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Abstract 

Proposed in 1849 by Charles Morren to depict periodical phenomena governed by seasons, 

the term “phenology” has spread in many fields of biology. With the wide adoption of the 

concept of phenology flourished a large number of metrics with different meaning and 

interpretation. Here, we first a priori classified 52 previously published metrics used to 

characterise the phenology of births in large herbivores according to four biological 

characteristics of interest: timing, synchrony, rhythmicity and regularity of births. We then 

applied each metric retrieved on simulation data, considering normal and non-normal 

distributions of births, and varying distributions of births in time. We then evaluated the 

ability of each metric to capture the variation of the four phenology characteristics via a 

sensitivity analysis. Finally, we scored each metric according to eight criteria we considered 

important to describe phenology correctly. The high correlation we found among the many 

metrics we retrieved suggests that such diversity of metrics is unnecessary. We further show 

that the best metrics are not the most commonly used, and that simpler is often better. 

Circular statistics with the mean vector orientation and mean vector length seems, 

respectively, particularly suitable to describe the timing and synchrony of births in a wide 

range of phenology patterns. Tests designed to compare statistical distributions, like Mood 

and Kolmogorov-Smirnov tests, allow a first and easy quantification of rhythmicity and 

regularity of birth phenology respectively. By identifying the most relevant metrics our study 

should facilitate comparative studies of phenology of births or of any other life-history event. 

For instance, comparative studies of the phenology of mating or migration dates are 

particularly important in the context of climate change. 

 

Keywords: regularity, rhythmicity, seasonality, synchrony, timing, ungulate  
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Introduction 

In 1849, Charles Morren coined the term “phenology” to describe how periodical phenomena 

such as plant growth and reproduction are governed by the course of seasons (Morren 1849, 

see also Demarée 2011). With his observations he opened a new field of research and almost 

two centuries later the concept of phenology has become a cornerstone of ecology (Begon et 

al. 1986), used in plant and animal ecology simultaneously (Forrest and Miller-Rushing 

2010). By describing when particular life-history events (e.g. flowering, parturition) occur in 

relation to the characteristics or states of the individual (e.g. size, age) as well as to 

environmental factors (e.g. photoperiod, predation risk) the concept of phenology is key to 

understanding the temporal cycles in the life history of species (Forrest and Miller-Rushing 

2010). Nowadays, the term phenology is commonly employed to describe the temporal 

occurrence of many aspects of a species biology (e.g. moulting, migration, diapause in 

animals), but the phenology of reproduction (e.g. Sinclair et al. 2000, Rubenstein and 

Wikelski 2003, van den Hoff 2020) has attracted most interest. Reproductive phenology is an 

integral part of life history theory as it is at the heart of inter-generational trade-offs (i.e. 

between parents and offspring) and is a key factor of the reproductive success and fitness of 

the individuals (Stearns 1989, Forrest and Miller-Rushing 2010). On the one hand, the time 

of the year when most births occur is often linked to seasonal variations in food resources so 

that the flush of food resources matches the energetic needs of breeding, which ultimately 

improves the reproductive success of parents and the fitness of offspring (Plard et al. 2015). 

While on the other hand, the spread of birth dates in a year is supposed to reflect anti-predator 

strategies to reduce the mortality associated with predation (Darling 1938, Gosling 1969), but 

also many other social and biological mechanisms (Ims 1990), such as avoidance of male 

harassment undergone by females (Boness et al. 1995) or intra-specific competition between 

offspring (Hodge et al. 2011). 
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 In most ecological studies, measurements and observations of phenology are 

frequently performed at the population level by characterising the temporal distribution of 

biological events (Visser et al. 2010). These rather complex and variable patterns are reduced 

to two main components: “timing”, the date at which the event of interest occurs, and 

“synchrony”, the spread of the dates at which the event occurs, i.e. the variability between 

individuals (Fig. 1). Stimulated by research on the effects of climate change on biodiversity 

(e.g. Crick and Sparks 1999, Parmesan 2007, Sarkar et al. 2019), the question of whether 

phenology is consistent or varies in time, both at individual and population levels, has 

received increased interest in recent years (e.g. Renaud et al. 2019). We therefore need to 

quantify two underappreciated properties of phenology: the consistency of the timing and 

synchrony (at the population scale) of the events from one reproductive season to the next. As 

these characteristics of phenology are not described by specific words yet, we suggest using 

“rhythmicity” and “regularity” to describe the consistency of timing and synchrony 

respectively (Fig. 1), in line with Newstrom’s terminology coined for tropical plants 

(Newstrom et al. 1994). 

 Despite appearing simple, the concept of phenology carries a lot of confusion in 

literature, both from a semantic and a descriptive point of view (Visser et al. 2010). Previous 

studies have explored phenology using a vast diversity of mathematical descriptors, many of 

which remain specific to a single study. This is problematic as well-defined, comparable and 

reliable descriptors of the temporal distribution of biological events are key to achieving 

meaningful comparisons of phenology patterns within or across species. English and 

colleagues reassessed the most influential factors of reproductive synchrony in large 

herbivores using the existing literature, but had to narrow their original data set because there 

was no standardised way of measuring and comparing synchrony across the studies (English 

et al. 2012). This large diversity of metrics is associated with a lack of widely accepted 
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definitions or divergent definitions for the same word (see “seasonality” sensu Skinner et al. 

2002 and Heideman and Utzurrum 2003), which further limits our ability to make meaningful 

comparisons (e.g. Ryan et al. 2007, Heldstab et al. 2018). As experimental studies are 

logistically challenging or virtually impossible to conduct with large species, the comparison 

of phenology patterns within a species living in contrasting environments or across species 

(Clauss et al. 2020) is of major importance to assess the role of explanatory factors 

accounting for the often marked variability in phenology reported in empirical studies 

(Rutberg 1987). Such comparative approaches (sensu Felsenstein 1985) indeed shed light on 

the ecological and evolutionary causes shaping the main stages of the life cycle of organisms 

(Bronson 1989). 

 Despite the increasing diversity of approaches to describe phenology, we found only a 

few attempts to compare phenology metrics and to provide advice on which one should be 

used preferentially according to the context of the study (Moussus et al. 2010, Landler et al. 

2018). These initiatives are rare and we currently lack a comprehensive comparison of the 

metrics previously used to characterise phenology. The extent to which the different metrics 

capture the desired characteristics of the temporal distribution of events, or the sensitivity of 

those metrics to actual changes in phenology remain to be adequately assessed. Here, we 

propose such a comparison of metrics based on a literature survey of reproductive phenology 

in large herbivore species. We focus on the taxonomic group of the large herbivores as it has 

been studied in a number of species and at different locations (Rutberg 1987). As a result, we 

expect to find a wide variety of patterns of births and a wide diversity of metrics to describe 

them. We first clarify and formally define the four main terms describing phenology: timing, 

synchrony, rhythmicity and regularity, using our knowledge from the existing literature. We 

then conduct a comparative analysis of 52 metrics that have been used to quantify the 

different characteristics of phenology of births in large herbivores, highlighting their 
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strengths and weaknesses. To conclude, we recommend one metric for each of the four main 

characteristics of phenology.  

 

Materials and methods 

We conducted a quantitative comparison of a wide range of metrics used to analyse 

phenology in six steps. In Step 1, we recorded all metrics employed to measure phenology in 

a selection of papers that we considered representative of the study of phenology of births in 

large herbivores. In Step 2, we simulated contrasting phenology by varying independently the 

four parameters that determine timing, synchrony, rhythmicity and regularity of phenology of 

births (see details below). In Step 3, we calculated all metrics on the simulated phenology to 

understand how they compare and what characteristic of phenology they measure. In Step 4, 

we explored the similarities between metrics from a correlation matrix, and identified 

categories of metrics capturing the same characteristic of phenology. In Step 5, we evaluated 

the sensitivity of each metric to changes in the estimated parameter. In Step 6, we ranked 

each metric based on eight criteria that we considered important to identify robust and 

efficient metrics, but also meaningful from an ecological point of view (see Table 1 for a 

description of each criterion). 

 

Step 1: Retrieving and coding the different phenology metrics 

We opportunistically searched the literature for articles focusing on the distribution of births 

in large herbivores using keywords such as “phenology”, “timing”, “synchrony”, 

“seasonality”, “period” or “season”, and using various sources such as search engines and the 

references in previously found articles. From these articles, published between 1966 and 

2019, we recorded the metrics used to describe phenology of births at the population level. 
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We stopped our search once the rate at which we discovered new metrics with additional 

papers became negligible. 

 We a priori classified each metric into one out of four categories based on our 

understanding of the original description and formula of the metric (Fig. 1): (1) timing 

metrics, defining when within the year most births occur, (2) synchrony metrics, defining 

whether females tend to give birth at the same time in a population in a given year, (3) 

rhythmicity metrics, defining the consistency of timing between years, (4) regularity metrics, 

defining the consistency of synchrony between years. In the literature, the term “seasonality” 

can be used to describe the location of births in the year (i.e. timing, e.g. in Sinclair et al. 

2000), the duration of birth period (i.e. synchrony, e.g. in Zerbe et al. 2012), and even the fact 

that births occur at the same period of the year every year (i.e. rhythmicity and/or regularity, 

e.g. in Heideman and Utzurrum 2003). However, this term is initially used to describe the 

cyclical nature of the environment in a wider range than the study of birth phenology (Visser 

et al. 2010). Thus, it should be used to describe organisms’ phenology only when a direct 

relationship between periodic environmental phenomena and the cycle of the organism at 

stake has been demonstrated, which is not always the case in phenology studies. For this 

reason, we suggest using the term “seasonality” only to describe the cyclicity of the 

environment and prefer the use of neutral terms such as those we introduced in this paper to 

describe phenology of births: rhythmicity and regularity. 

 Forty-seven articles (Supporting information 1) presented at least one mathematically-

defined phenology metric yielding 52 different metrics. In order to compare metrics 

quantitatively, we slightly tweaked some of them: when the metric was a boolean (true/false) 

variable based on the significance of a statistical test (n = 9 metrics), we used the value of the 

test statistic as output metric, thereby allowing us to investigate how the statistic was 

influenced by the value of phenology parameters (see details in Supporting information 2). 
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All metrics could be coded in R software (R Core Development Team 2019) except one, for 

which Perl was used (www.perl.org). 

 

Figure 1: Four characteristics of phenology of births can be explored to fully describe phenology at 

the population scale: timing, synchrony, rhythmicity and regularity. Timing describes when within the 

year most births occur, synchrony illustrates whether females tend to give birth at the same time in a 

population in a given year, rhythmicity defines the consistency of timing between years, regularity 

refers to the consistency of synchrony between years. Green = timing, orange = synchrony, blue = 

rhythmicity, pink = regularity. 

 

Step 2: Simulating phenology of births 

We simulated phenology of births from statistical distributions with known parameters 

(Supporting information 2) to assess what characteristic of phenology (timing, synchrony, 
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rhythmicity, regularity) each metric would capture, their sensitivity to changes into these four 

key characteristics of interest, and the correlation between the 52 metrics. We simulated the 

distributions of births over a year as most large herbivores breed once a year. This choice 

does not limit the generality of our results: for species breeding more than once per year (e.g. 

small species with short gestation length such as dikdik Rynchotragus (Madoqua) kirki, 

Sinclair et al. 2000), the same metrics may be applied on sub-periods of time, each displaying 

only one birth peak (see Heideman and Utzurrum 2003 for a similar approach in bats). 

 Each simulated phenology was generated by randomly distributing births in time, 

following a normal distribution. We distributed n = 1000 births within a year of 365 days, 

repeated over 10 years (see why in “Material and Methods” section, step 3). We changed four 

parameters independently to modify the distribution of births: the mean day of birth for a 

given year (mean), the standard deviation of the distribution of births for a given year (sd), 

the range over which the mean birth date can vary across years (Δmean), and the range over 

which the standard deviation can vary across years (Δsd). Each parameter varied in a range 

from a minimum to a maximum value and was incremented with a constant step (Supporting 

information 2). Choosing the value of these parameters allowed us to simulate changes in the 

timing, synchrony, rhythmicity and regularity of the phenology of births independently. As 

the simulated phenology of births relied on random draws, the actual values of parameters in 

the simulated distribution of births could differ from the theoretical values used in the 

simulation algorithm. We used the realised values of the distribution parameters in the 

following analyses. Note that we replicated the same analyses using non-normal distributions 

of births (i.e. skewed normal, bimodal, Cauchy, and random distributions) to cover the 

variety of empirical distributions of births observed in natura and assess robustness to non-

normality (Supporting information 4). We performed all simulations using the R software and 

made the code available on GitHub (https://github.com/LucieThel/phenology-metrics). 
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Step 3: Computing the phenology metrics from simulated patterns of births 

Among the 52 phenology metrics we analysed, most applied to a single year, but others 

required two or more years of data to be computed (see the complete list in Supporting 

information 3). As we aimed to compute all 52 metrics, we chose to simulate annual 

distributions of births over 10 consecutive years by default. For each simulation, we used data 

from the first year to compute metrics requiring only one year of data (n = 33 metrics), data 

from the first two years for metrics requiring two years of data (n = 9 metrics), and data from 

the whole simulation for the other metrics (n = 10 metrics). 

 

Step 4: Comparing the metrics 

With the results from Step 3, we computed the global correlation matrix between all pairs of 

metrics using Pearson correlations. We then identified groups of strongly correlated metrics 

from the pairwise correlation coefficients and assigned each metric to one or several of the 

four characteristics of phenology it was best related to. We compared this categorisation with 

our a priori classification of the metrics. This step enabled us to check our intuitive 

classification of the metrics in addition to revealing whether some metrics could incidentally 

capture several aspects of the distribution of births at once. 

 

Step 5: Estimating the sensitivity of the metrics 

For each metric, we performed a sensitivity analysis by quantifying the observed variation of 

each metric with a fixed variation in the characteristic of phenology it was previously 

associated with in Step 4. We did this by computing, for each possible pair of simulations 

within the set of all simulations performed, the proportional difference between the realised 

values of the phenology parameter of interest of the two simulations, and the proportional 

difference between the values of the metric of interest of the same two simulations. In each 



11 

case the proportional difference was calculated as [(Valuemax – Valuemin) / Valuemin] * 100. 

This formulation allowed us to work with positive values only as we were interested in the 

amplitude but not in the direction of the differences. 

 

Step 6: Scoring metrics 

Finally, as there were too many different metrics, we were unable to discuss the pros and 

cons for each of them. We chose instead to provide guidance about the usefulness of the 

different metrics by scoring them according to a set of eight criteria that we considered as 

important behaviour for a metric to be relevant (Table 1). Having systematic criteria helped 

us to minimise the subjectivity of the scoring so we ranked the metrics from 0 (not advised) 

to 8 (strongly advised) according to the number of criteria they fulfilled. The proposed 

criteria (Table 1) consisted in verifying if 1) the metric varied according to the phenology 

characteristic it was supposed to measure, 2) the variation of the metric according to the 

phenology characteristic was monotonous, 3) the relationship with the characteristic of 

phenology was strong (visual assessment of the association between the computed statistic 

and the phenology characteristic), 4) the metric did not saturate within a biologically realistic 

range of distributions of births. We considered that metrics with scores < 4 for which the first 

four essential criteria were not validated should not be advised. If those four criteria were 

satisfied, we evaluated an additional set of four criteria (normality, independence of the 

temporal origin, linearity and unicity of the output, see Table 1 for a detailed description). All 

criteria were scored from visual inspection of the results by one of us (LT). 
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Table 1: Ordered list of the criteria used to evaluate the relevance of each metric describing 

phenology of births. Each criterion can be individually fully (score of 1) or partially (score of 0.5) 

validated or no (score of 0) by each metric. The value for the first four criteria (in bold type) should 

be > 0 to consider a metric to be possibly worthwhile and evaluate the remaining criteria. The sum of 

the value obtained for each criterion gives the relevance index of the metric (range between 0 and 8 

points). 

Criterion Description Score 

goodness Measures the parameter it is expected to measure true = 1 
false = 0 

monotony Varies monotonically with the value of the parameter it is expected to 
measure, i.e. the sign of the slope coefficient is constant

true = 1 
false = 0 

saturation Does not saturate at the upper or lower boundary in a biological range of 
values (e.g. if a synchrony metric returned the same value when all births 
occurred during periods of various durations such as fifteen or thirty days, it 
was considered to saturate within a biologically realistic range of birth 
distributions because such distributions of births can be found in the wild)

true = 1 
false = 0 

strength1 Is characterised by a strong relationship with the parameter it is expected to 
measure, i.e. is the scatter plot not too dispersed around the general trend of 
the relationship between the metric and the phenology characteristic, as an 
empirical approach of the predictive power? 

high = 1 
medium = 0.5 
low = 0 
(strength of the 
association) 

normality 1- Does not assume normally distributed birth dates; if false (assumes 
normality): 
2- Is it robust to deviations to normality? i.e., is the relationship between the 
metric and the parameter it is expected to measure conserved when births 
are not normally distributed

true = 1 
false-true = 1 
false-false = 0 

origin Does not depend on the temporal origin set by the investigator true = 1 
 
false = 0 

linearity2 Is characterised by a linear relationship with the parameter it is expected to 
measure 

type 1 = 1 
type 2 and 3 = 0.5 
type 4 = 0 

unicity Gives a unique result true = 1 
false = 0 

1 high association: very small dispersion of points, medium association: small dispersion of points 

that does not prevent from detecting a trend, low association: dispersion of points large enough to 

prevent from detecting any trend, whatever the shape of the relationship (linear, but also sigmoid or 

quadratic for instance). 2 type 1 is a linear relationship, type 2 is a sigmoid-like relationship, type 3 is 

a quadratic-like relationship, type 4 is a binary relationship. 
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Results 

The mean number of metrics used in each paper was 3.8 ± 2.1 sd (range = 1 - 8). Eleven 

metrics were a priori associated with timing, 25 with synchrony, 10 with rhythmicity and five 

with regularity. We did not classify one metric because it could either be a rhythmicity or 

regularity metric a priori. Those metrics were based on descriptive statistics, circular 

statistics, statistical tests or statistical modelling such as general linear models. The unit of the 

metrics were date, duration, counts (e.g. a number of births), binary classification (i.e. if a 

given condition was satisfied or not), or unitless indices (Supporting information 3). 

 The correlation matrix (Step 4) revealed groups of metrics that were highly correlated 

and thus reflected the same characteristic of phenology (Fig. 2). Five groups were clearly 

identifiable, representing timing metrics (Fig. 2 - box 1), synchrony metrics (Fig. 2 - boxes 2 

and 5), rhythmicity metrics (Fig. 2 - box 3), and regularity metrics (Fig. 2 - box 4). The two 

groups of metrics measuring synchrony had highly but negatively correlated values (Fig. 2 - 

box 6). This indicated that all metrics of the two groups captured synchrony correctly, 

however, in an opposing way. Three metrics were singular and were associated with neither 

of the five groups. The metric which compares the slope coefficients of linear models 

describing the log percent of cumulative births (“splcomp”) should measure regularity, but it 

rather correlated better with synchrony metrics. The metric which evaluates the duration 

between the first birth dates of two reproductive cycles (“diffbgper”), an assessment of 

rhythmicity, correlated well with both rhythmicity and regularity metrics. Seven other metrics 

had a detectable relationship with at least one of the three remaining phenology 

characteristics in addition to the relationship with the phenology characteristic they were 

supposed to quantify (Supporting information 3 and 5). 
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Figure 2: Correlation matrix between all pairs of metrics, using Pearson correlations (n = 51, 

“rayleigh” removed because because of no observed variation). It was not possible to classify 

“kolmomult” a priori in rhythmicity or regularity metrics, as it compares the complete distribution of 

births between two years. Box 6 highlights the high but negative correlation between the two groups 

of metrics measuring synchrony (boxes 2 and 5). Green = timing metrics, orange = synchrony 

metrics, blue = rhythmicity metrics, pink = regularity metrics. Note the high negative correlation 

between “compmean” and the other rhythmicity metrics, highlighting that it is also a rhythmicity 

metric. 

 

 The sensitivity of the metrics to the simulated variation of the phenology 

characteristics (Step 5) differed markedly between metrics, especially in synchrony and 

regularity metrics (Fig. 3 and Supporting information 5). The proportion of variation of the 

metrics for a 10 % variation of the associated parameter ranged from 14 % to 33 % for timing 
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metrics, from 0 % to 139 % for synchrony metrics, from 0 % to 471 % for rhythmicity 

metrics and from 0 % to 138 % for regularity metrics. The variation of almost all timing, 

rhythmicity and regularity metrics according to variations of their associated parameter was 

highly homogeneous. Synchrony metrics were less homogeneous, certainly due to the fact 

that those metrics were the most numerous and based on more diverse methods (proportion of 

variation, integrative indexes or moments of the distribution of births, for instance). The 

metrics that were singular in the correlation matrix were clearly visible in the heat maps, 

characterised by erratic or non-existent variations (e.g. skewness of the birth distribution 

“skew”, and comparison of mean date of births “compmean”).  
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Figure 3: Heat maps representing the (scaled) proportion of variation of the metric in relation to the 

proportion of variation of the parameter of phenology (sensitivity analysis): a) timing metrics 

according to the mean birth date for a given year (mean, n = 11), b) synchrony metrics according to 

the standard deviation of the distribution of births for a given year (sd, n = 25), c) rhythmicity metrics 

according to the range over which the mean birth date can vary across years (Δmean, n = 10), d) 

regularity metrics according to the range over which the standard deviation of the distribution of 

births can vary across years (Δsd, n = 6).  
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Colours in the heat maps reflect the proportion of variation of each metric according to the 

proportion of variation of the phenology parameter, normalised for each metric using all values of the 

metric obtained across all simulations. We normalised the sensitivity of each metric individually to 

prevent the representation of the large variation of some metrics to hide the smaller but meaningful 

variations of other metrics to be visible. Metrics characterised by a large colour gradient vary widely 

in response to the variation of the parameter of phenology they measure. Metrics with a smoothed 

colour transition vary regularly in response to the variation of the parameter of phenology they 

measure. To the contrary, metrics characterised by sudden and/or random colour transitions vary 

inconsistently in response to the variation of the parameter of phenology we changed. 

 

 The same analyses conducted on the basis of non-normal distributions led to similar 

observations in the case of asymmetric distributions (skewed normal, bimodal and Cauchy 

distributions). The correlation matrices showed similar patterns of correlations between the 

metrics, and the metrics varied analogously according to the variation of the mean, sd, Δmean 

and Δsd of the distributions for normal and asymmetric distributions either (see Supporting 

information 4 for a detailed analysis). Nevertheless, it is worth noting that a very limited 

number of metrics depending on the skewness of the distribution did not perform as well with 

the normal distribution than with asymmetric distributions. On the contrary, metrics 

depending on the presence of a period without any birth did not perform as well with non-

normal distributions than with a normal distribution. In the case of a random distribution, no 

clear correlations between metrics nor relationships between the metrics and the four 

parameters of the distribution were detectable, except for some rare synchrony and timing 

metrics (Supporting information 4). 

 The relevance score of the metrics (step 6) varied between 0 and 8, covering the 

complete range of variation possible (Fig. 4) and we list, for each phenology characteristic, 

the metrics we identified as “best” (Table 2). Our classification also revealed what could be 
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considered as ineffective (score = 0, n = 4) and poor metrics (score ∈ [0; 4[, n = 14). All the 

timing metrics reached excellent scores above 6. Nevertheless, the mean vector orientation 

(“meanvo”) was the best metric, fulfilling all our criteria with a score of 8 (Fig. 4). Three 

metrics provided a very good assessment of the synchrony of births with a score of 7.5: the 

evenness index (“pielou”), the mean vector length (“meanvl”) and the comparison of the 

distribution of births to a uniform distribution (“kolmouni”) (Fig. 4). The best metric to 

quantify rhythmicity measured the time elapsed between the median birth dates of two years 

(“diffmed”), with a score of 7 (Fig. 4). It is worth noting that the non-parametric Mood test 

(“mood”) provides a statistical assessment of whether “diffmed” differs from 0. The non-

parametric Mood test (“mood”) obtained a marginally lower score (6.5, Fig. 4) than “diffmed” 

only because of a slight non-linearity in the relationship between simulation parameter values 

and the metric’s statistics. Altogether, we therefore considered that “mood” could be very 

useful to measure rhythmicity. One metric quantifying regularity stood out from the others 

according to our criteria: the non-parametric Kolmogorov-Smirnov test (“kolmomult”), which 

compares two birth distributions (score = 7.5, Fig. 4).  
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Figure 4: Score obtained by each phenology metric (n = 52) according to the eight criteria used to 

assess its relevance to characterise the four main characteristics of birth phenology (goodness, 

monotony, saturation, strength, normality, origin, linearity and unicity, as defined in Table 1). Green 

= timing metrics, orange = synchrony metrics, blue = rhythmicity metrics, pink = regularity metrics.
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Table 2: List of the metrics considered as the best metric, for each characteristic of the phenology of 

births (timing, synchrony, rhythmicity, regularity). 

Phenology 
characteristic 

Metric Complete name Description Reference 

Timing meanvo mean vector orientation evaluates mean vector 
orientation of the birth 
distribution

Paré et al. 1996 

Synchrony meanvl mean vector length evaluates mean vector length 
of the birth distribution

Paré et al. 1996 

Rhythmicity mood Mood test compares median birth dates 
between two years

Berger and Cain 
1999 

Regularity kolmomult Two-sample 
Kolmogorov-Smirnov 
test 

compares birth distributions 
between two years 

Green and 
Rothstein 1993 

 

Discussion 

With more than fifty metrics used to describe and analyse the distribution of births in large 

herbivores since 1966, our survey of the literature clearly illustrates the diversity of 

approaches, even when focusing on a specific taxonomic group. Although the choice of a 

metric is most of the time justified, either to answer a specific ecological question or on 

statistical grounds, the lack of consensual methods to quantify phenology makes comparisons 

across species or populations difficult at best, if possible at all. Our simulation study suggests 

that such a diversity of metrics may cause confusion and be unnecessary as we were able to 

identify a reduced set of simple metrics that works well to measure the different 

characteristics of phenology. Moreover, we believe our work can also provide insights into 

how to analyse phenology of other traits than birth dates, such as migration dates of birds or 

flowering dates (Moussus et al. 2010). 

 Many of the metrics we retrieved can be organised into four main categories, each one 

capturing a particular characteristic of phenology: timing, synchrony, rhythmicity and 

regularity. Of course, metrics belonging to the same category are not perfectly equivalent and 
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interchangeable (Fig. 2, see also a discussion comparing “zerbe” and “rutberg” metrics in 

Zerbe et al. 2012). For instance, the correlations between timing metrics range between 0.68 

and 1.00. The difference among metrics is more pronounced in the synchrony category with 

correlations ranging from 0.05 to 1.00 (excluding “kolmogau” and “skew” metrics that appear 

as singularities in the correlation matrix, Fig. 2). How different characteristics of phenology 

are measured can lead to dependency between one another and this could explain the 

confusions found in the literature between timing and synchrony through terms such as 

“period” or “season” of births. Indeed, several of the metrics we tested vary not only 

according to the phenology characteristic they were used to measure, but also according to 

other characteristics of the phenology (n = 8 metrics). For instance, we show a strong 

correlation between metrics that evaluate the start of the birth period (i.e. timing metrics 

“bgper” and “bgthper”) and the synchrony metrics in general. This association between 

different types of metrics arises when the standard deviation of the simulated distributions of 

births increases (while the mean is fixed), leading to earlier births (Fig. 2). 

 We attempted to identify what metrics could be the most suitable for measuring 

timing, synchrony, regularity and rhythmicity of phenology by scoring them according to 

what we subjectively considered as the main suitable properties. We considered that a good 

metric should not be restricted to one kind of pattern (e.g. unimodal) as the distribution of 

births is not necessarily known a priori and may change between years due to ecological 

factors (see Adams and Dale 1998 for instance). Slightly more than 10 % of the metrics 

theoretically require normally distributed dates of birth to work well (based on the metrics for 

which this criterion was evaluated, Supporting information 3). We showed these metrics are 

generally robust to deviations from normality so this assumption does not limit their 

application to most data. The metrics should also be independent of the temporal origin set by 

the investigator, as the favourable periods for reproduction cycle differ between species and 
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populations (e.g. mountain sheep Ovis spp. inhabiting desert and alpine ecosystems, Bunnell 

1982). Using the calendar year would be biologically meaningless and will create artificial 

patterns of births by splitting the distribution around the end of the year. We identified six 

metrics independent of the temporal origin: the day with the highest number of births 

(“mode”), the evenness index (“pielou”), the mean vector orientation and length form the 

circular statistics (”meanvl” and “meanvo” respectively), and the non-parametric 

Kolmogorov-Smornov test comparing a birth distribution to a uniform distribution or another 

birth distribution (“kolmouni” and “kolmomult” respectively). Circular statistics could be 

favoured to answer the difficulties linked to the selection of temporal origin, as it is 

frequently done in primate literature (e.g. Di Bitetti and Janson 2000). Notwithstanding such 

limitations, we found several metrics that met our expectations of a good metric for each 

phenology characteristic (Table 2 and Figure 4). 

 On the other side a few metrics should not be recommended to describe phenology of 

births. The evaluation of rhythmicity describing the evolution of the mean dates of births of 

several years with a linear regression (“diffmean”), or the quantification of synchrony through 

the duration of the period gathering at least a certain percent of births (“nbtu”) are not to be 

advised. In addition to undesirable statistical properties, these metrics fail to capture the 

changes in the phenology parameter adequately. The metric “nbtu” varied non-monotonously 

with the level of synchrony of the birth phenology. Similarly, the duration between first and 

last birth to measure synchrony (“per”) plateaued for a range of biologically realistic values, 

what limits its usability in a wide range of ecological conditions. 

 Overall, some phenology characteristics have been more consistently evaluated across 

studies, a fact illustrated by the number of metrics of each category used in more than two 

papers (n = 5, 7, 2 and 0 for timing, synchrony, rhythmicity and regularity respectively, see 

Supporting information 6). If timing and synchrony of births are the easiest and most frequent 
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characteristics of phenology estimated and compared, only a handful of metrics evaluates 

rhythmicity and regularity of the phenology of births across the years. Sound analysis of 

rhythmicity and regularity indeed requires many years of data which may not be available as 

such data is costly and time-consuming to collect (Kharouba and Wolkovich 2020). 

Moreover, scientists are less interested in timing and synchrony consistency per se than in the 

relationship between timing and synchrony, and ecological or environmental factors such as 

temperature, rainfall or spring snow cover (Paoli et al. 2018). Our study shows that the 

rhythmicity and regularity metrics currently available are only moderately correlated, 

particularly when they are used to describe birth distributions that are not normally 

distributed (Supporting information 4). Capturing the temporal variation of phenology across 

years appears difficult and requires thoughtful selection and interpretation of the used metric. 

Standardised and relevant statistical tools are needed to quantify regularity and rhythmicity of 

phenology, and to test their hypothetical responses to global changes. This study should help 

in this. 

Although we show that the assumption of a normal distribution or another bell-shaped 

(asymmetric or not) distribution mimicking those found in natura (e.g. skewed normal, 

bimodal or Cauchy distribution) has no major consequences on our conclusions (Supporting 

information 4), this is not true when there is no clear pattern in the distribution of births. 

Indeed, most metrics give inconsistent and unreliable results when applied to birth dates 

randomly distributed within the year (Supporting information 4), a pattern that has been 

documented in some populations of large herbivores living in the southern hemisphere 

(Sinclair et al. 2000). Describing random patterns using the metrics presented here is unlikely 

to be useful because biologically meaningless: when births occur year-round, the timing and 

rhythmicity are meaningless as they cannot reduce to one or two summarising statistics. 
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Using evenness indexes such as “pielou” could at least provide a quantification of the 

heterogeneity of the distribution of births. 

In conclusion, we recommend using the circular mean vector orientation (“meanvo”) 

to describe timing and the circular mean vector length (“meanvl”) to describe synchrony, 

because both are not influenced by the temporal origin set by the investigator. We 

recommend using the underused Mood test which statistically compares the median birth 

dates (“mood”) to describe rhythmicity and the Kolmogorov-Smirnov test which statistically 

assesses if two birth distributions are similar to describe regularity (“kolmomult”, see Table 2 

and Supporting information 3 for a formal description of those metrics). Being non-

parametric tests, they are applicable in a wide range of distributions as frequently observed in 

large herbivore populations. 
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