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Continuous cast width control using a data
mining approach

P. G. de Beer and K. J. Craig*

Twelve per cent chrome ferritic (non-stabilised) stainless steel cast at the continuous caster at

Columbus Stainless exhibited notable differences in the width change between consecutive

heats. The reason for these differences is related to the fact that the steel is in a dual phase region

between austenite and ferrite during the solidification stages of the continuous casting process. A

model was developed and is currently used as a production tool to predict the width change of a

12% chrome ferritic heat before it is cast based on heat composition. The strand width is altered

based on the model predictions by changing the secondary cooling pattern. It was uncertain if the

current model is the best suited for this application and a study was carried out using different but

more advanced data mining techniques in an attempt to improve the existing model. It was found

that advanced data mining techniques could not improve the original rule based model.

Keywords: Continuous casting, Rule based, Strand width control, Statistical regression, Decision tree, Fuzzy logic

Introduction
Continuous cast width control is important because it
affects the material yield and can also lead to material
being allocated away from the original order, leading to
increased lead time, production time losses and overdue
orders that all contribute to increased costs for the steel
producer. The continuous caster at Columbus Stainless
casts slabs of constant thickness but with variable
widths. This study describes a variable that was found
to be important for 12% chrome non-stabilised ferritic
stainless steels (hereafter referred to as 12% chrome
steel) that influenced the cast width. Chemistry varia-
tions influencing the phase fractions between austenite
and ferrite in the temperature range 1200 to 850uC
(secondary cooling temperature range in the continuous
caster) were found to play an important role in the final
cast width. Research1,2 on the transformation behaviour
and hot strength of a 12% chrome ferritic stainless steel
(non-stabilised) has indicated that as long as the ratio of
austenite and ferrite keeps on fluctuating, the width
change variation will persist. A rule based model was
successfully implemented initially3 indicating the poten-
tial for predicting the cast width change of a 12%
chrome heat before it is cast based purely on the
composition. The uncertainty whether the modelling
approach used in the implemented model is the most
suited for this application, culminated in further study.
More specifically, alternative, more advanced modelling
techniques than the rule based approach were investi-
gated. The three techniques used are statistical regres-
sion, decision trees and fuzzy logic. As the accuracy of

the models is of paramount importance due to the fact
that incorrect predictions can be very expensive, a
thorough data mining exercise was done to test the
models against each other in order to determine the best
solution for this specific application.

The next section describes the theoretical aspects
concerning the relationship between the cast width and
heat composition, after which the development and
results of the different data mining techniques are
presented. Some operational results of the rule based
model are also discussed.

Cast width modelling
Most of the literature deals with techniques that were
successfully implemented to improve cast width change.
The techniques range from simple monitoring techni-
ques to theoretical prediction models. Evans et al.4

achieved improved width change results by better slab
width verification techniques. Nakamura et al.5 imple-
mented a slab width model that controls the width of the
strand by changing the mould dimensions using a mould
that can continuously adjust its dimensions. Assar et al.6

attribute the widening of the slabs during casting to the
ferrostatic pressure and shell malleability. They found
the widening of the slabs to be directly correlated to the
casting speed and to depend on both the strand width
and steel grade. They developed a prediction model
based upon casting speed, mould width and steel grade.
Kocatulum et al.7 studied the causes of width change
using physical devices to measure slab width and also
developed a statistical slab width prediction incorporat-
ing the mould width and the residence time in the upper
sections of the secondary cooling zone. Mostert and
Brockhoff8 developed a slab width prediction model
based on theoretical principles. They determined an
equation for the shrinkage factor and stated that the
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final cold width of a slab is influenced by thermal
shrinkage and contraction counteracted by expansion.
They expressed the shrinkage factor as the ratio of
mould width and cold slab width and stated that the
expansion of the shell depends on the thickness and
temperature of the shell combined with ferrostatic
pressure. The relationship between the spray cooling,
ferrostatic pressure, casting speed, shell thickness and
shell temperature was studied. They concluded that the
expansion depends on the ferrostatic pressure, spray
cooling and casting speed. The factors that affect the
width change according to literature are, therefore,
mould set-up practises, secondary cooling in the casting
machine, cast speed and steel type. Only Kocatulum
et al.7 touched on the subject of relating compositional
changes within a certain steel grade to the cast width
change. They found it to be negligible and did not
pursue it further. This study indicates that for the special
case of 12% chrome stainless steels, the compositional
variation between heats has a significant effect on the
width change. This is indicated by the fact that a model
was successfully implemented in the plant as a produc-
tion tool to predict the width change of a 12% chrome
heat before it is cast purely based on the composition.

Theoretical influence of heat
composition variations on continuous
cast strand width change of 12% chrome
stainless steels
The main reason why 12% chrome steel would exhibit a
relationship between the heat composition and cast
width change is because the shell is in a dual phase
region between austenite and ferrite at temperatures
typically between 850 and 1250uC. The creep, hot
strength and volume of austenite and ferrite are different
which causes strand width variations when the ratio
between austenite and ferrite changes.

Dual phase characteristic of solidified shell
The dual phase characteristic is evident from the iron–
chromium binary phase diagram (Fig. 1a). The dual
phase temperature range corresponds to the temperature
range between mould exit and continuous casting
machine exit. Variations in the austenite and ferrite
stabilisers between different heats result in the ‘gamma
loop’ changing between these heats resulting in a
different phase ratio between heats. Rowlands9 also
indicate that the 12% chromium content places it at the
critical boundary of the gamma loop and therefore
austenite or ferrite stabilisers (formers) can change the
structure of the steel at elevated temperatures. Elements
that are important ferrite stabilisers in stainless steels are
chromium, titanium and molybdenum. Important aus-
tenite stabilisers are carbon, nickel, nitrogen and
manganese. Small changes in any of these elements can
change the austenite to ferrite ratio in a 12% chrome
steel. Figure 1b indicates for example the effect of the
austenite stabiliser carbon on the ‘gamma loop’. It is
clear that the carbon expands the austenite region to
higher chrome levels and lower temperatures. The other
austenite stabilisers have a similar effect.

Hot strength of austenite and ferrite

The hot strength of austenite at elevated temperatures is
larger than that of ferrite at elevated temperatures. The

more the phase ratio favours austenite, the stronger the
shell will tend to be and vice versa. A stronger shell will
be able to contend more effectively with any forces that
will attempt to deform it (ferrostatic pressure for
example). An important factor considering the phase
ratio is the transformation rate of austenite to ferrite. If
the transformation rate from austenite to ferrite is high
(under constant cooling) then the austenite fraction of
the structure will decrease (transform to ferrite) quickly
and relatively high up in the casting machine bow. This
will leave room for a weaker shell that might be prone to
deformation.

Volume difference between austenite and ferrite

The lattice structure of austenite is face centred cubic
(FCC) and the lattice structure of ferrite is body centred
cubic (BCC). The BCC structure occupies a higher
volume than the FCC structure and therefore changes in
the ratio of austenite to ferrite will be accompanied by a
change in the volume that will translate into a change to
the cast width.1

(a)

(b)

1 a Fe–Cr binary phase diagram indicating dual phase

region10 and b effect of carbon content on austenite/

ferrite region15
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Creep properties of austenite and ferrite

The inherent resistance to creep of austenite is more
than that of ferrite,11 hence changes in the phase ratio
between austenite and ferrite affects the creep character-
istics of the strand. Creep becomes evident typically
above 0?4 Tm where Tm is the absolute melting point.12

If a continuous casting process is considered, then
typically the strand is at a temperature .0?4 Tm for the
whole of the secondary cooling stage and is therefore
prone to undergo creep at high temperature. Tem-
perature plays a major role in the creep rate with a
higher creep rate experienced at a higher tempera-
ture.12,13 The creep resistance of austenitic stainless
steels is increased by the following elements: carbon,
nitrogen, chromium, molybdenum, tungsten, vanadium,
boron, titanium and niobium.11 According to Austin
et al.13 the following elements have an influence on the
creep properties of ferrite (ferrite itself does not have a
high resistance to creep at elevated temperatures) nickel,
silicon and cobalt only increase the creep resistance at
elevated temperatures marginally while carbon, chro-
mium, manganese and molybdenum increase the resis-
tance to creep markedly. Owing to the fact that these
elements influence the creep properties of austenite and
ferrite it follows that variations in these elements
translate into different creep rates between heats.

Selection of input variables for
modelling width change
In order to quantify and calculate the constitution and
transformation properties of 12% chrome steels, the
Columbus Stainless research and development depart-
ment has developed a model to calculate the phase
fractions and transformation rate of 12% chrome steels
given the composition. The model is called MEDUSA14

(Mathematical evaluation of dilatometry using statisti-
cal analysis). The following parameters are calculated
(among others) by the MEDUSA model and are of
value in the present work:

(i) gamma max. (Gmax) (%): this is the amount of
austenite present at 1100uC in ferritic stainless
steels

(ii) AC1 temperature (uC): this is the temperature at
which austenite begins to form when ferritic
stainless steel is heated at 1uC min21

(iii) CR95 (uC min21): cooling rate at which 95% of
the austenite present at 1000uC transforms to
ferrite

(iv) Amax (Austenite potential): this is the percen-
tage austenite present in ferritic stainless steels
at 1000uC and approximates to the maximum
austenite potential of the steel.

The input variables used for the more advanced data
mining techniques were the same as the input parameters
currently used by the rule based model that is
implemented in the plant. The initial input parameters
were decided after an investigation to determine the
influence of the chemistry on the width error. Apart
from the MEDUSA calculated parameters, two addi-
tional parameters were added as input to the model; the
Kaltenhausen ferrite factor (FF) and the addition of the
absolute carbon and nitrogen (CzN) chemical analysis.
The Kaltenhauser ferrite factor1 is an empirical expres-
sion that is used to predict the microstructure (ferrite

volume fraction at 1000uC)

FF~Crz6Siz8Tiz4Moz2Alz40(CzN){

2Mn{4Ni (1)

Three different data mining approaches were followed.
A suitable model would be able to predict the expected
width error of a specific heat before it is cast. The three
modelling approaches used were:

(i) statistical regression

(ii) regression decision tree

(iii) fuzzy logic.

Two independent data sets were used during this study
that consisted of the six input parameters and associated
width change. One data set was used for training the
different models and consisted of 249 heats with
associated width change. A validation data set was used
to test the accuracy of the models and consisted of 129
heats with associated width change. The dependent
variable that was modelled is termed the ‘width error’.
The width error is defined as the difference between the
actual cold width of a slab and the aim cold width
(width error5actual cold width–aim cold width) and is
expressed in millimetres.

Width change modelling using different
data mining techniques

Statistical regression
Response surface methodology (RSM) is a tool for
understanding the quantitative relationship between
multiple input variables and one output variable. A
quadratic response surface was used to model the width
error using the mentioned input parameters. The sta-
tistical toolbox in Matlab was used to derive the RSM
models. The general equation describing the quadratic
response surface of an input vector x and response
vector y has the form

y~b0zb1x1zb2x2 . . . zbnxn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (linear)

zb12x1x2zb13x1x3z . . . . . . zb1nx1xnz . . . z

b(n{1)nx(n{1)xn . . . (interaction)

zb11x2
1zb22x2

2zb33x2
3z . . . . . . zbnnx2

n

. . . . . . . . . . . . . . . . . . . . . . . . (quadratic) (2)

The ‘rstool’ in Matlab was used to derive the quadratic
response surfaces used in this section. The ‘rstool’ has
the functionality of deriving separate response surface
models including the linear section alone, linear and
quadratic alone and linear and interaction terms
separately and a response surface including the linear,
interaction and quadratic terms. In total, four response
surface models were developed, one model representing
each of the before mentioned models. The results were
evaluated by dividing the width error range into three
groups. The groups were chosen based on when a width
error would be problematic on the narrow or wide side.
All results from the different models will be given based
on their performance on the training data set and
validation data set. The definition of ‘correct’ in the
tables is the percentage of records in each group where
the model predicted the width error correctly.

De Beer and Craig Continuous cast width control using a data mining approach
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Table 1 indicates that the response surface models
give results that are very close to each other. The overall
accuracy ranges from 54 to 52% correct, which indicates
no significant difference between the different models.
All the models indicated the best results in group 2.

From Table 2, it can be seen that all the models are
accurate in the width error range represented by group
2, but all the models perform very poorly in the width
error ranges represented by group 1 and group 3. The
accuracy in group 2 is not thought to be due to the
models being accurate in that range, but rather due to
the fact that most of the actual width errors and
predicted width errors fall in the range of group 2.

Regression decision tree
The statistics toolbox in Matlab was used to derive two
decision trees from the training data set. The two
decision trees are the basic complete decision tree as
derived from the training data and the second tree is the
pruned version. The unpruned tree consisted of 41 levels.

Pruning can be done to the basic tree to optimise the
structure. With a tree having many branches, there is a
danger that it fits the current data set well, but would
not do a good job at predicting new values. Some of its
lower branches might be strongly affected by outliers
and other artefacts of the training data set. The second
decision tree was found by pruning the first tree using
cross validation. Figure 2 indicates the structure of the
pruned decision tree obtained from the training data set.

The best pruning level was determined as level 37 of
the original 41 of the unpruned tree. The results are
given in Table 3.

In terms of the training data set, it can be seen that the
model is more accurate on the extremes of the width
error range than the RSM models. The accuracy
obtained of 78% overall is acceptable. If one considers
the results obtained from the validation data set then the
performance is poor with a 42% accuracy rate. It can
also be seen that the model is very inaccurate on the
narrow distribution in group 1 and performing slightly

Table 2 Summary of accuracy obtained with surface response models as applied to validation data set

Group
Width error
range, mm

No. of
records

Linear %
correct

Full quadratic
% correct

Linearzquadratic
% correct

Linearzinteraction
% correct

1 ,0 38 3% 8% 3% 8%
2 0–15 76 87% 88% 92% 91%
3 .15 12 42% 0% 0% 0%

57% 55% 56% 57%

2 Pruned version of decision tree

Table 1 Results from response surface models as applied to training data set

Group
Width error
range, mm

No. of
records

Linear %
correct

Linearzinteraction
% correct

Linearzquadratic
% correct

Full quadratic response
surface correct

1 ,0 79 30% 30% 26% 30%
2 0–15 65 75% 72% 74% 71%
3 .15 105 59% 59% 63% 57%

249 54% 53% 54% 52%
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better in group 2. The overall accuracy rate of 42% is
however not acceptable.

Fuzzy Logic
Two types of fuzzy logic models were developed. One
with triangular membership functions and one with
polynomial membership functions.

Fuzzy logic model based on triangular membership functions

The aim was to categorise the input parameters into one
of three predefined groups. The groups are defined in
terms of the width error. Group one is defined as heats
with negative width error (i.e. narrow from aim), group
two is defined as those having acceptable width error
and group three is defined as those heats with large
positive width errors (i.e. wide from aim). The fuzzy
logic membership functions were defined as straight lines
using equations of type

y~mxzc (3)

Each parameter was viewed separately and divided into
the three groups according to the width error. The 0?25,
0?5 and 0?75 quartiles were determined for each
subgroup in each parameter. The 0?5 quartile for each
subgroup was chosen to have a membership of one and
then the 0?25 and 0?75 quartiles were chosen as having
zero membership to the specific subgroup (see Fig. 3).

If the membership functions are combined then the
result is a distribution with triangular sets. Figure 4
indicates the combined membership functions as applied
across a typical parameter range.

The membership functions were determined using the
training data set. Each parameter was used separately to
determine the membership equations across the para-
meter range. The values of each parameter were then
fuzzified using the specific membership functions. The
defuzzification was done using a centre average
approach. Each parameter gave an individual prediction
of which width group the heat belongs to, selected from
the three predefined width groups. The average of the

six predictions was then used to determine the final
prediction of the width group.

The results from the model (see table 4), indicates
good results in group 1 and group 2 on the training set,
but these results are not repeated on the validation set.
The overall accuracy obtained on the validation set of
48% is considered to be poor.

Fuzzy logic model based on polynomial membership

functions

The basis of this model is to use a polynomial for each
parameter to predict a width error separately. The final
width error is then taken as the average of the
predictions resulting from the six polynomials derived
from the six input parameters. The optimum order of
the polynomial was found for each parameter by
deriving six polynomials for each parameter ranging
from pure linear to a polynomial of the 6th order. The
optimum degree of the polynomial was chosen as the
one with the best correlation to the actual width error.
The polynomials used for the six input parameters are
given in equations (4)–(9). It can be seen that the order
of the polynomials ranges from 2 to 5

WE~width error

WE~�4:724(AC1)3z8:012(AC1)2�2:9784AC1z

0:5078 (4)

WE~2:9147(Amax)3�5:5702(Amax)2z

2:4045Amaxz0:4055 (5)

WE~1:3266(CR95)3�2:7794(CR95)2z

2:0942CR95z0:1805 (6)

WE~4:2285(Gmax)3�6:1782(Gmax)2z

1:4921Gmaxz0:6988 (7)

Table 3 Results obtained from pruned decision tree as applied to training and validation data sets

Group Width error range, mm

Training data set Validation data set

No. of records % correct No. of records % correct

1 ,0 79 81% 38 7%
2 0–15 65 71% 76 59%
3 .15 105 80% 12 50%

249 78% 126 42%

3 Typical membership allocation using triangular mem-

bership functions

4 Typical membership functions as defined across para-

meter range
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WE~0:6271(FF)2z0:2055FFz0:0753 (8)

WE~34:3452(CzN)5�94:048(CzN)4z

92:8363(CzN)3�39:1632(CzN)2z5:8697(CzN)z

0:4508 (9)

The results obtained by applying the polynomial fuzzy
logic model to the training and validation data set are
given in Table 5.

The overall accuracy of 58% on the validation data set
is reasonable, considering the results obtained with the
other models. One positive about this model, is that it
seems to be fairly accurate in group 1 and group 2 but
unfortunately not in group 3.

Rule based model
The model that is used in the production environment is
a rule based model derived from a different training set
than the previous models due to the fact that it was
created some time before the other models.1 The rules
give the freedom of not having to use all the input
parameters. The set of rules was generated from
historical data. The width change was divided into three
groups (narrow from aim, acceptable and wide from
aim) and the combination of the parameters that
resulted in the width error falling into one of the three
groups was determined. The combination of parameters
is expressed in terms of rules. The amount of parameters
per rule can range from 1 to 6. The model therefore
consists out of a mixture of rules all having the form
of if–then statements. A typical example of a rule
incorporating four parameters is illustrated below

if AC1vx and Gmaxwy and CR95vz

and (CzN)wzz then . . .

Each rule categorises a heat according to the groups
described in the previous sections. A chemistry sample is
taken at the end of the process at the rinsing station
(ABS–Argon Bubbling Station). There is approximately
a 10–15 min gap between the end of the rinsing station
process and the start of the casting operation. After the
chemistry sample has been taken, it is sent to the
laboratory for analysis. The chemical composition
results are sent to the computer system of the continuous
caster. The width model is situated in the caster level two
computer system. Once the chemical analysis has been
received, the relevant parameters are calculated and sent
to the model as input parameters. The input parameters
are checked by the model by fitting each rule in
sequential order to the input parameters. The individual
rules are checked until a rule becomes active. When all
the rules have been checked and none fits, the default/
standard secondary cooling practice is used. If one of the
rules becomes active, the secondary cooling practice is
changed to either a more aggressive or a less aggressive
secondary cooling practice, based on the result of the
specific active rule. Table 6 indicates the results obtained
by applying the rule based model to the same validation
data set as the other models in the previous sections. The
‘correct’ column indicates the amount of correct
decisions where the model was able to make a decision.
The percentage ‘no decision’ is the percentage of
material where no rules became active and no decision
was made by the model.

The percentage of ‘no decision’ is relatively high at
54%, and this material should be viewed as lost
opportunities where a change could have been imple-
mented, to improve the width error. The 54% also
indicates that the model can be improved to be able to
recognise more problematic material. Table 6 also
indicates that where decisions were made by the model,
it was 73% correct with very good results in groups 1

Table 5 Results from polynomial fuzzy logic model

Group Width error range, mm

Training set Validation set

No. of records % correct No. of records % correct

1 ,0 79 25% 38 52%
2 0–15 65 80% 76 67%
3 .15 105 49% 12 16%

249 49% 126 58%

Table 4 Results across width error range from fuzzy logic model

Group Width error range, mm

Training set Validation set

No. of records % correct No. of records % correct

1 ,0 79 56% 38 32%
2 0–15 65 40% 76 57%
3 .15 105 74% 12 50%

249 59% 126 48%

Table 6 Results of current model as applied to validation set

Group Width error range, mm No. of records % correct % no decision

1 ,0 38 88% 58%
2 0–15 76 67% N/A
3 .15 12 71% 42%

126 73% 54%

De Beer and Craig Continuous cast width control using a data mining approach
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and 3. The accuracy of 73% is considered to be excellent
if it is compared to the other models derived and tested
in the previous sections. The rule based model that was
running ‘live’ in the plant exhibited the best results on
the validation data set and was chosen as the best model
for this application.

Plant results of rule based model
implemented in production environment
The rule based model was implemented in the produc-
tion environment in November 2004. Figure 5 indicates
the long term width control achieved on 12% chrome
ferritic non-stabilised material cast at the caster at
Columbus Stainless. The trend is divided into a
population ‘before’ the model and ‘after’ the model. It
can be seen that the width error stabilised after the
implementation of the model. The width error also
seems to be lower on average. A more stable width error
on average per month means that the control on the
strand width improved because the width error for each
month is in a similar region. This was not the case before
the model was implemented. Before the model was
implemented it is clear that each month had a different
average width error indicating poor width control.

The model results were further evaluated by compar-
ing them to a population where the model was not in
operation. The reference population chosen was all 12%
chrome non-stabilised ferritic material that ware cast
between July 2003 and November 2004.The population
where the model was in operation (November 2004 to
December 2005) was split into two populations. This
was necessary because the secondary cooling practice

used for the heats with large positive width errors was
changed in May 2005 to a less aggressive pattern, after
it was suspected that the high cooling intensity resulted
in some slabs cracking. The relationship between the
cracked slabs and the secondary cooling practice was
not confirmed. Table 7 gives a summary of the three
populations.

The three means were tested against each other using
the Student t-test with a 95% confidence interval and all
three means were found to be significantly different from
each other. It is evident that the mean of the reference
population is higher than the two means of the
populations where the model was active. The reason
for this is that in September 2004 by management
decision, the preferred range for the caster to supply
ferritic slabs to the Hot mill was changed to 7?5 mm
narrower. This resulted in a general width error
population shift with a larger percentage of the material
falling in group one of the width error definition
(,0 mm width error). It can also be seen that the
standard deviation for the June 2005–December 2005
population is significantly less than the other popula-
tions. This is an indication of improved width control.
Further analysis was performed to determine how much
material was cast with modified secondary cooling
practices and the comparison of these data with
standard cooling practices. Table 8 gives a summary of
the results.

The means of the two populations of the material
between November 2004 and May 2005 are significantly
different (Student t-test 95% confidence interval). This
can be attributed to the fact that the majority of the
water patterns that were modified were changed to the

5 Long term width error trend of 12% chrome non-stabilised ferritic stainless steel

Table 7 Summary of reference population and model active population

Reference population
(before model)

Model active population
(November 2004–May 2005)

Model active population
(June 2005–December 2005)

No. of heats 420 242 141
No. of slabs 1637 866 541
Tons 46 200 26 620 15 510
Mean* 9.27 mm 3.29 mm 5.68 mm
Standard deviation* 10.46 mm 10.42 mm 8.33 mm
Range* (max.–min.) 54 55 44

*Based on heats.

De Beer and Craig Continuous cast width control using a data mining approach
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‘wide’ pattern. The compensation achieved with the
modified secondary cooling was too much and the mean
of 0?24 mm with a standard deviation of 9?3 mm means
that some material was cast too narrow and could have
caused processing problems downstream. The 7?5 mm
set-up change of September 2004 exaggerated this result.
This caused problems with the model compensation,
because the data used for training the model, and to
derive the secondary cooling pattern were based on a
population with an average width error of 7?5 mm
wider. The population of June 2005 to December 2005 is
relatively smaller than the population of the first part of
2005 because of lower production volumes due to
market conditions. The means of the two populations
of the material from June 2005 to December 2005 are
not significantly different (Student t-test, 95% confidence
interval). This result indicates that the model changed
material that would have been problematic to be within
the range achieved with the standard cooling practice,
resulting in an improved (reduced) width error distribu-
tion during the time period June 2005 to December
2005. On the population from November 2004 to May
2005 the model changed 56?5% of the material cast to
more suitable secondary cooling practices. On the
population from June 2005 to December 2005 the model
changed nearly 70% of the material cast to more suitable
secondary cooling patterns with a vast majority being
changed to the ‘wide’ cooling practice. This means that a
majority of the material was predicted to be problematic
(too wide) and a more aggressive cooling pattern was
used to force them to be narrower.

Conclusions
1. This study used parameters that describe the dual

phase characteristic of the solidified shell to predict the
expected width change of a heat based on the composi-
tion before the heat is cast.

2. In this paper, three different data mining
approaches were used to model the relationship between
the heat composition and cast width error. The models
included statistical regression, regression decision trees
and fuzzy logic. The accuracy of the derived models was
tested against the accuracy of the model currently in use.
The model currently in use outperformed the newly
derived models in terms of accuracy on the same
validation data set. The current rule based model was
therefore proven to be the best suited for this specific
application.

3. The model currently implemented in the plant has
resulted in a notable improvement in the strand width
control of 12% chrome ferritic (non-stabilised) stainless
steel cast at the continuous caster at Columbus Stainless.

4. The project suggests that a good engineering
understanding of the width change governing phenom-
ena coupled with a simple data mining technique
performs better than the more advanced data mining
techniques.
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Table 8 Summary of populations with and without secondary cooling modifications

November 2004–
May 2005

November 2004–
May 2005

June 2005–
December 2005

June 2005–
December 2005

Standard water pattern Modified water pattern Standard water pattern Modified water pattern

No. of slabs 352 of 818 total slabs 466 of 818 total slabs 157 of 529 total slabs 372 of 529 total slabs
‘Wide’ cooling practice 52% of 818 slabs 68% of 529 slabs
‘Narrow’ cooling practice 4.5% of 818 slabs 1.89% of 529 slabs
Mean* 7.21 mm 0.24 mm 5.41 mm 6.46 mm
Standard deviation* 11.42 mm 9.31 mm 9.1 mm 9.3 mm
Range* 56 mm 57 mm 49 mm 54 mm
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