namibia,

the Hartebeeshoek94 projection was selected. The dimensions of the barchans can then be

calculated using the following. For stoss length, the Euclidean distance between the toe of

the barchan (C) and the crest (D) was used. The lengths of the horns were calculated as the

perpendicular distance between the toe of the barchan (C) and the tips of the individual horns

(A and B). This does differ from the more conventional descriptions (Sauermann et al., 2000;

Wang et al., 2007) who use the bottom of the slip face and the dune crest respectively. However,

this method is still adequate to provide an overall description of a barchan’s dimensions.

Horn width is defined according to Sauermann et al. (2000) as the distance between the horn

tips measured perpendicular to the longitudinal axis (CF ). This differs from the interpretation

of Norris (1966) who considers it as the Euclidean distance between the tips of the horns.

To determine the width of the dune, triangles CAD and CBD were constructed. Using the

length of the stoss slope CD as a common base. The heights of the two triangles (AF and BG

respectively) can then be summed to calculate the width of the dune. This is achieved by using

Heron’s formula and the area formula of a triangle5.

5This is discussed in more detail in Section 5.7.1.
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A

B

C

D

E

F

G

Figure 5.4: Points that were collected from the Google EarthTM data as a .kml file. The path tool (blue) was used to
ensure that all of the points (red) can be contained within a single file.

5.5 Outline Extraction and Image Scaling

The RGB images obtained from Google EarthTM contain image texture. This texture informa-

tion can result from: shape, luminance, surface textures, and background information (Baker

et al., 2020). To remove this, the outlines of the barchans were digitised (Zhang et al., 2018)

(Figure 5.5). This was carried out in InkScape (https://inkscape.org/) so that the outlines

were in scalable vector graphic format (i.e .svg). This makes it possible to scale the size of

the outline to any value without a loss in detail. Because the dunes are of different sizes, the

ability to rescale them allows for the influence of the size of the dune (which in practice would

manifest as clustered pixel values), to be effectively eliminated. A key aspect in determining the

performance of a CNN is the quality of the images used during training and, ultimately, during

evaluation. Resizing raster images can result in additional pixel values being incorporated into

the image during the reduction or enlargement process. As a result, an additional variable is

introduced within the image that is solely an artefact of the original size of the image. When

vector graphics are used, this introduction of additional pixels can be avoided. In order to ensure

consistency, all of image data were resized to ensure that the longest axis of the image (in either

the x or the y direction) was 224 pixels. The remaining axis was then scaled to 224 pixels to

create a 224 × 224 pixel image. The choice of dimensions was based on the input requirements

for the VGG16 and ResNet50 architectures (Bendjillali et al., 2020; LaVezzi et al., 2020). Since

models such as VVG16 use RGB images as input, the outlines retained the RGB channels of

the image for consistency.
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Figure 5.5: The barchan outlines that were used in this study.
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A reasonable question to raise is why object identification techniques were not employed

here. Object identification, i.e. semantic segmentation, strategies have been successfully used in

earlier work to extract barchans (foreground) from their environment (background) (Rubanenko

et al., 2021; Azzaoui et al., 2020; Vaz et al., 2015). However, a limitation of this strategy is that

it only permits the extraction of the planform shape of the barchan (i.e. its two dimensional

footprint on the image). It has not yet been demonstrated that semantic segmentation can

distinguish between the slip face and the stoss slope of the barchan. This, essentially, prevents

information regarding the brink line to be extracted. Given the importance of the brink line in

describing barchan morphology (Figure 2.4) this is a significant shortcoming.

This section explains how the imagery was prepared prior to being used in the training and

evaluation of the CNNs (Objective 5). Given the sensitivity of CNNs to image texture (Geirhos

et al., 2019), and since it is unknowable in advance how the CNN will make use of this texture

information (Baker et al., 2020), it is necessary to remove this so that a baseline examination can

be carried out. In other words, it is a means of removing a variable that cannot be satisfactorily

controlled for.

5.6 Task Delineation

As stated in the first chapter, the aim of this research is to determine if barchan shape and

asymmetry information can automatically be extracted by a CNN from a simplified image of a

barchan and, if so, how can the performance of the network be enhanced. For the first part, six

different tasks have been developed, each addressing a different aspect of barchan morphometry

(Table 5.2). The tasks are discussed in more detail under the relevant subsections while the

details surrounding their calculation is provided in Section 5.7. Details on the interpretive value

of the morphometric variables6 associated with each task can be found in Chapter 2.

5.6.1 Classifying Barchan Shape

The a
c–ratio is commonly used to describe the shape of barchan dunes (e.g Hamdan et al., 2016;

Bourke and Goudie, 2009). Several categories are associated with this variable namely slim,

normal, pudgy, and fat. However, the dunes within the sample do not cover the entire spectrum

with a frequency that is suitable for model training. Therefore, the median a
c ratio of the data

set was used to separate dunes into categories where the a
c ratio is small and cases where it is

large. To avoid association with a specific horn elongation, examples from both left and right

elongated horns were used in each category (Figure 5.6).

6A morphometric variable is a variable such as width and length that is used to describe a specific property
of a barchan’s shape.
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Large a
c ratio

Left Right

Small a
c ratio

Left Right

Figure 5.6: Example of imagery used to train a model to categorise barchans based on the a
c
ratio. Samples of both

left and right elongated dunes were used (but these subcategories did not form part of the classification
process).

5.6.2 Side of Elongation

This task requires the model to distinguish between barchans based on which of the horns (left

or right) is elongated. Only two categories are, therefore, possible based on the nature of the

data (Figure 5.7). The training and evaluation contained examples of barchans where the side

of elongation is clearly discernible and examples where it is more subtle. These were, however,

not used as subcategories due the small data set. Nevertheless, it does permit conclusions to be

drawn regarding the model’s performance on detecting subtle differences.

Left Elongation

Obvious Subtle

Right Elongation

Obvious Subtle

Figure 5.7: Examples of barchans that were used to train and evaluate the neural network’s performance on task 1.
Note that the categories ”obvious” and ”subtle” were not used but are placed here for context.

5.6.3 Classifying Side of Widest Horn

The width of each horn of the barchan can be used to determine on which side of the barchan

the widest horn occurs. This describes barchan asymmetry according to the criteria presented

in Elbelrhiti et al. (2008). Similar to the other tasks, two categories were created classifying

an individual barchan as having the widest horn on either the left or the right side of the dune

(Figure 5.8). Similar to the task on the side of elongation, examples of subtle differences in

length (i.e. where there is a small difference in horn width) were combined with examples of

larger and more obvious differences in width.
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Large Difference

Left Right

Small Difference

Left Right

Figure 5.8: Examples of imagery from the side of the widest dune task. The subcategories ”large” and ”small” were
not used but are provided for additional context.

5.6.4 Classifying Side of Lateral Extension

This task is based on the modelling work of Parteli et al. (2014) who demonstrated the effect of

slope angle on the lateral extension of a barchan horn. In their work, it was possible to generate

barchans that had an asymmetry resulting only from the lateral extension. However, no such

cases are present in the sample of barchans used in this study. Therefore, the dunes inevitably

show a combination of lateral extension and an asymmetry that results from other factors such

as horn elongation. Two categories ”left” and ”right” are used to differentiate between barchans

where the lateral extension is on the left and right side respectively (Figure 5.9). The data also

consisted of a combination of obvious cases, where the side of lateral extension is clearly visible,

and those where the difference is more subtle.

Large Difference

Left Right

Small Difference

Left Right

Figure 5.9: Examples of imagery from the side of the widest horn task. The subcategories ”large” and ”small” were
not used but are provided for additional context.

5.6.5 Classifying Differences in Horn Length

To assess the model’s capacity to discern the magnitude of horn length differences, two categories

were created, ”large” and ”small”. Since there is no literature with explicit categories of the

morphometric variable, custom categories were created based on the median value of the horn

length differences within the sample. Dunes that had a difference in horn length larger than the

median were placed into the ”large” category and the other dunes into the ”small” category.
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For both cases, examples of left and right horn elongation was used (Figure 5.10) in order to

prevent the model from associating a specific elongation with the correct classification.

Large Difference

Left Right

Small Difference

Left Right

Figure 5.10: Examples of imagery used to train and evaluate the model’s capacity to correctly classify the magnitude
of difference in horn lengths. The subcategories ”left” and ”right” were not used but are provided for
additional context.

5.6.6 Classifying Bilateral Asymmetry

This task uses a custom description of asymmetry, bilateral asymmetry, that was develop specif-

ically for this project. This method expresses barchan asymmetry as the Procrustes distance

between a dune and its mirror image. For a perfectly symmetrical barchan, the Procrustes dis-

tance to its mirror will be zero. Deviations from this symmetry is expressed by increasing values

of the Procrustes distance. The manner in which this metric is calculated effectively allows for

all of the other asymmetry metrics to be incorporated into a single continuous variable. This

makes it possible to evaluate whether the model can factor in several different manifestations

of asymmetry that act together. Using the median Procrustes distance of the sample, two cate-

gories were created with examples of left and right elongated barchans being included to avoid

bias in the samples (Figure 5.11).

More asymmetrical

Left Right

More symmetrical

Left Right

Figure 5.11: Examples of imagery used to train and evaluate models to detect bilateral asymmetry. The ”more
asymmetrical” category contains dunes that have a procrustes distances higher than the median while
the ”more symmetrical” category have procrustes distances below the median. The subcategories left
and right were not used and are provided for additional context..

This section describes the different tasks that a CNN is expected to complete (Objective 2).

These tasks represent a fairly broad overview of the types of morphological data that are used

in barchan research, although it is by no means exhaustive.
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5.7 Label Generation

Label generation is the process whereby labels are generated for all of the training and testing

data. Since the learning paradigm followed here is supervised learning7, the correct labels of

each image is a requirement for training. In this context, the labels refer to the morphometric

attributes that are of interest, such as the magnitude of difference in horn lengths, the a
c–ratio

etc.

5.7.1 Barchan Shape

Two different approaches have been used to calculate the distance between the horns (i.e. the c

variable of the a
c–ratio calculation). Sauermann et al. (2000) expresses this distance as the sum of

perpendicular distances between the tip of the horn and longitudinal axis of the dune. In contrast

Norris (1966) uses the Euclidean distance between the two horn tips. The method proposed by

Sauermann et al. (2000) is used since the alternate method is considered to artificially decrease

the values for asymmetric barchans thereby creating a bias to the classes with low a
c values.

To calculate the a
c ratio from the landmark data (Figure 5.12), two triangles (ABC and

ABD) are constructed using landmarks 6, 18, 2, and 10 respectively (Figure 3.6). Note that, ass

stated earlier, landmark 16 was used in some instances where landmarks 16 and 17 occupied the

same position. Using the coordinates of each landmark, the surface area of each triangle can be

calculated using Heron’s formula (Eq. 5.3), where A is the area of the triangle, a is the length

of the line AB, b is BC or BD, c is AC or BD, and s = a + b + c. All distances are calculated

using the Euclidean distance formula. Once the area of the triangles are known, the height of

each triangle CE and DF can be calculated using equation (Eq. 5.4). By summing the heights

of each triangle, the distance between the horns can be calculated. The median value across the

entire data set was used to separate the samples into one of two categories. The median was

chosen specifically since it, in most cases, separates the data set into two equal portions.

A =
√
s(s− a)(s− b)(s− c) (Eq. 5.3)

h =
2A

b
(Eq. 5.4)

5.7.2 Side of Elongation

The side of elongation is derived from the horn that has experienced the most elongation (Figure

5.13). Two variables are needed to categorise the barchan as being either left or right side

7This will be elaborated upon later in the model training section.
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a

c1

c2

A

B

C

D

E

F

Figure 5.12: The method used to determine the a
c
–ratio of a barchan (c = c1 + c2).

elongated: the length of the right horn and the length of the left horn. Here, the length is

calculated with reference to landmark 16 (or 18) (which is denoted as B in Figure 5.13). This

was done in order to measure the length of the barchan with respect to the brink line. Two

triangles BCF and BDE are constructed. The lengths CF and DE was calculated during

the classification of barchan shape label generation (§5.7.1). Note that the coordinates of the

points E and F were not calculated. Additionally, the lengths BC and BD can be calculated

using coordinate geometry. Using the Pythagorean theorem, the lengths of BF and BE can be

calculated. These correspond to the lengths of the left (lH) and right (lR) horn respectively.

After the calculations, the dunes were separated into two groups based on which of the two

values, lH or lR, is the largest.

5.7.3 Side of Widest Horn

To determine which side of the barchan had the widest horn, the width of both horns were

calculated. For the left horn, landmarks 4 and 1 were used, and landmarks 11 and 8 were

used for the right horn (Figure 5.14). This is approximately equivalent to the method used

by Elbelrhiti et al. (2008). These distances were calculated perpendicular to the longitudinal

axis of the dune. A key challenge here is that it is not straightforward to construct right–sided

triangles to obtain the answer (as was the case for the classifications of barchan shape and side

of elongation tasks). An alternative approach was therefore used.

Using the landmarks, the longitudinal axis can be calculated using (Eq. 5.5). In essence,

this involves calculating the equation of a line that bisects the angle made between the toe of

the barchan and the two horn tips (which corresponds to the geometric construction outlined in
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B

C

D

E

F

lL

lR

Figure 5.13: The determination of barchan left (lH) and right (lR) horn lengths. Measurements made parallel to
the longitudinal axis. Landmark B corresponds to either landmark 16 or 18 (See §3.3.1 for further
details). The coordinates of the points E and F were not calculated but are indicated here for clarity
(see discussion for further details).

wL

wR

Figure 5.14: The method used to determine the width of the left (wL) and right (wR) horns. The width is expressed
perpendicular to the longitudinal axis.
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§3.3.1). The variables a1, b1 and c1 correspond to the line connecting the toe with the left horn

while the variables a1, b1 and c1 represents the line connecting the toe with the right horn tips.

The equation of the longitudinal line is then described using the variables an, bn and cn.

a1x + b1y + c1√
a21 + b21

= −a2x + b2y + c2√
a22 + b22

∴ an = a1

(√
a22 + b22

)
+ a2

(√
a21 + b21

)
∴ bn = b1

(√
a22 + b22

)
+ b2

(√
a21 + b21

)
∴ cn = c1

(√
a22 + b22

)
+ c2

(√
a21 + b21

)
(Eq. 5.5)

Once the equation of the longitudinal axis is known, it is possible to calculate the width of the

left horn. First, the distance between the longitudinal axis and landmark 4 is calculated using

(Eq. 5.6). Second, the distance is calculated between the longitudinal axis and landmark 1. The

width of the left horn is then equal to the difference between the first and second calculation.

The process is repeated for the right horn using landmarks 11 and 8.

Distance =
|anx1 + bny1 + cn|√

a2n + b2n
(Eq. 5.6)

5.7.4 Side of Lateral Extension

Determining the side of maximum lateral extension (Figure 5.15) followed the same basic process

as determining which side had the widest horn. Using the equation of the longitudinal axis,

the perpendicular distance to the most lateral points on the barchan (landmarks 4 and 8) are

calculated. The side of the longest lateral extension is then the side of the barchan (either left

or right) which has the largest value.

5.7.5 Magnitude of Elongation

The magnitude of elongation is calculated as the difference between the left and the right horns.

Since the lengths are known (based on the classification of the side of elongation task), this is

a simple procedure. Since the process is automated, the absolute value (Eq. 5.7) was used in

order to avoid results with a negative value.

|x|=


x if x ≥ 0

−x if x < 0

(Eq. 5.7)
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LER

LEL

Figure 5.15: The method used to determine which side of the barchan had the most lateral extension (LEL vs. LER).
The amount of lateral extension is measured perpendicular to the longitudinal axis.

5.7.6 Bilateral Asymmetry

The extent of bilateral asymmetry is expressed based on the procrustes distance (ρp) between a

barchan and its mirror image. Since this is a new expression of asymmetry, there are no prior

studies that can be used to generate commonly used labels. Therefore, the median procrustes

distance is used as a reference point. Dunes that have a ρp less than the median are classed

as being more symmetrical (due to having lower ρp values). Barchans that have a ρp larger

than the median are classed as more asymmetrical since their ρp values are higher. For the

bilateral asymmetry task, several dunes had a ρp value equal to the median. These ae placed in

the same class since there is no objective reasoning that can be applied to separate them into

different categories. The result of this is that the training data is slightly skewed in favor of the

symmetric barchans (i.e. the number of images in the training data for symmetrical class (64) is

larger than that of the asymmetrical class (48)). Although this does make the data imbalanced,

albeit marginally, it is not expected to substantially affect the performance of the models.

5.8 Data Augmentation

This section provides a brief overview of the data augmentation process. It was used in this study

to increase the size of the data set and thereby improve the ability of the models to classify the

imagery. Data augmentation refers to a set of methods that transform the data without altering

the nature of the data (Gu et al., 2018). In other words, it is a set of geometric transformations

carried out that applies a transformation across the entire image but still retains the subject of

the image in a recognisable form. These transformations include: mirroring the image, rotating
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the image, translating the image, flipping the image either horizontally or vertically, adjusting

the contrast, applying a filter such as sharpening or blurring, applying a shear operation to

the image, histogram equalization, and adding Gaussian noise to the image (Nagle-Mcnaughton

et al., 2020; Ji et al., 2020; Gu et al., 2018; Maxwell et al., 2020). One of the reasons for using

augmentation strategies is to prevent the model from overfitting (Maxwell et al., 2020; Nagle-

Mcnaughton et al., 2020; Gao et al., 2021). In other words, it helps the model to generalize

better. Another reason, which is used in this study, is to artificially increase the sample size

of the images (Castelluccio et al., 2015; Jiang et al., 2018; Zhu et al., 2017; Carbonneau et al.,

2020; Huang et al., 2018; Gu et al., 2018).

Training ”from scratch” models requires a large data set in order to ensure good performance

(Bhuiyan et al., 2020; Goodfellow et al., 2016). Further, in cases where the training data is

limited, poor performance can result due to overfitting (Mahdianpari et al., 2018). However, it

needs to be mentioned that the ideal sample size is not known and, most likely, will be highly

dependent on the classification task and the type of images used during the training process. It is

also inevitable that situations can arise where the subject of the study does not have adequate

training data available (e.g. Liu et al., 2021). In cases where this occurs, two strategies can

be followed. First, data augmentation can be used (as discussed previously). This works by

providing additional images that are dissimilar from the other images due to the transformation

process. A second approach is using transfer learning (Azzaoui et al., 2020; Wilhelm et al.,

2020). In these cases, models that were trained on larger data sets can be used for applications

where the data is limited (see §4.6 for more details).

In this study, the image augmentation was limited to the horizontal flipping of the image

thereby creating a mirror image. This was in order to ensure that the barchans within the image

still retained the same orientation as the original image. This is the side on which an asymmetry

is then altered (e.g. if the side of elongation was on the left in the original image it will be on

the right in the mirror image), the mirrored images were classified separately from the original

image.

5.9 Training, Validation and Testing Data

Following Kattenborn et al. (2021) and Chollet and Allaire (2018), the images in this study was

separated into three different data sets: training images, validation images, and testing images.

Training data, as the name suggests, is used to train the network by supplying it with labelled

images. These are then used during backpropagation to update the weights of the connections

(see Section 4.5). Validation data is similar in that it is used to assess the accuracy of the model,

but the weights are not updated based on the results. The purpose of the validation data is,
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Table 5.3: Data split (i.e. the number of images) between training, validation, and testing data for each of the tasks.

Task
Training Data Validation Data Testing Data

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

Barchan shape 56 56 24 24 10 10

Side of elongation 56 56 24 24 10 10

Side of widest Horn 56 56 24 24 10 10

Side of lateral Extension 56 56 24 24 10 10

Magnitude of elongation 56 56 24 24 10 10

Bilateral asymmetry 48 64 24 24 10 10

essentially, to provide a measure of the model’s ability to generalize. This makes it possible

to adjust the parameters of the model without having to use the testing data. Like validation

data, the testing data does not result in an update of the model’s weights and biases. However,

whereas the model has access to the labels of the training data, it does not have access to the

labels of the testing data. The testing data allows the performance of the model to be assessed

based on its evaluation of data that it has never seen before. It can therefore be regarded as a

measure of the model’s ability to generalise.

The split of the data for each task is provided in Table 5.3. For all of the tasks, a binary

classification was followed which means that there were two categories (§5.6). In order to avoid

bias, and to ensure that the number of images in each categorry were equal, the images were

split based on their relation to the median value (i.e one category contained images where the

morphometric variable in question was below the median and the other category for those above

the median). In all cases except one this resulted in a balanced data set. However, for the

classification of bilateral asymmetry task, the data set was not equally distributed. In this

case, there were several barchans that had the same value as the median. Because there is

no objective reason to split these images equally between the two classes, and to prevent the

same label from appearing in two different classes, all of the ties were placed together into the

same class. Images within each category was randomly split into the three data sets (training,

validation, and testing) needed for this study.

5.10 CNN Creation

This section provides an overview of the hyperparameters (see Section 4.4.1) used in the con-

struction of the CNNs used in this study. Two broad categories of CNN are discussed: CNNs

that are built ”from scratch” and networks that make use of transfer learning. Although the

U-Net architecture has been frequently used in geomorphology (Section 4.2.1) it must be pointed

out that this technique is not suited to the aim of this study. Because U-Net is a semantic seg-

mentation model, it is, in principle, capable of identifying where a barchan is within an image.
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However, aside from identifying where the barchan is located, it is not possible to classify the

”type” of barchan present within the image. Since the barchan cannot be classified, it is not

possible to extract morphometric data from it.

5.10.1 From Scratch CNNs

Model that are trained ”from scratch” offer the largest amount of flexibility to a user. It is

possible to adjust all of the hyperparameters to the needs of the application. Given the large

amount of hyperparameters and their possible values (§4.4.1), it is not possible to create a

set of CNNs based on all possible hyperparameter permutations. Instead, the emphasis is on

modifying two sets of hyperparameters that have been shown to play a significant role in model

performance, namely model depth and the presence of regularizations. Network depth can, in

principle and subject to the availability of computational resources, be any positive integer value.

Therefore, for the sake of practicality, it was decided to use models of three depths: 1 layer,

2 layers, and three layers. The motivation is that since the study is a proof of concept, and

not a final model, it is more important to collect data on performance enhancing techniques.

For the regularizations, only three options are available (L1, L2, and Dropout) and all three

were used for each model depth configuration (Objective 6). In other words for each depth,

four models were created: one without a regularization, and the remaining three with the three

regularizations mentioned. In using this combination, it is possible to determine if CNNs can

accurately classify barchans and how the hyperparameters influence the model’s performance.

Further details on the creation of the ”from scratch” models is given below.

5.10.1.1 Model Creation

The architecture of the baseline model is illustrated in figure 5.16. This model consists of a

single convolution layer that has 32 3 × 3 kernels. Therefore, 32 different feature maps are

produced (one per kernel). The padding applied to the image prior to the convolution operation

ensured that the resulting feature maps had the same dimensions as the input layer. This was

to ensure that the barchan’s outline was retained in the resulting feature maps. The ReLU

activation function was used for the convolution layer and the subsampling was carried out

using a 2× 2 max-pooling layer with a stride length of 2. The resulting sub-sampled region was

then flattened and fully connected to two output neurons, one for each category, that used the

softmax activation function.

By adding additional layers, the depth of the model is increased. As mentioned in Chapter

4, it is widely considered that increasing the depth of the model improves its accuracy (Wan

et al., 2018; Simonyan and Zisserman, 2015; Shakya et al., 2021; Kattenborn et al., 2021) at
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Figure 5.16: The baseline model. The input (X) convolves with the kernel (K) producing a feature map (F) which
is sub-sampled by a max-pooling layer creating a sub-sampled feature map (S). Afterwards, it is passed
to flattening layer before passing to the output layer. The numbers in parenthesis reflect the dimensions
of the data along the model.

the expense of increased computational costs (Gu et al., 2018; He and Sun, 2015). Due to the

absence of any guidelines on the number of optimal layers, and since overly increasing the layers

can result in decreased performance (He et al., 2016; He and Sun, 2015), a conservative approach

was followed and three depths were used: 1 layer (which is the baseline), 2 layers (Figure 5.17)

and 3 layers (Figure 5.18).
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Figure 5.17: The baseline model with an additional convolution layer. The numbers in parenthesis reflect the dimen-
sions of the data along the model.

The L1 and L2 regularziers were used as part of the kernel (K) optimization within each

convolutional layer. The effect of this is that, during the training, as the model is being op-

timised, the additional term (Eq. 4.8) and (Eq. 4.9) created by the regulizers is added during

the update of the kernel only, and not the entire model. As a result, the kernel is ”forced” to

become more generalized. This prevents a small number of pixels from dominating the feature

extraction and, consequently, the image classification (Yosinski et al., 2015). This is beneficial

especially when model generalisation is considered. If the kernels are allowed to have only a few
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Figure 5.18: The baseline model with two additional convolution layers. The numbers in parenthesis reflect the
dimensions of the data along the model.

pixels making the most contribution to the feature extraction process, it may results in missing

the detection of other features that may improve its ability to generalize to cases the model was

not trained on. The dropout layer is not a layer in the sense of the ones defined thus far. It is

a layer that, essentially, serves only to pass data from preceding layers to layers deeper into the

model. The key difference is that each neuron within a dropout layer has a certain probability

of outputting a value of 0 to the next layer. For all of the ”from scratch” models, the dropout

layer was placed immediately following the convolution layer with a dropout probability of 0.1.

This means that, at any time, 10% of the neurons from the preceding layer would output a value

of 0.

5.10.2 Transfer Learning

Models trained from scratch allow the user to specify all of the hyperparameters and allows for

the most fine-tuning. However, their performance is dependent on the amount of data that they

are trained on (Goodfellow et al., 2016). This can make them especially prone to overfitting

(Mahdianpari et al., 2018) when the diversity of imagery to which they are exposed to is low.

This can, to an extent, be overcome through the use of transfer learning (de Lima and Marfurt,

2020; Azzaoui et al., 2020; Bhuiyan et al., 2020; Wilhelm et al., 2020).

Transfer learning is a technique that uses the learned feature extraction capacity of a model

that was trained on a primary task and applying it to a secondary task (de Lima and Marfurt,

2020; Azzaoui et al., 2020). For this study, the feature extraction capacity of two well known

CNN models, VGG16 (Simonyan and Zisserman, 2015) and ResNet50 (He et al., 2016), were

used. The choice is based on the popularity of these two models in the CNN literature (Diaz-

Pinto et al., 2019; Oo and Oo, 2019; Ilyas et al., 2019; Bendjillali et al., 2020; Mukti and Biswas,

2019; Sun et al., 2019; Agarwal and Mittal, 2019; LaVezzi et al., 2020; Raghu et al., 2020;

Mahdianpari et al., 2018; Pradhan and Lee, 2010). These feature extractors were then joined to
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a custom classifier in order to classify the outputs from the feature extractor into the categories

developed for this study. The classifier was the only part of these pretrained models that was

trained. This preserved the feature extraction capacity of the networks and, essentially, only

trained the classifier.

5.10.2.1 Model Creation

As mentioned earlier, two pretrained models were used to test the performance of transfer

learning:VGG16 and ResNet50. Since VGG16 has a large computaional footprint, it is considered

to be ideal for applications where a high amount of accuracy is required, albeit at an increased

computational demand (Agarwal and Mittal, 2019). However, ResNet50 is considered to be

easier to train (Oo and Oo, 2019).

The structure of the VGG16 model is similar to the ”from scratch” models described earlier.

The model consists of 5 ”blocks” of convolutional layers (with ReLU activation), together a

max-pooling layer for each block, and three fully connected layers with a softmax output in

the output layer (Pradhan et al., 2020; Mahdianpari et al., 2018). There are several differences

between the VGG16 model and the ”from scratch” models. First, VGG16 has 13 convolutional

layers (Mahdianpari et al., 2018) while the ”from scratch” models have a maximum of three.

Second, the VGG16 model has three fully connected layers (Pradhan et al., 2020) while the ”from

scratch” models only have a single fully connected layer. Lastly, the weights of the model are

not randomly initialised but are derived from training on the ImageNet database (Chevtchenko

et al., 2018). To use the VGG16 model for the barchan classification task, the convolution blocks

and their weights were retained and the the fully connected layers were removed. The same fully

connected layer configuration that is present on the ”from scratch” models is then added to the

VGG16. The model is then trained on the same data as the ”from scratch” models. It is

important to note that the weights of the convolutional blocks were prevented from updating

during the training. This is done in order to ensure that the feature extraction ability of the

VGG16 model is retained. Only the fully connected layer was allowed to train and have its

weights updated. A similar approach was followed by Chevtchenko et al. (2018) and LaVezzi

et al. (2020).

The ResNet50 model was initially developed to solve the vanishing gradient problem (Nagle-

Mcnaughton et al., 2020). The vanishing gradient problem occurs during back-propagation in

neural networks where the derivative of the activation function results in weight updates that

are so small that they are, in effect, no longer trainable (Kattenborn et al., 2021). ResNet50

attempts to prevent this by making use of skip connections (Wang and Anderson, 2018) and

residual learning (Weng et al., 2020). In residual learning the output of an earlier layer bypasses
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Table 5.4: The training parameters used for the ”from scratch” models and the transfer learning models.

Training Parameters Setting

Optimizer Adam

Learning rate 0.0001

Loss function Binary Crossentropy

Batch size 2

Epochs 10

the intermediate convolution operations, and forms part of the input into a layer deeper into the

network (Chollet and Allaire, 2018; De Cesarei et al., 2021). ResNet50 contains 49 convolutional

layers and one fully connected layer (De Cesarei et al., 2021). The same training approach as

for VGG16 was used where the fully connected layer was removed and replaced with the same

fully connected layer used in all of the other models. It is important to note that, even though

the ResNet50 model only has a single fully connected layer, it was necessary to replace it with

a custom one since the number of categories in this study is different from that originally used

in the development of ResNet50.

5.11 Model Training

This section provides details on the hyperparameters that were used in the training of the

models. A total of 14 models were evaluated for this study. These consist of two models that

were pretrained (VGG16 and ResNet50) and 12 models that were created ”from scartch”. The

training parameters for the models are provided in Table 5.4. The Adam optimizer, with a

learning rate of 0.0001, was chosen since it is considered to be the most popular optimizer

(Kneusel, 2022) and is able to adapt the learning rate during the training process (Bera and

Shrivastava, 2020). The learning rate was chosen to be low in order to prevent the loss function

from oscillating around a local minimum (§4.4.1.6). In order to allow for better convergence,

a batch size of 2 was chosen (§4.4.1.7). This is the same size used by Bhuiyan et al. (2020).

Because the model only needs to classify an image into two classes, the binary crossentropy loss

function was selected. Lastly, since CNNs are initialised with random weights, the initialisation,

training, and evaluation stages were repeated 30 times for each model. This makes it possible

to store the weights and performance of each iteration. These averages across all iterations of a

given model were used to evaluate the model’s performance.

5.12 Model Evaluation

Several different metrics were used to evaluate (Objective 7) the performance of the models: ac-

curacy (ACC), F1-score, and Matthews Correlation Coefficient (MCC). These metrics make use

of a confusion matrix (Eq. 5.8), where TP and TN refers to true positive and true negative cases
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respectively while FP and FN refer to false positive and negative cases. These designations refer

to the agreement between the classifications made by the model and the actual classifications

based on the image labels8. Therefore, TN values refer to the number of cases where a barchan

from class 1 was correctly identified as belonging to class 1 by the CNN. Similarly, TN refers to

those cases where a barchan from class 2 was correctly placed into the class 2 category by the

CNN. A false positive (FP) occurs when the model classified an image as being in category 2

while it should have been in category 1, and an FN occurs when the model classified the image

as category 1 while it should have been category 2.

Class 1(CNN) Class 2(CNN)[ ]
Class 1(Observations) TP FP

Class 2(Observations) FN TN

(Eq. 5.8)

ACC is a common metric which expresses the number of predictions that correctly identified

both positive and negative instances (Brown, 2018). This metric is frequently used in binary

classification tasks (Hossin and Sulaiman, 2015). Here, a high accuracy score represents a

situation where the number of images that were correctly classified as belonging to either class

is high relative to the number of predictions made by the model. The equation for ACC, following

(Hossin and Sulaiman, 2015), is given in equation (Eq. 5.9).

ACC =
TP + TN

TP + FP + TN + FN
(Eq. 5.9)

The F1-score (Eq. 5.10) (Brown, 2018) represents the harmonic mean between recall (True

Positive Rate (TPR)) and precision (Positive Predictive Value (PPV)) (Hossin and Sulaiman,

2015; Maxwell et al., 2020). TPR is the proportion between the TP predictions and all the

positive predictions made by the model (Bellows et al., 2011). Precision, also known as the

positive prediction value (PPV) (Bellows et al., 2011), is the number of positive predictions

made by the model that are true positives (Hossin and Sulaiman, 2015). The equation for the

F1 score, following (Brown, 2018), is given in equation (Eq. 5.10). According to the surface

plot of potential F1-scores (Figure 5.19), both the TPR and the PPV scores of the model need

to be high in order to achieve a high F1–score. This means that a high F1-score suggests that

the model had a large portion of TP predictions and low amounts of FP and FN cases. This

follows from equation (Eq. 5.10) where the presence of FN and FP in the denominator of PPV

and TPR indicates an inverse relationship. Unfortunately, the surface also suggests that it is

not possible to determine from the F1-score alone where shortcomings occur. In other words, it

8For an explanation on how these labels were generated, see Section 5.7.
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Figure 5.19: The value surface of the F1 metric. In this example, PPV values are plotted along the x-axis, TPR values
along the y-axis, and the resultant F1 score along the the z-axis.

can either be from a high false positive rate, a high false negative rate or a combination of both.

Notwithstanding this, the F1-score is still widely used in machine learning (Chicco and Jurman,

2020).

F1 = 2 × PPV × TPR

PPV + TPR

PPV =
TP

TP + FP

TPR =
TP

TP + FN

(Eq. 5.10)

Both the ACC and the MCC (Eq. 5.11) use the same variables (Brown, 2018; Hossin and

Sulaiman, 2015), but the MCC metric is considered to be more reliable (Chicco and Jurman,

2020). This is because it penalises Type-I (false positive) and Type-II (false negative) errors

more than the ACC metric does (Brown, 2018). Essentially, it serves as an indication of how

well the actual data correlates with the predicted data with values of +1, zero and -1 indicating

perfect agreement, random predictions and total disagreement respectively (Tharwat, 2018).

The equation for the MCC metric is given in (Eq. 5.11) (Brown, 2018). A problem with the

MCC metric is that, under certain conditions, it cannot be defined due to imbalances in the

confusion matrix (Chicco and Jurman, 2020). This happens in cases where both TP and FN

are equal to zero causing the denominator to become zero. In cases were this occurred, it was

removed from the data and the averages calculated with the adjusted sample size.

MCC =
(TP × TN) − (FP × FN)√

(TP + FP ) × (TP + FN) × (TN + FP ) × (TN + FN)
(Eq. 5.11)
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The performance of the network is assessed based on the following criteria:

1. Does the prediction accuracy exceed those found by (Lloyd et al., 2002) for human opera-

tors classifying Level II imagery? Although the classification tasks investigated by Lloyd

et al. (2002) is not similar to the classification tasks performed here, no other studies are

available that can be used. Therefore, this value, which was found to be 70%, was cho-

sen due to the inherent similarity of feature elements within this class to each other. It

is therefore somewhat relateable to conditions under which the present classification was

carried out.

2. Since the performance of a CNN has a strong stochastic component, what is the probability

that:

(a) Any given instance of the model will exceed the critical accuracy value of 70%.

(b) Any given instance of the model will achieve an accuracy in excess of 90%.

3. The efficacy of the hyperparameters are decided within the context of the baseline network.

Here, several parameters are considered:

(a) Do the hyperparameters lead to an increase in the classification accuracy of the

network?

(b) Does the addition of the hyperparameters lead to a decrease in the incidence of false

positive and false negative classifications?

(c) Do the inclusion of hyperparameters within the network increase the level of agree-

ment between the actual classification and the predicted classification?

(d) Given the stochastic nature of CNNs it is expected that there will be a certain de-

gree of variability in the performance of a network given the criteria listed above.

Therefore, a final consideration will be the amount of variability in the network’s

performance and whether the addition of the hyperparameters leads to a more con-

sistent performance9.

This section provides an overview of the evaluation criteria that was used to evaluate the

suitability of the CNN to barchan research. Emphasis is placed on accuracy, absence of false pos-

itive and false negative scores, and the correlation between actual categories and model assigned

categories. These are compared with what a human operator might achieve. Additionally, the

influence of the stochastic nature of CNNs on model performance is assessed based on stan-

dard deviation scores and integrals under probability density functions, the latter derived from

9This will manifest by a reduction in the amount of variability.
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the scores of each iteration. Lastly, the influence of modifying the hyperparameters, and using

transfer learning, on model performance is determined by comparing the different configurations

of models to each other.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 6

Results and Discussion

6.1 Chapter Overview

Results and

Discussion

Description of Barchans in Sample (§6.2)

Description of training Data (§6.3)

Tasks

Classifiying Barchan

Shape

Classifying Side

of Elongation

Classifying Side

of Widest Horn

Classifying Side of

Lateral Extension

Classifying Magnitude

of Elongation

Classifying Bilateral

Asymmetry

Results (§6.4.1)

Discussion (§6.4.2)

Results (§6.5.1)

Discussion (§6.5.2)

Results (§6.6.1)

Discussion (§6.6.2)

Results (§6.7.1)

Discussion (§6.7.2)

Results (§6.8.1)

Discussion (§6.8.1)

Results (§6.9.1)

Discussion (§6.9.2)

Holistic Discussion

(§6.10)

used to generate

used to evaluate

117

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. RESULTS AND DISCUSSION 118

In order to place the findings of this study into a context, the published performance of

models, obtained from the literature, that were applied to geomorphic research are provided

in Table 6.1 (see Section 4.2 for an overview of the studies cited). The specific nature of

CNNs, in terms of task and input, makes it difficult to directly compare the performance of

models between different studies. For example, the model developed by Ji et al. (2020) may

perform very poorly to the task given to the model developed by Shumack et al. (2020). More

specifically, the majority of tasks within geomorphology focussed on developing segmentation

strategies. Conceptually, this is very different from the classification approach attempted in this

study. Nevertheless, it is useful to compare the performance of the models in this study to those

developed by other authors in order to place it within a larger context.

Broadly speaking, the performance of a CNN is influenced by two sub-tasks: the extraction

relevant features (carried out by the feature extractor), and the correct classification of those

features into categories (carried out by the classifier). The former is determined by aspects

related to the generation of feature maps. These include the depth of the network, with deeper

networks extracting more abstract features1, and the suitability of the kernel to extract features

from a given input. Classification is based on the architecture of the fully connected layer

which, in this study, was kept the same for all models. Aside from the stochastic influence

of initialisation, the classifier should have the some potential performance capacity for all the

models evaluated. Therefore, individual model performance can be considered largely form the

ability of the feature extractor to determine unique features for each class.

The remainder of this chapter is structured as follows. A brief description is provided of

the barchans that served as the source of imagery for this study. This is relevant because it,

in effect, serves to describe the morphometric characteristics, and their distribution within the

data set, of the imagery used in this study. Then, the training data is described with a specific

focus on how well the balance is within the data, i.e. the ratio between samples in the training,

validation, and testing data sets. After this, the results of the models for each task, along

with a discussion, is presented in separate sections. Included within the discussion are possible

applications of this research to the broader barchan research community (Objective 8). This

layout is followed mainly for ease of interpretation since the performance on individual tasks are

independent of each other. In support of the discussion, a brief review of the some of the key

concepts of CNNs is provided in Table 6.2. The chapter concludes with a holistic discussion on

the topic and includes general comments that are applicable across all the tasks.

1Abstract features in this context refers to features that are present within features that have already been
extracted.
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Table 6.2: A brief description of the key components of a CNN that is relevant to the discussion of model performance.

Concept Description

Classifier A broad description that refers to the layers within a CNN, typically
the fully-connected layer, that is involved in assigning a classification
category to the feature maps received from the feature extractor.

Feature extractor A braod term that is used to describe the layers within a CNN that are
responsible for generating feature maps.

Feature map An array that results from the convolution of an input with a kernel that
emphasizes features, such as lines and curves, that may be present within
the input.

Generalization The ability of a model to successfully apply the rules learned during
training, to data that it has not been exposed to before.

Kernel A matrix of learnable values used to extract features from an input image
or an input feature map.

Model complexity A reference to the number of trainable parameters that any given model
has. The more the parameters, the more complex the model.

Regularization A penalty value that is added to the loss function during the training
process with the intent to increase the generilisation potential of the
model.

6.2 Barchan description

As a whole, the barchans in the Kunene region have a mean dune width of 46.6m± 28.1 and a

mean stoss length of 38.8m± 20.04. Their widths and stoss lengths are significantly (p < 0.01)

smaller than those reported by Barnes (2001) working further towards the south at Walvis Bay.

When compared to barchan dimensions published in other sources (Al-Harthi, 2002; Bailey,

1906; Barnes, 2001; Dong et al., 2000; Douglass, 1909; Embabi, 1982; Finkel, 1959; Hamdan

et al., 2016; Jimenez et al., 1999; Long and Sharp, 1964; Norris, 1966; Rempel, 1936; Sagga,

1998; Wang et al., 2007), the barchans of the northern Kunene are relatively small. When the

individual barchans within the dune field are considered (Figure 6.1), the size distribution is

positively skewed indicating a predominance of smaller barchans within the data set. Although

barchans to exhibit allometry (van der Merwe, 2021), this is not expected to negatively influence

this study since the delineation of tasks is based on median (§5.6) value rather than a predefined

cut-off value.

Frequency plots of the attributes that are considered within each task is provided in Figure

6.2. Most of the barchans (n = 76) have an elongated left horn while the remainder (n = 14)

have an elongated right horn. This contrasts with the findings of Barnes (2001) at Walvis Bay

who found no preferential elongation between the horns. Based on the findings of discussion of

Tsoar and Parteli (2016) and Bourke (2010), this indicates that the horn elongation of barchans

in the Kunene result more from the influence of bimodal winds while those at Walvis Bay result

largely from collision. Regardless, all of the dunes in this dune field can be considered to be
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Figure 6.1: Size distributions of barchans based on barchan width, stoss length, and centroid size.

asymmetric based on conventional metrics (e.g. Bourke, 2010). This is to be expected considering

that asymmetric barchans predominate in natural settins (Parteli et al., 2014). Similarly, for

the majority of barchans (n = 56) the left horn was the widest while the right horn was the

widest in n = 34 cases. The left side of the dune underwent lateral extension in n = 80 cases

while the right side of the dune was laterally extended in n = 10 cases. Given the position of

the dunes relative to the downslope direction within the region, this would be expected based

on the work of Parteli et al. (2014).

The frequency plot representing differences in horn length is positively skewed indicating that

the dune field is dominated by barchans with a relatively small difference in horn lengths. Out

of the entire barchan population, 43 had an a
c ratio exceeding 0.88, 34 had an a

c ratio between

0.63 and 0.88, and 13 had a ratio between 0.38 and 0.63. The sample is therefore biased more

towards dunes where the stoss slope is elongated relative to the distance between the horn tips

(i.e. positively skewed). The mean a
c ratio of 0.93 is marginally smaller than that calculated

by (Barnes, 2001) working in Walvis Bay. In contrast to the other attributes, the bilateral

asymmetry, as indicated by the partial Procrustes distance, shows a more normal distribution
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with values ranging from 0.1 to 0.8. This indicates that the dune field contains dunes that have

comparatively low levels of asymmetry (i.e. dunes that are quite symmetrical) and dunes that

are very asymmetrical. The levels of skewness within the data is not considered to negatively

influence the study since the categories used are based on median values (§5.6). However, there

is the possibility that the skewness may result in a situation where the within class diversity of

one category containing data largely from the tail end of the distribution may be higher than

the other category. This can, potentially, lead to an imbalance in the data in terms of feature

diversity which can negatively impact the performance of a CNN (Nagle-Mcnaughton et al.,

2020). In cases where there is a great variety of shapes that are placed in the same category,

it becomes challenging for the CNN to find a set of a common features that can be used in a

discriminatory fashion. Unfortunately, given the size of the data set, this is not an aspect that

can be sufficiently controlled for. However, since this study is a proof of concept and not a final

model, the results of the model’s output can still be used to assess the suitability of CNNs to

barchan research.

The barchans within this region also exhibit allometry (van der Merwe, 2021). This manifests

as pronounced differences in the mean shape between barchans from different size clusters (Figure

6.3). Smaller barchans tend to be more symmetrical with horns that are similar in terms of the

magnitude of their downwind extent. As the size of the barchans increase, there is an increasing

difference in horn lengths with one horn, in this case mostly the left, becoming significantly

elongated in the downwind direction.

6.3 Training Data Description

For all cases except Task 4 the datasets are equally balanced. Task 4 has a slight imbalance

due to the tied median values discussed in the Method section (§5) which resulted in one class

having more images than the other. Therefore, overall, the classes within each task are perfectly

balanced. In other words, there are equal amounts of imagery for both of the classes being

classified. Therefore, any misclassifications that result cannot be assumed to be a bias towards

one class over the other. Rather, the misclassifications have to result from the features learned

by the network. It also indicates that the metrics used to evaluate the performance of the

networks are more reliable.

6.4 Classifying Barchan Shape

The majority of CNN applications within geomorphology focussed on identifying landforms

from remotely sensed imagery using semantic segmentation (e.g. Gafurov and Yermolayev, 2020;

Carbonneau et al., 2020) (§4.2.1). While this is useful, it does restrict the range of applications.
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Figure 6.2: Frequency distribution of the barchan variables that form part of each task. The median value, which was
used to divided the samples into two classes, is indicated by the dashed line.

Further, it remains to be demonstrated whether CNNs can fulfil a role beyond identification and

delineation. Here, it is evaluated whether it is possible to classify barchan outlines into shape

classes.
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Figure 6.3: The mean shape of four clusters of barchans. Each cluster contains barchans that fall within a specific
size range. Clusters were determined using the classInt R-package (Bivand and Lewin-Koh, 2016) with
quantile breaks. The x and y axis refer to pixel coordinates following Procrustes Superimposition.

6.4.1 Results

6.4.1.1 ACC

The performance of the different models based on the accuracy (ACC) metric is summarised in

Table 6.3. The majority of the models performed significantly better than the critical value of

70% (p < 0.05). The models that did not achieve this level of performance are the CNN2 model,

the baseline model with L1 regularisation, and the CNN3 model with the L2 regularisation.

For the ”from scratch” networks it was only possible to significantly increase the accuracy

of the model by increasing the depth of the network to three layers and using an L1 regulizer.

Both of the transfer learning approaches significantly increased the accuracy when compared to

the baseline. The ResNet50 model achieved a higher ACC value than the VGG16 model.

Neither a modification of the hyperparameters nor the use of transfer learning is sufficient to

significantly reduce the variability of a CNN on this task. Despite this inherent variability, the

probability of an initialized model performing above the minimum accuracy is quite high. The

lowest probability is for a baseline model with an L1 regularization. This model only has a 59%

chance of achieving an ACC value in excess of 70% upon initialisation. In contrast, a three layer
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Table 6.3: Summarised ACC statistics for the classification of the barchan shape task. The variables
∫ 100

c
and

∫ 100

d

indicate the probability (based on n = 30 models) of any one instance of the model achieving a performance
above the minimum (c = 70%) and above the desired (d = 90%). Average values that are bold indicate
models that performed significantly above the critical value of 70% (p < 0.05), while those with an asterisk
(*) had an ACC value that was significantly different from the baseline model (p < 0.05).

Model Average (%) Median (%) St. Dev (%)
∫ 100
c

∫ 100
d

Shape Classification (ACC)

Baseline (B) 73 75 6.1 0.71 0

B + 1-layer 72 70 5.3 0.6 0

B + 2-layers 73 75 5.7 0.67 0.02

B + L1 Reg 70 75 8.3 0.59 0.01

B + L2 Reg 73 75 6.2 0.7 0.01

B + Dropout 74 75 6.1 0.73 0.02

B + 1-layer + L1 72 70 5.4 0.62 0

B + 1-layer + L2 73 73 6.2 0.63 0

B + 1-layer + Dropout 72 70 5.4 0.62 0

B + 2-layers + L1 76* 75 6.8 0.84 0

B + 2-layers + L2 72 73 7.8 0.63 0

B + 2-layers + D 74 75 7.5 0.71 0.01

VGG16 84* 85 5.6 1 0.17

ResNet50 88* 88 3.1 1 0.29

model with the same regularization has an 83% chance of achieving this level of accuracy. Both

of the transfer learning models have a guarantee (i.e. 100%) of performing above this critical

value. However, if an ACC value above 90% is desired, the ”from scratch” models performed

poorly with a maximum likelihood of 2% being achieved. This is considerably lower than the

20% chance that is possible using transfer learning.

6.4.1.2 F1–score

All of the models had an F1–score above 70% (Table 6.4). The ”from scratch” models’ perfor-

mance is only increased under two conditions: adding another layer to the baseline model, and

increasing the depth to three layers and combining it with an L1 regularization. Alternatively,

transfer learning can be used which increases the F1–scores to 83%, in the case of the VGG16

model, and 88% for the ResNet50 model.

No adjustment of the hyperparameters results in a significant decrease in the amount of

variability in F1–scores. Using transfer learning also does not reduce the amount of variability

in F1–scores. There is a wider range of probabilities associated with obtaining F1–scores above

70% with any given initialisation of the ”from-scratch” model. When a two layer model is

initialised, there is only a 49% chance that the model would have an F1–score above 70%. This

is increased to 80% for a three layer model using an L1 regularization. When transfer learning

is used, the probabilities are increased to 96% for the VGG16 model and 100% for the ResNet50

model.
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Table 6.4: Summary of F1–scores for the classification of the barchan shape task. The variables
∫ 100

c
and

∫ 100

d
indicate

the probability (based on n = 30 models) of any one instance of the model achieving a performance above
the minimum (c = 70%) and above the desired (d = 90%). Average values that are bold indicate models
that performed significantly above the critical value of 70% (p < 0.05), while those with an asterisk (*)
had a score that was significantly different from the baseline model (p < 0.05).

Model Average (%) Median (%) St. Dev (%)
∫ 100
c

∫ 100
d

Shape Classification (F1–score)

Baseline (B) 73 74 6.6 0.77 0

B + 1-layer 70* 70 6 0.49 0

B + 2-layers 72 73 8 0.62 0.02

B + L1 Reg 71 71 5.3 0.56 0

B + L2 Reg 74 75 5.3 0.77 0

B + Dropout 73 76 8.9 0.66 0.03

B + 1-layer + L1 71 70 7.5 0.5 0

B + 1-layer + L2 72 70 7.5 0.55 0.01

B + 1-layer + Dropout 71 70 7.1 0.5 0

B + 2-layers + L1 74* 76 11.8 0.8 0.01

B + 2-layers + L2 71 73 10.0 0.6 0.01

B + 2-layers + D 72 74 11.8 0.66 0.03

VGG16 83* 84 6.7 0.96 0.17

ResNet50 88* 88 3.3 1 0.28

6.4.1.3 MCC

In all models, the MCC values exceeded 0.5 (Table 6.5) indicating that the models’ classification

has a strong correlation with the actual classification. For the ”from scratch” models, the only

hyperparameters that result in a significant improvement in this correlation, is the addition of

a dropout layer to the baseline model, and increasing the depth to three layers and adding the

L1 regularization. Alternatively, using transfer learning significantly increases the MCC values

to 0.74 and 0.79 (for VGG16 and ResNet50 respectively).

There is also a considerable amount of variability in MCC performance, and neither changes

in hyperparameters or using transfer learning significantly decreases this variability (p < 0.05).

Upon initialisation, there is a high probability that any given model will have an MCC value

in excess of 0.5. The ”worst” performing configuration is the three layer model with an L2

regularization which has a 79% probability of producing weights that allow an MCC value

above 0.5. However, using the L2 regularization but reducing the depth to two layers increases

this probability to 100%. This is the same level of performance obtained from using transfer

learning approaches. However, none of the ”from scratch” models can achieve an MCC value

above 0.9 while the VGG16 and ResNet50 models have a 4% chance of obtaining this level of

performance.
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Table 6.5: Summary of MCC values for the classification of the barchan shape task. The variables
∫ 1

c
and

∫ 1

d
indicate

the probability (based on n = 30 models) of any one instance of the model achieving a performance above
the minimum (c = 0.5) and above the desired (d = 0.9). Average values that are bold indicate models
that performed significantly above the critical value of 0.5 (p < 0.05), while those with an asterisk (*) had
a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 1
c

∫ 1
d

Shape Classification (MCC)

Baseline (B) 0.60 0.62 0.05 0.9 0

B + 1-layer 0.59 0.58 0.07 0.87 0

B + 2-layers 0.60 0.58 0.06 0.9 0

B + L1 Reg 0.58 0.61 0.08 0.81 0

B + L2 Reg 0.61 0.61 0.05 0.97 0

B + Dropout 0.61* 0.62 0.07 0.93 0

B + 1-layer + L1 0.60 0.58 0.06 0.98 0

B + 1-layer + L2 0.61 0.58 0.06 1 0

B + 1-layer + Dropout 0.60 0.58 0.05 1 0

B + 2-layers + L1 0.63* 0.62 0.08 0.92 0

B + 2-layers + L2 0.57 0.59 0.11 0.79 0

B + 2-layers + D 0.6 0.62 0.1 0.85 0

VGG16 0.74* 0.74 0.08 1 0.04

ResNet50 0.79* 0.78 0.05 1 0.04

6.4.2 Discussion

The majority (79%) of models are able to classify barchans into shape categories with an accuracy

that is above the critical value of 70%. Therefore, they are at least able to perform at the same

level as a human operator. Given sufficient training, it is therefore possible to create models that

classify barchans according to shape categories with a high degree of confidence. This would

make it possible to build on the work carried out by Hamdan et al. (2016). Since it is possible to

detect the position of barchans within an image (see (§4.2.1)) it may be possible to identify the

shape of barchans at different positions. Since the date of imagery is known, and the difference

in position can be determined through detection, it is possible to determine amount of migration

that has occurred. This, in turn, can then be used to determine if there is a correlation between

shape and migration speed.

In another study, Bourke and Goudie (2009) studied the varieties of barchan shape (in terms

of a
c ) ratios. The manual annotation of barchan images is a time consuming activity (Azzaoui

et al., 2020) that imposes constraints on the extent of the research, in either space or time

(Huang et al., 2018). The results show that it is possible to train a CNN to carry out this

annotation automatically. Although the current configuration is not accurate enough, it merely

represents the first step in developing this technology into a more usable form.

In order for these future applications to be realised the CNN must be able to classify the

barchans correctly, have few incidences of misclassifications (i.e. FP and FN cases), and show
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a strong correlation with actual classifications. The results show that the majority of ”from

scratch”, and all the transfer models, are accurate enough. The average ACC scores for the

”from scratch” models are similar to those obtained by other researchers who have applied

CNNs to classify landforms from remotely sensed imagery (e.g. Gao et al., 2021; Shumack et al.,

2020; Chen et al., 2018) while being better than the results obtained for other studies (e.g.

Du et al., 2021; Robson et al., 2020). However, the ACC scores are lower than those achieved

by Ji et al. (2020) and Palafox et al. (2017). This does not mean that the ”from scratch”

models cannot achieve this level of performance. The Kernel Density Estimation (KDE) plots of

several models have a non-zero integral for the region between 90% and 100%, albeit marginally,

indicating that it is at least possible for these models to achieve ACC values that are similar

to the ones reported by Ji et al. (2020) and Palafox et al. (2017). Using transfer learning it

is possible, however, to significantly improve the ACC values to similar values as obtained by

Carbonneau et al. (2020). This indicates that using the feature extraction capacity of a model

pre-trained on a different data set can be used to extract barchan shape information provided

that the classifier is trained on some relevant data. Similar results can be found in Wilhelm

et al. (2020).

The F1–scores show a similar pattern to the ACC values in that model configurations where

the ACC values were not significantly above the critical value had F1–scores that were also not

above the critical value. This suggests that the performance of those models may have been

influenced by the presence of false positive and false negative classifications. It is interesting to

note, however, that a few models had a significant improvement in ACC values while not having

a significant improvement in F1–scores. Why this is the case is not yet known. Although other

studies have reached considerably better F1–scores (e.g Baumhoer et al., 2019; Witharana et al.,

2020) the performance of the models on this task is similar to the F1–scores of other studies

using CNNs in geomorphology (Ghorbanzadeh et al., 2019; Huang et al., 2018; Prakash et al.,

2021).

For all of the models, the correlation between the classification of the model and that of the

actual data set was above 0.5. This indicates that the performance is closer to being perfect than

it is to being random. Although it cannot yet be described as being excellent, it does indicate

that the classification is deterministic. This is because a random allocation into groups would

result in an MCC value of 0 (Tharwat, 2018). Because it is not random it has to be deterministic.

As such, it indicates that the model is indeed making use of features in the selection process.

Unfortunately, the collected data does not make it possible to determine what those features

are but it can be confidently stated that they are there. Compared to other studies, the results
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are similar to those achieved by Meena et al. (2021) but lower than the highest values achieved

by Prakash et al. (2021).

There is a more complex relationship between the addition of hyperparameters and the overall

performance of the model. The majority of hyperparameter modifications did not significantly

improve the performance of the baseline model. This indicates that a very basic model is capable

of performing sufficiently in classifying barchan shape. However, the fact that models such as

VGG16 and ResNet50, both considerably more complex than the baseline model, resulted in

significant improvements indicate that such a conclusion may be premature. It is, unfortunately,

difficult to ascribe an explanation to this discrepancy. Both ResNet50 and VGG16 were trained

on data sets considerably larger than the ones used here containing more than 1.2 million images

(He et al., 2016; Simonyan and Zisserman, 2015). They were also trained for longer time periods.

The VGG16 model was trained for 74 epochs (Simonyan and Zisserman, 2015) while the training

of ResNet50 was 90 epochs (He et al., 2016). The increased perfromance of VGG16 and ResNet50

can be ascribed to being either the result of improved feature extraction, or better optimisation

from the increased number of epochs.

That neither transfer learning nor a modification of hyperparameters reduce performance

variability reinforces the view that the performance of a CNN is highly dependent on their

initialisation. A similar conclusion (applied to ANNs) was reached by Rodvold et al. (2001).

This variability means that it is possible to have a model that has ACC values and F1–scores

above 90%, although the probabilities are low. The impact of this is significant. It means that

any user will have to initialise a number of different models in order to chance upon a model that

performs as desired. From a programming perspective this does not make a large difference, but

it does have an impact on system resources. More models take more time to train.

Despite the large stochastic component associated with CNNs, it is clear that they do have

the potential to classify barchans, based only on their outlines, into shape categories. Although

no data exists to support this, it is unlikely that a human operator will be able to achieve this

level of accuracy on visual observation alone.

6.5 Classifying Side of Elongation

6.5.1 Results

6.5.1.1 ACC

All of the ”from scratch” models and the transfer learning models have an ACC value above

70% (Table 6.6). The ACC values can be significantly increased by adding an L1 regularization

to the baseline model, or by increasing the baseline model’s depth to two layers and adding a
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dropout layer (p < 0.05). However, using a dropout layer and increasing the depth to three

layers results in a significant decrease in ACC values (p < 0.05) compared to the baseline model.

By using transfer learning, it is possible to significantly increase the ACC values above that of

the baseline model (p < 0.05).

Table 6.6: Summary statistics of ACC values for the classification of the side of elongation task. The variables
∫ 100

c

and
∫ 100

d
indicate the probability (based on n = 30 models) of any one instance of the model achieving a

performance above the minimum (c = 70%) and above the desired (d = 90%). Average values that are
bold indicate models that performed significantly above the critical value of 70% (p < 0.05), while those
with an asterisk (*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 100
c

∫ 100
d

Side of Elongation (ACC)

Baseline (B) 79 75 7.2 0.9 0.08

B + 1-layer 79 80 6.07 0.93 0.05

B + 2-layers 77 75 6.5 0.85 0.02

B + L1 Reg 81* 85 6.7 0.93 0.1

B + L2 Reg 78 75 7.4 0.83 0.08

B + Dropout 79 78 8.9 0.86 0.1

B + 1-layer + L1 80 80 4.7 0.96 0.03

B + 1-layer + L2 80 80 5.2 0.98 0.04

B + 1-layer + Dropout 82* 85 6.4 0.95 0.12

B + 2-layers + L1 81 83 8.9 0.83 0.17

B + 2-layers + L2 78 75 6.0 0.9 0.05

B + 2-layers + D 76* 75 6.4 0.78 0.02

VGG16 82* 80 5.2 0.98 0.09

ResNet50 83* 85 2.4* 1 0

A large amount of variability is present within the ACC scores. This variability can only

be significantly reduced by using transfer learning based on the ResNet50 model (p < 0.05).

Despite this, there is a high probability that any initialisation of the ”from scratch” model

would produce weights that result in ACC values above 70%. The highest probabilities are

associated with transfer learning which have a 98% and 100% chance using the VGG16 and

ResNet50 models respectively. Based on the integral of the probability density function, there

is also a possibility that the ”from scratch” models can achieve accuracies above 90%.

6.5.1.2 F1–score

The results of the F1–scores for the side of elongation task are summarised in Table 6.7. All

of the ”from scratch” models achieved an F1 score above 70%. Compared with the baseline

model, the performance can be increased by increasing the depth to two layers and using ei-

ther dropout layers or the L1 regularization. Alternatively, using the L1 regularization with a

three layer model also significantly increases the F1–score. Lastly, using transfer learning can

also significantly increase the F1–scores, however, the results are similar to those obtained for

modifications to the ”from scratch” model.
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Table 6.7: Summary statistics of F1–scores for the classification of the side of elongation task. The variables
∫ 100

c

and
∫ 100

d
indicate the probability (based on n = 30 models) of any one instance of the model achieving a

performance above the minimum (c = 50%) and above the desired (d = 90%). Average values that are
bold indicate models that performed significantly above the critical value of 70% (p < 0.05), while those
with an asterisk (*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 100
c

∫ 100
d

Side of Elongation (F1–score)

Baseline (B) 76 72 11.4 0.71 0.11

B + 1-layer 79 80 6.1 0.93 0.05

B + 2-layers 77 75 6.5* 0.85 0.02

B + L1 Reg 81* 85 6.7 0.93 0.1

B + L2 Reg 78 75 7.4 0.83 0.08

B + Dropout 79 78 8.9 0.86 0.1

B + 1-layer + L1 80* 80 4.7 0.96 0.03

B + 1-layer + L2 80 80 5.2 0.98 0.04

B + 1-layer + Dropout 82* 85 6.4 0.95 0.12

B + 2-layers + L1 81* 83 8.9 0.83 0.17

B + 2-layers + L2 78 75 6.0 0.9 0.05

B + 2-layers + D 76 75 6.4 0.78 0.02

VGG16 82* 80 5.2* 0.98 0.09

ResNet50 83* 85 2.4* 1 0

The only hyperparameters that can significantly decrease the amount of variability in F1–

scores is to increase the depth of the baseline model to three layers without incorporating a

regularization (p < 0.05). Alternatively, transfer learning can be used based on either the

VGG16 or ResNet50 model. The probabilities associated within a random initialisation of a

”from scratch” model achieving an F1–score above 70% are quite high. It ranges from 71% for

the baseline model to 98% for a two layer model with the L2 regularization. This is comparable to

the performance of the transfer learning models. It is interesting to note that the ”from scratch”

models tend to have a better chance of achieving F1–scores above 90% than the transfer learning

models.

6.5.1.3 MCC

For the side of elongation task, all of the evaluated models had an MCC value above 0.5 (Table

6.8). The performance of the baseline can be significantly improved (p < 0.05) using several

strategies: adding the L1 regularization to the baseline model, adding both an L1 regularization

and increasing the depth to three layers, increasing the depth to two layers and including dropout

layers, or using transfer learning with either the VGG16 or ResNet50 models.

Improvements in variability is, however, considerably more difficult to obtain. Only transfer

learning based on ResNet50 show a significant reduction in the amount of variability (p < 0.05).

The probabilities of the ”from scratch” models to achieve correlations above 0.7 are exceptionally

high with several models having probabilities of 100% making it similar to that of the transfer
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Table 6.8: Summary statistics of MCC values for the classification of the side of elongation task. The variables
∫ 1

c

and
∫ 1

d
indicate the probability (based on n = 30 models) of any one instance of the model achieving a

performance above the minimum (c = 0.5) and above the desired (d = 0.9). Average values that are bold
indicate models that performed significantly above the critical value of 0.5 (p < 0.05), while those with an
asterisk (*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 1
c

∫ 1
d

Side of Elongation (MCC)

Baseline (B) 0.65 0.61 0.11 0.93 0

B + 1-layer 0.67 0.67 0.08 1 0

B + 2-layers 0.64 0.62 0.09 0.91 0

B + L1 Reg 0.69* 0.73 0.1 0.95 0

B + L2 Reg 0.64 0.61 0.11 0.85 0.03

B + Dropout 0.67 0.67 0.11 0.95 0.01

B + 1-layer + L1 0.67 0.67 0.06 1 0

B + 1-layer + L2 0.68 0.67 0.07 1 0

B + 1-layer + Dropout 0.71* 0.74 0.09 1 0.02

B + 2-layers + L1 0.70* 0.73 0.10 0.98 0.02

B + 2-layers + L2 0.65 0.62 0.08 0.98 0

B + 2-layers + D 0.62* 0.61 0.09 0.91 0

VGG16 0.71* 0.68 0.07 1 0.02

ResNet50 0.72* 0.74 0.03* 1 0

learning models. It is also possible for the ”from scratch” models to achieve correlations above

0.9, and even exceed the performance of the transfer learning models.

6.5.2 Discussion

It is investigated whether CNNs are able to classify barchans into categories based on which

side of the barchan (left or right) contains the elongated horn. The calculated ACC values show

that all of the models are able to successfully accomplish this task with an accuracy that is

significantly above the critical value of 70%. The performance of the models is similar to those

obtained by Gao et al. (2021) who developed a model to classify yardangs. It exceeds the ACC

values obtained by Du et al. (2021) and Robson et al. (2020), but failed to reach the accuracies

achieved by Ji et al. (2020) and Palafox et al. (2017).

Although it is commonly held that increasing the depth of the model can result in im-

provements in accuracy (e.g Shakya et al., 2021) the results show that this relationship is more

complex. Increasing the depth on its own does not significantly improve accuracy. This agrees

with the findings of Carbonneau et al. (2020). However, increasing the depth to two layers and

adding a dropout does. But, increasing the depth to three layers while retaining dropout layers

results in a significant decrease in performance. Why this is the case is unknown, but it does

provide additional support for the idea that a simple ”rule book” for CNNs cannot be developed.

Although the use of transfer learning resulted in a significant improvement over the baseline

model, it is only marginally so and not significantly different from two hyperparameter modifica-
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tions to the baseline (adding just the L1 regularisation or adding an additional layer along with

a dropout layer). This is particularly interesting. Since the classifier was identical in all cases,

it suggests that the feature extractor of these layers performed similarly. While reinforcing the

already mentioned lack of a guide to CNNs, it also hints at the possibility that the success of a

model’s architecture is also dependent on the task at hand. This echoes the view of Kattenborn

et al. (2021). Also, it indicates that the use of transfer learning is not necessarily always needed.

All of the models had an F1 score above the critical value indicating that the number of

false positive and false negative classifications are relatively low. The models outperformed

those developed by others (Du et al., 2021; Gafurov and Yermolayev, 2020; Meena et al., 2021;

Shumack et al., 2020). While not achieving the performance of Witharana et al. (2020), the

results are still comparable to other studies of CNNs within geomorphology.

Several different approaches can be followed to reduce the incidence of false positive and

negative results. These can either be in the form of using transfer learning or adjusting the

hyperparpameters. Similar to the ACC values, there are adjustments that can be made to only

the hyperparameters that will result in similar levels of performance as can be achieved using

transfer learning. This reinforces that the feature extraction capacity of the ”from scratch”

models is capable of identifying features that can be considered unique to each class. What

these features are is unknown, but future work can investigate them by examining the generated

feature maps. However, it must be emphasized that it is not always the case that a human would

use the same distinguishing characteristics as the machine when making a classification. This

is the case irrespective of whether the classification, as far as humans are concerned, follows a

strict protocol. Whether or not this is ultimately an issue is a topic for another study and is

not addressed here.

There are also further complexities that arise when examining the F1–scores. For example,

the baseline model has a lower average accuracy than the two layer model without a regulariza-

tion. However, it has a higher probability of initialising to a model that can have F1–scores in

excess of 90%. While this is partly explained by the variability of the former being larger than

the latter, it still suggests the possibility that the relationship between features extracted and

classification accuracy is more complex.

The high MCC values indicate that the classification assigned by the models correspond

strongly to the actual classifications that would be assigned through more time consuming

analysis. It is considerably higher than the accuracy achieved by Meena et al. (2021) and within

the range of values obtained by Prakash et al. (2021). It is almost guaranteed that any given

initialisation of a model will achieve an accuracy in excess of 0.5, indicating that it will be closer
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to a perfect approximation than a random assignment. This also means that there is some

underlying feature, although it is unknown what this is, that can be used by a CNN to classify

the side of elongation.

As with the other metrics, the MCC values also indicate a complex relationship between hy-

perparameters and model performance. Adding the L1 regularization increases the performance

in the baseline model and the three layer model, but not the two layer model. The complex

relationship indicates that the influence of hyperparameter modification on performance is still

unlikely to be predictable. It is also interesting to note that even though the use of transfer

learning leads to a significant improvement compared to the baseline, the overall performance

is similar to performances reachable by just modifying the hyperparameters.

As mentioned in Chapter 2, there are two principle models that are believed to determine

which of the horns on a barchan gets elongated. CNNs have shown that it is possible to auto-

matically extract data on which one of the barchan horns is elongated. This makes it possible

to build on the work of Lv et al. (2016) who speculated that the angle between the bidirec-

tional winds determines which of the two models are in effect. Specifically, when combined

with wind vector data from NCEP/NCAR Reanalysis platform, the automatic extraction of

side of elongation data will allow for larger data sets to be collected for more in depth statistical

analysis.

In the case of Martian aeolian activity, the rapid extraction of side of elongation data can

support investigations into processes that were in effect during Mars’ distant past. In cases

where the side of elongation for the majority of barchans is the same, it can be inferred that the

morphology within the dune field resulted largely from the influence of bimodal winds (Sagga,

1998; Engel et al., 2018; Lv et al., 2016; Courrech du Pont, 2015; Hobbs et al., 2010; Boulghobra,

2016; Norris, 1966). However, if the side alternates between different dunes, it is likely that dune

collisions are largely involved (Bourke, 2010; Tsoar and Parteli, 2016; Zhang et al., 2018). This

will give new insights into the paleoclimatology of the planet.

6.6 Classifying Side of Widest Horn

6.6.1 Results

6.6.1.1 ACC

None of the models, either ”from scratch” or transfer, achieved an ACC value above 70% (Table

6.9). Although several different modifications to the hyperparameters resulted in significant

improvements in ACC over the baseline model, these improvements are not sufficient to exceed

the critical value. The use of transfer learning did not result in a significant improvement in

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. RESULTS AND DISCUSSION 135

ACC. Unsurprisingly, the low ACC values translate to the probabilities of for an initialised

model to exceed the critical level. The majority of models cannot achieve an ACC values above

70% (i.e. the probability of this is 0). The exceptions are: a two layer model with the L2

regularization, and three layer model with either the L1 regularization or dropout layers. These

models have a chance of 1%, 6%, and 2% respectively. Given this, it is also unsurprising that

no model can exceed the 90% benchmark.

Table 6.9: Summary statistics of ACC values for the classification of the side of widest horn task. The variables
∫ 100

c

and
∫ 100

d
indicate the probability (based on n = 30 models) of any one instance of the model achieving a

performance above the minimum (c = 70%) and above the desired (d = 90%). Average values that are
bold indicate models that performed significantly above the critical value of 70% (p < 0.05), while those
with an asterisk (*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 100
c

∫ 100
d

Side of Widest Horn (ACC)

Baseline (B) 45 45 5.2 0 0

B + 1-layer 49* 50 6.9 0 0

B + 2-layers 49* 50 7.6* 0 0

B + L1 Reg 45 45 5.6 0 0

B + L2 Reg 45 45 4.9 0 0

B + Dropout 46 45 4.4 0 0

B + 1-layer + L1 48* 50 6.2 0 0

B + 1-layer + L2 47 45 7.6* 0.01 0

B + 1-layer + Dropout 48* 45 5.5 0 0

B + 2-layers + L1 54* 55 9.8* 0.06 0

B + 2-layers + L2 53* 50 7.3 0 0

B + 2-layers + D 51* 50 7.8* 0.02 0

VGG16 45 45 10.8* 0 0

ResNet50 44 45 5.7 0 0

The variability in performance is also high, although the values are still similar to those

found for other tasks in which the performance is better. For the ”from scratch” models the

variability can be decreased by increasing the depth of the baseline to three layers, by adding the

either the L1 regularization or dropout layers to this 3 layer model, or using a two layer model

with the L2 regularization. When using transfer learning, only the use of VGG16 significantly

improves the variability (p < 0.05).

6.6.1.2 F1–score

None of the models achieved a high F1–score on this task (Table 6.10). The F1–score can be

significantly improved (p < 0.05) by increasing the depth of the model to two layers (without

regularization) or to three layers with an L1 regularization. However, neither of these modifi-

cations increase the F1–score above the critical value. It is interesting to note that the use of

transfer learning does not significantly increase the F1–score.
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Table 6.10: Summary statistics of F1–scores for the classification of the side of widest horn task. The variables
∫ 100

c

and
∫ 100

d
indicate the probability (based on n = 30 models) of any one instance of the model achieving a

performance above the minimum (c = 50%) and above the desired (d = 90%). Average values that are
bold indicate models that performed significantly above the critical value of 70% (p < 0.05), while those
with an asterisk (*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 100
c

∫ 100
d

Side of Widest Horn (F1–score)

Baseline (B) 46 48 13.5 0.02 0

B + 1-layer 51* 52 9.5 0 0

B + 2-layers 46 47 15.7 0.05 0

B + L1 Reg 42 48 17.2 0.04 0

B + L2 Reg 42 48 15.1 0 0

B + Dropout 42 42 14.9 0.04 0

B + 1-layer + L1 50 53 11.8 0.05 0

B + 1-layer + L2 44 44 15.0 0.04 0

B + 1-layer + Dropout 47 49 11.3 0.02 0

B + 2-layers + L1 52* 54 12.6 0.08 0

B + 2-layers + L2 51 52 15.1 0.08 0

B + 2-layers + D 49 51 17.0 0.12 0

VGG16 41 43 13.1 0 0

ResNet50 35* 36 12.1 0 0

The variability within the F1–score is high when compared to other tasks such as the side of

elongation. The low average score is also reflected in the probabilities of exceeding the critical

value upon initialisation. Only the three layer model with dropout layers has a probability of

above 10% for exceeding this critical value. None of the models, ”from scratch” or transfer, has

the potential to exceed a 90% F1–score.

6.6.1.3 MCC

The same trend that was observed for ACC and F1–scores is also present in the MCC values

with none of the models exceeding the critical value of 0.5 (Table 6.11). Several different

adjustments can be made in order to increase the MCC values. First, the depth of the baseline

model can be increased to two layers using either the L2 regularization or including dropout

layers. Alternatively, the baseline’s depth can be increased to 3 layers and the L1 regularization

incorporated. In contrast to the ACC and F1 metrics, using either the VGG16 or the ResNet50

transfer learning models results in a significant improvement in MCC values (p < 0.05).

As to be expected there is also a considerable mount of variability present in the MCC values

that result from the initialisation of individual models. Although none of the models had, on

average, an MCC value above the critical value of 0.5, any individual run of any model had

a chance of achieving an MCC value above 0.5. Using the VGG16 model in transfer learning

means that there is a 56% chance of any individual model performing above this critical value.

None of the individual models could achieve an MCC value above 0.9. Also, no configuration
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Table 6.11: Summary statistics of MCC values for the classification of the side of widest horn task. The variables
∫ 1

c

and
∫ 1

d
indicate the probability (based on n = 30 models) of any one instance of the model achieving a

performance above the minimum (c = 0.5) and above the desired (d = 0.9). Average values that are bold
indicate models that performed significantly above the critical value of 0.5 (p < 0.05), while those with
an asterisk (*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 1
c

∫ 1
d

Side of Widest Horn (MCC)

Baseline (B) 0.46 0.49 0.08 0.39 0

B + 1-layer 0.49* 0.5 0.03 0.44 0

B + 2-layers 0.46 0.49 0.09 0.4 0

B + L1 Reg 0.43 0.46 0.09 0.25 0

B + L2 Reg 0.46 0.48 0.05 0.26 0

B + Dropout 0.45 0.46 0.07 0.2 0

B + 1-layer + L1 0.45 0.48 0.07 0.29 0

B + 1-layer + L2 0.48* 0.48 0.06 0.37 0

B + 1-layer + Dropout 0.47* 0.48 0.06 0.37 0

B + 2-layers + L1 0.49* 0.50 0.05 0.45 0

B + 2-layers + L2 0.44 0.48 0.08 0.3 0

B + 2-layers + D 0.45 0.48 0.07 0.3 0

VGG16 0.52* 0.51 0.05 0.56 0

ResNet50 0.48* 0.48 0.05 0.36 0

of hyperparameters nor the use of transfer learning could significantly reduce the amount of

variability within the model.

6.6.2 Discussion

The goal of this task is to investigate whether the feature extraction and classification ability

of a CNN is able to accurately determine which one of the barchan horns is the widest. The

width of the horn plays an important role in dune field sediment dynamics since it influences

how much sediment is lost from the horns (Elbelrhiti et al., 2008). Given the influence of this on

barchan asymmetry (Parteli et al., 2014; Lv et al., 2016), being able to extract this information

can be beneficial in better understanding barchan dune field interactions and asymmetry.

Unfortunately, all of the CNN models performed poorly on this task. It is noteworthy that

the transfer models VGG16 and ResNet50 performed worse than a number of ”from scratch”

models. Since these transfer models performed well on other tasks, it suggests that, inherently,

they have the capacity to extract usable features and to classify them into the appropriate

categories. Their poor performance can be attributed to a shortcoming in either of these aspects

(i.e feature extraction or classification). Given the performance of transfer learning on the

other tasks, it suggests that the features needed to discern between the different categories are

insufficient. Given the data, it is not possible to determine which of these, or the weights of

their combined influence, is responsible for the poor performance. However, it is possible that

the features needed for distinguishing between the two different cases are ”overpowered” by the
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noise resulting from the other features. In effect, there is not enough data in order for the model

to separate distinguishing features from irrelevant features. The poor performance of VGG16

and ResNet50 suggest that the solution to this problem does not lie in increasing the depth

or using residual connections. Rather, it is more likely that improvements can be achieved by

increasing the number of training samples.

Unsurprisingly, this also means that it is not possible for any of the models to reach an ACC

value above 90%. Although it is possible to significantly increase the ACC values through either

a modification of the hyperparameters or the use of transfer learning, none of these strategies

improve the ACC to above the critical value. Compared with other models, the models performed

better than the ones developed by Shumack et al. (2020) who had an accuracy of 2% in some

cases. While Shumack et al. (2020) attributed the accuracy deficit to image resolutions, this

cannot be the case here owing to the image preparation prior to training and evaluation (§5.5).

The low F1–scores also indicate that there is a relatively high amount of false positive and

false negative classifications. The few options available to improve upon the baseline’s per-

formance are also insufficient to improve the performance beyond the critical value. A high

incidence in false positives and negatives suggests that the model is not able to distinguish

features from the training data that can be generalised to other instances that the model has

not seen before. This can either indicate that suitable features could not be identified, that

extracted features could not be effectively classified, or some combination of both.

Although the overall performance of the models are poor, the MCC values are close to the

critical value of 0.5 with the VGG16 transfer learning approach exceeding this value (although

not significantly). This indicates that despite the poor classification performance, the predictions

of the models are still not random. It is therefore possible that the features extracted by

the model are not discriminatory enough in order to accurately separate the images into their

respective categories.

A potential explanation for the poor performance may be the nature of the task itself.

Compared to the other tasks, this task focussed on a comparatively small region of the barchan.

As a result, there is a large amount of image information that is, in effect, irrelevant for accurate

classification. Unfortunately, there is insufficient data available to determine with any certainty

whether or not this is the case.
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6.7 Classifying Side of Lateral Extension

6.7.1 Results

6.7.1.1 ACC

In contrast to the results obtained for the side of the widest horn task, the ACC values of all the

models exceeded the critical value of 70% (Table 6.12). However, it is curious to note that no

adjustment to the hyperparameters could significantly increase the performance of the baseline

model. Also, only when the ResNet50 model is used during transfer learning is the ACC value

significantly increased (p < 0.05).

Table 6.12: Summary ACC value statistics for the classification of the side of lateral extension task. The variables
∫ 100

c

and
∫ 100

d
indicate the probability (based on n = 30 models) of any one instance of the model achieving a

performance above the minimum (c = 70%) and above the desired (d = 90%). Average values that are
bold indicate models that performed significantly above the critical value of 70% (p < 0.05), while those
with an asterisk (*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 100
c

∫ 100
d

Side of Lateral Extension – (ACC)

Baseline (B) 88 90 8.0 0.9 0.39

B + 1-layer 86 85 6.1 0.97 0.3

B + 2-layers 86 88 6.1 1 0.32

B + L1 Reg 84* 83 9.6 0.79 0.24

B + L2 Reg 85 90 10.5 0.84 0.33

B + Dropout 85 90 8.0 0.9 0.31

B + 1-layer + L1 84* 85 8.1 0.92 0.25

B + 1-layer + L2 87 90 5.2* 0.99 0.36

B + 1-layer + Dropout 87 85 6.5 0.98 0.32

B + 2-layers + L1 89 90 4.4* 1 0.45

B + 2-layers + L2 87 88 5.5 0.99 0.35

B + 2-layers + D 87 90 7.2 0.94 0.38

VGG16 89 90 5.1* 0.98 0.4

ResNet50 92* 95 4.1* 1 0.73

The variability in the ACC values is similar to those of the other tasks discussed so far. Any

given initialisation of a model has a high probability (79% - 100%) of achieving an ACC score

above the critical value. There is also a high probability that a model can achieve ACC values

above 90% with transfer learning based on the ResNet50 model having a 73% chance of reaching

this level of performance. The amount of variability can be significantly improved (p < 0.05) by

increasing the depth of the ”from scratch” model to two or three layers and using the L2 and

L1 regularizations respectively. It is also possible to significantly reduce the variability by using

transfer learning (p < 0.05).
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6.7.1.2 F1–score

The F1–scores for this task are summarised in Table 6.13. All of the models achieved an F1–score

above 70%. For the ”from scratch” models, this can only be improved by increasing the depth

of the network to three layers and using the L1 regularization. Alternatively, transfer learning

(based on either VGG16 or ResNet50) can be used.

Table 6.13: Summary F1–score statistics for the classification of the side of lateral extension task. The variables
∫ 100

c

and
∫ 100

d
indicate the probability (based on n = 30 models) of any one instance of the model achieving a

performance above the minimum (c = 50%) and above the desired (d = 90%). Average values that are
bold indicate models that performed significantly above the critical value of 70% (p < 0.05), while those
with an asterisk (*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 100
c

∫ 100
d

Side of Lateral Extension (F1–score)

Baseline (B) 86 90 9.6 0.86 0.4

B + 1-layer 86 86 6.2* 0.97 0.27

B + 2-layers 85 87 7.9 0.93 0.3

B + L1 Reg 82 82 11.1 0.82 0.32

B + L2 Reg 86 89 9.5 0.87 0.42

B + Dropout 82 89 11.2 0.78 0.31

B + 1-layer + L1 84 84 7.4 0.98 0.26

B + 1-layer + L2 86 89 6.3 1 0.32

B + 1-layer + Dropout 85 86 8.9 0.93 0.29

B + 2-layers + L1 89* 89 4.5* 1 0.41

B + 2-layers + L2 87 88 5.4* 1 0.3

B + 2-layers + D 86 89 7.8 0.95 0.37

VGG16 88* 89 5.1* 0.98 0.36

ResNet50 92* 95 3.9* 1 0.72

Although the influence of initial conditions is still visible in the variability of the models’

performance, any initialisation of any model architecture has a high probability (78% to 100%)

of having an F1–score above 70%. There is also a high probability that the F1–score can exceed

90% with transfer learning based on the ResNet50 model having the highest likelihood. Two

strategies can be followed to reduce the amount of variability in F1–scores. First, the depth of

the ”from scratch” model can either be increased to two layers (without using regularizations),

or it can be increased to three layers using either the L1 or the L2 regularization. The second

option is to use transfer learning with either the VGG16 or the ResNet50 model.

6.7.1.3 MCC

All of the models had an MCC value above the critical value of 0.5 (Table 6.14). For the ”from

scratch” models, the MCC values can be significantly increased (p < 0.05) only by increasing

the depth to three layers and using the L1 regularization. Alternatively, transfer learning can

be used based on either the VGG16 or the ResNet50 models.
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Table 6.14: Summary MCC value statistics for the classification of the side of lateral extension task. The variables∫ 1

c
and

∫ 1

d
indicate the probability (based on n = 30 models) of any one instance of the model achieving

a performance above the minimum (c = 0.5) and above the desired (d = 0.9). Average values that are
bold indicate models that performed significantly above the critical value of 0.5 (p < 0.05), while those
with an asterisk (*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 1
c

∫ 1
d

Side of Lateral Extension (MCC)

Baseline (B) 0.78 0.82 0.13 1 0.25

B + 1-layer 0.76 0.74 0.09 1 0.08

B + 2-layers 0.76 0.78 0.1 1 0.08

B + L1 Reg 0.73* 0.70 0.15 0.95 0.19

B + L2 Reg 0.77 0.82 0.13 1 0.18

B + Dropout 0.74 0.82 0.13 0.98 0.11

B + 1-layer + L1 0.73 0.74 0.12 0.96 0.08

B + 1-layer + L2 0.78 0.82 0.08* 1 0.08

B + 1-layer + Dropout 0.76 0.74 0.10 0.98 0.12

B + 2-layers + L1 0.81* 0.82 0.07* 1 0.14

B + 2-layers + L2 0.78 0.78 0.09 1 0.11

B + 2-layers + D 0.78 0.82 0.10 1 0.14

VGG16 0.80* 0.82 0.08* 0.98 0.11

ResNet50 0.86* 0.90 0.06* 1 0.34

Despite the variability in performance, any given initialisation of the model has a probability

of more than 95% in achieving an MCC score above the critical value. The probabilities of

achieving MCC values above 0.9 is also considerably higher than for the other tasks with transfer

learning based on ResNet50 (34%). The amount of variability can, however, be significantly

reduced (p < 0.05) by: increasing the depth to two layers and using the L2 regularization,

increasing the depth to three layers using the L1 regularization, or using transfer learning based

on either the VGG16 or ResNet50 models.

6.7.2 Discussion

It is investigated whether it is possible for a CNN to detect which side of the barchan experiences

the most lateral extension. In other words, on which side of the barchan is the most lateral point

furthest removed from the longitudinal axis. Based on the ACC values, CNNs are easily able

to make this determination. All of the models performed significantly better than 70% with all

models having an ACC value in excess of 84%. It therefore exceeds the performance of several

earlier models (Carbonneau et al., 2020; Du et al., 2021; Robson et al., 2020) and had a similar

classification accuracy as achieved by Gao et al. (2021) for yardangs. From all tasks this one had

the most consistent improvement with the L1 regularization leading to improved performance

when used with either the baseline model or the two layer model. Only the transfer learning

used with ResNet50 had a significant improvement in performance. This reinforces some of the

earlier conclusions that it is not necessarily always needed to resort to transfer learning.
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Overall the F − 1–scores are very high exceeding those of Huang et al. (2018), Du et al.

(2021), Meena et al. (2021), Gafurov and Yermolayev (2020), and Shumack et al. (2020). It is

similar to the values by Gao et al. (2021) and Wilhelm et al. (2020) and less than those obtained

by Witharana et al. (2020) and Baumhoer et al. (2019). These values indicate that false positive

and false negative classifications occur infrequently.

Just as with the ACC values and the F1–scores, the MCC values are also high for this task

indicating a large amount of agreement between the classification of the model and the actual

classification. It reinforces the reliability of the model on this task, although more refinements are

necessary to increase the correlation further. It is almost a certainty that any given initialisation

of a model will be able to reach an MCC value of over 0.5.

The modelling work carried out by Parteli et al. (2014) suggests that the lateral extension

of the barchans can be caused by their location on an inclined slope. Finkel (1959) also made

mention of this possibility in describing the observed asymmetry of barchans in Peru. However,

there is still not a lot of published material on this topic. Using CNN models such as the ones

developed here, and combining it with local digital elevation models, can provide sufficient data

in order statistically evaluate this proposed relationship.

6.8 Classifying Magnitude of Elongation

6.8.1 Results

6.8.1.1 ACC

The results of the magnitude of elongation task (Table 6.15) shows that any of the models

evaluated can achieve an ACC value above 70%. There are also several different strategies that

can be followed to significantly improve on this performance (p < 0.05). For the ”from scratch”

models, improvements can be achieved by increasing the depth of the model to either two or three

layers (either with or without any of the regularizations evaluated). The only exception being

the combination of three layers with the L2 regularization. It is also possible to significantly

increase the ACC values by using transfer learning.

The high average ACC values also translates into increased probabilities of achieving the

critical value on any given initialisation of a model. The lowest probabilities are obtained when

using the baseline model combined with the L1 regularization, which results in only a 74%

chance. However, this can be increased by using: a two layer model without regularization, a

two layer model with the L1 regularization, a three layer model with dropout layers, or transfer

learning using ResNet50. The model configurations that significantly reduced the amount of

variability in ACC values are any of the two layer models (i.e. a two layer model with or
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Table 6.15: Summary of ACC values for the classification of the magnitude of elongation task. The variables
∫ 100

c

and
∫ 100

d
indicate the probability (based on n = 30 models) of any one instance of the model achieving a

performance above the minimum (c = 70%) and above the desired (d = 90%). Average values that are
bold indicate models that performed significantly above the critical value of 70% (p < 0.05), while those
with an asterisk (*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 100
c

∫ 100
d

Magnitude of Elongation – (ACC)

Baseline (B) 77 80 9.8 0.76 0.09

B + 1-layer 82* 80 5.8* 0.98 0.11

B + 2-layers 82* 80 6.2 0.95 0.14

B + L1 Reg 76 75 8.4 0.76 0.03

B + L2 Reg 77 75 7.8 0.74 0.07

B + Dropout 78 80 8.6 0.82 0.11

B + 1-layer + L1 83* 85 6.4* 0.93 0.16

B + 1-layer + L2 82* 80 5.1* 0.98 0.07

B + 1-layer + Dropout 81* 80 5.8* 0.95 0.07

B + 2-layers + L1 80* 80 7.6 0.85 0.07

B + 2-layers + L2 82 85 7.4 0.92 0.17

B + 2-layers + D 84* 85 5.8* 0.98 0.17

VGG16 80* 80 6.3* 0.92 0.06

ResNet50 82* 83 4.7* 0.98 0.06

without regularization), a three layer model with dropout layers, or any of the transfer learning

models.

6.8.1.2 F1–score

Similar to the ACC values, all of the models exceeded the critical F1–score for this task (Table

6.16). It is also possible to significantly improve on these values (p < 0.05) using the same

strategies that are used to improve ACC values. The exception is that only a transfer learning

approach based on ResNet50 will result in an improvement.

When considering the probabilities of any given initialisation exceeding the critical value,

a broad range of values can be obtained. The baseline model had a probability of 53% while

the highest probability (99%) is found using a two layer model with an L1 regularization. It is

interesting to note that several of the ”from scratch” configurations exceeds the performance of

transfer learning models in this regard. Similarly, several ”from scratch” models also have higher

probabilities of achieving F1–scores above 90% compared to the transfer learning approaches.

Only one strategy, namely using transfer learning with ResNet50, can significantly reduce the

amount of variability in model performance on this metric (p < 0.05).
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Table 6.16: Summary of MCC values for the classification of the magnitude of elongation task. The variables
∫ 100

c

and
∫ 100

d
indicate the probability (based on n = 30 models) of any one instance of the model achieving a

performance above the minimum (c = 50%) and above the desired (d = 90%). Average values that are
bold indicate models that performed significantly above the critical value of 70% (p < 0.05), while those
with an asterisk (*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 100
c

∫ 100
d

Magnitude of Elongation (F1–score)

Baseline (B) 75 78 17 0.53 0.14

B + 1-layer 81* 82 7.2 0.91 0.1

B + 2-layers 82* 83 6.7 0.96 0.12

B + L1 Reg 75 78 12.8 0.57 0.13

B + L2 Reg 78 78 7.2 0.88 0.03

B + Dropout 77 81 12.9 0.68 0.15

B + 1-layer + L1 84* 84 4.9* 0.99 0.11

B + 1-layer + L2 82* 82 5.9* 0.96 0.07

B + 1-layer + Dropout 81* 82 6.6* 0.93 0.07

B + 2-layers + L1 78 78 10.3 0.79 0.08

B + 2-layers + L2 82* 84 7.4 0.94 0.14

B + 2-layers + D 84* 86 6.9 0.94 0.17

VGG16 78 80 7.6 0.85 0.05

ResNet50 80* 82 6.2* 0.92 0.06

6.8.1.3 MCC

The results (Table 6.17) show that all of the models are capable of achieving MCC values above

the critical value (0.5). It is also possible to increase the level of correlation using the same

strategies used to improve on the ACC values.

Any given initialisation of the models evaluated has a high probability (≥82%) of having an

MCC value higher or equal to 0.5. The highest probability (100%) is achieved using the following

models: a two layer model without regularization, three layer model without regularization, a

two layer model with L2 regularization, a three layer model with dropout layers, transfer learning

using VGG16, and transfer learning using ResNet50. However, it is only possible to achieve a

correlation higher than 0.9 using transfer learning based on the VGG16 model. It is also possible

to reduce the amount of variability using the same approaches as for the ACC values, with the

exception that a three layer model without a regularization also results in a significant decrease

in variability (p < 0.05).

6.8.2 Discussion

It is evaluated whether a CNN can extract sufficient information from an image of a barchan

outline to accurately determine the magnitude of elongation (i.e. the absolute difference in length

between the two horns). Since all of the CNN models had an average ACC value above the critical

value of 70%, it can be concluded that this is indeed possible. Despite the stochastic nature of
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Table 6.17: Summary of MCC values for the classification of the magnitude of elongation task. The variables
∫ 1

c

and
∫ 1

d
indicate the probability (based on n = 30 models) of any one instance of the model achieving a

performance above the minimum (c = 0.5) and above the desired (d = 0.9). Average values that are bold
indicate models that performed significantly above the critical value of 0.5 (p < 0.05), while those with
an asterisk (*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 1
c

∫ 1
d

Magnitude of Elongation (MCC)

Baseline (B) 0.63 0.67 0.16 0.82 0

B + 1-layer 0.70* 0.68 0.08* 1 0

B + 2-layers 0.70* 0.67 0.08* 1 0

B + L1 Reg 0.61 0.61 0.13 0.84 0

B + L2 Reg 0.63 0.61 0.11 0.85 0

B + Dropout 0.65 0.67 0.12 0.87 0

B + 1-layer + L1 0.72* 0.74 0.09* 0.94 0

B + 1-layer + L2 0.70* 0.68 0.07* 1 0

B + 1-layer + Dropout 0.69* 0.68 0.09* 0.97 0

B + 2-layers + L1 0.68* 0.67 0.10 0.94 0

B + 2-layers + L2 0.71* 0.74 0.09 0.96 0

B + 2-layers + D 0.73* 0.74 0.08* 1 0

VGG16 0.68* 0.68 0.08* 1 0.02

ResNet50 0.71* 0.71 0.06* 1 0

the initialisation of a model, there is a high probability (≥ 70%) that any given initialisation

will have an ACC value above the critical value. This indicates that the high average score

is unlikely to result from the influence of a few outlier models that had an anomalously high

performance. Although it is small, there is also the possibility that an initialised model can

achieve ACC values in excess of 90%. Here, it is interesting to note that several ”from scratch”

models have a greater chance of achieving this level of performance than the transfer learning

models. This is yet more support that resorting to transfer learning models may not always be

necessary. The ACC values obtained on this task is higher than those obtained by Du et al.

(2021) and are within the range of values obtained by several other authors (Robson et al., 2020;

Gao et al., 2021; Chen et al., 2018).

The high F1–scores associated with this task also indicate that there are relatively few false

positive and false negative classifications. This corroborates the high ACC values mentioned

earlier. There is also an admittedly small, but nonetheless possible, chance that a given CNN

initialisation can have an F1–score in excess of 90%. This would put the model in the same

performance range as the models developed by Baumhoer et al. (2019) and Witharana et al.

(2020). For the majority of cases, the same strategies used to improve the ACC values can be

used to increase the F1–scores. The exception to this is the use of transfer learning based on the

VGG16 model. Why this may be the case is unknown. Models with fewer convolution layers
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can result in significant improvements as well as models with more (e.g. ResNet50). The latter

may, however, benefit from the presence of residual connections (Khan et al., 2020).

There is also a high correlation between the classification proposed by the model and the

actual classification of the images (based on the MCC values). It is almost guaranteed that

any random initialisation of the model can be trained to reach this level of performance, but

it is not possible for a ”from scratch” model trained under the conditions used in this study

to achieve MCC values in excess of 0.9 on this task. An interesting result is that all of the

regularisations evaluated require at least a depth of two layers in order to be effective. The

MCC values achieved on this task exceeds those achieved by Meena et al. (2021) and are within

the upper range obtained by Prakash et al. (2021).

It is therefore possible for CNNs to be used in studies investigating the relationship between

barchan morphology and wind regime. Simulations carried out by Parteli et al. (2014) show

that there is a positive relationship between the duration of secondary winds and the magnitude

of elongation of a barchan horn. This same interpretive value is used by Bourke (2010). By

combining automatic morphological data extraction with derived meteorological observations,

it is possible to evaluate the level of agreement between the simulations of Parteli et al. (2014)

and observations.

6.9 Classifying Bilateral Asymmetry

6.9.1 Results

6.9.1.1 ACC

A summary of the ACC values for each model is provided in Table 6.18. The majority of

models achieved an average ACC value above he critical value (70%). The only exceptions

are the baseline model and, interestingly, all of the three layer models that had some form of

regularization included. Improvements on the performance of the baseline model can be achieved

by: adding either the L1 or the L2 regularization to the baseline model, increasing the depth

to two layers with, or without, regularizations, or using transfer learning based on either the

VGG16 or ResNet50 models.

There is also a relatively high probability of any given initialisation having an ACC value

equal or higher than the critical value. Modifications to the baseline model can increase the

probability from 71% to 86% when increasing the depth to two layers and using the L1 regu-

larization. However, it can also decrease from 71% to 55% when using a three layer model with

dropout layers. There is also a small chance (<10%) that some initialisations can have ACC

values above 90%. However, when transfer learning is used this can increase to 10% and 35%
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Table 6.18: Summary of ACC values for the classification of bilateral asymmetry task. The variables
∫ 100

c
and

∫ 100

d

indicate the probability (based on n = 30models) of any one instance of the model achieving a performance
above the minimum (c = 70%) and above the desired (d = 90%). Average values that are bold indicate
models that performed significantly above the critical value of 70% (p < 0.05), while those with an asterisk
(*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 100
c

∫ 100
d

Bilateral Asymmetry – (ACC)

Baseline (B) 72 75 7.6 0.71 0

B + 1-layer 74* 75 5.3 0.78 0

B + 2-layers 73 75 8.1 0.68 0.02

B + L1 Reg 75* 75 7.6 0.76 0.01

B + L2 Reg 75* 75 9.1 0.72 0.06

B + Dropout 73 75 6.3 0.7 0

B + 1-layer + L1 75* 75 4.0 0.86 0

B + 1-layer + L2 75* 75 7.6 0.76 0

B + 1-layer + Dropout 76* 80 7.9 0.78 0.03

B + 2-layers + L1 73 75 8.8 0.63 0.01

B + 2-layers + L2 72 75 8.0 0.62 0.01

B + 2-layers + D 71 70 8.2 0.55 0.02

VGG16 83* 85 5.3 0.98 0.1

ResNet50 88* 90 4.7 1 0.35

for VGG16 and ResNet50 respectively. The amount of variability associated with the baseline

model cannot be improved upon by modifying the hyperparameters or by using transfer learning.

6.9.1.2 F1–score

The majority of models achieved an F1–score above 70% (Table 6.19) with the only exceptions

being the baseline model and the three layer model with an L2 regularization. The strategies

followed for increasing the ACC values can also be used to increase the F1–scores, with the

addition of increasing the depth to three layers (without regularizations) or adding a dropout

layer to the baseline model.

There is also a wide range of probabilities associated with any given initialisation having an

F1–score larger or equal to 70%. This ranges from 52% for a three layer network with the L2

regularization, to 100% when using transfer learning based on the ResNet50 model. Most of the

models have at least a small chance that any given initialisation can have an F1–score above

90%, with the exceptions being a baseline model with an L2 regularization, or a two layer model

with an L1 regularization. The variability cannot be significantly improved upon using transfer

learning. However, it is possible to significantly improve the variability (p < 0.05) by adding

the L2 regulizer to the baseline model, or increasing the baseline model’s depth to two layers

and adding the L1 regulizer.
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Table 6.19: Summary of F1–scores for the classification of bilateral asymmetry task. The variables
∫ 100

c
and

∫ 100

d

indicate the probability (based on n = 30models) of any one instance of the model achieving a performance
above the minimum (c = 50%) and above the desired (d = 90%). Average values that are bold indicate
models that performed significantly above the critical value of 70% (p < 0.05), while those with an asterisk
(*) had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 100
c

∫ 100
d

Bilateral Asymmetry (F1–score)

Baseline (B) 69 73 13.9 0.57 0.03

B + 1-layer 74* 76 8.1 0.67 0.04

B + 2-layers 74* 76 8.9 0.73 0.03

B + L1 Reg 72* 78 13.6 0.6 0.1

B + L2 Reg 77* 78 6.0* 0.85 0

B + Dropout 71* 74 12.1 0.53 0.09

B + 1-layer + L1 75* 76 5.3* 0.83 0

B + 1-layer + L2 72* 77 14.8 0.59 0.1

B + 1-layer + Dropout 73* 77 14.4 0.62 0.11

B + 2-layers + L1 71 75 13.0 0.61 0.06

B + 2-layers + L2 69 70 12.4 0.52 0.02

B + 2-layers + D 70 72 11.0 0.55 0.03

VGG16 82* 83 6.1 0.96 0.07

ResNet50 86* 89 6.1 1 0.28

6.9.1.3 MCC

All of the models achieved an MCC value equal to or above the critical value of 0.5 (Table

6.20). The level of correlation can be significantly improved by: adding either the L1 or L2

regularization to the baseline model, increasing the depth to two layers with or without any of

the regularizations, or increasing the depth to three layers without using regularizations. The

level of correlation can also be significantly increased by using transfer learning.

Based on the results, there is a high probability that any given initialisation (81% to 100%)

will have an MCC value greater than or equal to 0.5. However, if a level of correlation above 0.9

is desired, it can only be achieved by using transfer learning with ResNet50 having the highest

(8%) probability. The amount of variability can only be significantly reduced by increasing the

depth of the baseline model to two layers and adding an L1 regularisation.

6.9.2 Discussion

Barchan asymmetry is admittedly a complex phenomenon and it is unlikely that shape defor-

mation of any barchan will be limited to just elongation or widening. It is therefore evaluated

whether it is possible for a CNN to identify the combined effect of different types of asymmetry.

This is evidenced in the Procrustes distance between a barchan and its mirror image.

The high ACC values confirm that it is possible to achieve this goal. The majority of models

(≈ 71%) are capable of achieving ACC values significantly above 70%. Since these models were
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Table 6.20: Summary of MCC values for the classification of bilateral asymmetry task. The variables
∫ 1

c
and

∫ 1

d
indicate

the probability (based on n = 30 models) of any one instance of the model achieving a performance above
the minimum (c = 0.5) and above the desired (d = 0.9). Average values that are bold indicate models
that performed significantly above the critical value of 0.5 (p < 0.05), while those with an asterisk (*)
had a score that was significantly different from the baseline model (p < 0.05).

Model Average Median St. Dev
∫ 1
c

∫ 1
d

Bilateral Asymmetry (MCC)

Baseline (B) 0.57 0.61 0.11 0.81 0

B + 1-layer 0.61* 0.62 0.06 0.97 0

B + 2-layers 0.61* 0.61 0.08 0.92 0

B + L1 Reg 0.61* 0.62 0.1 0.84 0

B + L2 Reg 0.64* 0.62 0.05 1 0

B + Dropout 0.58 0.61 0.10 0.87 0

B + 1-layer + L1 0.62* 0.62 0.05* 1 0

B + 1-layer + L2 0.61* 0.61 0.11 0.9 0

B + 1-layer + Dropout 0.62* 0.66 0.10 0.87 0

B + 2-layers + L1 0.60 0.61 0.09 0.85 0

B + 2-layers + L2 0.58 0.58 0.09 0.8 0

B + 2-layers + D 0.58 0.57 0.08 0.82 0

VGG16 0.72* 0.74 0.07 1 0.02

ResNet50 0.78* 0.82 0.08 1 0.08

trained on a relatively small dataset, and given that the performance of CNNs improve with

increased amounts of training data, it is possible that increasing the amount of training data

can lead to increased performance. The classification accuracy of the barchans is similar to the

classification accuracy achieved by Gao et al. (2021). It is also possible to improve the ACC

values by either modifying the hyperparameters or by using transfer learning. It is, however,

interesting to note that increasing the depth from two layers to three layers does not result in

a significant improvement over the baseline, despite the two layer network being a significant

improvement on the model.

Although the F1–scores are generally lower than those for the magnitude of elongation task,

the majority of models (64%) have scores significantly above 70%. This indicates that the

majority of models have a relatively low incidence of false positives and negatives. Any config-

uration of hyperparameters, with the exception of those where regularizations are added to a

three layer network, is able to increase the F1–scores. In this case, the three layer network with-

out regularization can improve performance, but the addition of any regularization decreases

the performance associated with the additional layers. What complicates this matter further is

that the use of transfer learning based on either the VGG16 or the ResNet50 models improves

the F1–score. The VGG16 architecture, which has more convolutional layers than any ”from

scratch” model evaluated here, was trained using the L2 and dropout regularization (Simonyan

and Zisserman, 2015). However, in the case of the ”from scratch” models the addition of the
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L2 regularization or the use of dropout layers did not improve the F1–score. This is yet further

evidence that a universally applicable strategy for improving model performance may not be

obtainable.

The high MCC values indicate a generally strong correlation between the classification per-

formed by the model and the actual classification. As with some of the other tasks, it is almost

guaranteed that the correlation will be closer to a perfect correspondence than to a random

assignment. It can therefore be concluded that the model does in fact learn features that aid

in the classifications, although it is not known what these features are. Improvements in model

performance is similar to those for improving the ACC values and the F1–scores, but not identi-

cal. This can signify a more complex relationship between the metrics in addition to the complex

performance modifications associated with the models.

This high level of performance on the bilateral asymmetry task indicates that it is possible to

extract the combined influence of several different asymmetry mechanisms on a dune. However,

it is not possible, at this stage, to determine the relative contribution of each separate mechanism

of asymmetry to the overall asymmetry.

6.10 Holistic Discussion

6.10.1 Hyperparameters

The biggest challenge involved in evaluating and understanding the performance of a CNN is the

so-called ”black–box” nature of these models. In a ”black–box” model it is difficult to evaluate

the contribution of all the variables to the output of the model (Olden and Jackson, 2002; Wang

et al., 2020). Therefore, in the absence of post–hoc analysis, it is unknown whether the features

used by humans are similar to the features used by the model during classification. Table 6.21

to 6.23 contain a summary of the main strategies that can be followed in order to enhance

the performance of the different metrics. This data was derived by combining the average

performance of the models for all tasks. Aside from the benefit of transfer learning strategies,

there is a considerable amount of variability in performance boosting strategies. The remainder

of this section will provide a higher level overview of the suitability of CNNs to geomorphology.

When viewed in its entirety, improvements in the ACC values can be obtained following

several different strategies. It is clear that, in general, using transfer learning based on the

ResNet50 model is the best option to improve the ACC values. This agrees with de Lima and

Marfurt (2020) who also found that transfer learning approaches outperform ”from scratch”

models. Although this strategy is not guaranteed to result in an improvement, there is, never-

theless, an 83% chance that a model will have a higher ACC value, compared to the baseline,
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Table 6.21: A summary of improvement strategies that can be applied to the baseline model in order to increase
the ACC values. The antecedent column represents the modifications to the baseline model and the
consequent the desired change in the model. The column P (Y |X) represents the probability of improving
the model’s performance given that the antecedent conditions are present.

Antecedent (X) Consequent (Y) P(Y|X)

ResNet50 Improvement 0.83

VGG16 Improvement 0.67

+ 1 layer, + L1 Improvement 0.67

+ 1 layer, + Dropout Improvement 0.67

+ L1 Improvement 0.56

+ 1 layer Improvement 0.54

+ 2 layers, + L1 Improvement 0.50

+ 2 layers, + Dropout Improvement 0.50

+ Dropout Improvement 0.39

+ 2 layers Improvement 0.38

+ 1 layer, + L2 Improvement 0.33

+ L2 Improvement 0.22

+ 2 layers, + L2 Improvement 0.17

when ResNet50 is used. Other studies have also found that ResNet50 results in better perfor-

mance (Ji et al., 2020; Mahdianpari et al., 2018). These findings differ from those of Wilhelm

et al. (2020) and Agarwal and Mittal (2019) who found that VGG16 performed better. Why

this may be the case is unclear. ResNet50 contains 48 convolutional layers compared to the

13 that are present within VGG16. More convolution layers, in principle, means more abstract

features can be extracted. Also, more layers have been associated with improved performance

(Kattenborn et al., 2021). Therefore, it may simply be the case that ResNet50 has a superior

feature extraction capacity compared to VGG16. Additionally, residual network models such as

ResNet50 learn features differently from VGG16 due to the presence of skip connections (Khan

et al., 2020). Since this directly alters the feature maps, it may be the case that this modifi-

cation provides ResNet50 with an additional performance enhancement that is not available to

VGG16. The transfer learning models are also the best options for improving the F1–scores and

the MCC values.

Aside from using transfer learning, the most beneficial strategy to follow is increasing the

model depth and combining it with some form of regularization. In some sense this differs from

the views of He and Sun (2015) and He et al. (2016) who found that increasing depth results

in poorer performance. The reason why it disagrees only to an extent is that, in the case of

improving ACC values, the use of three layers and an L1 regularization is less likely to lead to a

performance gain than using a two layer network with a L1 regularization. What complicates the

matter further is that the baseline model with L1 regularization performed better than the three

layer model with L1 but worse than the two layer model with L1. When considering metrics

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. RESULTS AND DISCUSSION 152

Table 6.22: A summary of improvement strategies that can be applied to the baseline model in order to increase the
F1–scores. The antecedent column represents the modifications to the baseline model and the consequent
the desired change in the model. The column P (Y |X) represents the probability of improving the model’s
performance given that the antecedent conditions are present.

Antecedent (X) Consequent (Y) P(Y|X)

ResNet50 Improvement 1.00

VGG16 Improvement 0.67

+ 2 layers, + L1 Improvement 0.67

+ L1 Improvement 0.50

+ 1 layer Improvement 0.50

+ 1 layer, + L1 Improvement 0.50

+ 1 layer, + Dropout Improvement 0.50

+ 2 layers Improvement 0.33

+ 1 layer, + L2 Improvement 0.33

+ Dropout Improvement 0.28

+ L2 Improvement 0.22

+ 2 layers, + L2 Improvement 0.17

+ 2 layers, + Dropout, Improvement 0.17

such as F1–scores and MCC values, the pattern at first supports the view shared by others

that increasing the depth results in increased performance (Kattenborn et al., 2021; Shakya

et al., 2021; Simonyan and Zisserman, 2015; Wan et al., 2018; Ciresan et al., 2011). But the

relationship is more complex than that. The best, in terms of having the highest likelihood

of success, hyperparameter modification for both F1–scores and MCC values is the three layer

model with L1 regularization. If model depth was a simple linear relationship, it would be

expected that a two layer model with L1 would perform slightly worse while the baseline model

with L1 would perform the worst out of the three. This progression is not, however, observed

and the baseline model with L1 had a higher chance of improving performance than the two

layer model with L1.

In the absence of regularizations, i.e. when only working with model depth, it is clearly

the case that additional layers do not guarantee improvement over the baseline model. For all

three metrics, the two layer model had a higher probability of improving performance than the

three layer model. This agrees with He and Sun (2015) and He et al. (2016). It also provides

support for the observation by Du et al. (2021) that more complex models may perform worse

than simpler models when supplied with limited training data.

The use of the L2 regularization had a consistent pattern across all metrics. Across all tasks

the progression of likelihood of performance increase, from highest to lowest, involving the L2

regularization is: two layers with L2, baseline with L2, and three layers with L2. However, the

likelihood of L2 regularization increasing model performance is generally lower than the use of
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Table 6.23: A summary of improvement strategies that can be applied to the baseline model in order to increase
the MCC values. The antecedent column represents the modifications to the baseline model and the
consequent the desired change in the model. The column P (Y |X) represents the probability of improving
the model’s performance given that the antecedent conditions are present.

Antecedent (X) Consequent (Y) P(Y|X)

ResNet50 Improvement 1.00

VGG16 Improvement 1.00

+ 2 layers, + L1 Improvement 0.83

+ 1 layer, + Dropout Improvement 0.67

+ L1 Improvement 0.56

+ 1 layer Improvement 0.50

+ 1 layer, + L2 Improvement 0.50

+ 2 layers Improvement 0.42

+ Dropout Improvement 0.39

+ 1 layer, + L1 Improvement 0.33

+ 2 layers, + Dropout Improvement 0.33

+ L2 Improvement 0.28

+ 2 layers, + L2 Improvement 0.17

L1. This suggests that the penalty value of the L2 regularization, when applied to the kernel, is

too severe and prevents the convolution operation from extracting usable features.

The use of dropout layers also show a complex relationship. The combination of an additional

layer and two convolutional layers are associated with a higher probability of success than a three

layer model with three dropout layers or the baseline layer with a single dropout layer. Aside

from the ACC metric, the baseline model with a single dropout layer had a higher probability

of improved performance than the three layer model with three dropout layers. The purpose

of dropout layers is to prevent overfitting of the data (Shakya et al., 2021; Chevtchenko et al.,

2018). The fact that the use of dropout layers are not consistently associated with model

performance enhancement (i.e. the probability of improving performance is high) suggests that

the ”from scratch” models tend to not suffer from overfitting. Additionally, the results show

that the findings of Shakya et al. (2021) that dropout layers can degrade performance cannot

be taken as a universal rule across all CNN applications.

6.10.2 CNNs and Shape

The literature is divided on the capacity of CNNs to recognise objects based on their shape.

Some view CNNs as able to recognise and classify objects based on their shape (e.g. Kubilius

et al., 2016; Kattenborn et al., 2021), while others consider CNNs to be more dependent on the

texture of the image (e.g. Geirhos et al., 2019; Baker et al., 2020). Additionally, in cases where

it is recognised that shape contributes to classification performance, there is the view that this

is limited to the identification of local shape (e.g Baker et al., 2020, 2018). A midway is argued
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by (Chollet and Allaire, 2018) who states that the convolution layers detect local shape patterns

and the fully connected layers use this information to detect global patterns.

The results presented in this study support the view that CNNs can classify objects with

high accuracy when texture elements are removed. With the exception of the side of widest

horn task, the landform classification accuracy of the models evaluated here are similar to those

achieved by Gao et al. (2021) for yardangs. A key difference is that Gao et al. (2021) used

satellite imagery to make the classification, which contains a lot of textural information within

the pixels. That using only outlines delivers similar levels of performance is further evidence

that CNNs can evalute the shape of objects in the absence of abundant texture information.

6.10.3 CNNs and Landform Classification

Classifying remotely sensed images involves categorizing the image into pre-defined classes based

on the contents of the image (De Cesarei et al., 2021; Cheng et al., 2018). However, it is believed

that humans and CNNs approach this task differently. For humans, this classification is based

largely on the object’s shape (Baker et al., 2020; Kubilius et al., 2016). There is somewhat of

a divided view on the approach followed by CNNs. Baker et al. (2020) argues that, for a CNN,

image texture is at the very least an equally strong cue for image classification. This is supported

by the works of others who found that alterations of image texture can lead to misclassifications

(Carrara et al., 2018; Nguyen et al., 2015). Others, such as Kattenborn et al. (2021), state

that CNNs are designed to learn the shape elements, such as corners and edges, along with

textural information that best describe the class of interest. However, the larger spatial context

of these edges may not be learnable (Baker et al., 2018, 2020). A third view offered by Kubilius

et al. (2016) is that CNNs can recognize objects when other information such as texture is

removed. Although it was not investigated how classification accuracies change depending on

whether image texture was retained or removed, the fact that high classification accuracies were

achieved seems to support the contention that CNNs can successfully classify an image based

only on outline information. This makes it possible to combine this work with the work of

others on barchan boundary extraction (Dakir et al., 2016; Azzaoui et al., 2019) to create a

workflow that can classify barchans from imagery. In doing so, the issues raised by Carrara

et al. (2018) and Geirhos et al. (2019) on the influence of texture on classification performance

can be avoided.

Gao et al. (2021) found that landforms that have a more diverse range of shapes and sizes

lead to more false positive and false negative classifications. There is insufficient data to conclude

why the performance of the models developed here differs from that developed by Gao et al.

(2021). Their work used satellite images where multiple yardangs are present, while the images

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6. RESULTS AND DISCUSSION 155

used in this study contains individual barchan outlines. Gao et al. (2021) speculates that the

diverse size and morphology of whalebacks (a subclass of yardang) may have contributed to an

increase in false positive and false negative classifications. Since size was corrected in the present

study, it cannot be used as a potential explanation. It is more likely that the similarity of the

barchans to each other contributed to incorrect classifications. More specifically, it is argued

that there is an inverse relationship between model accuracy, and the proportion that the unique

feature constitutes out of the total features extracted from the image.

The findings of this study agrees with the statement by Maggiori et al. (2017) that CNNs

are capable of detecting shape information. The image input is, however, different from that

typically used in remote sensing. However, the work of Azzaoui et al. (2019) has demonstrated

that it is possible to extract barchan outlines from more ”conventional” imagery. Therefore, if

the method developed here is added as a second step, it can be used to extract the morphometric

data from remotely sensed imagery. However, a considerable amount of additional work still

needs to be carried out in order to improve the performance.
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7.2 Review of Problem Statement

The rapid accumulation of remotely sensed data requires novel data extraction methods so that

it can be effectively used to study barchan dunes and dune field processes. Fortunately, this

increase in data availability occurred at the same time as a prolific increase in the accessibility

and sophistication of Artificial Intelligence (AI) technologies. A specific type of AI, Convolu-

tional Neural Networks (CNNs), holds particular promise due its proven ability to accurately

classify imagery. CNNs have been successfully applied to the identification of landforms within

remotely sensed imagery, however, there are some unanswered questions. First, are CNNs ca-

pable of extracting morphometric data from images of barchans? By morphometric features,

it is meant those properties of a barchan that are defined based on the shape and dimensions
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of the barchan. Second, if a CNN can successfully extract morphometric data, how can the

hyperparameters of the CNN be modified in order to improve performance? Model performance

refers to the ability of the model, based on one or more metrics, to perform the task required

of it. In this instance, this is a classification task. Hyperparameters refer to a collection of

configurations that are programmed into the CNN model that have an influence on its capacity

to learn from known examples in order to carry out the task required of it. In order to fully

utilise the remotely sensed big data, both of these questions need to be addressed.

7.3 Review of Objectives

The objectives of the study, along with a brief description of how they were met, are given below.

1. Collate data on the type of morphometric data that is typically used within

the literature.

This was completed as part of the literature review (§2.2.2). One of the outputs of this

objective is a summary of the different measurements carried out on barchan dunes, with

the goal of describing their shape, which has until now been absent from the barchan

literature.

2. Develop tasks that cover a wide range of barchan morphological investigations

with an emphasis on those that rely on barchan shape and asymmetry.

This objective was completed in Chapters 3 and 5. A notable output of this objective is the

development of a novel method that allows for the combined interaction between different

manifestations of asymmetry (such as longitudinal elongation and lateral extension) to

be quantitatively expressed. This formed part of the identification of the extent of the

bilateral asymmetry task. The other identified tasks include: describing barchan shape

(based on the a
c ratio), identifying which side of the barchan contains the elongated horn,

identifying the side of the barchan that is laterally extended, identifying which side of the

barchan contains the widest horn, and classifying the magnitude of horn elongation.

3. Identify the various hyperparameters that are known to significantly influence

the performance of CNNs.

A survey of the different hyperparpameters that exert an influence on the performance

of CNNs are provided in Section 4.4.1. Although all hyperparameters have an influence

on model performance, the depth of the model and the presence of regularizations can be

considered to have an especially large influence.
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4. Select a suitable site that meets the following criteria: it must have high

resolution imagery so that small barchans can be clearly delineated and it

must contain isolated barchans.

A suitable site was identified in the Kunene region of northern Namibia. A description

of this study is provided in Section 5.2. Imagery from this site dated 12 November 2012

contains images of individual barchans that have a resolution sufficient for accurate outline

extraction.

5. Prepare the imagery obtained from the site in order to remove the potential

textural bias and to meet the input requirements of the CNNs.

By manually extracting the outlines (§5.5) it is possible to remove the texture data from

the image while retaining the morphological components of the barchan. Since this is

carried out in a vector graphics software, it is also possible to scale the images to uniform

size without an associated loss of image quality. This ensures that the classification carried

out by the CNN is not biased either in terms of the image texture data or the size of the

barchan within the image.

6. Develop and train several different CNN architectures that encompass the

”from scratch” and transfer learning approaches. The former consists of vari-

ations in model architecture using the hyperparameters identified in objective

3.

A total of 14 CNN models are evaluated (§5.10). Twelve of these form part of the ”from-

scratch” and represent different combinations of depth and use of regularizations. Two of

the models, VGG16 and ResNet50, are used as part of the transfer learning approach and

represent commonly used models within the CNN literature.

7. Evaluate the performance of each model against a defined set of criteria.

The models are evaluated using several different metrics (§5.12) that are commonly used in

the literature: accuracy (ACC), F1–score, and Matthews Correlation Coefficient (MCC).

The ACC metric identifies the number of class 1 and class 2 images that were correctly

classified. The F1–score provides a means to account for false positive and false negative

classifications. Lastly, the MCC value is an indication of the extent to which the models’

classifications correlate with the actual classifications. A broad overview of the criteria

(see §5.12) used to evaluate the performance of the models are:

(a) An ACC and F1–score above 70%, and an MCC value above 0.5.
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(b) Does a modification to hyperparameters improve a model’s performance in terms of

ACC, F1–score, and MCC?

(c) The probability of any given instantiation of the model achieving above the critical

value (70% for ACC and F1–scores, and 0.5 for MCC) and above a target value (90%

for ACC and F1–scores, and 0.9 for MCC).

8. Interpret the results and make recommendations regarding the use of CNNs

in barchan research.

This is covered extensively in Chapter 6 and also summarised in Section 7.5.

7.4 Summary of Analysis

To determine whether a CNN can extract morphometric features, a case study was carried out

using a sample of barchans from the Kunene region in northern Namibia. Two approaches to

CNN use are investigated: developing a network ”from scratch” and training it on a custom data

set (in this case barchan imagery); and using transfer learning where a model that was trained

on an unrelated data set is used. Both of these strategies have advantages and disadvantages.

The ”from scratch” approach affords maximum flexibility in configuring the hyperparameters

and, in principle, creating a more specialized CNN. In transfer learning, the ability to modify

the hyperparmeters is sacrificed in favour of a model with a proven history of good image

classification with a feature extractor that was trained using resources well beyond most users.

To avoid the CNN from classifying images based purely on pixel properties, which may not

even be visible to humans, the outlines of the barchans were manually extracted and the images

scaled to a uniform size. Given all possible permutations of hyperparameters it is not possible

to systematically evaluate each combination. Instead, for the from scratch CNNs, emphasis was

placed on modifying the depth of the model and adding regularizations such as the L1 and L2

regularizations, and by incorporating dropout layers. Increasing the depth is considered to result

in an improved ability to extract more complex features from an object (where a feature refers

to lines, curves, etc.) which can, in principle, enable the network to detect features that are

specific to certain types of barchans. Regularizations and dropout layers attempt to increase the

generalization ability of a CNN which prevents it from ”memorizing” the images it was trained

on. This allows it to generalize to cases that it has not been exposed to during training by

looking for similarities between the ”new” image and the images it was trained on.

Since the goal is to determine if the barchan research community can benefit from the use

of CNNs, six classification tasks were developed that represent common uses of barchan shape

and asymmetry currently present in the literature. The first involves classifying barchans based
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on their shape which is here taken as the a
c–ratio. This value is often used to describe the

shape of barchans (e.g. Barnes, 2001) and has been linked to barchan migration (Hamdan et al.,

2016) and changes in this ratio has been attributed to sediment dynamics (Parteli et al., 2014).

The second task requires the CNN to classify barchans based on the side of the dune where

the elongated horn is located. Horn elongation can provide insights into large scale controls on

barchan asymmetry such as, but not limited to, bimodal winds (e.g Courrech du Pont, 2015)

and barchan collisions (e.g. Tsoar and Parteli, 2016). A third task investigates whether the

CNN can determine on which side the widest horn is located. Since the width of the horn

determines the amount of sediment lost at that horn (Elbelrhiti et al., 2008), this morphemetric

variable is useful for investigating the sediment transfer from barchans to downwind sinks. For

the fourth task, the CNN needs to be able to classify barchans based on the side where the

most lateral extension occurs. This morphometric property has been linked to the influence of

additional downslope forces that have an influence on the shape of the barchan (Parteli et al.,

2014). The fifth task evaluates whether the CNN can classify barchans based on the magnitude

of elongation of one of the horns (i.e. the difference in horn lengths). The elongation of one

horn has been linked to the duration of oblique winds (Bourke, 2010), and to the influence of

asymmetric sediment supply to the upwind portion of the dune (Parteli et al., 2014). For the

sixth task, it is determined whether the CNN can distinguish between the combined effect of

several different forms of asymmetry, such as the combined effect of horn elongation, lateral

extension, and changes in horn width. No method is available within the barchan literature to

investigate this in a way that allows for easy classification. Therefore, a novel technique was

developed based on geometric morphometrics.

Three different performance metrics are used: accuracy (ACC), F1–score, and Mathew’s

Correlation Coefficient (MCC). The ACC metric quantifies the ability of the model to correctly

place images into the correct category. It therefore only focuses on which classifications are

correct. The F1–score takes into consideration incorrect classifications as well and is expressed

as the harmonic mean between model recall and precision. Increased amounts of incorrect

predictions will, therefore, lower the F1–score. Using the MCC metric, it is possible to determine

the extent to which the model’s classification correlates to the actual classification. MCC values

range from −1 indicating total disagreement between the model’s classifications and the actual

classifications, to 0 indicating random classification on the part of the model, to +1 which

indicates complete agreement.
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7.5 Summary of Key Findings

The results show that CNNs are capable of completing the majority of tasks with a high degree of

accuracy. The accuracy (ACC) ranges from 44% to 92%, the F1–score from 35% to 92%, and the

MCC values from 0.43 to 0.86. CNNs are capable of classifing the barchans with a high degree

of accuracy in the majority of tasks. This indicates that, when provided with suitable imagery,

CNNs have the capacity to serve as a time–saving addition to barchan research. However,

the CNNs performed very poorly on the classification tasks based on horn widths. This can,

potentially, be improved through the use of additional training images.

For all tasks the use of transfer learning has the highest probability of improving classification

performance. This indicates that it is possible to use models that were pre–trained on imagery,

unrelated to the task at hand, to classify barchans. However, this only refers to the feature

extractor portion of the dune. In order to successfully use transfer learning, it is required that

the fully-connected layer be modified to the number of categories required and, importantly,

that this layer be trained to correctly use the features extracted for the desired classification.

The ”from scratch” models are also able to classify the barchans into the correct classes. In

some instances, their performance equals that of the pre–trained model. This indicates that it is

not, necessarily, required to make use of transfer learning. Based on the results it is not possible

to recommend a specific combination of hyperparameters that would result in a performance

increase. The combinations of hyperparameters are very variable and the results suggest that

the performance of the CNN is strongly dependent on the properties of the model when it is

initialised.

Based on the findings it can be concluded that there is definitely potential in developing

CNNs as a tool for barchan research. It is therefore possible to use remote sensing big data to

address key areas of research related to barchans. Aside from aiding in the research upon which

the tasks are based, other benefits are also possible. For example, by carrying out the automatic

extraction of barchans for regions where meteorological data is available, the interpretation

value of barchan shape, or asymmetry, as descriptors of climates can be improved. This has a

direct benefit on the interpretation of the environments of other planets such as Mars. Another

area of research is a better understanding of barchan processes based on an extensive catalogue

of barchan shapes (as recommended by Bourke and Goudie (2009)). A sufficiently trained

automated extraction system effectively reduces the constraints associated with time and space

to one of data availability. As such, it is possible to increase both the spatial and the temporal

scale of barchan research.
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7.6 Contributions to Aeolian Geomorphology

This work makes a significant contribution to barchan research in the following ways:

1. While other work has focused on the ability of CNNs to either detect or extract barchans

from imagery, this work is original in being the first to determine whether it is possible

to extract usable morphometric data from imagery. This is a novel application within the

field of aeolian research and, to a large extent, the discipline of geomorphology.

2. Currently, there is no method available to evaluate the combined influence of several

different types of asymmetry and express it as a single variable. This study developed

such new method. It is based on geometric morphometrics which makes it possible to

describe either barchan shape (van der Merwe, 2021) or barchan asymmetry. Although

the field of geometric morphometrics is not new, this is the first time it has been applied

within this context to barchan dunes

3. It also presents a summary of the variety of morphologic parameters that have been

recorded on barchans by researchers in the field. Aside from being of interest to the

curious researcher, and a handy reference for method sources, it shows that there are a

number of different morphometric variables that can be extracted from such a seemingly

simple shape.

7.7 Future Work

Another beneficial outcome of this research is that it identified future areas of research:

1. First, the lack of improvement in performance with the addition of a dropout layer, which

contradicts the findings of other researchers working on CNNs, may be the result of position

within the network. In the present configuration, these layers are restricted to the feature

extractor. This, in effect, exerts an influence over the type of features present within

the feature map which, ultimately, influence the classification. This raises the question

regarding the effects of placing the dropout layer within the classifier. By analogy, this is

similar to shifting focus from the ability to recognise features towards classifying images

based on the features at hand.

2. Another area of research deals directly with the issues raised on training data. The effect

of data set sizes is taken here as self evident. However, a more useful approach would be

to look at the amount of variability in images that make up the training data and relate

this to model performance. In this study, the data set was not altered during different
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runs of the training sequence. But can changes to the training data itself, in terms of the

composition, affect the effectiveness of the training process?

3. An investigation of the activity maps of CNNs involved in barchan classification can be

beneficial. It will assist in determining where within the image most of the ”influential”

input neurons are located. This will help identify the regions on the barchan that the

CNN uses to make its classification.

4. The parameters of this study required that the most simplistic use scenario be evaluated.

Therefore, the images were all scaled to occupy the entire input size. However, future

work should consider the extent to which the size of the barchan within the input window

affects the performance of the CNN.

5. Although a surrogate for human classification accuracy was used, it would be beneficial

to carry out a study using the same data to determine human performance on this task.

This will aid in placing the performance of CNNs into a more relevant context.

6. Future work should also focus on the misclassifications. In this study, the output was

taken only as being in one of two classes. However, since the data is actually a set of

probabilities of an image belonging to each class, it is possible to relate the misclassified

images to the level of ”uncertainty” that the network had during the classification. A

benefit of this is that it allows images where the CNN was uncertain (i.e. the assigned

probabilities to the two classes are similar) to be investigated. This may yield insights into

how the CNN interprets shape.
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Appendix A

Barchan Shape Nomogram
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Appendix B

ANN Learning Example

Consider the simple neural network depicted in Figure B.1. This is a simple neural network

where there is a single input (x) that feeds to a single neuron (a
(0)
1 ) with a weight of w1. The

bias (b) for a
(0)
1 is kept constant at 1 and the activation function is the ReLU function (Eq. B.1)

to produce a single output (ŷ). The bias term is not associated with a weight for this example.

This ANN can then be presented as a computational graph (Figure B.2). The loss function

for this network is Mean Square Error (MSE) and because only one input is received it can be

represented as in (Eq. B.2).

σ(z) =


0 : z ≤ 0

z : z > 0

(Eq. B.1)

C = (y − ŷ)2 (Eq. B.2)

B.1 Forward propagation

Given x = 5,w = 3, b = 1, and the output of the ANN should be y = 8 the forward propagation

for this ANN involves the following:

x a
(0)
1

ŷ

b

w

Figure B.1: A simple ANN consisting of one input, one node, and a single output. For the purpose of this example
the bias is kept constant at 1 and the activation function is sigmoid.
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x

w

b

×

+

y

σ(z) − l2 C

q

z ŷ l

Figure B.2: The computation graph for the neuron described in Figure B.1 along with intermediate variables. The
activation function is indicated by σ().

q = wx = 15

z = q + b = 16

ŷ = σ(z) = 16

The output of this network is therefore 16 and the target value is 8. During back-propagation,

this difference is used to calculate an adjustment to the parameter w.

B.2 Back-propagation

First the value of the cost function is calculated:

l = y − ŷ = −8

C = l2 = 64

To determine how the network should be updated the partial derivatives of each variable

with respect to the cost function needs to be determined:

∂C

∂l
= 2l = −16

∂ŷ

∂z
= 1

∂q

∂w
= 5

∂l

∂ŷ
= −1

∂z

∂q
= 1

The chain rule can then be used to determine the partial derivative of the cost function with

regards to the parameter w:
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∂C

∂w
=

∂C

∂l
× ∂l

∂ŷ
× ∂ŷ

∂z
× ∂z

∂q
× ∂q

∂w

= 80

Given a learning rate of η = 0.01 the parameter w is updated using the gradient descent

algorithm1:

wnew = wold − η
∂C

∂w

= 3 − (0.01 × 80)

= 2.2

1Only a single step of the algorithm is used as illustration.
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On the next forward pass the values become:

q = wx = 11

z = q + b = 12

ŷ = σ(z) = 12

l = y − ŷ = −4

C = l2 = 16

This shows that the w parameter is approaching the value needed in order for the network

to make accurate predictions.
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Appendix C

CNN Learning Example

Consider the CNN in Figure C.1 that represents a network that takes as input X a 1 band

image (i.e. a grayscale) of 4 × 4 pixels. This network creates a single feature map (F) using

a single kernel, K, which is then flattened into a fully connected network with a single output

(ŷ) using the sigmoid activation function (Eq. C.1). The goal is for the network to classify the

input image as one that has a line that is diagonal from the top left to the bottom right. Here,

the category associated with this type of feature is 0 (i.e. y = 0) Because the sigmoid function

is used, ŷ will be a real value between 0 and 1.

σ(z) =
1

1 + e−z
(Eq. C.1)

C.1 Forward propogation

Given an input with a line diagonally down from left to right, and with values [0, 255], the input

x can be described using the matrix in (Eq. C.2).

X =


255 0 0 0

0 255 0 0

0 0 255 0

0 0 0 255

 (Eq. C.2)

Upon initialisation, the kernel is random. Taking as an example random integers between

[0,3] being assigned to the kernel, an example kernel can be represented by the matrix in

(Eq. C.3).
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m1

w1

m2

w2

m3

w3

m4

w4

×

×

×

×

+

+

+

q1

q2

q3

q4

q7

q8

σ(z)z −

y

ŷ l2l C

Figure C.2: Computation graph for the fully connected portion of the CNN in figure C.1.

K =


0 0 1

3 1 1

2 1 1

 (Eq. C.3)

For each cell in the feature map, the convolution calculation is:

m1 = F11 = (x11k11) + (x12k12) + (x13k13) + (x21k21)

+ (x22k22) + (x23k23) + (x31k31) + (x32k32) + (x33k33)

m2 = F21 = (x21k11) + (x22k12) + (x23k13) + (x31k21)

+ (x32k22) + (x33k23) + (x41k31) + (x42k32) + (x43k33)

m3 = F12 = (x12k11) + (x13k12) + (x14k13) + (x22k21)

+ (x23k22) + (x24k23) + (x32k31) + (x33k32) + (x34k33)

m4 = F21 = (x22k11) + (x23k12) + (x24k13) + (x32k21)

+ (x33k22) + (x34k23) + (x42k31) + (x43k32) + (x44k33)
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The feature map (F) that results from the convolution of the input with the kernel (X ∗K)

is given by (Eq. C.4).

F =

510 1020

255 510

 (Eq. C.4)

In this example the values of the flattened layer is derived from the feature map such that:

F11 = m1 = 510

F21 = m3 = 255

F12 = m2 = 1020

F22 = m4 = 510

Assigning a random value over the interval [0, 1] to each of the weights the following values

are obtained:

w1 = 0.64

w3 = 0.53

w2 = 0.56

w4 = 0.97

The prediction ŷ then becomes1:

ŷ = σ(

4∑
i=1

(miwi))

= σ(1527.45)

= 1

where σ is the sigmoid activation function.

C.2 Back-propagation

This process is conceptually the same as the back-propagation for an ANN, but more variables

are involved due to the presence of the kernels and feature maps. For this example, the mean

square error loss function will is used (Eq. C.5) and the actual value (y) is zero.

C = (y − ŷ)2

= 1
(Eq. C.5)

1For the sake of simplicity the bias values are omitted.
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Creating intermediate variables in order to simplify the calculations:

ŷ = σ(z)

z =
4∑

i=1

(miwi)

The partial derivatives that determine how the loss function (C) is influenced by the learnable

parameters in the kernel (i.e. each of the 9 values in the kernel) can then be presented as follows2:

∂C

∂K11
=

(
∂m1

∂K11
× ∂z

∂m1
× ∂C

∂z

)
+

(
∂m2

∂K11
× ∂z

∂m2
× ∂C

∂z

)
+

(
∂m3

∂K11
× ∂z

∂m3
× ∂C

∂z

)
+

(
∂m4

∂K11
× ∂z

∂m4
× ∂C

∂z

)

∂C

∂K12
=

(
∂m1

∂K12
× ∂z

∂m1
× ∂C

∂z

)
+

(
∂m2

∂K12
× ∂z

∂m2
× ∂C

∂z

)
+

(
∂m3

∂K12
× ∂z

∂m3
× ∂C

∂z

)
+

(
∂m4

∂K12
× ∂z

∂m4
× ∂C

∂z

)

∂C

∂K13
=

(
∂m1

∂K13
× ∂z

∂m1
× ∂C

∂z

)
+

(
∂m2

∂K13
× ∂z

∂m2
× ∂C

∂z

)
+

(
∂m3

∂K13
× ∂z

∂m3
× ∂C

∂z

)
+

(
∂m4

∂K13
× ∂z

∂m4
× ∂C

∂z

)

∂C

∂K21
=

(
∂m1

∂K21
× ∂z

∂m1
× ∂C

∂z

)
+

(
∂m2

∂K21
× ∂z

∂m2
× ∂C

∂z

)
+

(
∂m3

∂K21
× ∂z

∂m3
× ∂C

∂z

)
+

(
∂m4

∂K21
× ∂z

∂m4
× ∂C

∂z

)

∂C

∂K22
=

(
∂m1

∂K22
× ∂z

∂m1
× ∂C

∂z

)
+

(
∂m2

∂K22
× ∂z

∂m2
× ∂C

∂z

)
+

(
∂m3

∂K22
× ∂z

∂m3
× ∂C

∂z

)
+

(
∂m4

∂K22
× ∂z

∂m4
× ∂C

∂z

)
2For the sake of simplicity the weights are taken to be fixed
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∂C

∂K23
=

(
∂m1

∂K23
× ∂z

∂m1
× ∂C

∂z

)
+

(
∂m2

∂K23
× ∂z

∂m2
× ∂C

∂z

)
+

(
∂m3

∂K23
× ∂z

∂m3
× ∂C
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Glossary

Abductive Reasoning One of three types of reasoning, the others being deductive and induc-

tive, where reasoning proceeds from the observation to a speculated cause.

Allometry Refers to the relationship between the change in shape of a landfrom as its size

changes.

Architecture Here, the term architecture refers to the number components of the CNN model,

their properties, and how they transfer information through the model.

Convolution The sum of the element-wise multiplications between an input matrix and a

kernel.

Convolutional Neural Network A neural network that is characterised by the presence of

convolution operations.

Equifinality A debated concept within geomorphology which argues that the same landfrom

may result from different processes that stem form different starting conditions.

Features A geometric property of an image such as edges or curves. Can be combined into

more ”abstract” geometries, such as peaks, half-circles, in deeper layers within a model.

Genesis Within the context of this study, genesis refers to the development of a barchan from

a loalised sediment accumulation.

Hyperparameters Those parameters of a Neural Network that determine the learning strategy

that the model will follow, how information is processed within the model, and what

transformations will be applied to the inputs. Hyperparameters remain fixed after the

model is initialised.

Isometry When the shape of a landform does not change as its size changes.
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Glossary 177

Learnable Parameters Those parameters within a neural network, such as weights and kernel

values, that are updated during the training of the model. The learnable parameters remain

fixed once the training process has been completed.

Machine Learning Algorithms that allow software to improve its performance on a task based

on some metric.

Neural Network A collection of individual processing units that attempt to reproduce the

information processing capacity of a human brain.

Neuron An information processing unit consisting of several parts: connections that trasnfer

information to the neuron from earlier neurons in the network, a summing function that

combines the weights of the conections with the outputs of the earlier neurons, an activation

function which converts the linear summing function into a nonlinear variable, connections

that transfer the output of the neuron to deeper layers in the network.

Object Based Image Analysis A GIS technique that partions a raster image into different

classes based on the data contained within the pixels.

Optimizer A function that determines how the learnable parameters within a neural network

are updated during the training process.

Overfitting A situation that arises when the model is trained excessively and becomes so fitted

to the trainng data that it loses its generalization capabilities.

Regulizer An additional numeric value that is added to the loss function during the train-

ing process in order to reduce the generalization error of the model. The procesess is

collectively referred to as regularization.

Semantic Segmentation A classification approach whereby every pixel within an image is

assigned to a category based on its value.

Vanishing Gradient Problem A situation that occurs during the trainng of a model where

the update to a parameter is negligibly small to the extent that any additional update

becomes negligibly small.
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Ceará coast, north-eastern Brazil. Sedimentology, 46(4), 689–701. doi:10.1046/j.1365-3091.

1999.00240.x.

Jinsakul, N., Tsai, C.F., Tsai, C.E. and Wu, P. (2019) Enhancement of deep learning in image

classification performance using Xception with the swish activation function for colorectal

polyp preliminary screening. Mathematics, 7(12). doi:10.3390/MATH7121170.

Jordan, M.I. and Mitchell, T.M. (2015) Machine learning: Trends, perspectives, and prospects.

Science (New York, N.Y.), 349(6245), 255–260. doi:10.1126/science.aaa8415.

Kalita, S. and Biswas, M. (2019) Improved Convolutional Neural Networks for Hyperspectral

Image Classification. Advances in Intelligent Systems and Computing, 740, 397–410. doi:

10.1007/978-981-13-1280-9 37.

Kattenborn, T., Leitloff, J., Schiefer, F. and Hinz, S. (2021) Review on Convolutional Neural

Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote

Sensing, 173(January), 24–49. doi:10.1016/j.isprsjprs.2020.12.010.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES 192

Kendall, D.G. (1977) The diffusion of shape. Advances in Applied Probability, 9(3), 428 – 430.

doi:10.2307/1426091.

Keskar, N.S., Nocedal, J., Tang, P.T.P., Mudigere, D. and Smelyanskiy, M. (2017) On large-

batch training for deep learning: Generalization gap and sharp minima. 5th International

Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 1–16.

Khan, H.A., Jue, W., Mushtaq, M. and Mushtaq, M.U. (2020) Brain tumor classification in

MRI image using convolutional neural network. Mathematical Biosciences and Engineering,

17(5), 6203–6216. doi:10.3934/MBE.2020328.

Klingenberg, C.P. (2010) Evolution and development of shape: Integrating quantitative ap-

proaches. Nature reviews. Genetics, 11(9), 623–635. doi:10.1038/nrg2829.

Klingenberg, C.P. (2013) Visualizations in geometric morphometrics: How to read and how to

make graphs showing shape changes. Hystrix, 24(July), 15–24. doi:10.4404/hystrix-24.1-7691.

Klingenberg, C.P. and McIntyre, G.S. (1998) Geometric morphometrics of developmental in-

stability: Analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution,

52(5), 1363 – 1375. doi:10.2307/2411306.

Kneusel, D.T. (2022) Math for deep learning: What you need to know to understand neiral

networks. San Francisco: No Starch Press.

Kocurek, G., Townsley, M. and Yeh, K. (1992) Dune and dune-field development on Padre

Island, Texas, with Implications for interdune deposition and water-table-controlled ac-

cumulation. SEPM Journal of Sedimentary Research, Vol. 62(4), 622–635. doi:10.1306/

D4267974-2B26-11D7-8648000102C1865D.

Kubilius, J., Bracci, S. and Op de Beeck, H.P. (2016) Deep Neural Networks as a Computational

Model for Human Shape Sensitivity. PLoS Computational Biology, 12(4), 1–26. doi:10.1371/

journal.pcbi.1004896.

 Labuz, T.A., Grunewald, R., Bobykina, V., Chubarenko, B., Česnulevičius, A., Bautrenas, A.,
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