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ABSTRACT 

In situ bioremediation of hexavalent chromium by permeable reactive 

barrier using wastewater sludge bacteria 

By 

Buyisile Kholisa 

Supervisor: Professor EMN Chirwa 

Department: Chemical Engineering 

Degree: Philosophiae Doctor (Chemical Engineering) 

Environmental pollution is a global problem that affects both developed and developing 

countries by contaminating soil and water, threatening biodiversity, ecosystems, and human 

health. South Africa holds the largest chrome ore reserves in the world, and it is one of the 

largest producers of ferrochrome. During steel and chromate production, enormous 

quantities of ferrochrome wastes are generated and discarded in dumps. This waste has been 

shown to contain significantly higher levels of Cr(VI) than the maximum acceptable risk 

concentration that is allowed for waste disposal in South Africa, which becomes a serious 

concern for soil and groundwater pollution. 

There are various conventional technologies available for minimizing the environmental 

impact of Cr(VI), including chemical reduction, ion exchange, electrochemical treatment, 

membrane separation, etc. However, most of these technologies are often ineffective and 

very expensive, especially for low concentrations of metals. Additionally, the use of 

chemical reagents produces an enormous amount of hazardous sludge that requires further 
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treatment. The bioreduction of toxic Cr(VI) to less toxic Cr(III) using microbial organisms 

is considered a valuable, promising, and cost-effective approach for Cr(VI) remediation. 

In this study, using batch and continuous flow bioreactor systems, the efficiency of the 

indigenous culture of bacteria from the local wastewater treatment plant located near the 

contaminated site was evaluated for Cr(VI) reduction potential.  

The Cr(VI) reduction capability and efficiency of the isolated bacteria were investigated 

under a range of operational conditions, i.e., pH, temperature and Cr(VI) loading in a batch 

system. The culture showed great efficiency in reduction capability, with 100% removal in 

less than 4 h at a nominal loading concentration of 50 mg Cr(VI)/L. The culture showed 

resilience by achieving total removal at concentrations as high as 400 mg Cr(VI)/L. The 

consortia exhibited considerable Cr(VI) removal efficiency in the pH range from 2 to 11, 

with 100% removal being achieved at a pH value of 7 at a 37 ± 1 °C incubation temperature. 

The ability of the mixed bacterial consortium to treat Cr(VI) may be explored further in a 

continuous flow process for practical application. 

The effectiveness of bioremediation of Cr(VI) contaminated water using biological 

permeable reactive barrier technology was evaluated through bench-scale studies. 

Successful Cr(VI) reduction was achieved with 95.9% removal over the 90 days operational 

period of the BPRB system. When glucose was used as the carbon source, a drastic decline 

in effluent pH from 6.91 to below 5.5 was observed in the effluent. The decrease in pH 

values was ascribed to the oxidation of glucose forming several types of organic acids by 

different Bacillus species and other bacterial species which result in a subsequent drop in 

medium pH. However, it did not influence the overall reactor performance. These results 

could also be effective in optimizing and improving the operation and performance of in situ 

bioremediation of Cr(VI) at target sites. Cr(VI) reduction kinetic parameters in both batch 
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and continuous-flow systems were estimated using a modified non-competitive inhibition 

model with a computer program for simulation of the aquatic system (AQUASIM 2.0). 

Further studies are required to understand the interaction of bacteria with other heavy metals 

that co-exist with Cr(VI) in the environment and also to evaluate the effect of operating the 

BPRB under various HRTs while occasionally backwashing or dislodging the accumulated 

precipitate from the system. Finally, experiments should be conducted with real 

contaminated groundwater to study the effect of different chemical compositions and 

conditions of contaminated water on the Cr(VI) removal efficiency by bacteria and the 

hydraulic behaviour of the used mixtures. 

Key Words: Cr(VI) reduction; bioremediation; Chromium reducing bacteria; heavy metal, 

hexavalent chromium, permeable bioreactive barrier, microbial culture 
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 INTRODUCTION 

BACKGROUND  

Chromium (Cr), is one of the main heavy metals that causes pollution in groundwater; soils; 

surface waters and aquatic sediments, and is extensively used in industrial activities like 

metal electroplating, textile dyeing, and, tanneries, etc. (Lyu et al., 2017). It is a steel-grey, 

lustrous, hard and brittle metal, which exists by nature in the form of ores. Cr has various 

oxidation states, however, it is mainly present in the trivalent [Cr(III)] and hexavalent 

[Cr(VI)] being the most stable (Troiano et al., 2013). Cr(VI) state is known to be extremely 

toxic to biological and ecological systems. As a result, Cr(VI) concentration in drinking 

water may not exceed 0.05 mg/L as per the Environmental Protection Agency (USA) 

standard (Baral & Engelken, 2002; Tekerlekopoulou et al., 2013; Fernandez et al., 2018), 

while Cr(III) remains as an important nutrient for plants and wildlife metabolism (Poljsak et 

al., 2010; Frois et al., 2011). Exceeding the tolerable limit for Cr(VI) concentration causes 

cancer in humans and aquatic wildlife, and at significantly higher concentrations it is 

extremely toxic (Jaishankar et al., 2014). Cr(VI) is released into the environment naturally 

or by the discharge of effluent from different processing industries such as chromite ore 

processing, leather tanning, electroplating, steel production, wood preservation, wood pulp 

processing and textile and so on (Tekerlekopoulou et al., 2013). 

In the South African context, the Cr(VI) contaminated locations, the majority of them, the 

problem is intensified by the presence of abandoned and closed mining or processing 

operations. Due to the threat posed by Cr(VI) on humans and aquatic wildlife, the removal 

of this metal must be applied effectively and without causing an impact on the environment.    
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The most widely used methods for environmental remediation of Cr(VI) in practice are 

conventional physicochemical processes such as ion exchange, adsorption on activated 

carbon, reverse osmosis, electrochemical process, and precipitation among others (Witek-

Krowiak, 2013). Although these technologies can decrease the adverse metal impact, their 

major drawbacks include the production of toxic waste sludge, high-energy demands or 

inefficient removal (Seh-Bardan et al., 2012). Therefore, the search for innovative, cheaper, 

environmentally friendly and more effective techniques has become important for the 

removal of toxic Cr(VI) ions from polluted areas.  

Reduction of Cr(VI) using microbial organisms has been proposed as an alternative 

technique of remediation. The microbial strategy could offer in situ and on-site 

bioremediation strategies and use in permeable reactive barriers. A number of 

microorganisms such as fungi, yeast, bacteria, and algae are found in waters and soil 

environments receiving industrial effluents (Chai et al., 2009; Yadav et al., 2017). These 

microorganisms have developed adaptation strategies and capabilities to defend themselves 

against Cr(VI) toxication by transforming the more toxic Cr(VI) into less toxic Cr(III) 

(Megharaj et al., 2003). Therefore, biological reduction serves as a sustainable alternative 

technology for Cr(VI) bioremediation (Ackerley et al., 2004; Kabir et al., 2018). The most 

important benefits of biological Cr(VI) decontamination are the lower costs, significantly 

smaller footprint on the environment (Kabir et al., 2018) and, it could be implemented in 

situ within the interior of the dumpsite or the polluted environment (Bansal et al., 2017). 

AIM OF THE STUDY 

The current study was aimed at exploring and evaluating the prospect of Cr(VI) 

contamination control in groundwater aquifers at contaminated sites using natural microbial 

processes. The proposed study offers an environmentally friendly, cost-effective and self-
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sustained biological method to curb the spread of chromium at the contaminated sites. To 

accomplish the main aim of this study, different experimental tasks were conducted on 

Cr(VI) reduction process:   

Objectives 

• To evaluate the performance of consortium bacteria culture and kinetics of Cr(VI) 

reduction in batch reactors over a wide range of initial Cr(VI) concentrations.  

• To demonstrate the feasibility of a biological permeable reactive barrier application 

over a range of Cr(VI) feed concentrations. 

• To investigate the microbial culture diversity changes during Cr(VI) bioremediation 

in a biological permeable reactive barrier system. 

• To develop a predictive model for Cr(VI) movement across the biological permeable 

reactive barrier system using numerical modelling tools.  

THESIS OUTLINE  

The outline of this dissertation is listed as follows: 

Chapter 1 describes the background information and the objective of this thesis. 

Chapter 2 reviews current and previous studies on chromium. 

Chapter 3 describes the materials and methods used in this study. 

Chapter 4 presents experimental results and interpretation in a batch reactor. 

Chapter 5 describes Cr(VI) reduction in a biological permeable reactive barrier reactor. 

Chapter 6 describes the kinetic Cr(VI) reduction modelling of the batch system. 
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Chapter 7 describes kinetic Cr(VI) reduction modelling of a continuous-flow bioreactor 

system. 

Chapter 8 presents the conclusion of the thesis and the future work required. 

SIGNIFICANCE OF THIS RESEARCH  

South Africa holds the largest chrome ore reserves in the world, and it is one of the largest 

producers of ferrochrome. During steel and chromate production, enormous quantities of 

ferrochrome wastes are generated and discarded in dumps. This waste has been shown to 

contain significantly higher levels of Cr(VI) than the maximum acceptable risk concentration 

that is allowed for waste disposal in South Africa, which becomes a serious concern for soil 

and groundwater pollution (Coetzee et al., 2018). In situ biological permeable reactive 

barriers (BPRBs) systems application for the removal of Cr(VI) in groundwater has been 

extensively studied at the laboratory scale with various degrees of success or feasibility. 

However, the demonstration of the feasibility of such a system at the pilot-scale level is still 

limited.  

Thorough laboratory assays are of paramount importance to ensure a smooth transition of 

findings at lab-scale to in situ demonstrations of this technology. 

In this view, to transition from lab-scale to pilot-scale, bench-scale studies are required to 

bridge this gap. This process could contribute to the protection of natural water resources 

from toxic Cr(VI) waste arising from ferrochrome processing facilities. 
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 LITERATURE REVIEW 

INTRODUCTION 

Cr is a transition metal that is the sixth most abundant among the transition metals and the 

twenty-first most abundant metal in the earth’s crust (Haynes, 2016). This metal has an 

atomic number of 24 and an atomic weight of 51.996 g/mol and appears as a grey-white, 

hard, and brittle metal with a crystal-like structure. It was first discovered by the French 

chemist Nicholas-Louis Vauquelin in the Siberian red lead ore (crocoite) during the late 

1700s. Vauquelin named the element chroma from the Greek word χρωμα, which means 

colour due to the intense colours found in its compounds (Mohan & Pittman, 2006). Cr is 

characterised by high relative densities of 7.15 at room temperature and 6.3 at melting point. 

In addition, Cr has a high melting point of 1907 °C and a boiling point of 2671 °C (Haynes, 

2016). Furthermore, Cr does not exist in its pure elemental form geologically but is rather 

found in complex mineral forms.  

Cr can exist in different valence states that vary between Cr2- and Cr6+ (Ashley et al., 2003; 

Coetzee et al., 2018; Mishra & Bharagava, 2016). Even though Cr occurs predominantly as 

Cr2+; Cr3+; and Cr6+ oxidation states, nevertheless the Cr2+ is not stable and oxidizes to Cr(III) 

(Mohan & Pittman, 2006; Coetzee et al., 2018). Cr(III) and Cr(VI) species are the most stable 

oxidation states. Cr in nature occurs largely in the Cr(III) form mostly as crocoite (PbCrO4) 

and chromite (FeOCr2O3) in serpentine and granitic rocks, and coal (Kotaś & Stasicka, 

2000).  
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There are more than fifty different chromium naturally occurring ores that have been 

identified thus far, including the following abundant types:  

• Barbertonite: Mg6Cr2(CO3)(OH)16.4H2O 

• Brezinaite: Cr3S4 

• Chromite: (Mg,Fe2+)(Cr,Al,Fe3+)2O4 

• Chromatite: CaCrO4 

• Nichromite: (Ni,CoFe2+)(Cr,Fe3+,Al,)2O4 

At present, almost all the production of Cr for commercial purposes is mined and extracted 

from chromite ore and with the largest deposits found in South Africa (Schulte, 2018). South 

Africa possesses approximately 72% of the world’s useable chromite ore reserves (Cramer 

et al., 2004; Murthy et al., 2011; Beukes et al., 2012) and these reserves are predominantly 

found in the Bushveld igneous complex (BIC). Other countries with viable reserves of 

chromium ore include but are not only limited to Russia, Finland, Zimbabwe, the 

Philippines, India, Kazakhstan, Brazil and Turkey as shown in Figure 2-1.  
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7 

 

Figure 2-1: Worldwide production percentage of chromite ore in the year 2018, 2019 and 2020 (Idoine 

et al., 2022). 

USES OF CHROMIUM 

Cr has been extensively used in metallurgical, chemical, and refractory industries. According 

to Luo and Li (2012) and Sardohan et al. (2010), the more common uses of chromium in the 

world at present are as follows:  

 Chromium is fairly hard and is corrosion resilient. For that reason, chromium is 

plated to give steel a polished silvery mirror coating. 

 Chromium magnetic compounds are used in the production of magnetic tape for 

audial cassettes and high-quality aural tapes.  

 Due to the high heat resistance of chromium, alloys of iron, nickel and chromium 

handle high temperatures very well and are used in gas turbines and jet engines.  
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8 

 Coloured pigments and dyes are made from various chromium compounds. 

 Chromium (VI) salts are used as a wood preservative.  

 Additive in stainless steel alloys, which are used in various applications.  

Bielicka et al. (2005) pointed out that about 90% of the extracted chromium ore is used in 

metallurgical processes for the production of steel, and stainless-steel nonferrous alloys. 

While the remaining 10% is shared equally by chemical (leather tanning, plating, wood 

preservation and pigment) and refractory (iron & steel, cement, glass, ceramics and 

machinery) industries as shown in Figure 2-2. 

 

Figure 2-2: Distribution of chromium usage in different industries 

The extensive usage of chromium by industrial activities has led to the production of large 

amounts of chromium wastes, which are often very difficult to deal with (Dhal et al., 2013; 

Dey & Paul, 2013). These chromium-containing wastes are discharged into the environment 

without any proper treatment and therefore are serving as a significant risk to the 
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environment and public and soil health (Çeribasi & Yetis, 2001; Coetzee et al., 2018; Huang 

et al., 2021). Furthermore, leakage of these wastes as a result of inadequate management and 

impaired storage containers also adds to the increase of chromium in the environment. As a 

consequence, nearly all contamination of chromium in the natural schemes comes from 

human activities (Krishna & Philip, 2005; Wani et al., 2019; Kholisa et al., 2021).  

CHROMIUM ECOTOXICOLOGICAL EFFECTS  

Anthropogenic activities are responsible for discharging large quantities of chromium 

compounds into the environment predominantly as Cr(VI) (V Mishra et al., 2010; Saha et 

al., 2011; Barrera-Díaz et al., 2012; Pradhan et al., 2017). The concentration of Cr(III) and 

Cr(VI) in industrial waste ranges from 10 to 100 mg/L (Dhal et al., 2010). Since discharging 

industrial waste into the environment has significantly increased the chromium 

concentration in soil, this is typically associated with groundwater contamination 

(Bhuvaneshwari et al., 2011). 

Hexavalent and trivalent chromium compounds have contrasting effects on health and 

environmental risks. Cr(III) in trace amounts is a necessary nutrient for mammals and lack 

of,  may result in a vicious impact on the metabolism of fatty acids, cholesterol and glucose 

(Viamajala et al., 2003; Rossouw, 2009). However, consumption of large amounts of Cr(III) 

may also lead to health problems for example lung cancer (Alloway, 2013; Zhitkovich et al., 

1996). 

On the other hand, Cr(VI) compound is toxic, mutagenic and carcinogenic to humans and 

animals and is correlated to the alteration of plant morphology and decreased plant growth 

(Mount & Hockett, 2000; Ackerley et al., 2004; Turpeinen et al., 2004; Mishra & Bharagava, 

2016). The toxicity of chromium (VI) in the form of chromate on living organisms is 
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predominantly due to its ability to easily diffuse through cells barrier via sulphate transport 

pathways as it shares structural similarity with SO4
2- (Pattanapipitpaisal et al., 2002; 

Hosseini & Sarab, 2007). Once the chromate is in the cell, it modifies the DNA transcription 

process which can lead to the digestive tract and lung cancer within the living cell 

(Bhuvaneshwari et al., 2011). 

Effects of short-term exposure to chromium (VI) in humans and other mammals include eye 

and respiratory irritation, sensitisation or sneezing but exposure to high levels can cause liver 

and kidney damage, anaemia, and ulcers in the nasal septum (Bhaumik et al., 2014; Khedr 

et al., 2014). Chronic exposure results in decreased reproduction health and birth defects 

such as abortions and premature births in mammals (Losi et al., 1994). These complications 

are accompanied by the death of organisms (Zayed & Terry, 2003). Consequently, the World 

Health Organisation (WHO) has set the limit for maximum tolerable chromium (VI) 

concentration in drinking water to 0.05 mg/L and 0.1 mg/L on inland surfaces (Baral & 

Engelken, 2002; Ashraf et al., 2017). Thus, most studies have focused on the removal of 

Cr(VI) from the environment. 

CHROMIUM ENVIRONMENTAL CHEMISTRY 

Chromium can be found in all corners of the environment such as soil, water and air. 

Chromium contamination that occurs in natural systems is generally due to human activities. 

The main causes are leakage, inappropriate storage, or inadequate discarding procedures of 

chromium wastes (Rock et al., 2001; Lyu et al., 2017). Due to the fact that most Cr(VI) 

compounds are soluble in water, soil contamination can ultimately result in water 

contamination (Ashley et al., 2003). This could occur as a result of Cr(VI) compounds 

leaching from soils.  
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Chromium in soil  

As pointed out above that the existence of Cr(VI) compounds contained in soil originates 

from human activities or as a result of oxidation of Cr(III) pollution (Ashraf et al., 2017; Xia 

et al., 2019). Cr(VI) is a strong oxidising agent and commonly exists only in oxygenated 

forms such as chromate (CrO4
2-) or dichromate (Cr7O4

2-) oxyanions which are soluble and 

pH dependent (Lai & Lo, 2008; Mishra & Bharagava, 2016).  

In neutral to alkaline soils above the pH value of 6.4, Cr(VI) exists primarily as chromate 

ions (CrO4
2-), as either water-soluble (Na2CrO4)

 or moderately soluble (CaCrO4, BaCrO4, 

and PbCrO4) (Kotaś & Stasicka, 2000). However, under acidic environments at pH values 

lower than 6.4, it occurs predominantly as hydrogen-chromate ions (HCrO4
−) (Barrera-Díaz 

et al., 2012; Dhal et al., 2013; Jobby et al., 2018). The CrO4
2− and HCrO4

− species are the 

most mobile Cr forms in soil, and can be easily transported by plants into the deeper layers 

of the soil, triggering contamination of surface and groundwater (Kotaś & Stasicka, 2000).  

There are two main Cr(III) constituents that occur within the soil, that is, oxidizable soluble 

species or Cr(III) forms that are attached to the soil particles and then become immobile. 

Cr(III) in the environment occurs predominately in cationic forms unlike Cr(VI) which exist 

as an oxyanion. The dominant form of Cr(III) at pH less than 4 is Cr(H2O)6
3+ while its 

hydrolysis products (CrOH2+, Cr(OH)2
+,  Cr(OH)3, Cr(OH)4

− dominate at a pH range of 4 to 

8 (Landrot et al., 2012). It reacts readily with oxygen, hydroxide, sulphate, and organic 

matter to form insoluble chelates, or it is absorbed by soil colloids to form precipitates. 

Both the reduction and oxidation of Cr(VI) and Cr(III) can be thermodynamically favourable 

in soil (Makino et al., 1998). However, the reduction and oxidation reactions of chromium 
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in soils are highly dependent on the structure of the soil and the soil redox conditions (Kožuh 

et al., 2000). 

Chromium in water 

In an aquatic environment, the redox process plays a key role in the movement, transport, 

and fate of organic and inorganic chemical constituents. Cr(VI) species that are mostly found 

in the water are Cr2O7
2-, CrO4

2-, H2CrO4, and HCrO4
−. Similarly, Cr(III) species found in 

solution most often are Cr3+, Cr(OH)2+, CrO+, HCrO2 and CrO2
− (Barrera-Díaz et al., 2012; 

Pradhan et al., 2017). 

Generally, at low pH and Eh values, the occurrence of Cr(III) species is favoured, while high 

pH and Eh values favour the Cr(VI) forms (Dhal et al., 2013), as shown by the Eh-pH diagram 

in Figure 2-3. As can be seen in Figure 2-4 the Cr(IV) exist as an anion species under natural 

conditions; in acidic environments at pH values lower than 6.4, it occurs predominantly as 

hydrogen-chromate ions (HCrO4
−) whereas, in alkaline environments above the pH value of 

6.4, it exists primarily as chromate ion (CrO4
2−) (Barrera-Díaz et al., 2012; Dhal et al., 2013; 

Jobby et al., 2018). These Cr(VI) oxyanion species are generally mobile in most neutral to 

alkaline systems. The equilibria of the Cr(VI) oxygenated species favour extremely high 

solubility and the proportion of each ion in solution depends on pH and total chromium 

concentration (Mohan & Pittman, 2006) as shown in Figure 2-4. As can be seen from Figure 

2-4, Cr(VI) exists as chromic acid (H2CrO4) which is a strong oxidising agent under strongly 

acidic conditions at pH levels less than 1. HCrO4
− ions are predominant at the pH range of 1 

to 6 and Cr(VI) concentrations below 1 g/L. However, above the 1 g/L Cr(VI) 

concentrations, the HCrO4
−  ions polymerize to form Cr2O7

2- ions under an acidic 
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environment. Whereas CrO4
2- species predominates at pH levels above 6 (Sharma, 2002; 

Mohan & Pittman, 2006). 

 

Figure 2-3: Eh-pH diagram for the system Cr-O2-H2O, for the concentration of Cr = 10−6 mol/kg at 

solid/liquid boundaries (Dhal et al., 2013) 

On the other hand, Cr(III) tends to form Cr(III) hydroxo-complexes in aqueous mediums, 

which are expected to be the dominant Cr(III) species in environmental water. The dominant 

Cr(III) species occurring in groundwater is also a function of the pH. Cr(III) under acidic 

environments is very stable but in an alkaline medium is easily oxidized to Cr(VI) (Pradhan 

et al., 2017). Figure 2-3 also illustrates the dominant aqueous species and the redox stability 

for Cr(III). In water, cationic Cr(III) species are considered moderately nontoxic, and at pH 

levels above 5.5 virtually precipitate as insoluble Cr(OH)3 under natural redox conditions. 
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Simple forms of Cr(III) species at pH values less than 3.5 are predominantly present. 

However, above the pH level of 3.5 Cr(III) hydrolysis into different species CrOH2+, 

Cr(OH)2+, Cr(OH)3
0 and Cr(OH)4

− (Dhal et al., 2013) 

 

Figure 2-4: The dependence of different Cr(VI) species in the aquatic environment on Cr(VI) 

concentration and pH (Mohan & Pittman, 2006) 

REMEDIATION TECHNIQUES FOR CHROMIUM-CONTAMINATED 

ENVIRONMENTS 

Minimising the risk of public and aquatic life exposure to chromium-contaminated 

environments is of paramount importance. In order to reduce this risk of exposure, there are 

several techniques for the remediation of heavy metals contaminated groundwater and soil 

that can be employed to mitigate this problem, including physical, chemical, or biological 

processes. These technologies have some definite significance for instance: (i) complete or 

substantial destruction/degradation of the pollutants, (ii) extraction of pollutants for further 
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treatment or disposal, (iii) stabilization of pollutants in forms less mobile or toxic, (iv) 

separation of non-contaminated materials and their recycling from polluted materials that 

require further treatment and (v) containment of the polluted material to restrict exposure of 

the wider environment (Hashim et al., 2011). 

Physical-Chemical Treatment  

The physical-chemical treatment process for chromium and other heavy metals involves 

physical extraction of conventional methods such as pump and treat, ion exchange, 

electrochemical precipitation, and adsorption amongst others (Dhal et al., 2013; Fernandez 

et al., 2018). 

2.5.1.1 Pump and treat 

The pump and treat technique is one of the commonly employed techniques for the 

remediation of chromium-polluted groundwater environment. Through pumping, the 

contaminated groundwater is removed from the aquifer and transported to a treatment plant 

above the ground where it can be treated and then released back into the aquifer (Higgins & 

Olson, 2009). Since hexavalent chromium is highly soluble and not easily adsorbed onto 

sediment surfaces, the pump and treat method has been considered an ideal option for such 

cases. 

However, remediation of groundwater contaminated by chromium using the pump and treat 

technique has not always yielded adequate results due to intrinsic limitations such as 

diffusion-restricted rates of extraction and exponentially deteriorating reaction to treatment. 

Another drawback of this method is the failure to attend to the pollution source in the vadose 

zone and it also lowers the water table as result leaving contamination in the new vadose 

zone. It was concluded by Mackay and Cherry (1989), that instead of using the pump and 
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treat as a technique for permanent remediation of aquifers, it would best work as a 

management tool to avert the pollution spread by hydraulic manipulation of the aquifer. 

2.5.1.2 Ion exchange 

Ion exchange generally refers to a process in which charged ions from an ion-exchange 

material are exchanged with charged ions from a solution (Sahu et al., 2009), and the charged 

ions on the surface of the ion-exchange material are displaced by those in the solution 

(Da̧browski et al., 2004; Fu & Wang, 2011). The operating principle of an ion exchanger is 

such that a hexavalent chromium-polluted solution passes through a column packed with 

resins and exchange ions with the chromium solution and then the chromium-free solution 

comes out at the other end of the column. Once the resin capacity is reached, then the column 

is backwashed using acid or alkali to remove the trapped chromium and regenerate the 

resins’ efficiency. Synthetic organic exchanger resins are the commonly used matrices for 

the ion exchange process. 

These ion exchange resins consist of carboxyl and sulphonic functional acid groups which 

enables the physio-chemical reaction as follows (Fu & Wang, 2011): 

 nRCOOH + Mn+           nRCOO−:Mn+ + nH+ 2-1 

 

where nRCOOH and nRSO3H represent the carboxyl and sulphonic acid functional cationic 

exchange resins respectively. M represents the metal being removed, while n is the metal 

valence state. 

 nRSO3H + Mn+           nRSO3
−:Mn+ + nH+ 2-2 
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In the case of hexavalent chromium removal, an anionic type resin is required as 

demonstrated by the following reaction (Da̧browski et al., 2004):      

 2ROH + CrO4
2−           R2CrO4

 + 2OH− 2-3 

where ROH is the anionic exchange resin, and it can be regenerated using NaOH as follows:   

 R2CrO4 + 2NaOH           2ROH + Na2CrO4 2-4 

Several researchers have investigated the use of ion exchange as a method of hexavalent 

chromium removal. Shi et al. (2009) studied three anion exchange resins for the removal of 

Cr(VI) from electroplating industry wastewater. Different experimental conditions were set 

out, including Cr(VI) concentrations, initial pH, resin amounts, contact time and 

temperatures. Their results showed that the ion-exchange process was pH-dependent, with 

maximum Cr(VI) removal in the pH range of 1–5 for an initial concentration of 100 mg/L 

of Cr(VI). The process achieved a 99.4% Cr(VI) removal under optimal conditions. Rapti et 

al. (2016), studied the potential use of an anion exchange composite material based on a 

protonated amine-functionalized metal-organic as a hexavalent chromium remediation 

technique. Under various experimental conditions, they observed that the material has an 

exceptional capability to rapidly and selectively sorb Cr(VI) in the presence of several 

competitive ions. Nam et al. (2018), evaluated an amine-functionalized acrylic ion exchange 

fibre for Cr(VI) removal using flow-through experiments modelling and real wastewater. It 

was observed that during the five regeneration cycles, Cr(VI) adsorption capacity retained 

was 95.96% of the initial capacity. Liu et al. ( 2020), studied Cr(VI) removal from water 

using cetylpyridinium chloride (CPC)-modified montmorillonite as an ion exchanger. The 
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results showed a maximum adsorption capacity of 43.84 mg/g at low to neutral pH values. 

Han et al. (2020), examined the performance of co-monomer polymer anion exchange resin 

for Cr(VI) removal. They reported that after four operation cycles, the adsorption capacity 

of EDE-D301 remained at 93%. 

Although the ion exchange technique is efficient in the removal of hexavalent chromium, 

the shortcoming of these ion exchange resins is that are very selective for certain ions (Lin 

& Kiang, 2003). Furthermore, the resins are very sensitive to the pH of the solution and 

suspended solids have to be removed by other methods prior ion exchange process. Also, 

this method is unable to handle metal solutions of high concentration as the resins are easily 

fouled by organics and other solids in wastewater. On top of these limitations, the costs of 

operating an ion exchange treatment process at full-scale are high (Cheung & Gu, 2007). 

2.5.1.3 Membrane filtration  

The membrane filtration technique has received much attention in wastewater as it can assist 

with the removal of dissolved inorganic pollutants such as heavy metals, suspended solids 

and organic compounds (Pugazhenthi et al., 2005). Various membrane filtration methods 

such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) can be used 

depending on the size of the particles to be removed (Doke & Yadav, 2014; Björkegren et 

al., 2015). The polluted water is passed through the semipermeable membrane under the 

application of hydraulic pressure. The membrane is designed such that it rejects the 

pollutants of interest (Baharuddin et al., 2014).  

Numerous types of membranes such as polymeric, inorganic, and liquid membranes can be 

used for Cr(VI) removal. Saucedo-Rivalcoba et al. (2011), investigated the feasibility of 

using a polyurethane–keratin hybrid membrane for the removal of Cr(VI). They tested their 

filtering system at low contact time in continuous flux, and they achieved a maximum 
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removal of 38% at neutral pH. Bhowal et al. (2012), studied the continuous removal of 

Cr(VI) by emulsion liquid membrane in a modified spray column. They observed that as the 

emulsion flow rate increased, the percentage of Cr(VI) extraction increased up to 54.3%. 

Tang et al. (2012), prepared porous stainless steel supported magnetite crystalline 

membranes for the removal of Cr(VI) from aqueous solutions. In their study, they could 

achieve 92.5% removal, indicating a promising application to remediate Cr(VI) from an 

aqueous solution. Doke and Yadav (2014), studied a Titania microfiltration membrane 

prepared from polymeric sol-gel derived TiO2 powder for removal of Cr(VI). The normal 

flow microfiltration process was operated at lower pressure (1 bar), which showed 99% 

efficiency for removal of Cr(VI) from aqueous solution using a cationic surfactant, 

cetylpyridinium chloride at CPC/Cr ratio of 2.5 and initial chromate concentration of 

100 mg/L. Björkegren et al. (2015), investigated the extraction efficiency of Cr(VI) from 

water using a vegetable oil-based emulsion liquid membrane technique. Their results 

demonstrated that this formulation, using vegetable palm oil as a diluent, is useful for the 

removal of hexavalent chromium with an efficiency of over 99%. Wei et al. (2019), studied 

a negatively charged nanofiltration membrane for its hexavalent chromium removal 

performance. The membrane was fabricated through an interfacial polymerization reaction. 

They performed the filtration experiments at various Cr(VI) concentrations ranging from 10 

mg/L to 500 mg/L, while the pH ranged between 4 to 9. Their results showed that Cr(VI) 

rejection increased with the increasing pH, while it decreased with increasing Cr(VI) 

concentration. Dognani et al. (2019), studied the effective of chromium removal from water 

by polyaniline-coated electro spun adsorbent membrane. It was found that the polyaniline 

coating greatly enhanced the chromium removal efficiency with the maximum adsorption 

capacity being 15.08 mg/g at a pH of 4.5. Furthermore, the polyaniline coated membrane 

showed greater the recyclability capacity achieving chromium efficiency of over 70%  after 
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5 cycles of usage. Zolfaghari & Kargar (2019), evaluated the hybrid system performance of 

nanofiltration and microfiltration process for Cr(VI) removal. A maximum Cr(VI) removal 

efficiency of 99% was achieved with the hybrid system under various operating conditions. 

However, this study only evaluated a low Cr(VI) concentration not exceeding 0.1 mg/L.  

Bandehali et al. (2020), examined the application of a thin film-PEI nanofiltration membrane 

for chromium removal. The membrane achieved 81% removal of chromium and experienced 

membrane fouling  during the process. Li et al. (2021) showed that with a flexible and free-

standing pristine polypyrrole membranes, Cr(VI) removal could be achieved. 

Membrane technology is a very promising technique for the removal of heavy metals. 

However, deterioration of membrane efficiency due to fouling hinders the improvement of 

this technique. As a result of fouling, the membrane has to be replaced frequently, thus 

increasing the operating costs of the process.  

2.5.1.4 Soil washing 

To decontaminate soil, several methods can be applied to restore the soil to its natural, 

contamination-free state. The soil washing technique entails the separation of pollutants 

from the soil matrix by solubilizing them in a washing solution (usually water, occasionally 

combined with solvents) and mechanical processes to scrub soils (Khalid et al., 2017; Liu et 

al., 2018).  The soil washing process is an ex-situ remediation technique.  

During the soil washing process, the soil is extracted from the contamination site and mixed 

with water or an appropriate solvent solution depending on the soil and type of metal. The 

soil and the washing solution are mixed thoroughly for a specified time. During this time the 

contaminants are either dissolved or suspended in the solution (Gitipour et al., 2011).  The 

soil is then separated from the washing solution through a physical process such as sieving 

or hydrocyclone. The use of the physical process is to isolate the oversized soil particles 
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(sand gravel) (> 0.05 mm) from the fine soil (clay and silt) portion (<0.05 mm). The washed 

oversize fraction of soil is considered to be less contaminated (non-toxic) and can be used 

for a refill or returned to the original site. The solution which contains finer soil particles 

remains hazardous due to the presence of heavy metal contaminants. Therefore, the soil 

washing process is often combined with other technologies to further treat the spent washing 

solution (Moutsatsou et al., 2006). 

The soil washing process heavily depends on washing solutions to remove heavy metals 

from the soil. The removal of contaminants from the soil with washing agents depends on 

the factors such as soil geochemistry, characteristics of the metal pollutants, reagent dosage 

and chemistry, and the process operating conditions (Dermont et al., 2008). These factors 

play a major role in the selection of an appropriate washing solution solvent. For example, 

one reagent might be effective in removing a certain metal pollutant, while contact with a 

different metal pollutant in the soil might lead to enhanced contamination in the soil 

environment. An ideal washing solution has to intensely enhance the mobility and solubility 

of heavy metal pollutants but interact weakly with soil constituents and must be 

biodegradable and nontoxic (Liu et al., 2018). A range of reagents that have been studied as 

washing solutions for effective removal of heavy metal pollutants includes acetic acid, citric 

acid, formic acid, fluorosilicic acid, hydrochloric acid, nitric acid, oxalic acid, phosphoric 

acid, sulphuric acid, EDTA, DTPA, NTA, EDDS, carbonate/bicarbonate, ammonium 

acetate, ammonium chloride, calcium chloride, dithionite, ferric chloride, isopropyl alcohol, 

sodium hydroxide, subcritical water (Moutsatsou et al., 2006; Fedje et al., 2013; Alghanmi 

et al., 2015; Zhu et al., 2015; Bilgin & Tulun, 2016; Yang et al., 2017).  The effectiveness 

of the washing solutions on metal removal varies with the metal species and is also 

dependent on the soil characteristics such as texture, organic matter content, pH, and 

moisture content (Mulligan et al., 2001). In general, over an array of heavy metals and soils, 
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the highest washing efficiency was achieved with EDTA, hydrochloric acid, and subcritical 

water. It should be noted that these results are case-specific and were achieved by small-

scale experiments.  

Based on the environmental and economic point of view, soil washing has been 

demonstrated to be an effective alternative for landfilling and solidification/stabilization 

(Gitipour et al., 2011). Also, this technique can be operated as a closed treatment process 

allowing control for fugitive dust and volatile emissions.  In addition, it has a high-efficiency 

removal of metal pollutants and the process is relatively quick (Liu et al., 2018). The major 

drawback of soil washing is that it is extremely disruptive to the soil environment. The 

technology is not suitable for soils with high clay content (Karthika et al., 2016). 

2.5.1.5 Electrokinetic remediation 

Electrokinetic remediation is an environmental technique that involves the transportation of 

pollutants through soils and groundwater under the influence of an electric field (Qian et al., 

2014). This technique is relatively new and cost-effective for the remediation of heavy 

metals (Khalid et al., 2017). The electrokinetic remediation method is carried out by 

applying a low-voltage direct current to the cathode and anode electrodes embedded in the 

contaminated ground area. This generates an electric field between the electrodes, which 

triggers a movement of water, ions and small charged particles between the electrodes. 

During the electrokinetic process, cations migrate towards the negative electrode while 

anions move towards the positive electrode. The migration of species occurs through several 

mechanisms, which include electromigration, electroosmosis, and electrophoresis (Liu et al., 

2018). However, electromigration is the most predominant transport mechanism while 

diffusion rates are insignificant (Niroumand et al., 2012).   

 Electromigration  
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Electromigration is defined as movement induced by the electric field of dissolved ions and 

ionic complexes in the soil solution. As pointed out earlier that the charged ions migrate 

towards oppositely charged electrodes. Thus, cations migrate towards the negatively charged 

electrode (cathode) and anions are transported towards the negatively charged (anode) 

electrode. The migration rate of ions under applied electrical current gradient depends on the 

ionic species mobility involved and can be given by (Fonseca et al., 2012): 

 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖∇𝐸𝐸 2-5 

where: 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 is the migration rate of ions (m.s-1), 𝜇𝜇𝑖𝑖 is the ionic mobility in free solution 

(m2.V-1.s-1) and ∇𝐸𝐸 is the electrical potential gradient (V.m-1).   

Ionic mobility can be defined as the velocity of the ion in the soil under the influence of a 

unit electrical potential gradient.   

 Electroosmosis   

Electroosmosis is the movement of water through a porous media under an applied electric 

field. Since soil particle surface is negatively charged, so when an electric current is applied 

and maintained to the soil, water molecules flow from the anode towards the cathode due to 

the electrical potential difference between the negatively charged soil surface and the soil 

solution (Gidudu & Nkhalambayausi Chirwa, 2020). This process is dependent on pore fluid 

concentration of ions, soil water content, type of soil, and ionic species types (Niroumand et 

al., 2012; Gidudu & Nkhalambayausi Chirwa, 2020). The water flow rate during the 

electroosmosis process depends on the balance between the electrical force on the fluid and 

the soil particle surface. Electroosmotic flow rates in the soil is described by an equation 

similar to Darcy’s law (Asadi et al., 2013): 
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 𝑞𝑞𝑤𝑤 = 𝐾𝐾𝑒𝑒∇𝐸𝐸𝐸𝐸 2-6 

where 𝑞𝑞𝑤𝑤 is the electroosmosis-induced flow rate of water (m3/s), 𝐾𝐾𝑒𝑒 is the coefficient of 

electroosmosis permeability (conductivity) of soil (m2.V-1.s-1), ∇𝐸𝐸 is the electric field 

gradient (V.m-1) and 𝐸𝐸 is the cross-section of the treated volume (m2). 

 Electrophoresis 

Electrophoresis is the transport of charged particles (colloidal, clay, organic particles) under 

the influence of an electric field (Luo & Keh, 2021). Like in the electromigration process, 

electrophoresis occurs, when an electrical gradient potential is applied across a colloidal 

suspension, positively charged particles and colloids will migrate toward the cathode and 

negatively charged particles will move toward the anode. The mass transport by the 

electrophoresis process is negligible in compact soil systems such as clay, compared to 

electromigration and electroosmosis due to the restrained movement of contaminants (Luo 

& Keh, 2021). 

 Electrolysis of water 

When an electrical field is applied across a column of soil during electrokinetic remediation, 

some redox reactions occur at the boundaries of the electrodes. For example, in the presence 

of inert electrodes water oxidation occurs at the anode which releases H+ ions while water is 

being reduced at the cathode which releases OH− ions (Khan et al., 2018). This redox reaction 

is necessary to maintain the system's charge neutrality.  

Anode reaction (oxidation):  

 2H2O            4H+ + O2(g) + 4e- 2-7 
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Cathode reaction (reduction): 

 4H2O + 4e-         2H2(g)  + 4OH− 2-8 

The oxygen and hydrogen produced during the electrolysis of water escape out of the soil. 

The generation of the OH− ions causes a basic environment at the cathode and will move 

through the soil towards the anode via different transport mechanisms including 

electromigration due to electric field gradient, diffusion as a result of concentration 

difference, and electroosmosis due to movement of water through porous soil. Whereas the 

production of H+ ions at the anode creates an acidic environment and moves towards the 

cathode through electromigration, electroosmosis and diffusion as well.  Provided that the 

transportation of H+ ions is not hindered by the soil buffering capacity, then in general terms, 

the acid front moves faster than the base front due to the high mobility of H+ ions compared 

to OH− ions and electroosmotic flow is largely in the direction of the cathode (Wu et al., 

2016). 

The pH during the electrokinetic remediation of the soil drops to about 2 at the anode while 

it rises to above 10 at the cathode. The acid and base production rate is a function of current 

density (Li et al., 2020). The electrokinetic process does not control the pH well, as a result, 

precipitated hydroxides are observed when pH change occurs at the minimum solubility of 

the metal ions. Therefore, controlling the pH and the electrolyte conditions inside the cathode 

and anode compartments is important for the optimization of the process. This can be done 

by adding buffer solutions in the electrode casings such as an alkaline solution for the anode 

and an acidic solution for the cathode compartment (Zhou et al., 2018). In addition to the pH 

control and electrolyte optimal conditions for an enhanced electrokinetic process, other 

measures such as increasing the treatment time, interchanging the electrodes for optimal 
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electrode configuration, increasing electric field gradient, varying the mode of the electric 

field application (from continuous to periodic), and anion/cation exchange membranes 

addition to the electrodes can improve the metal removal efficiency (Cameselle, 2015; 

Sakellariou & Papassiopi, 2018).  

Like any other process, electrokinetic technology has its advantages as it is applicable for a 

broad range of pollutants and it can be used to clean up heavy metal pollutants in unsaturated 

soils; technically and cost competitive. However, the pollutants have to be solubilized by 

either a processing fluid or dilute acidic solution front in order for the electrokinetic process 

to take place. Also, if the pollutant migration path is long or the areas are of poor 

conductivity, remediation may be incomplete. 

Biological treatment  

Biological treatment is the remediation technique that involves the utilization of organisms, 

mainly microbes, to clean up polluted sites including soils, aquifers, sludges, residues and 

air (Soffritti et al., 2019; Xia et al., 2019). This process is also known as bioremediation and 

has been proposed to advance and/or substitute the conventional physicochemical methods 

for cleaning up polluted environments (Xue et al., 2017). Bioremediation is a fast-growing 

and changing area of environmental biotechnology, and its growing popularity is due to its 

low cost, higher effectiveness and efficiency than the traditional methods. Bioremediation 

can be applied both in situ and ex-situ. In the areas where contamination has already 

occurred, in situ bioremediation is favoured to prevent further pollutant migration (Krishna 

& Philip, 2005). In situ bioremediation is considered to be environmentally friendly as it 

causes minimal disturbance to the surrounding environments and as well reducing the risk 

related to pollutant migration (Krishna & Philip, 2005; Soffritti et al., 2019; Xia et al., 2019). 
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Many organic contaminants such as hydrocarbon compounds can be degraded by 

microorganisms in natural environments. However, unlike organic compounds, heavy 

metals cannot be destroyed and are not degradable but can only be transformed from a higher 

oxidation state (harmful) to a lower oxidation state (less toxic). For instance, more toxic 

Cr(VI) can be biologically reduced into Cr(III) which is less toxic and can be achieved by 

the use of microbes. In natural and synthetic environments, microorganisms have the ability 

to interact with toxic metals and in the process alters the physicochemical properties of the 

pollutants. These physicochemical properties include oxidation state, solubility, and sorption 

amongst others. Microorganisms have developed different mechanisms for detoxifying 

heavy metals and these include (i) biosorption (Hlihor et al., 2013; Yang et al., 2020; Kalola 

& Desai, 2020) which involves passive metal uptake to cell components, (ii) 

Bioaccumulation (Chojnacka, 2010) involves both active and passive metal uptake, (iii) 

bioprecipitation (Pagnanelli et al., 2012; Xu et al., 2018) involves reaction with inorganic 

ligands such as phosphate, and (iv) biotransformation (Chirwa et al., 2013; Bansal et al., 

2017; Bansal et al., 2019) involves of changing the oxidation state of the metal.  

2.5.2.1 Biosorption 

Biosorption is a promising bioremediation process, which can be applied for the removal of 

heavy metals at low concentrations in water (Jobby et al., 2018; C. Zhang et al., 2020). It 

involves passive binding or uptake of heavy metal species (sorbate) onto the biomaterial 

(biosorbent). During the biosorption process, Cr(VI) contaminated water is brought into 

contact with either active or inactive biomass functional groups (hydroxyl, carboxyl, 

phosphate) on their surface wall. These charged functional groups on the surface layer 

interact with charged molecules or ions present in the Cr(VI) contaminated water, since there 

is direct contact between the cell surface layer and the external environment. As a result of 
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ion exchange reactions and complexation with charged functional groups, heavy metals are 

deposited in the cell surface layer (Ren et al., 2018). Extracellular polymeric substances 

(EPS) capable of immobilizing heavy metals may be produced by certain bacterial species 

(Comte et al., 2008).  

The biosorption process is not dependent on metabolism, it is a rapid process, and is not a 

function of temperature, biosorbent are readily available and easily regenerated (Michalak 

et al., 2013). The benefits of using inactive biomass over active cells: addition of nutrients 

is not necessary; it is unaffected by harsh operating conditions and immune to toxicity; easily 

regeneration of biomass and allows for recovery of metals; and the biomass itself can be 

acquired more economically, as an industrial waste product (Michalak et al., 2013). 

2.5.2.2 Bioaccumulation 

Bioaccumulation is described as an active mode of accumulation of metal pollutants by 

living cells, which is governed by critical factors such as structural and biochemical 

properties, physiological and genetic adaptation, environmental modification of metal 

specification, availability and toxicity (Chojnacka, 2010; Diep et al., 2018). Therefore, the 

uptake of metal contaminants by living organisms through the transport of the pollutants into 

the cell and the accumulation of metals inside the cell is referred to as bioaccumulation 

(Timková et al., 2018). The most important thing about bioaccumulation is that the process 

is only facilitated by living organisms (Chojnacka, 2010; Timková et al., 2018). Diep and 

co-authors (2018), have cautioned that bioaccumulation and biosorption are not the same 

and therefore the use of these two mechanisms interchangeably is incorrect. The main 

disadvantage of the bioaccumulation process is cell growth inhibition at high metal 

concentrations. An understanding of how some microbes accumulate Cr(VI) is a determining 

factor in the advancement of the bioaccumulation process for Cr(VI)removal and recovery 
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from polluted sites. Ksheminska and co-authors  (2008) state that the Cr(VI) species are 

structurally similar to SO4
2- and PO4

2- anions. As a result, Cr(VI) infiltrate the cells via anion 

channel which is non-selective and sulphate transporters which are oxidative state sensitive. 

2.5.2.3 Bioreduction 

The presence of hexavalent chromium in soil or underground water is toxic to the bacteria. 

However, some bacterial species have the ability to grow in high chromate concentrations 

and are usually recognised as resistant or tolerant to chromium (Murugavelh & Mohanty, 

2012; Coetzee et al., 2018; Kholisa & Chirwa, 2021). The bioreduction of Cr(VI) is 

considered a decontamination mechanism due to the fact the Cr(III) form is less toxic and 

more stable than Cr(VI). Microorganisms which are able to survive the Cr(VI) toxicity can 

be isolated and applied for chromium hexavalent remediation.  

Pseudomonas sp. grown under anaerobic conditions was the first chromium-reducing 

bacteria isolated in the late 1970s from wastewater when Romanenko and KorenKov (1977) 

discovered its Cr(VI) reduction capabilities (Fernandez et al., 2018). Since that day, a 

diversity of microbes has been identified and isolated from a wide range of contaminated 

environments with the capability to transform Cr(VI) into lesser toxic Cr(III).  

Numerous studies have reported the use of microorganisms that are responsible for reducing 

Cr(VI) to Cr(III) under different experimental conditions, these include initial Cr(VI) 

concentration, temperature, pH, degree of agitation, anaerobically and aerobic, cell-free 

Cr(VI) reductase, nutrient supplementation, electron transport addition, design changes to 

the reactor, cell immobilizers, to mention a few (Barrera-Diaz et al., 2012; Dhal et al., 2013). 

A number of studies that have isolated and utilised chromium-reducing bacteria from 

different sources under aerobic and anaerobic conditions are summarised in Table 2-1.   
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Table 2-1: Summary of some known Cr(VI)-reducing bacteria 

Name of species 
isolation 

sources 
Isolation 
conditions 

Growth 
medium/carbon 
source 

Cr(VI) initial 
Conc. (mg/L) References 

Acenetobacter 
calcoaciticus Chromite ore mines Aerobic Luria–Bertani broth 100 - 1100 Mishra et al. (2010) 

Mixed culture 
Sand drying beds 

Belt filter press Dried 
sludge 

Aerobic/Anaerobic Luria-Bertani 
broth/agar 5 - 400 Bansal et al. (2019) 

Bacillus cereus Coalmine soil - Luria-Bertani broth 0 - 500 Banerjee et al. (2019) 

Pseudomonas 
species 

Alloy manufacturing 
effluent - Nutrient agar/broth 0 - 100 Wani et al. (2019) 

mixed bacterial 
consortium Municipal waste sludge Aerobic Mineral salt medium 0 - 400 Kholisa et al. (2021) 

Bacillus sp. Tannery waste 
disposal site Aerobic Luria-Bertani (LB) 

agar 50 - 250 Wu et al. (2019) 

Klebsiella 
pneumoniae 
/Mangrovibacter 
yixingensis 

Chromium 
contaminated tannery 
effluent 

Aerobic Mueller Hinton agar 20 - 100 Sanjay et al. (2018) 

Caldicellulosiruptor 
saccharolyticus - Anaerobic DSM640 medium 0 - 160 Bai et al. (2018) 
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Cellulosimicrobium 
sp. Tannery wastewater Aerobic Luria-Bertani (LB) 

agar 0 - 300 Bharagava & Mishra 
(2018) 

Bacillus sp. FY1 
/Arthrobacter sp. 
WZ2 

Chromium-
contaminated soil 
(electroplating industry) 

Aerobic Luria-Bertani (LB) 
medium 200 - 1000 Xiao et al. (2018) 

Achromobacter 
xylosoxidans SHB 
204 

Industrial effluent/paint 
and steel sludge/ 
drainage water 

anaerobic Nutrient broth 100 - 500 Rao et al. (2017) 

Pseudomonas 
Aeruginosa Leather tannery effluent Aerobic Nutrient agar 0 - 200 Munawaroh et al. (2017) 

Pseudomonas 
gessardii strain LZ-
E 

- Aerobic BH liquid medium + 
naphthalene 0 - 40 Huang et al. (2016) 

Bacillus subtilis Rare-earth ore mine Aerobic Mineral salt media + 
yeast extract 200 Zheng et al. (2015) 

Pseudomonas 
mendocina Lab culture collection Aerobic/anaerobic 

Nutrient Broth + 
galactronic acid or 
glucuronic acid 

50 Dogan et al. (2014) 

Pseudochrobactrum 
saccharolyticum 
LY10 

Chromium 
contaminated site Aerobic Luria-Bertani media 55 - 360 Long et al. (2013) 

Staphylococcus 
arlettae strain Cr11 Tannery effluent Aerobic Tryptone 

soyapeptone media 100 - 5000 Sagar et al. (2012) 
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Bacillus sp. Chromium 
contaminated site Aerobic Nutrient broth + 

glucose 50 - 600 Kathiravan et al. (2011) 

Arthrobacter sp. Creosote polluted site Aerobic Luria-Bertani media 
+ Glucose 5 - 500 Ziagova et al. (2015) 

Bacillus cereus chromite mine Aerobic Nutrient agar (NA) 
medium  100 - 1000  Das et al. (2015) 
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PERMEABLE REACTIVE BARRIERS  

Overview of permeable reactive barriers   

In underground environments, pollutants are mainly transported by groundwater flow. The 

flowing contaminants with groundwater tend to create plumes and spread out over extended 

distances in the aquifer. For this reason, permeable reactive barriers (PRBs) have been 

developed to prevent further dissemination of contaminants and to reduce the risk and impact 

of the pollutants onto sensitive receptors, such as drinking water wells (Obiri-nyarko et al., 

2014).  

PRBs are defined as a zone of reactive materials that have been placed in the subsurface and 

are designed to intercept and treat the contaminant plume while permitting the groundwater 

to flow through the reactive media (Figure 2-5).  The success of this technology relies on the 

polluted groundwater to be transported through the reactive barrier by a natural aquifer 

gradient. As the contaminants flow through the barrier, they react with the reactive material 

as a result either are transformed into environmentally acceptable compounds or trapped 

inside the reactive zone (Suthersan et al., 2017). PRB is a passive, in situ technique with 

great potential to treat even shallow aquifers at a lower cost. It is considered as a green and 

innovative technology for groundwater remediation and, is an emerging alternative to 

traditional pump-and-treat systems. 

The PRB decontamination occurs through physical, chemical and/or biological processes. 

These include precipitation, sorption, oxidation/reduction and biologically mediated 

reduction (Obiri-nyarko et al., 2014; Suthersan et al., 2017). 
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Figure 2-5: Typical permeable reactive barrier (Rad & Fazlali, 2020) 

PRB configurations 

In practice, there are two frequently used designs of PRB installations as shown in Figure 

2-6: (a) the continuous permeable reactive barrier (CPRB) and (b) the funnel-and-gate 

system (FGS). The CPRB is the most commonly used design due to its minimal effect on 

the flow of groundwater (Al-Hashimi et al., 2021). A CPRB is a trench loaded with reactive 

material perpendicular to groundwater flow. Since this type of PRB does not have any 

structures, the contaminant plume passes through the reactive material due to the natural 

hydraulic gradient. So in order for the CPRB to be able to capture the contaminants plume 

in both horizontal and vertical directions, the -cross-sectional area of the reactive zone has 

to be slightly larger than that of the contaminated plume (Suthersan et al., 2017; Al-Hashimi 

et al., 2021).  The FGS comprises impermeable barriers and a reactive zone. The funnel 

structures are made up of impermeable sheet piles or slurry walls to prevent contaminants' 
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plume flow and redirect it towards the reactive zone (gate). In the event that the 

contaminants' plume is very large, multiple reactive zones in series can be installed in the 

FGS (Al-Hashimi et al., 2021). 

a 

 

b 

 
Figure 2-6: PRB designs: (a) continuous permeable reactive barrier and (b) funnel-and-gate system 

Reactive media used in PRBs 

Thus far, different permeable reactive barrier materials have been assessed for the treatment 

of groundwater contaminants, such as As, Ba, Be, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Sb, 

Se, U, V, NO3, PO4, and SO4 as shown in Table 2-2. The most commonly used reactive 

material is Zero-Valent Iron (ZVI). Apart from ZVI, there is a wide range of reactive 
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materials that have been studied including sawdust, oxygen-releasing compounds (ORC), 

zeolites, and activated carbon (AC) amongst others. The major drawback of such reactive 

materials is that they are either restricted to a certain group of contaminants or are available 

in small quantities and expensive (Upadhyay & Sinha, 2018; Köber et al., 2002). PRBs have 

been installed on a full scale for remediation of Cr(VI) and a variety of dissolved constituents 

such as phosphate and nitrate (Ludwig et al., 2002).  

Bacterial Permeable Reactive Barriers (BPRB) 

Biobarriers are specifically loaded with materials that enhance or stimulate microorganisms 

under aerobic or anaerobic environments to degrade pollutants in the treatment zone. Such 

a system has been investigated and employed in the removal of methyl-tert-butyl-ether 

(MTBE), tetrachloroethylene (TCE) from contaminated groundwater (S. J. Liu et al., 2006; 

Liu et al., 2017).  In their respective studies, S. J. Liu et al. (2006) used a two-layered BPRB 

system for MTBE (Figure 2-7(a)), while Liu et al. (2017) designed a four-layered 

anaerobic/aerobic BPRB for TCE degradation) (Figure 2-7(b)). In the double-layered BRPB 

system, the first layer contains oxygen-releasing material that provides oxygen for 

microorganisms; in the second layer, aerobic degradation of MTBE occurs by the 

microorganisms to remediate the groundwater. However, in the four-layered BPRB system, 

the first layer comprises of oxygen-capturing materials that capture dissolved oxygen in 

groundwater to promote an anaerobic environment for the dechlorination of TCE by 

microbes. In the second layer, granular activated carbon is used as a microorganism support 

to allow anaerobic biodegradation of TCE. The third and fourth layers are similar to that of 

the two-layered BPRB system where oxygen-releasing materials are used.  

Although there have been numerous studies on bioreduction of Cr(VI) using 

microorganisms, however, application of these microorganisms in PRB systems has been 
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seldom. The slow advancement toward the full-scale application of BPRB for Cr(VI) 

remediation has been due to the unavailability of microbes that can grow under nutrient-

stressed environments, as well as the lack of information on the mobility of the reduced 

chromium species in the barrier. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

38 

Table 2-2: Summary of PRB materials used for different contamination sources (adapted from Upadhyay and Sinha (2018)) 

Contaminants Mechanism Reactive barrier Limitation  References 

Heavy metals, metalloids, 
chlorinated hydrocarbons, 
nutrients, radionuclides, 

pesticides 

Reductive precipitation, 
Surface complexation, 
Adsorption, Co-
precipitation 

ZVI 
Oxidises easily and enhances the pH 
which causes corrosion thus, reduces 
the permeability of reactive material. 

Obiri-Naryko et al. 
2014; Yang et al. 
2010b 

Heavy metals, lead, U(VI) Surface adsorption, 
sorption, precipitation,  Apatite - Naryko et al. 2014 

Phenols, PCE, TCE, BTEX Sorption Activated Carbon Rapid breakthrough and low sorption 
capacity due to surface coating  Di-nardo et al. 2010 

AMD, Cr, Cu, Fe, Ni, Pb, 
Zn  Adsorption, precipitation 

 

TRM 
- laponite et al. 2006; 

Munro et al. 2004 

Radionuclides, NH4+, 
heavy metals, BTEX & 
PCE  

Precipitation, sorption, 
ion exchange,  Zeolite - Perric et al., 2004 
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a  

Water table

Groundwater flow

Methyl-tert-butyl-ether 

Oxygen releasing 
material layer

Aerobic 
biodegradation layer

Decontaminated 
groundwater

Impermeable clay

 

b

Water table

Groundwater flow

Tetrachloroethylene

Oxygen capturing 
material layer

Anaerobic 
biodegradation layer

Oxygen releasing 
material layer

Aerobic 
biodegradation layer

Decontaminated 
groundwater

Impermeable clay

 
Figure 2-7: Different schematic biological permeable reactive barriers (a) A two-layered barrier for 

MTBE (b) four-layered barrier for TCE chromium reduction bacteria in PRB 

 The first attempt of applying CRB as a biobarrier was conducted by Jeyasingh et al. (2011). 

Their study was carried out on a pilot scale reactor to assess the feasibility of Cr(VI) 

bioremediation on contaminated aquifers using biobarrier. Experimental results showed that 
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the microbial biobarrier was able to remediate Cr(VI) plumes even at elevated Cr(VI) 

concentrations, provided that suitable conditions such as the thickness of biobarrier, initial 

biomass concentration, moderate flow velocity, and the number of injection wells are 

maintained. However, this study was limited to the assumption of homogeneousness and 

uniform spreading of bacteria. 

Water Utilisation and Environmental Engineering group at the University of Pretoria isolated 

microbes that are capable of reducing and immobilizing Cr(VI) from sewage-dried sludge. 

These microorganisms were introduced in the columns packed with aquifer media in an 

attempt to reduce Cr(VI) from water flowing through the system. As the water flowed 

through the column system, the isolated microbes were able to reduce Cr(VI) and also 

survived under nutrient-stressed conditions (Molokwane et al., 2008; Molokwane & 

Nkhalambayausi-chirwa, 2009). Furthermore, the dried sludge microbes were also 

introduced in an open-top tank mesocosm reactor filled with aquifer material (Figure 2-8) to 

remediate 50 mg/L of Cr(VI) solution (Molokwane, 2010).  The microbial reactive barrier 

was able to significantly reduce Cr(VI) by an average of approximately 90% in the final 

effluent. Molokwane et al. (2008) and Molokwane and Nkhalambayausi-chirwa (2009) 

concluded that the dried sludge microbes are autotrophic and use hypocarbonate as their 

carbon source. The findings could be useful in the formulation of BPRBs for the remediation 

of groundwater against the spread of Cr(VI) from hot spots in the area. However, despite the 

promising results, the mobility of the reduced chromium species in the soil and activity of 

the organisms in the barrier have not been studied. 
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Figure 2-8: Experimental setup for biological permeable reactive barrier for Cr(VI) reduction 

(adapted from Molokwane (2010)) 

SUMMARY 

The literature review of this study has established that improper management of chromium-

containing waste from processing industries such as chromite ore processing, leather 

tanning, electroplating, steel production, wood preservation, wood pulp processing and 

textile are the main reason behind the groundwater contamination by Cr(VI). The intensity 

of the research in both extent and depth shows the deepening concern over extant Cr(VI) 

pollution problems around the world. The remediation of hexavalent chromium 

contaminated sites using traditional methods such as pump and treat or excavation followed 

by chemical treatment has been ineffective and generates large quantities of toxic sludge, 

which requires further treatment. Furthermore, it is disruptive to the ecosystems. 
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PRBs have been evaluated for the remediation of contaminants such as chlorinated organic 

compounds, heavy metals, radionuclides, and chromate. Biological permeable reactive 

barriers are a promising technique with many advantages, however, there have been very 

few studies conducted for the Cr(VI) removal. This has been due to the difficulties associated 

with removing the reduced metal precipitate from the aquifer. Also, the lack of information 

on the fate and the mobility of the reduced chromium species in the barrier is not known. 
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 METHODOLOGY  

SOURCE OF MICROORGANISMS 

The natural bacteria consortia were obtained from sludge collected at the Brits Wastewater 

Treatment Works (North West Province, South Africa). An abandoned sodium dichromate 

processing facility was reported to discharge high levels of Cr(VI) periodically into the 

sewage treatment works. The chrome processing facility was commissioned as early as 1996. 

Three sludge samples were collected, namely primary sludge, secondary sludge in the mixed 

liquor reactor and sludge cake after undergoing a belt filter dewatering process in the 

treatment plant. Although the nearby chrome foundry periodically discharges high levels of 

Cr(VI) to the treatment plant, at the time of collecting the samples for this study did not 

correspond with the discharging times.  

Three sludge samples were collected at different locations within the wastewater treatment 

plant and were named sludge A, B, and C. Sludge A was a primary sludge, Sludge B was a 

settled Activated Sludge collected from secondary clarifiers and Sludge C: is dewatered 

sludge from Sand Drying Beds – the dried product of the combined sludge A and B.  

GROWTH MEDIUMS 

Commercial  

Luria-Bertani (LB) broth, Luria-Bertani (LB) agar, and Plate count (PC) agar (Sigma-

Aldrich Germany) were prepared by dissolving 25 g, 45 g, and 23 g in 1000 mL of distilled 

water respectively. The media were sterilized at 121°C at 115 kg/cm2 for 15 minutes using 
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an autoclave then cooled at room temperature. The LB and PC agars after being cooled to 

45 °C were dispensed into Petri dishes to form agar plates for colony development. The 

growth mediums were prepared according to the manufacturer’s instructions. 

Mineral salt medium 

Mineral salt medium (MSM) consisted of 2.12 g K2HPO4, 2.12 g KH2PO4, 2 g NaCl, 1 g 

MgSO4·7H2O, 0.1 g CaCl2, 4 g KNO3 and 5 g glucose as a carbon source in 1,000 mL of 

distilled water (Jeyasingh & Philip, 2005).  

CHEMICAL REAGENTS 

Chemicals 

Sodium chloride solution (0.85% NaCl) was prepared by dissolving 8.5 g of sodium chloride 

salt in 1000 mL distilled water and sterilized by autoclaving at 121°C for 15 minutes then 

cooled to room temperate and stored at 4°C. 

Sulphuric acid solution (1N H2SO4) was prepared by adding 27.7 mL concentrated sulphuric 

acid (98%) into distilled water to make a 1000 mL solution.  

Cr(VI) stock solution 

A 1000 mg/L concentration Cr(VI) stock solution was prepared by dissolving 3.73 g of 99% 

pure K2CrO4 (analytical grade) in 1000 mL of deionized water. The 1000 mg/L Cr(VI) stock 

solution was used as a source of Cr(VI). The standard solutions of Cr(VI) were prepared 

from the Cr(VI) stock solutions in a 10 ml volumetric flask by diluting a certain volume of 

Cr(VI) stock solution with distilled water to give desirable final concentrations of (0, 1, 5, 
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10, 20, 50, 75 and 100) mg/L. From these data points (absorbance against concentration) a 

linear graph or calibration curve with the regression of 99.46% was obtained as shown in 

Figure B-0-1(see Appendix (B)). 

DPC solution 

Diphenyl carbazide (Merck, South Africa) solution was prepared for Cr(VI) reduction 

analysis by dissolving 0.5 g of 1,5 diphenyl carbazide in 100 mL of HPCL grade acetone 

and was stored in a brown bottle covered with a foil. 

Cr(VI) REDUCTION EXPERIMENTS 

Cr(VI) tolerance 

Three sludge from different environments were identified as possible sources of Cr(VI) 

reducing cultures within the Brits wastewater treatment plant: (1) dried primary sludge 

(Sludge (A)), (2) secondary sludge in the mixed liquor reactor (Sludge (B)) and, (3) dried 

sludge after undergoing belt filter dewatering process (Sludge (C)). The consortia bacterial 

cultures were screened for Cr(VI) reduction on the basis of their reduction performance. 1 g 

of sludge sample was added to a 250 mL conical flask containing 100 mL of LB broth and 

incubated for 24 h at 37 °C by agitation at 120 rpm using a Labcon SPL-MP 15 Lateral 

Shaker (Labcon Laboratory Services, South Africa). The conical flask was closed with 

cotton to allow oxygen flow while preventing contaminants from entering the flask. Then, 

after 24 h of incubation 1 mL of this was transferred into a fresh 100 mL LB broth 

supplemented with 100 mg/L of Cr(VI). The fresh LB broth was incubated for 24 h under 
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the same conditions. This method was replicated by gradually increasing the Cr(VI) 

concentration in the growth medium up to 500 mg/L. 

Aerobic batch experiments 

The reduction of Cr(VI) by freshly grown cells of the bacterial consortia was determined in 

MSM. The experiments were conducted in a 250 mL Erlenmeyer flask containing 100 mL 

MSM supplemented with 50 – 400 mg/L Cr(VI) concentration as shown in Figure 3-1. The 

cells were harvested after 24 h incubation and washed thrice by centrifugation with 0.85% 

NaCl sterile solution and finally resuspended in the MSM. Flasks were inoculated with cells 

concentrated to a 5:1 ratio before adding Cr(VI), and the flasks were covered with cotton to 

allow oxygen while preventing microorganisms from entering. The flasks were incubated at 

37 °C and under constant shaking of 120 rpm. All experiments were conducted in duplicate. 

1 mL samples were taken at time intervals, determined by the observed rate of Cr(VI) 

removal. The samples were centrifuged at 6500 rpm for 10 min in a Hermle 2323 centrifuge 

(Hermle Laboratories, Wehigen, Germany) to remove suspended cells before analysis. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

47 

  
Figure 3-1: Erlenmeyer flask for Cr(VI) reduction experiment (a) 100 mg/L Cr(VI) before incubation 

(b) after 24 hours of incubation 

Kinetic Parameter Estimation for Cr(VI) Reduction by Bacteria Consortia 

The kinetics of Cr(VI) reduction by sludge bacteria consortia were evaluated using first and 

second-order rate laws. 

3.4.3.1 First-Order Kinetics 

The first-order kinetics assumes that when the Cr(VI) concentration decreases over time, the 

reaction rate also decreases linearly with Cr(VI) concentration. The rate of reaction (r) can 

be expressed using Equation (3-1): 
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𝑟𝑟 = −
𝑑𝑑[𝐶𝐶𝑟𝑟(𝑉𝑉𝑉𝑉)]

𝑑𝑑𝑑𝑑
= 𝑘𝑘1[𝐶𝐶𝑟𝑟(𝑉𝑉𝑉𝑉)] 3-1 

Eq. (1) is solved by integrating both sides between the limits [Cr(VI)0] at t = 0 and [Cr(VI)] 

at any time t gives the following expression by Equation (3-2): 

𝑙𝑙𝑙𝑙 �
[𝐶𝐶𝑟𝑟(𝑉𝑉𝑉𝑉)]
𝐶𝐶𝑟𝑟(𝑉𝑉𝑉𝑉)0

� = 𝑘𝑘1𝑑𝑑 3-2 

Where, k1 is the first order rate constant (h-1), Cr(VI) is Cr(VI) concentration (mg/L) and 

Cr(VI)0 is the initial concentration (mg/L). 

3.4.3.2 Second-Order Kinetics 

The second-order kinetics assumes that when the Cr(VI) concentration changes over time, 

the rate of reaction also changes proportional to the square of the Cr(VI) concentration. The 

rate of reaction can be expressed by Equation (3-3): 

𝑟𝑟 = −
𝑑𝑑[𝐶𝐶𝑟𝑟(𝑉𝑉𝑉𝑉)]

𝑑𝑑𝑑𝑑
= 𝑘𝑘2[𝐶𝐶𝑟𝑟(𝑉𝑉𝑉𝑉)]2 3-3 

Integrating Equation (3-3) between the limits [Cr(VI)] = [Cr(VI)0] at time t = 0 and [Cr(VI]) 

= [Cr(VI)] at any time t, yields the following Equation (3-4). 

1
𝐶𝐶𝑟𝑟(𝑉𝑉𝑉𝑉)

=
1

𝐶𝐶𝑟𝑟(𝑉𝑉𝑉𝑉)0
+ 𝑘𝑘2𝑑𝑑  3-4 
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Where k2 is the second-order rate constant (L.mg-1. h-1). 

BIOLOGICAL PARAMETER ESTIMATION FOR Cr(VI) REDUCTION BY 

BACTERIA CONSORTIA 

Data Simulation 

In Aquasim, the execution of data simulation is through the DASSL algorithm which uses 

backward differentiation formula (BDF) methods to solve a system of differential-algebraic 

equation (DAE) or Ordinary differential equation ODE (Li & Petzold, 2000). The techniques 

are variable-step and variable-order Gear integration. The system of equations is written in 

implicit ODE or DAE form. The main advantage of this technique is the use of numerically 

integrating system of ordinary and partial differential equations in time and simultaneously 

solving the algebraic equations. Spatial discretization of partial differential equations is done 

using conservative finite difference schemes (Reichert, 1998). Based on the differential 

conservation law, the equation below was derived and implemented in Aquasim. The 

implementation of the DASSL algorithm permits the use of full or branded Jacobian matrix 

(Equations 3-5 to 3-8) in solving the nonlinear system of algebraic equations (Reichart, 

1998). 

 𝜕𝜕�̇̂�𝑝
𝜕𝜕𝑑𝑑

=
𝜕𝜕𝐽𝐽
𝜕𝜕𝜕𝜕

+ �̂�𝑟 3-5 

Equation 3-5 is discretised as 3-6. 
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𝑑𝑑
𝑑𝑑𝑑𝑑
�̂�𝑝(𝜕𝜕𝑖𝑖, 𝑑𝑑) =

𝐽𝐽𝑖𝑖𝑛𝑛𝑛𝑛(𝜕𝜕𝑖𝑖+0.5, 𝑑𝑑) − 𝐽𝐽𝑖𝑖𝑛𝑛𝑛𝑛(𝜕𝜕𝑖𝑖−0.5, 𝑑𝑑)
𝜕𝜕𝑖𝑖+0.5 − 𝜕𝜕𝑖𝑖−0.5

+ �̂�𝑟(𝜕𝜕𝑖𝑖, 𝑑𝑑) 3-6 

 

 𝐽𝐽 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 3-7 

 

 𝐽𝐽 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕1

    
𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕1

𝜕𝜕𝑓𝑓2
𝜕𝜕𝜕𝜕2

    
𝜕𝜕𝑓𝑓2
𝜕𝜕𝜕𝜕2⎦

⎥
⎥
⎥
⎤
 3-8 

Parameter estimation 

In Aquasim, model parameters that are represented by constant variables can be estimated 

by minimizing the sum of the squares of the weighted deviations between the measurements 

and calculating the results of the model using equation 3-9. The minimization is done 

through the simplex algorithm or secant algorithm (Reichert, 1998). 

 𝜕𝜕2(𝜆𝜆) = ��
𝜕𝜕𝑛𝑛𝑒𝑒𝑚𝑚𝑚𝑚,𝑖𝑖 − 𝜕𝜕(𝜆𝜆)

𝛼𝛼𝑛𝑛𝑒𝑒𝑚𝑚𝑚𝑚,𝑖𝑖
�
2𝑖𝑖

𝑖𝑖=1

 3-9 

where: 𝜕𝜕𝑛𝑛𝑒𝑒𝑚𝑚𝑚𝑚,𝑖𝑖 is the i-th measurement, 𝛼𝛼𝑛𝑛𝑒𝑒𝑚𝑚𝑚𝑚,𝑖𝑖 is the standard deviation, 𝜕𝜕(𝜆𝜆) is the 

calculated value of the model variable corresponding to the i-th measurement and evaluated 

at the time and location of this measurement,  𝜆𝜆 = (𝜆𝜆1,….., 𝜆𝜆𝑛𝑛) are the model parameters, 

and n is the number of data points and 𝜕𝜕2 is the sum of the deviation for all the fit targets.  
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Sensitivity analysis  

Sensitivity analysis in Aquasim combines the tasks of identifiability analysis and uncertainty 

analysis. The identifiability analysis is performed to test model parameters if they can be 

uniquely determined with the assistance of the available data and to evaluate the uncertainty 

of the parameter estimates. This can be done by estimating the standard errors and correlation 

coefficients of parameters during the parameter estimation procedure (Reichert, 1998). 

Equations 3-10 to 3-13 are the sensitivity functions that are distinguished by Aquasim: 

 𝛿𝛿𝑦𝑦,𝜆𝜆
𝑚𝑚,𝑚𝑚 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

 3-10 

 

 𝛿𝛿𝑦𝑦,𝜆𝜆
𝑟𝑟,𝑚𝑚 =

1
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

 3-11 

 

 𝛿𝛿𝑦𝑦,𝜆𝜆
𝑚𝑚,𝑟𝑟 = 𝜆𝜆

𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

 3-12 

 

 𝛿𝛿𝑦𝑦,𝜆𝜆
𝑟𝑟,𝑟𝑟 =

𝜆𝜆
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

 3-13 

where: y is an arbitrary variable calculated by Aquasim and 𝜆𝜆 is a model parameter 

represented by a constant variable or by a measured variable. 

However, in uncertainty analysis, the uncertainty of model parameters is propagated to the 

uncertainty of model results (Reichert, 1998). Aquasim uses the simplest error propagation 
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method, the linearized propagation of standard deviations of uncorrelated parameters. The 

error propagation formula using the linearized model and neglecting the parameter 

correlation and the error contribution of each parameter is given by equation 3-14 and 3-15 

respectively: 

 𝜎𝜎𝑦𝑦 = ���
𝜕𝜕𝑝𝑝
𝜕𝜕𝜆𝜆𝑖𝑖

�
2

𝜎𝜎𝜆𝜆𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 3-14 

 

 𝛿𝛿𝑦𝑦,𝜆𝜆
𝑒𝑒𝑟𝑟𝑟𝑟 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

  𝜎𝜎𝜆𝜆 3-15 

where: 𝜆𝜆𝑖𝑖 are the uncertain model parameters, 𝜎𝜎𝜆𝜆𝑖𝑖 are their standard deviations, y(𝜆𝜆1,..., 𝜆𝜆𝑛𝑛)  

is the solution of the model equations for a given variable at a given location and time, and 

𝜎𝜎𝑦𝑦 is the approximate standard deviation of the model result.  

The sensitivity functions (3-10) to (3-13), the standard deviations of calculated variables 

from equation (3-14), and the contributions of parameter uncertainties to the total uncertainty 

from equation (3-15) are calculated using the finite difference approximation given by: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑖𝑖

≈
𝜕𝜕(𝜆𝜆𝑖𝑖 + ∆𝜆𝜆𝑖𝑖) − 𝜕𝜕(𝜆𝜆𝑖𝑖)

∆𝜆𝜆𝑖𝑖  
 3-16 

where: ∆𝜆𝜆𝑖𝑖 is chosen to be 1% of the standard deviation 𝜎𝜎𝜆𝜆𝑖𝑖 of the parameter 𝜆𝜆𝑖𝑖. 
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CONTINUOUS REACTOR STUDY 

Experimental system setup 

The Cr(VI) remediation experiments were conducted in two horizontal flow tanks with the 

dimensions 820 x 170 x 200 mm (L x B x H) were constructed using 5 mm thick transparent 

Perspex sheets (Evonik Rohm GmbH, Essen, Germany) as shown in Figure 3-2. Each reactor 

consisted of five compartments: The influent and effluent reservoirs (100 mm × 170 mm × 

200 mm), the sand (230 mm × 170 mm × 200 mm), and the biobarrier (150 mm × 170 mm 

× 200 mm). Sand compartments were filled with thoroughly washed pure river sand with 

granular sizes ranging from 0.6 mm to 1.5 mm. To simulate the biobarrier conditions, the 

middle compartment was filled with a mixture of dried sludge and sand with a mass ratio of 

70% to 30%. The compartment dividers were perforated with 90 holes of 1 mm size to ensure 

evenly distrusted flow. The reactors were operated as plug-flow systems with four sampling 

ports along the length. The first sampling point was placed 115 mm from the influent 

reservoir, the second and third were 10 mm before and after the biobarrier and the fourth 

was placed 495 mm from the influent reservoir.  The flow was delivered using a Watson-

Marlow 120U peristaltic pump.  
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(a) 

 

(b) 

 

(c) 

 

Figure 3-2: Bench scale set-up of a permeable reactive barrier system (a) control (b) BPRB (c) 

schematic  
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Reactor start-up 

Two reactors were operated under a constant flow rate of 200 mL/h each. Before the starting 

up of experiments, the two reactors were saturated with distilled water for 10 days. The other 

reactor was filled with sand quartz only, to serve as a control. The influent solution of 40 

mg/L Cr(VI) (initial pH = 6.8) was pumped into the reactors using a peristaltic pump and a 

liquid detention time of about 8 h in the biobarrier. After 30 days of continuous operation, 

Cr(VI) concentration was increased to 60 mg/L under the same conditions. Samples of the 

Influent and effluent were collected periodically for Cr(VI) and pH analysis. The operation 

of the reactors was without any supplementary organic carbon sources and minerals except 

those already found in the sludge. The system is being developed for application in the 

groundwater environment, therefore, introducing foreign organic carbon sources is not 

desirable. 

ANALYTICAL METHODS 

Cr(VI) measurement 

1 mL samples were collected overtime and centrifuged using 2 mL Eppendorf centrifuge 

tubes at 6000 rpm for 15 min in a Minispin® Microcentrifuge (Eppendorf, Hamburg, 

Germany) to separate the suspended cells from the solution. The cell-free supernatant was 

then extracted using a pipette without re-suspending the cells and was used for Cr(VI) 

analysis. 

Then 0.2 mL of the extracted supernatant was added to a 10 mL volumetric flask followed 

by the addition of 1 mL (1N) H2SO4 solution for digestion of the sample. The flask was filled 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

56 

with distilled water to the 10 mL mark. 0.2 mL of 1,5-DPC solution was then added to yield 

a purple colour. UV/Vis Spectrophotometer (WPA Lightwave II) from Labotech, South 

Africa was used for measuring the absorbance of the mixture at 540 nm wavelength, across 

a 10 mm light path. The intensity of the purple colour was proportional to the Cr(VI) 

concentration in the sample (APHA/AWWA/WEF, 2012).  

Total Cr measurement 

Varian AA - 1275 Series Atomic Adsorption Spectrophotometer (AAS) (Varian, Palo Alto, 

CA (USA)) equipped with a 3 mA chromium hollow cathode lamp was used to measure the 

total Cr at a wavelength of 359.9 nm. The AAS was calibrated before total Cr analysis using 

1-5 mg/L Cr(VI) concentration prepared from the Cr(VI) stock solution. 

Cr(III) measurement 

Cr(III) was determined as the difference between total Cr and Cr(VI) concentration. 

pH and Temperature  

pH and temperature were measured using a PL-700AL bench top multi-parameters meter. 
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 EVALUATION OF Cr(VI) REDUCTION USING 

INDIGENOUS BACTERIUM CONSORTIA ISOLATED 

FROM A MUNICIPAL WASTEWATER SLUDGE IN BATCH 

SYSTEM 

INTRODUCTION 

Chromium (Cr) and its compounds have been extensively used in many industrial processes, 

such as metal finishing, metal electroplating, steelworks manufacturing, wood preservation, 

leather tanning, textile dyeing, and synthesis of pigments (Dhal et al., 2013; Fernandez et 

al., 2018). As a result of this wide anthropogenic use of Cr, large quantities of Cr containing 

wastes have been produced and the lack of effective disposal methods of Cr effluents has led 

to the contamination of surface and groundwater environments, soils and aquatic sediments 

(Molokwane et al., 2008). Another major concern is that these high Cr(VI) effluents end up 

in municipal sewer lines and build up in the sludge because only a small quantity is 

discharged with the wastewater final effluent (Khakbaz et al., 2020). The application of 

municipal sludge in agricultural soils poses health risk threats. Cr is mainly present in the 

environment in two oxidation states trivalent [Cr(III)] and hexavalent [Cr(VI)] species 

(Troiano et al., 2013). Cr(VI) has been recognized as more hazardous due to its higher 

solubility, mobility, rapid permeability, and strong oxidizing ability to exert harmful effects 

on biological systems (Khambhaty et al., 2009; Kumar & Dwivedi, 2019). Consequently, 

USEPA has set an allowable limit for Cr(VI) in domestic water at 0.05 mg/L and 0.01 mg/L 

for aquatic life (Murugavelh & Mohanty, 2012). In comparison to Cr(VI), Cr(III) is an 

important microelement for sustaining human metabolism and homeostasis. It is less toxic 
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and readily forms highly insoluble hydroxide/oxides in the environment at pH values higher 

than 5.5 (Villacís-García et al., 2015; Gong et al., 2017; Fernandez et al., 2018). Thus, the 

reduction of Cr(VI) to relatively non-hazardous Cr(III) is an effective strategy to mitigate 

the risks to human health and the environment. 

There are various conventional technologies available for minimizing the environmental 

impact of Cr(VI) and these include chemical reduction, ion exchange, electrochemical 

treatment, membrane separation (Ji et al., 2015; Li et al., 2017; Ma et al., 2018). However, 

most of these technologies are often ineffective and very expensive, especially for low 

concentrations of metals (Cheng et al., 2011). Additionally, the use of chemical reagents 

produces an enormous amount of hazardous sludge that requires further treatment 

(Mtimunye & Chirwa, 2014). Therefore, it is essential to develop an innovative, -cost-

effective, and environmentally friendly alternative process to remediate the Cr(VI) 

contamination.  

Bioreduction of toxic Cr(VI) to less toxic Cr(III) using microbial organisms is considered as 

a valuable, promising, and cost-effective approach for Cr(VI) remediation. The first case of 

microbial reduction of Cr(VI) was reported in the late 1970s by Romanenko & Koren’Kov 

(1977) where isolated Pseudomonas strain was tested for Cr(VI) reduction. Since then, 

numerous scholars have isolated new Cr(VI) reducing microbial strains under different 

conditions, such as Bacillus (Zheng et al., 2015; Zhu et al., 2019; Tan et al., 2020), 

Pseudomonas (Sathishkumar et al., 2017; Wani et al., 2019), Microbacterium (Kumar & 

Saini, 2019), Desulfovibrio (Elahi et al., 2019), Enterobacter (Mbonambi & Chirwa, 2019; 

Sun et al., 2020), Halomonas (Murugavelh & Mohanty, 2018), and Escherichia (Mohamed 

et al., 2020). Various environments such as industrial landfills, waste disposal sites, coal 
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mines, tannery effluents and contaminated sediments from rivers have been identified as 

main target areas to isolate these potential strains for in situ bioremediation.  

Y. G. Liu et al. (2006) studied Bacillus sp. isolated from Cr landfill site for the reduction of 

Cr(VI) at an initial Cr(VI) concentration of 80 mg/L and observed a maximum of 81.5% 

reduction of Cr(VI) in 72 h. Banerjee et al. (2019) isolated the Bacillus cereus strain from 

an open-cast coalmine which completely reduced 200 mg/L Cr(VI) concentration within 

16 h under heterotrophic conditions. Wani et al. (2019) isolated Pseudomonas species from 

Cr(VI) contaminated alloy manufacturing effluent and evaluated its Cr(VI) reduction 

performance. They observed a maximum Cr(VI) reduction of 86% at 100 mg/L under neutral 

pH conditions and 120 h incubation time. Li et al. (2019) studied the treatment of high-

concentration chromium-containing wastewater using sulphate-reducing bacteria acclimated 

with ethanol under various conditions. Their results showed that the strain was capable of 

reducing Cr(VI) concentration up to 500 mg/L under the optimum pH value of 7, the 

temperature of 35 ⁰C, incubation time of 24 h, and the volume amount of chromium-

containing wastewater to bacteria was 5:1. The distinctions in reduction capacities of 

bacterial strains are avowed to be directly dependent on the physicochemical parameters and 

heavy metal concentration in various environmental conditions. Consequently, exploration 

for native bacterial systems for in-situ bioremediation of that specific polluted location is 

always valuable. 

This work aims to isolate and investigate the Cr(VI) reduction by a consortium bacterium 

from a sludge coming from a municipal wastewater treatment in Brits, South Africa which 

receives high periodic loads of hexavalent chromium from a chrome foundry nearby. Our 

previous study by Molokwane et al. (2008) showed that sludge bacteria from the Brits plant 
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had high Cr(VI) reduction capacity. The current study assesses how the Cr(VI) initial 

concentration, initial pH solution, and co-existing heavy metals affect the removal of Cr(VI) 

by consortia bacteria from the wastewater treatment plant. Furthermore, bacterium Cr(VI) 

reduction kinetics were also studied. This is an effort to expand the development of the 

bioremediation technique for Cr(VI) treatment of polluted sites in South Africa. South Africa 

holds the largest chrome ore reserves in the world and it is one of the largest producers of 

ferrochrome (Van Der Lingen & Paton, 2018).  

BACTERIA SCREENING FOR Cr(VI) REDUCTION 

The three sludge samples collected from different locations within the wastewater treatment 

plant were used as a source of indigenous microbial consortia and were screened and 

examined for their ability to reduce Cr(VI). Cr(VI) reducing ability was tested for each 

microbial consortia at Cr(VI) concentrations ranging from 100 mg/L to 500 mg/L. These 

experiments were carried out in LB broth supplemented with Cr(VI). All three microbial 

consortia showed good Cr(VI) reducing capability, as shown in Figure 4-1. It can be seen 

that complete Cr(VI) reduction of 100 mg/L Cr(VI) initial concentration was achieved by all 

the microbial consortia. However, as the initial Cr(VI) concentration was increased, Cr(VI) 

reduction decreased accordingly, and all the microbial consortia only managed a reduction 

of less than 7 % at the highest initial Cr(VI) concentration of 500 mg/L. The loss of Cr(VI) 

reduction capacity by the microbial consortia was due to Cr(VI) inhibition. Sludge C 

microbial consortia exhibited more Cr(VI) reducing power than sludge A and B microbial 

consortia at higher concentrations. This was due to better acclimation and longer exposure 

to Cr(VI), and sludge C which is a combination of sludge A and B. Therefore, microbial 

consortia from sludge C was used for further studies. 
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Figure 4-1:  Percentage Cr(VI) reduction in consortia cultures from different sources (primary sludge, 

activated sludge, and dry sludge) under varying initial Cr(VI) concentrations incubated for 24 hours. 

ABIOTIC CONTROLS 

To examine the abiotic reduction of Cr(VI) by heat-killed and azide-inhibited cells, 

experiments were conducted using Cr(VI) concentration of 100 mg/L. The cells were killed 

by autoclaving at 121°C for 120 minutes.  In these experiments, the extent of Cr(VI) removal 

was evaluated from the changes in Cr(VI) concentration in the aqueous phase. Figure 

4-2 illustrates the extent of Cr(VI) reduction in a batch system containing cells-free, heat-

killed and azide-inhibited cells. After 24 h of operation time, it was observed that only 4 %, 

10 %, and 17 % of Cr(VI) was removed without cells, heat-killed and azide inhibited cells 

respectively. The low Cr(VI) reduction with heat-killed cells was due to the inactivation of 

the cells by heat. The 10 % Cr(VI) removed by heat-killed cells was due to the existence of 
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live cells that survived heat destruction or sorption. Cells inhibited with azide, also showed 

low Cr(VI) reduction capability due to cells inactivation under oxygen stressed environment. 

These results indicate that Cr(VI) reduction by live cells was not due to abiotic factors. 

 

Figure 4-2: Evaluation of abiotic reduction of Cr(VI) by heat-killed and azide inhibited reducing cells 

under aerobic conditions 

EFFECT OF Cr(VI) CONCENTRATION 

The effect of initial Cr(VI) concentration on Cr(VI) reduction was studied over a range of 

50 – 400 mg/L at a constant pH and temperature of 7.2 and 37 °C under aerobic conditions. 

As shown in Figure 4-3, the bacteria consortia could completely reduce Cr(VI) concentration 

of 50 mg/L within 5 h of incubation. As Cr(VI) initial concentration increased it took longer 

for the bacteria to completely reduce Cr(VI) as 100 mg/L, 150 mg/L and 200 mg/L were 

reduced in 18 h, 72 h, and 96 h respectively. However, above 200 mg/L Cr(VI) initial 

concentration complete Cr(VI) reduction was not observed as it can be seen that 300 mg/L 

and 400 mg/L concentrations were reduced by 92 % and 68 % after 120 h when the 
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experiment was terminated. The slow reduction capabilities at high concentrations can be 

ascribed to the Cr(VI) reduction bacteria reaching the Cr(VI) toxicity level. Molokwane et 

al. (2008) and Wang & Shen (1997) showed that the loss of Cr(VI) reduction capacities by 

bacteria are due to the loss of cell viability at high Cr(VI) concentrations. These results show 

that Cr(VI) toxicity does affect Cr(VI) reduction by microorganisms significantly. 

 

Figure 4-3: Effect of initial Cr(VI) concentration on Cr(VI) reduction using indigenous consortia 

bacteria 

BACTERIA PERFORMANCE AT DIFFERENT Cr(VI) CONCENTRATION  

The specific Cr(VI) reduction rates determined after 5 h and the overall specific reduction at 

varying initial Cr(VI) concentrations are given in Figure 4-4(a) and (b). The specific Cr(VI) 

reduction rate is defined as a measure of Cr(VI) reduction per unit mass of biomass per hour. 

It can be seen that the specific Cr(VI) reduction rate after 5 h decreased with increasing 
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initial Cr(VI) concentration reaching a minimum of 0.00043 mg Cr(VI)/mg biomass h at 150 

mg/L, and remained constant at Cr(VI) concentration higher than 150 mg/L. However, the 

overall specific Cr(VI) reduction rate increased with increasing initial Cr(VI) concentration 

until a peak was reached at 300 mg/L and a further increase in Cr(VI) concentration to 400 

mg/L resulted in a decrease in the overall specific rate, suggesting a possible Cr(VI) 

inhibition. These results show that the Cr(VI) reduction process is catalysed by microbial 

consortia saturation kinetics. Similar kinetic patterns have been reported for Bacillus strain 

(Elangovan et al., 2006); Hypocrea tawa strain (Morales-Barrera & Cristiani-Urbina, 2008); 

Shewanella oneidensis MR-1 (Middleton et al., 2003); however, in these studies the overall 

specific Cr(VI) reduction rate was determined in terms of the protein concentration and 

particulate organic carbon. Zakaria et al. (2007) and Jeyasingh & Philip (2005) also indicated 

that even though they did not observed complete Cr(VI) reduction, initial specific reduction 

rate increased with Cr(VI) concentration.  

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

65 

 

 

 

Figure 4-4: Specific Cr(VI) reduction at varying Cr(VI) concentration (a) after 5 h (b) after the 

duration of the experiment 

(b) 

(a) 
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 EFFECT OF pH ON Cr(VI) REDUCTION 

The pH of the solution is an important parameter, it can affect the activity of the bacteria, 

the degree of enzyme ionization and the accessibility of heavy metal ions (Tan et al., 2020; 

Karthika et al., 2016; Mangaiyarkarasi et al., 2011). Hence, the microbial removal of heavy 

metals efficiency is affected. The Cr(VI) residual concentration by bacteria consortia results 

at different pH levels are presented in Figure 4-5. Cr(VI) reduction by consortia bacterium 

was studied over a range of 2 – 11 initial pH levels in MSM medium amended with 

50 mg/L Cr(VI) and incubated at 37 °C under aerobic conditions. As the initial pH increased, 

Cr(VI) residuals showed a decrease from the pH of 2 to 7, followed by an increasing Cr(VI) 

residuals from a pH of 7 to 10. The consortia showed an enhanced removal efficiency at 

neutral pH and near complete was observed within 5 h. Acidic and alkaline conditions 

severely inhibited Cr(VI) reduction by the indigenous bacteria consortia from wastewater 

sludge. These results highlight that Cr(VI) removal by indigenous bacteria consortia was 

higher in neutral to acidic conditions as compared to alkaline conditions. The widespread 

pH adaptability and efficient Cr(VI) removal ability under neutral–acidic conditions 

suggested that indigenous bacteria consortia could play a significant role in the 

bioremediation of acidic Cr polluted sites. 
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Figure 4-5: Effect of pH medium used for Cr(VI) reduction by indigenous bacteria consortia from 

wastewater sludge 

EFFECTS OF COEXISTING HEAVY METALS ON Cr(VI) REDUCTION 

Contaminated groundwater, soils and industrial wastewater usually contain other heavy 

metals and the presence of these co-existing heavy metal ions may have an effect on the 

Cr(VI) reduction by microorganisms. Thus, the effect of co-existing heavy metals on Cr(VI) 

reduction by mixed bacteria consortium was studied in this work (Figure 4-6). The influence 

of heavy metals on Cr(VI) reduction was studied using five individual metals (Ni2+, Cu2+, 

Zn2+, Mn2+ and Pb2+) at 5 and 50 mg/L concentrations and Cr(VI) concentration was fixed 

at 50 mg/L. The microbial consortia completely reduced Cr(VI) within 5 h in the absence of 

other heavy metals. The presence of 5 mg/L of Ni2+, Mn2+ and Pb2+ had no effect on Cr(VI) 

reduction, however, an enhanced reduction rate was observed with Cu2+ and Zn2+ as Cr(VI) 

reduction was complete within 2 h and 3 h respectively. However, enhanced Cr(VI) 

reduction was achieved in the presence of Cu2+ and Zn2+ with completely Cr(VI) reduction 
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being observed within the first hour of incubation, while with Zn2+ was achieved in 3 h at 50 

mg/L metal concentration. Several researchers have reported the induced Cr(VI) reduction 

by microbial organisms in the presence of Cu2+, including Bacillus sp. CRB-B1 strain, 

Bacillus strain TCL, Acinetobacter haemolyticus (Zakaria et al., 2007; Banerjee et al., 2019; 

Tan et al., 2020). The cause of the stimulating effect of Cu2+ and other metals on Cr(VI) 

reduction by microbial organisms is not yet clear. According to Tan et al. (2020) and Huang 

et al. (2021), the increase in Cr(VI) reduction caused by Cu2+ is due to the fact that it is one 

of the essential components of some antioxidizing agents such as superoxide dismutase and 

catalase. Moreover, it acts as an electron transporter for the oxidative respiratory system (Xu 

et al., 2015). At a higher heavy metal concentration of 50 mg/L, significant inhibition of 

Cr(VI) reduction was observed in the presence of Ni2+ and Pb2+ with 81 % and 43 % Cr(VI) 

reduction being achieved, whereas Mn2+ had no effect. Similar results were reported by 

Bhattacharya and Gupta (2013). The presence of Ni2+ and Pb2+ significantly inhibited 

chromate reduction by Acinetobacter sp. B9. The inhibition of Cr(VI) removal by some 

heavy metals at elevated concentrations may be due to the suppression of microbial activity 

by metal toxicity and the destruction of protein structures by heavy metals (Cheng et al., 

2011). 
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Figure 4-6: The effect of 5 and 50 mg/L of various heavy metals on reduction of 50 mg/L Cr(VI) by 

wastewater sludge bacteria consortia 

KINETICS OF Cr(VI) REDUCTION BY BACTERIA CONSORTIA  

To quantitatively determine the interaction between the reduction rate and time for Cr(VI) 

removal by bacterium consortia coming from a wastewater treatment plant, the kinetics for 

Cr(VI) reduction were conducted. The kinetics of the Cr(VI) bioreduction at varying initial 

Cr(VI) concentrations were studied by a first and second-order exponential decay 

(Bhattacharya & Gupta, 2013; Li et al., 2017; Xu et al., 2015; Huang et al., 2019; Zhu et al., 

2019). 

k1 was determined as the slope from plotting ln([Cr(VI)]/[Cr(VI)0]) versus time. The 

estimated k1 values and their coefficient of determination R2 values resulting from linear 

regression are given in Table 4-1. As shown in Figure 4-7(a) and Table 4-1, the fitting R2 of 

the initial concentration of 50 mg/L, 100 mg/L, 200 mg/L, 300 mg/L and 400 mg/L were 
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0.96, 0.93, 0.82, 0.94, and 0.86 respectively, indicating that the first-order exponential decay 

described well the reduction process of Cr(VI) over time.The k1 was found to decrease (0.615 

h-1 to 0.011 h-1) with increasing Cr(VI) concentration from 50 mg/L to 400 mg/L. Similar 

results to this study have been reported by Das et al. (2014) and Tan et al. (2020), however, 

their Cr(VI) reduction rate values were less by two orders of magnitude. This was due to the 

differences in experimental conditions such as Cr(VI) concentrations, reduction medium, 

and bacterial strains. Cr(VI) reducing bacterial strains have different reduction capabilities 

due to the use of dissimilar mechanisms.    

The second-order rate constant k2 was determined as the slope from plotting 1/[Cr(VI) – 

1/[Cr(VI)0] versus time. The second-order rate constants k2 and their coefficient of 

determination R2 values resulting from linear regression are given in Table 4-1. The fitting 

R2 of different initial concentration 100 mg/L, 150 mg/L, 200 mg/L, 300 mg/L and 400 mg/L 

were 0.85, 0.99, 0.79, 0.91, and 0.97 respectively, indicating that the second-order 

exponential decay described well the reduction process of Cr(VI) over time as illustrated in 

Figure 4-7(b). However, the R2 for 50 mg/L Cr(VI) concentration using the second-order 

was less than that of the first-order exponential model.  
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Figure 4-7: The kinetics of Cr(VI) reduction by bacterial consortia at different Cr(VI) initial 

concentration (a) pseudo-first-order kinetics (b) second-order kinetics 

The k2 values followed a similar trend as k1 and were found to be decreasing from 0.0532 – 

5x10-5 L.mg-1. h-1 with increasing Cr(VI) concentration from 50 mg/L to 400 mg/L. Even 

though the overall Cr(VI) reduction rate declined with increasing Cr(VI) initial 

concentration, the total amount of Cr(VI) removed at higher initial concentrations was 

greater after 120 h. 

(a) 

(b) 
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Table 4-1: First and second order kinetic of Cr(VI) reduction by bacterial consortia and their 

correlation coefficient 

Cr(VI) concentration 
pseudo-first order pseudo-second order 

k1 R2 k2 R2 

50 0.615 0.96 0.0532 0.74 

100 0.225 0.93 0.0152 0.85 

150 0.056 0.69 0.0012 0.99 

200 0.032 0.82 0.0005 0.79 

300 0.023 0.94 0.0003 0.91 

400 0.011 0.86 0.00005 0.97 

MICROBIAL CHARACTERISATION 

The sludge C bacteria consortium was chosen for characterization due to its high 

performance. The bacterial isolates were identified based on 16S rDNA gene sequencing 

analyses and were carried out by the Microbiology Department, at the University of Pretoria 

to identify bacterial communities present after the sludge had been exposed to 100 mg/L 

Cr(VI). BLASTN analysis of the bacterial isolates X1, X2, X3, X4, X5, X6 and X7 are 

presented in Table 4-2 and shows four predominant species under aerobic conditions. The 

sequence for X1 was 99% similar to that of Bacillus cereus 213 16S and Bacillus 

thuringiensis strains. X2 and X3 isolates produced similar results and showed close 

association with B. cereus ATCC 10987, Bacillus sp. ZZ2 16s, B. thuringiensis str. Al 

Hakam having a 99% identity. While X4, X5 and X6 were in close association with B. 
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mycoides strain BGSC 6A13 16S, B. thuringiensis serovar finitimus strain BGSC 4B2 16S 

strains. The sequence for X7 was 99% similar to that of Microbacterium sp. S15-M4 and 

Microbacterium foliorum. A phylogenetic tree was constructed for the species from purified 

cultures grown under aerobic conditions based on a basic BLAST search of rRNA sequences 

in the NCBI database (Figure 4-8).  

Table 4-2: Sludge Cr(VI)-Reducing Bacteria strain characterisation using 16S rRNA  

Blast results  
Pure Isolates 

ID index 
X1 X2 X3 X4 X5 X6 X7 

B. cereus ATCC 10987  √ √     0.99 

B. thuringiensis serovar 

finitimus strain BGSC 4B2 16S 
   √ √ √  0.99 

B. thuringiensis str. Al Hakam  √ √     0.99 

Bacillus cereus strain 213 16S √       0.99 

Bacillus mycoides strain BGSC 

6A13 16S 
   √ √ √  0.99 

Bacillus sp. ZZ2 16S  √ √     0.99 

Bacillus thuringiensis 16S √       0.99 

Microbacterium foliorum       √ 0.99 

Microbacterium sp. S15-M4       √ 0.99 

Bacteria that are able to reduce and tolerate Cr(VI) have been reported by many researchers 

and mostly these microorganisms are from the chromium-contaminated sites. Soni et al. 

(2013) isolated four bacteria strains from soil irrigated with tannery wastewater which were 
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Bacillus sp., Microbacterium sp., Bacillus thuringiensis, and Bacillus subtilis and all were 

able to reduce Cr(VI) at varying concentrations. Upadhyay et al. (2017) reported that 

Bacillus sp. MNU16 isolated from coal contaminated mine was able to tolerate and reduce 

Cr(VI). Banerjee et al. (2019) also showed that Bacillus cereus MBGIPS 9 from coal mine 

lake has a high tolerance to Cr(VI) toxicity and reduction capacity. 

 

Figure 4-8: Phylogenetic tree constructed by neighbour-joining algorithm based on the partial 16S 

rRNA gene sequences and 1000 bootstrap replicates, showing the microbial diversity of Cr(VI) 

reducing consortium from Sludge C under aerobic conditions. 

SUMMARY 

In this study, aerobic microbial mixed culture isolated from a municipal wastewater 

treatment sludge was capable of reducing Cr(VI) at concentrations, up to 400 mg/L. It was 
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shown that Cr(VI) reduction was an enzyme-mediated process instead of adsorption. 

Complete Cr(VI) reduction of 50 mg/L concentration was observed in 6 h under aerobic and 

neutral pH conditions. The Cr(VI) reduction rate decreases with increasing initial Cr(VI) 

concentration due to Cr(VI) toxicity on bacterial cells. It was observed that Cr(VI) reduction 

increases with increasing the initial pH of the solution until the optimal pH of 7, a further 

increase in pH results in decreased Cr(VI) removal. Co-existing heavy metals did not have 

an effect on Cr(VI) reduction at both low and high heavy metal concentrations with 

exception of Cu2+ and Zn2+ which enhanced Cr(VI) reduction, while Pb2+ and Ni2+ showed 

inhibitory effects at high concentrations. The fitting of time course data to a first-order rate 

resulted in a rate constant in the range of 0.615 h-1 to 0.011 h-1 which decreased with 

increasing Cr(VI) concentration from 50 mg/L to 400 mg/L. Similarly, the second order rate 

constant was in the range of 0.0532 – 5x10-5 L-1.mg-1.h and decreased with increasing initial 

concentration. The reduction ability of mixed bacterial consortium to treat Cr(VI) may be 

explored further for practical application and developing a sustainable bioremediation 

process for Cr(VI) contaminated areas. This is an effort to expand the development of 

bioremediation technique for Cr(VI) treatment of polluted sites in South Africa. 
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 PERFORMANCE AND MICROBIAL CULTURE 

SHIFT OF A BENCH-SCALE BIOLOGICAL PERMEABLE 

REACTIVE BARRIER FOR IN-SITU REMEDIATION OF 

Cr(VI)-CONTAMINATED GROUNDWATER 

INTRODUCTION  

Hexavalent chromium [Cr(VI)] pollution of soil and groundwater has become an 

environmental and public health problem across the globe (Jobby et al., 2018). It largely 

originates from many industrial applications, such as metal finishing, metal electroplating, 

steelworks manufacturing, wood preservation, leather tanning, textile dyeing, and synthesis 

of pigments (Zhao et al., 2018; Gong et al., 2018; Molokwane et al., 2008; Kholisa et al., 

2021). The lack of proper storage and effective disposal methods of Cr(VI) effluents has also 

intensified the Cr(VI) contamination (Li et al., 2019; Qian et al., 2014). Cr(VI) is known to 

be soluble and mobile and it easily infiltrates into groundwater, through which it can end up 

into surface waterbodies (streams, rivers, lakes) and adversely affect ecosystems. Therefore, 

USEPA has set Cr(VI) concentration nominal limit in drinking water to 0.05 mg/L, and 0.01 

mg/L for aquatic life (Murugavelh & Mohanty, 2018; Gong et al., 2017). In contrast, 

trivalent chromium Cr(III) is much less mobile and non-toxic and is an essential nutrient at 

low concentrations (Yin et al., 2017). Thus, remediation of Cr(VI) contaminated soil and 

groundwater is a necessity to avert the migration of Cr(VI) to further pollute a larger area 

and endanger the ecosystem and human health. 
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Conventional methods for removing, immobilising Cr(VI) and transforming Cr(VI) to 

Cr(III) are applied and these include membrane filtration, ion exchange, chemical 

precipitation, adsorption, chemical oxidation and reduction (Huang et al., 2021; Tan et al., 

2020). The high cost and energy requirements, excessive chemical consumption and 

generation of large amounts of toxic sludge which require further treatment, are some of the 

disadvantages (Frade et al., 2018). Although processes such as ion exchange and adsorption 

possess low costs, when the adsorbent materials are deposited in landfills, desorption usually 

occurs resulting in soil and groundwater contamination again (Mbonambi et al., 2019; Yao 

et al., 2020). Therefore, it is essential to develop an innovative, cost-effective, and 

environmentally friendly alternative process to remediate Cr(VI) contamination. 

The bioreduction of toxic Cr(VI) to less toxic Cr(III) using microbial organisms isolated 

from Cr(VI) contaminated sites is considered as a valuable, promising, and cost-effective 

approach for Cr(VI) remediation (Tan et al., 2020; Kholisa et al., 2021; Zeng et al., 2019). 

The advantage of such systems is that they can be operated with insignificant chemical by-

products and require less energy inputs. The process may employ native, non-invasive 

strains of bacteria, thereby offsetting the environmental concerns over the possible 

introduction of alien species with possible unforeseeable detrimental effects to the native 

environment. Although many bacterial strains have been shown to mediate the reduction of 

Cr(VI) to Cr(III), few studies have examined the potential of in situ treatment of Cr(VI) 

using microorganisms. 

Huang et al. (2021) studied the performances of Cr(VI) removal by Sporosarcina saromensis 

W5 attached to activated carbon or zero-valent iron as a bio-permeable reactive barrier. 

Enhanced Cr(VI) reduction performance was observed in both experiments. Murugavelh and 
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Mohanty (2018) evaluated the performance of Halomonas sp. to reduce Cr(VI) in a fixed 

film bioreactor. The reactor was operated under continuous flow and near complete Cr(VI) 

reduction was observed for 10 and 20 mg L−1 initial Cr(VI) concentration. Jeyasingh et al. 

(2011) evaluated a pilot scale feasibility of bioremediation of Cr(VI) contaminated aquifers 

using biobarrier and reactive zone technologies, using Cr(VI) reducing bacteria. Complete 

Cr(VI) reduction was obtained when the plume contained 50 mg/L Cr(VI) concentration and 

the biobarrier was 10 cm thick with an initial biomass concentration of 0.44mg/g of soil. 

Molokwane and Nkhalambayausi-Chirwa (2009) investigated microbial Cr(VI) reduction in 

groundwater aquifer media using a microcosm reactor. Near complete Cr(VI) removal was 

observed in the reactor while operating under a low hydraulic loading and Cr(VI) influent 

concentration of 40 mg/L. 

In this study, the performance and microbial culture shift were assessed using a bench-scale 

biological permeable reactive barrier. The process simulates a microbial inoculated barrier 

system using sludge from sand-drying beds at a wastewater treatment plant (WWTP) 

receiving periodic loadings of Cr(VI) in the influent. 

REACTOR PERFORMANCE 

Cr(VI) removal from groundwater by biotic and abiotic BPRB was carried out by using 

horizontal rectangular reactors and the results are presented in Figure 5-1. Both reactors 

operated at hydraulic loading of 200 mL/h and were fed with distilled water for 14 days to 

saturate the reactors, remove air space between the pores and acclimatize the bacteria. The 

control reactor compartments were packed with sand quartz only to study the abiotic effect 

on the Cr(VI) removal and was fed with a Cr(VI) concentration of 40 mg/L as shown in 
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Figure 5-1(a). It can be seen that effluent Cr(VI) concentration in the control reactor 

gradually increased until day 6. After day 6, the reactor reached a steady state as the influent 

Cr(VI) concentration was the same as effluent. Pure quartz sand is not particularly relevant 

when referring to sorption regardless of the solution chemistry (Tadeo-jalife et al., 2021). 

Tang et al. (2021)  pointed out that quartz sand is easily saturated and has low adsorption 

capacity.   

In the BPRP reactor, compartments 2 and 4 were packed with quartz sand while 

compartment 3 was packed with 70% and 30% sand-sludge mixture. After the saturation 

phase which lasted 14 days, the BPRB reactor was fed with distilled water containing Cr(VI) 

concentration of 40 mg/L and the results are shown in Figure 5-1(b).  The 20 cm barrier had 

a hydraulic retention time of 8 h. After feeding the reactor with Cr(VI) for 30 days, no Cr(VI) 

was detected in the effluent for this period. This indicated that the Cr(VI) removal was 100% 

in the BPRB. Cr(VI) concentration was then increased by 20 mg/L and continued to operate 

at 60 mg/L Cr(VI) concentration for another 30 days. Cr(VI) concentration was not detected 

in the effluent, showing 100% efficiency. On day 47, 4.11 mg/L of Cr(VI)  concentration 

was first detected, and the following day (48) Cr(VI) was 100% removed. From day 52, a 

Cr(VI) concentration of 2.2 mg/L was noticed and a sharp increase in Cr(VI) concentration 

from 2.7 mg/L to 20.9 mg/L in the effluent from day 54 to day 57. Cr(VI) concentration in 

the effluent continued to increase up to 23.1 mg/L in day 61 which is equivalent to 38% 

Cr(VI) removal. This increase in Cr(VI) concentration in the effluent was attributed to the 

depletion of the carbon source from the sludge. Microorganisms utilize a variety of organic 

carbon sources, either as an energy source or as an electron donor to facilitate Cr(VI) 

bioreduction (Han et al., 2021).  Han et al. (2021) further explained that organic carbon 
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sources play an important role in enhancing Cr(VI) bioreduction by the stimulation of 

microorganisms for providing more electron donors. 

 

 

Figure 5-1: Cr(VI) removal of (a) abiotic and (b) biotic in the permeable reactive barrier system 
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Due to depletion of carbon source and low Cr(VI) reduction, a 5 g/L glucose was added to 

the reactor feed to provide microorganisms with carbon and energy. After, adding the 

glucose on day 61, the microorganisms completely reduce Cr(VI) as observed on day 62. 

Cr(VI) was not detected in the effluent until day 86, when Cr(VI) increased to 21.77 mg/L 

within 3 days. This increase in Cr(VI) concentration was attributed to low pH in the effluent. 

The overall performance of both reactors is summarised in Table 5-1. These results show 

that a BPRB technology studied here could perform well at concentrations as high as 60 

mg/L. During the course of this study clogging of the reactor due to the biomass increase 

was not observed. The influent flow rate remained the same throughout the experiment and 

the fluid height in the reactor approximately remained stationary. However, Boni and 

Sbaffoni (2009) cautioned about the long-term behaviour and the durability of such a system, 

therefore, greater attention should be paid in terms of its hydraulic properties.  

 
Table 5-1: Overall performance of BRPB and control reactors under various conditions 

Reactor 
Inlet 

concentration 
Conditions 

Effluent 

concentration 

Removal 

efficiency 

days of 

operation 

Control 46.03 ± 1.41 Control 43.21 6.11 30 

BRPB 

46.03 ± 1.41 
No carbon 

source 
0 100 30 

64.64 ± 1.63 
No carbon 

source 
4.21 93.49 30 

64.11 ± 1.14 Glucose 2.62 95.91 30 
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ENVIRONMENTAL PARAMETERS 

There are many parameters that can affect the performance of Cr(VI) reduction by 

microorganisms, temperature and pH being among the ones (Wani et al., 2019; Tan et al., 

2020). For this reason, influent and effluent pH and temperatures were monitored throughout 

the entire duration of the study.   

Time course of pH 

The influent pH into the reactors ranged between 6.5 and 7.5 while the effluent pH of the 

BPRB reactor ranged from 5.2 to 7.5 and the control reactor ranged from 6.39 to 6.91 as 

shown in Figure 5-2: Time course of pH during Cr(VI) removal operation. The influent pH 

values were consistent with an average input value of 6.96 throughout the whole experiment. 

Similarly, the effluent pH values for both the control and BPRB reactors were stable for the 

first 30 days. Indicating no significant variation in the influent and effluents pH values. 

However, due to operational problems, the control reactor was discontinued after 31 days.  

The BPRB reactor continued to operate for another 30 days and during this time effluent pH 

was stable at 6.91. After 61 days of operation, the carbon source from the sludge was 

depleted and glucose was used as the sole carbon source. When glucose was used as the 

carbon source, a drastic decline in effluent pH from 6.91 to below 5.5 was observed within 

two days. The decrease in pH values was ascribed to the fermentation of glucose forming 

several types of organic acids by different Bacillus species and other bacterial species which 

result in a subsequent drop in medium pH (Upadhyay et al., 2017; Cherif-silini et al., 2013; 

Shukla et al., 2012; Sanghi & Srivastava, 2010). Also, oily scum and bubbles were observed 

on the top surface of the reactor, indicating that there was a production of weakly acidic 
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substances such as volatile fatty acids and gas (Rahman & Thomas, 2021; X. Zhang et al., 

2020; Upadhyay et al., 2017; Sun et al., 2020). The influent pH range of 6.5 –7.5 through 

the PRB reactor, indicated that Cr(VI) mainly existed as CrO4
2− and HCrO4

−.  

 

Figure 5-2: Time course of pH during Cr(VI) removal operation 

Time course of Temperature 

The time series plot for influent and effluent temperatures for both reactors is shown in 

Figure 5-3. The influent and effluent temperatures did not show significant variation during 
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the effluent control varied between 21.4 °C and 27.4 °C for the 30 days of operation and the 
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organisms living in the groundwater. Slight temperature changes can have a drastic effect on 

microbial activity and chemical reactions. However, the temperature fluctuations in this 

study did not have any significant impact on the microbial Cr(VI) reduction as 100% 

reduction was achieved with the exception of when the carbon source was depleted. 

 

Figure 5-3: Time course of temperature variation during Cr(VI) removal operation 

Cr(III) PRECIPITATION  
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2014). In the current study, total Cr measurements in the BPRB reactor effluent were similar 

to that of Cr(VI) indicating that Cr(III) was trapped within pore spaces in the reactor as 

Cr(OH)3(s). This was further characterised by the presence of dark-green colour after PRB, 

showing an accumulation of Cr(III). Molokwane and Nkhalambayausi-chirwa (2009) 

experienced a decrease in flow rate demonstrating that there was a reduction in spore spaces 

in the reactor which hindered the free flow of water due to continuous Cr(III) precipitation. 

However, in this study clogging of pore spaces in the reactor or hindered flow was not 

observed. The tested run times were shorter than the typical operational times in the field.  

SPATIAL Cr(VI) CONCENTRATION PROFILE  

Cr(VI) removal across the BRPB reactor was evaluated over 90 days of operation using data 

collected from sampling ports placed across the reactor. Figure 5-4(a), Figure 5-4(b) and 

Figure 5-4(c) show no Cr(VI) removal in sampling points before the barrier (port 1 and port 

2) while high Cr(VI) removal is observed in sampling ports after the barrier (port 3 and port 

4) at the initial Cr(VI) feed concentration of 45 and 65 mg/L, respectively. The insignificant 

Cr(VI) removal observed in sampling port 1 and port 2 was because the compartment before 

the barrier was only filled with sand, hence no Cr(VI) reduction occurred. It can be seen in 

Figure 5-4(a) that in port 3, no Cr(VI) concentration was detected in the first 6 days. After 

day 6, an increase in Cr(VI) concentration was observed and continued to increase up to 15 

mg/L on day 10. Thereafter, Cr(VI) concentration decreased and reached complete reduction 

on day 12. This was associated with microorganisms still acclimatizing to long Cr(VI) 

stressed conditions. Complete Cr(VI) reduction was achieved in the barrier compartment, as 

it can be seen that Cr(VI) concentration in port 2 is approximately 45 mg/L while port 3 and 

port 4 are nearly 0 mg/L. After 30 days of operation, the feed Cr(VI) concentration was 
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increased to 65 mg/L as shown in Figure 5-4(b). The system reached a steady state again on 

day 36, as the port 1 and port 2 Cr(VI) concentrations were equally to feed concentration. 

No Cr(VI) was detected in port 3 and port 4 until day 55 of operation. The Cr(VI) 

concentration in these ports continued to increase reaching 26 mg/L in port 3 and 16 mg/L 

in port 4. This increase in Cr(VI) concentration in port 3 and port 4 was attributed to the 

depletion of carbon sources from the sludge. Microorganisms utilize a variety of organic 

substances, either as an energy source or as electron donors to facilitate Cr(VI) bioreduction 

(Han et al., 2021). Due to depletion of carbon source and low Cr(VI) reduction, a 5 g/L 

glucose was added to the reactor feed to provide microorganisms with carbon and energy. 

After, continuously adding the glucose from day 60, the microorganisms completely reduced 

Cr(VI) as observed on day 61 as shown in Figure 5-4(c). Cr(VI) was not detected until day 

83. Cr(VI) concentration continued to increase in both ports reaching 29 mg/L in port 3 and 

23 mg/L port 4 on day 90. The deterioration of Cr(VI) reduction was due to decreasing pH 

(5.2) in the system. The decrease in pH values was ascribed to the fermentation of glucose 

forming several types of organic acids by different bacterial species which resulted in a 

subsequent drop in medium pH (Upadhyay et al., 2017; Cherif-silini et al., 2013; Shukla et 

al., 2012; Sanghi & Srivastava, 2010). These findings demonstrate the significance of metal-

cell interactions within the bioreactive permeable barrier matrix in reducing Cr(VI). 
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Figure 5-4: Cr(VI) concentration across the reactor at (a) 45 mg/L, (b) 65 mg/L, and (c) 65 mg/L and 

external carbon source 
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MICROBIAL CULTURE DYNAMICS  

Changes to microbial culture composition after 13 weeks (90 days) of exposure to Cr(VI) 

were monitored by the 16S rRNA fingerprinting method. The results are presented in Figure 

5-5 and Table 5-2, and the predominant species under nutrient and oxygen stress conditions 

were the Pseudomonas groups – Pseudomonas fluorescens, Pseudomonas shahriarae, 

Pseudomonas hibiscicola, Pseudomonas gessardi, Pseudomonas geniculata and 

Comamonas testosterone and Stenotrophomonas maltophilia at 100% identity index. These 

bacterial species are different from the initially identified species before the operation. The 

significant changes in the microbial community after the reactor operation may be due to 

operating the reactor under different conditions. It is well known that changes in carbon 

source in the reactor may effectively change the microbial species in the system (Wall & 

Krumholz, 2006). Also, the pH changes in the system was significant, which may have 

resulted in a microbial shift in the reactor (Pal et al., 2005). 
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Figure 5-5: Phylogenetic tree showing the microbial shift and diversity after 90 days of operation 

Table 5-2: Microbial characterisation in the barrier after 90 days of Cr(VI) exposure  

Isolates Blast results Identity index 

Y1 Pseudomonas fluorescens 100 

Y2 Pseudomonas shahriarae 100 

Y3 Comamonas testosterone 100 

Y4 Pseudomonas hibiscicola 100 

Y5 Stenotrophomonas maltophilia 100 

Y6 Pseudomonas gessardii 100 

Y7 Pseudomonas geniculata 100 
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PRB COST 

Although this study did not focus on or perform any cost analysis for the biobarrier system, 

it important to have an understanding how expensive similar system were. It is understood 

that after PRB systems are installed, maintenance costs are very low for at least five to ten 

years. It is expected that there should be no other operating cost, except for the costs of 

monitoring performance and utility (Bortone et al., 2013). The use and selection of reactive 

medium is based on various conditions such as the type of target contaminants (e.g. organic 

or inorganic), their concentration, mechanisms needed to remove them (biodegradation, 

adsorption, etc.), and hydrological conditions of the aquifer, environmental effects, 

availability and cost of materials (Rad & Fazlali, 2020; Naidu et al., 2014).  

According to the PRB cost analysis conducted by Bortone et al. (2013), it found that the 

cost of the reactive material exceeded 70% of the total the PRB cost. While Rad & Fazlali 

(2020) showed that of the total PRB cost, 37% was related to construction costs and 67% 

was the cost of reactive material used in PRB. These clearly shows that reactive medium 

used in the PRB systems contributes a large portion of the total cost. Therefore, using a 

low-cost reactive material such as wastewater sludge could make this technique cheaper. 

SUMMARY 

The effectiveness of bioremediation of Cr(VI) contaminated water using biological 

permeable reactive barrier technology was evaluated through bench-scale studies. 

Successful Cr(VI) reduction was achieved over the 90 days operational period of the BPRB 

system. Therefore, it can be concluded that the indigenous bacteria obtained in a wastewater 

treatment plant were able to effectively treat Cr(VI) with or without any biostimulation. The 
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results suggest that indigenous bacterial strains have potential application for Cr(VI) 

remediation in contaminated environments. These results could also be effective in 

optimizing and improving the operation and performance of in situ bioremediation of Cr(VI) 

at the target site. Further studies are required to understand the interaction of bacteria with 

other heavy metals that co-exist with Cr(VI) in the environment and to evaluate the effect of 

operating the BPRB under various HRTs while occasionally backwashing or dislodging the 

accumulated precipitate from the system. 
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 MODELLING BIOLOGICAL Cr(VI) REDUCTION 

IN A BATCH SYSTEM 

INTRODUCTION 

The microbial reduction of Cr(VI) to Cr(III) has been shown to be a valuable, promising, 

and cost-effective approach for Cr(VI) remediation (Tan et al., 2020; Kholisa et al., 2021; 

Zeng et al., 2019). The biologically mediated Cr(VI) reduction is a complex process in the 

environment. To simplify matters in this study, the Cr(VI) reduction rate in the system is 

time-dependent, hence batch experiments were first conducted on the isolated mixed culture 

from the Cr(VI) environment. The effect of Cr(VI) on the reduction rate was evaluated at 

various initial Cr(VI) concentrations ranging from 50 to 400 mg/L, and the results were 

discussed in Chapter  4. A clear interrelation between the Cr(VI) reduction rate and the 

bacterial activity was observed as Cr(VI) reduction rate decreased with increasing initial 

Cr(VI) concentration. Furthermore, the bacterial cells were inhibited at high initial Cr(VI) 

concentrations due to the toxicity of Cr(VI). Similar observations were observed in several 

studies by Molokwane et al. (2008); Nkhalambayausi-Chirwa & Wang (2004); and Shen & 

Wang (1994), in which both bacteria growth and Cr(VI) reducing activity in pure and mixed 

cultures were inhibited by high Cr(VI) concentration. The experimental data obtained in this 

study was used to estimate Cr(VI) biokinetics using an enzyme-based model. The model was 

primarily developed to validate the toxic effect of Cr(VI) by integrating enzyme kinetics and 

Cr(VI) reduction capacity. The reduction capacity describes the maximum amount of Cr(VI) 

that a batch culture can reduce, and the loss of Cr(VI) reduction capacity in the bacterial 

cultures may be associated with the toxic effects of Cr(VI).  
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MODEL DEVELOPMENT FOR ENZYMATIC Cr(VI) REDUCTION 

The biological reduction of Cr(VI) is facilitated through the membrane-electron transport 

mechanism in CRB (Shen & Wang, 1994). Viamajala et al. (2003) proposed that Cr(VI) 

reduction is mediated by the enzymes that are not substrate-specific for Cr(VI) and that 

“chromate reductases” may be unanticipated contributors to Cr(VI) reduction while 

achieving other physiological functions. There are numerous Cr(VI) reducing species of 

bacteria that exist in mixed cultures and their net Cr(VI) reducing activity may be described 

by one composite enzyme, Et. 

From the first principles, the single enzymic kinetic expression is based on the following 

reaction: 

   
 Cr(VI) + E           E*Cr(VI)           E + Cr(III) 6-1 

where: E = the Cr(VI) reductase enzyme for mixed culture which is proportional to biomass 

concentration X (ML-3); E*Cr(VI) = the transitional enzyme-Cr(VI) complex; ka = rate 

constant for complex formulation, kb = rate constant for reverse complex formulation, kd = 

rate constant for Cr(IV) formation. 

Let C be the Cr(VI) concentration and E*Cr(VI) be E* 

Therefore, the enzymatic rate of formation of E* from reaction 6-1 is expressed as follows: 

 

 
𝑑𝑑𝐸𝐸∗

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝑚𝑚𝐶𝐶(𝐸𝐸 − 𝐸𝐸∗) − 𝑘𝑘𝑏𝑏𝐸𝐸∗ − 𝑘𝑘𝑑𝑑𝐸𝐸∗ 6-2 

kb 
kd ka 
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Under steady-state conditions, E* can either be formed or destroyed spontaneously such that 

that  𝑑𝑑𝑑𝑑
∗

𝑑𝑑𝑑𝑑
 is approaching zero, hence 𝑑𝑑𝑑𝑑

∗

𝑑𝑑𝑑𝑑
≈ 0. Therefore, Equation 6-2 become. 

 
𝑘𝑘𝑚𝑚𝐶𝐶(𝐸𝐸 − 𝐸𝐸∗) − 𝑘𝑘𝑏𝑏𝐸𝐸∗ − 𝑘𝑘𝑑𝑑𝐸𝐸∗=0 6-3 

Solving Equation 6-3 for E* the resulting expression was obtained: 

 𝐸𝐸∗ =
𝑘𝑘𝑚𝑚𝐶𝐶𝐸𝐸

𝑘𝑘𝑚𝑚𝐶𝐶 + 𝑘𝑘𝑏𝑏 + 𝑘𝑘𝑑𝑑
=

𝐶𝐶𝐸𝐸

𝐶𝐶 + 𝑘𝑘𝑏𝑏 + 𝑘𝑘𝑑𝑑
𝑘𝑘𝑚𝑚

 6-4 

From Equation 6-2, the Cr(VI) reduction rate can be expressed as follows:  

 −
𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

=
𝑘𝑘𝑑𝑑𝐶𝐶𝐸𝐸

𝐶𝐶 + 𝑘𝑘𝑏𝑏 + 𝑘𝑘𝑑𝑑
𝑘𝑘𝑚𝑚

 6-5 

Equation 6-5 is similar to Monod kinetic equation 6-6 

 −
𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

=
𝑘𝑘𝑛𝑛𝐶𝐶
𝐶𝐶 + 𝐾𝐾𝑐𝑐

𝑋𝑋 6-6 

where: C = Cr(VI) concentration at time, t (mg/L); kd is equivalent to the maximum specific 

Cr(VI) reduction rate, km (mg Cr(VI)/ mg cells/h); 𝑘𝑘𝑏𝑏+𝑘𝑘𝑑𝑑
𝑘𝑘𝑎𝑎

 is equivalent to the half-saturation 
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constant, Kc (mg/L); E = the Cr(VI) reductase enzyme for mixed culture which is 

proportional to biomass concentration, X (mg cells/L). 

The extent of Cr(VI) reduction in batch systems is proportional to the number of cells in the 

reactor and the capacity of Cr(VI) reduction (Rc) of each cell. For a batch system where, pre-

concentrated washed resting cells are used, cell growth kinetics become irrelevant as the 

concentration of cells is too high to allow the production of new cells. Thus the amount of 

Cr(VI) reduced is proportional to the number of cells inactivated by Cr(VI) (Shen & Wang, 

1994). Therefore, the biomass concentration at any time can be estimated using Equation 

6-7: 

 𝑋𝑋 = 𝑋𝑋0 − �
𝐶𝐶0 − 𝐶𝐶
𝑅𝑅𝑐𝑐

� 6-7 

where: C0 = initial Cr(VI) concentration (mg/L); Rc is the Cr(VI) reduction capacity of cells 

(mg Cr(VI)/ mg cells); X0 is the initial biomass concentration  (mg cells/L). 

Substituting Equation 6-7 into Equation 6-6 yields a modified Monod kinetic equation: 

 −
𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

=
𝑘𝑘𝑛𝑛𝐶𝐶
𝐶𝐶 + 𝐾𝐾𝑐𝑐

�𝑋𝑋0 −
𝐶𝐶0 − 𝐶𝐶
𝑅𝑅𝑐𝑐

� 6-8 

In a study by Molokwane (2010), a modified Monod model (Equation 6-9) to account for 

non-competitive inhibition rate kinetics due to an increase in initial Cr(VI) concentration 

was proposed.  
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 −
𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

= �
𝑘𝑘𝑛𝑛

1 + 𝐶𝐶0
𝐾𝐾𝑖𝑖�
� �

𝐶𝐶
𝐾𝐾𝑐𝑐 + 𝐶𝐶

� �𝑋𝑋0 −
𝐶𝐶0 − 𝐶𝐶
𝑅𝑅𝑐𝑐

� 6-9 

Ki is the kinetic inhibition constant in mg/L.  

MODELING Cr(VI) REDUCTION BY BACTERIA CONSORTIUM 

Cr(VI) bioreduction simulation 

The batch experimental data obtained was simulated using the model in Equation 6-8. The 

unknown model kinetic parameters, km, Kc, and Rc were estimated by fitting the model to the 

experimental data using Aquasim. For each parameter, initial values were guessed, and the 

simulation was carried out. Upper and lower constraints were set for each parameter to omit 

nonsensical or unsound parameter values. Re-estimation of model parameters was done 

repeatedly until the best fit values were obtained. Parameter optimization was done using 

the objective function in Equation 3-9. 

The model kinetic parameters were initially estimated using the 100 mg/L Cr(VI) initial 

concentration data. The obtained model parameters rom 100 mg/L Cr(VI) were used to 

simulate the entire range of Cr(VI) concentrations and the results were plotted against the 

experimental data as shown in Figure 6-1. The model captured well the trend of data under 

all experimental conditions. This confirms that the kinetic parameter values obtained at 100 

mg Cr(VI)/L simulated Cr(VI) reduction data very well for a broader range of Cr(VI) 

concentrations. Although, there was a slight difficulty in fitting higher concentration above 

150 mg/L mainly due to excessive loss of viable cells as shown in Table 6-1. This was 

expected due to Cr(VI) toxicity towards the biomass, and it is consistent with the results 
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obtained in Chapter 4. The model fitted reasonably well with the experimental data at a wide 

range of Cr(VI) initial concentrations with best fits obtain at 50 mg/L and 100 mg/L initial 

Cr(VI) concentrations as shown by a lower Chi2. 
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Figure 6-1: Batch consortium model simulation at various initial Cr(VI) concentration of (a) 50 mg/L, 

(b) 100 mg/L, (c) 150 mg/L, (d) 200 mg/L, (e) 300 mg/L and, (f) 400 mg/L 
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Table 6-1:  Optimum kinetic parameters in batch consortium culture 

Initial 

Concentration 

Kc 

 

km 

 

Rc 

 
Chi2 

(mg/L) (mg/L) (mg/L.h-1) (mg/mg)  

50 932.85 0.1041 0.9285 47.08 

100 900.21 0.1009 0.9543 67.11 

150 908.1 0.1007 0.9631 323.66 

200 919.94 0.1007 0.9543 2933.49 

300 904.62 0.1061 0.9401 3205.06 

400 905.44 0.1225 0.8956 744.26 

Sensitivity Analysis 

The sensitivity (identifiability and uncertainty) analysis was performed to evaluate and 

compare the effect model parameters (Equation 6-8). Figure 6-2 shows the dependency of 

sensitivity response curve of km, Kc and Rc. The sensitivity decreases with increasing km until 

reaches minimum approximately 3 h then increases again to zero while Kc was the opposite. 

This high response in the first 3 h indicates high cell Cr(VI) reduction activity. 
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Figure 6-2: Batch consortium sensitivity at 100 mg/L with respect to km, Kc and Rc. 

 SUMMARY  

In this chapter, the kinetic parameters affecting Cr(VI) reduction rate in a batch system 

employing consortium culture of bacteria were evaluated using a modified non-competitive 

inhibition model based on the Michaelis-Menten model. This enzymatic model was selected 

as it is capable to describe the complexity of microbial kinetics for Cr(VI) reduction in 

previous studies. The estimated (km, Kc and Rc) values using 100 mg/L initial Cr(VI) 

concentration data were able to predict Cr(VI) reduction for a broader range of initial Cr(VI) 

concentrations. The sensitivity of the model on each parameter was also assessed and the 

results showed kinetic parameters km and Kc to be significant. This indicate that the two 

kinetic parameters would be important in the scale up process of the reactor. This model 

provides a quantitative understanding of the kinetics for Cr(VI) reduction by microorganisms 
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and could be valuable for estimating reactor designs and enhanced for advance reactive 

transport modelling. 
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 MODELLING BIOLOGICAL Cr(VI) REDUCTION 

IN A PERMEABLE BIOREACTIVE BARRIER SYSTEM 

INTRODUCTION  

Nearly, all surface water in the environment do come into contact with groundwater one way 

or another. This interaction does not only influence water quantity, but also the fate, transport 

and transformation of solute and pollutants (Zheng et al., 2020). Given the toxicity of Cr(VI), 

the interaction between surface and groundwater is an important factor that cannot be 

ignored in the study of the transport and transformation of Cr(VI). Due to health and 

environmental threats posed by Cr(VI), needs to be reduced to its stable form Cr(III) for its 

remediation. From the previous studies, it has been shown that the Cr(VI) in the environment 

can be reduced by the presence of ferrous ions, and sulphides, in addition, it can be used as 

a terminal electron acceptor by native microorganisms during organic matter degradation 

(Wang & Choi, 2013). This indicates that both biotic and abiotic processes have an effect on 

the fate and migration of Cr(VI) in the environment (Ghiasi et al., 2020). Thus, it is vital to 

develop a mathematical model to improve our understanding of how various biogeochemical 

and physical processes affect Cr(VI) fate and transport and to predict this phenomenon. The 

general mathematical framework is based on the effects of complex sets of microbiological 

and geochemical reactions on Cr(VI) transport and bioavailability. 
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MATHEMATICAL MODELS 

Generally, transport and removal of Cr(VI) in aquifers is predominantly due to three 

mechanisms, (i) dispersion governed by the interstitial velocity v (LT-1), (ii) mass transport 

into media particles governed by mass transport rate coefficient kL (LT-1), (iii) adsorption 

rate governed by mass transport and surface reaction, (iv) Cr(VI) reduction governed by the 

reaction rate kinetics, and (v) cell replacement rate with the cells acting as the catalyst in the 

Cr(VI) reduction process. These fundamental processes in the reactor during transient state 

operation can be represented by Equations 7-1 to 7-5 below: 

Advection 

The advection transport is defined as the movement of dissolved Cr(VI) species from one 

point to another governed by bulk movement  of fluid is described as follows: 

 −𝑟𝑟𝑚𝑚𝑑𝑑𝑎𝑎 = −
𝑑𝑑(𝐶𝐶𝑉𝑉)
𝑑𝑑𝑑𝑑

= 𝐸𝐸𝐴𝐴(𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐶𝐶) 7-1 

 

where: radv is the mass rate movement of Cr(VI) (MT-1); C is the effluent Cr(VI) 

concentration at any time, t (ML-3); V is the volume of the reactor (L3); t = time (T); Cin is 

the influent Cr(VI) concentration (ML-3); A is the cross-sectional area of the reactor (L2); v  

is the flow velocity (LT-1); and Av is equivalent with influent or compartment flow rate (Q) 

(L3T-1). 

Molecular Dispersion 

The mass transport of all dissolved species across the boundary layer (Lw) into the biofilm is 
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due to the random thermal motion of molecules at temperatures above absolute zero. Mass 

transfer within the attached cell layer follows Fick’s law of diffusion. The mass transfer is a 

function of external mass transfer resistance (kL) across the biofilm surface area and bulk 

Cr(VI) concentration is described by Equation 7-2:  

 −
𝑑𝑑(𝐶𝐶𝑉𝑉)
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝐿𝐿𝐸𝐸𝑓𝑓
𝑑𝑑𝐶𝐶
𝑑𝑑𝜕𝜕

=
𝑘𝑘𝐿𝐿
𝐿𝐿𝑤𝑤

𝐸𝐸𝑓𝑓(𝐶𝐶𝑏𝑏 − 𝐶𝐶𝑚𝑚) = −𝐽𝐽𝑐𝑐𝐸𝐸𝑓𝑓 7-2 

where: kL is the dispersion coefficient of Cr(VI) in water (L2T-1);  Lw is the thickness of 

biofilm (L); Af is the biofilm surface area (L2); Cb is the bulk liquid Cr(VI) concentration at 

time, t ( (ML-3); Cs is the liquid-biofilm interface Cr(VI) concentration (ML-3). 

In most mass transfer limited reactions Cb ˃˃> Cs, thus Cs is negligible. Equation 7-2 is 

modified to Equation 7-3. 

 −𝐽𝐽𝑐𝑐𝐸𝐸𝑓𝑓 = �
𝑘𝑘𝐿𝐿𝐶𝐶𝑏𝑏
𝐿𝐿𝑤𝑤

�𝐸𝐸𝑓𝑓 7-3 

Adsorption 

The rate of removal of Cr(VI) in the reactor is determined by the rate at which the Cr(VI) is 

transported and adsorbed in the reactor's biofilm, as well as the reaction taking place on the 

surface area. The Cr(VI) removal rate by adsorption is described by Equation 7-4: 
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 −𝑞𝑞𝑐𝑐 = −
𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑚𝑚𝑑𝑑(𝐶𝐶𝑒𝑒𝑒𝑒 − 𝐶𝐶) 7-4 

where: qc is the rate of Cr(VI) removal by adsorption (ML-3T-1); kad is the Cr(VI) adsorption 

rate coefficient (T-1); Ceq is the Cr(VI) equilibrium concentration at the surface (ML-3). 

Microbial reduction  

The bioreactor in this study was operated predominately under oxygen-stressed conditions. 

Molokwane and co-authors (2008) developed an expression to describe microbial Cr(VI) 

reduction rate under anaerobic conditions in Equation 7-5. It has been shown that resting 

cells are able to reduce Cr(VI) without cell growth in batch studies (Molokwane et al., 2008; 

Li et al., 2019). Wang and Shen (1997) and Nkhalambayausi-Chirwa and Wang, (2004) 

stated that under resting cell conditions the amount of Cr(VI) reduced is proportional to the 

cells inactivated by Cr(VI). 

 
−𝑟𝑟𝑐𝑐 = −

𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

=
𝑘𝑘𝑛𝑛𝐶𝐶

(𝐶𝐶 + 𝐾𝐾𝑐𝑐) �𝐾𝐾�1− 𝐶𝐶𝑟𝑟
𝐶𝐶𝑖𝑖𝑖𝑖

��
�𝑋𝑋0 −

𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐶𝐶
𝑅𝑅𝑐𝑐

� 
7-5 

 

where: rc is the Cr(VI) reduction rate (ML-1T-1);  K is the dimensionless Cr(VI) inhibition 

constant (MM-1); Cr  is the Cr(VI) toxicity threshold concentration. 
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REACTOR MASS BALANCE 

The overall reactor mass balance which incorporates all the non-linear ODEs (Equation 7-1 

to Equation 7-5) for modelling the fate and transport of Cr(VI) in a packed-bed reactor within 

the transient state, is presented as follows:  

 −
𝑑𝑑(𝐶𝐶𝑉𝑉)
𝑑𝑑𝑑𝑑

= −𝑟𝑟𝑚𝑚𝑑𝑑𝑎𝑎 − 𝐽𝐽𝑐𝑐𝐸𝐸𝑓𝑓 − (𝑞𝑞𝑐𝑐 + 𝑟𝑟𝑐𝑐)∆𝑉𝑉 7-6 

Substitution Equation 7-1 - Equation 7-5 into Equation 7-6 to obtain a transient state 

expression. 

−
𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

=
𝑄𝑄
𝑉𝑉

(𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐶𝐶) + �
𝑘𝑘𝐿𝐿𝐶𝐶𝑏𝑏
𝐿𝐿𝑤𝑤

�
𝐸𝐸𝑓𝑓
𝑉𝑉

+
𝑘𝑘𝑛𝑛𝐶𝐶

(𝐶𝐶 + 𝐾𝐾𝑐𝑐)�𝐾𝐾�1− 𝐶𝐶𝑟𝑟
𝐶𝐶𝑖𝑖𝑖𝑖

��
�𝑋𝑋0 −

𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐶𝐶
𝑅𝑅𝑐𝑐

� + 𝑘𝑘𝑚𝑚𝑑𝑑(𝐶𝐶𝑒𝑒𝑒𝑒 − 𝐶𝐶) 
7-7 

Data simulation and optimisation were performed using Aquasim 2.0 to obtain kinetic 

parameter values. This was done by setting upper and lower limits for each parameter to 

exclude invalid parameter values. In the event that the estimated parameter value was close 

to the limit, then the limit was relaxed until it did not force the model. This process was 

repeated until the estimated parameter values lie away from the lower and upper limit values. 

The continuous flow reactors in this study were modelled as plug flow reactors with the 

Cr(VI) removal using Equation 7-7 under the following assumption: 

 The flow in the reactor is plug and one-dimensional  

 The porous media is homogenous. 

 pH and Temperature are constant at steady-state operation. 
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 The reactor approaches steady-state operation. 

 All substances dissolved in water flow. 

 Due to biotransformation, Cr(III) formed is either precipitated and retained or 

adsorbed onto the soil matrix almost immediately.  

 Some microbes are mobile, and some are immobile. 

MODEL SIMULATION  

The transport of Cr(VI) without the biotransformation in the reactor has been shown 

previously in Figure 5-1(a). The mass balance model (Equation 7-7) was applied to the 

operation of the cell-free reactor and the results showed a characteristic exponential curve 

indicating saturation of physical processes in the system within the first 5 days. The cell-free 

reactor data was used to estimate the physical parameters in the system. Nkhalambayausi-

Chirwa and Wang (2001) and Igboamalu and Chirwa (2015) in their respective studies 

observed no significant Cr(VI) adsorption and neither transformation nor accumulation 

during the operation of the cell-free reactor. This suggests that in the long term, Cr(VI) 

removal is mainly due to bioreduction by bacteria, advection and mass transport. Therefore, 

adsorption parameters in Equation 7-7 were not included in the simulation.  

To simulate the BRP reactor performance accurately, the viable biomass in the reactor needs 

to be predicted precisely. Direct measurement of viable cell concentration inside the reactor 

proved to be impractical.  As a result, biomass concentration was based on the initial biomass 

concentration obtained in the batch studies. The initial guess parameters for simulation of 

the Cr(VI) removal rate across reactors were based on previous studies (Nkhalambayausi-

Chirwa & Wang, 2005; Molokwane & Chirwa, 2013; Mtimunye & Chirwa, 2014). 
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Numerical solutions without practical initial guess parameters or constraints may result in 

converging to false optimum values for various parameters. To counter the false optimum 

values, upper and lower constraints were set for each parameter to omit invalid parameter 

values. Using the optimised parameter values and other operating parameters, the model 

(Equation 7-7) was used to calculate the time series Cr(VI) concentration within the reactor. 

The estimated Cr(VI) concentration data was then compared to measured experimental data. 

The derivation between the experimental and estimated Cr(VI) concentrations was used to 

determine the accuracy of the model using Equation Error! Reference source not found..  

Optimum values of kinetic parameters for Cr(VI) reduction in the biological barrier were 

found as follows: km  = 1.068 mg/L/d,  Kc = 11.14 mg/L, and Rc = 0.75 mg/mg for Cr(VI) 

reduction in the biological barrier and these are summarised in Table 7-1. Figure 7-1 shows 

the results of influent and effluent simulation within the biological barrier reactor. The 

kinetic parameters km (1.068 mg/L/d) and Kc (11.14 mg/L) obtained from the continuous 

flow bioreactor for Cr(VI) removal show that the biological activity was lower than observed 

previously in the batch system km (0.1043 mg/L/h) and Kc (786.4 mg/L). Cr(VI) reduction 

rates were expected to be higher in the continuous flow reactor than in the batch process due 

to the shielding effect of mass transport resistance against toxic effects on cells (Vickstrom 

et al., 2017; Azizian & Semprini, 2016). Semprini and McCarty (1991) further explained 

that bacteria culture acclimatises to toxic compounds and results in higher bioreduction of 

the toxic organic compounds due to longer contact times in continuous-flow reactor systems. 

However, in this study, the lower Cr(VI) reduction rates in the continuous flow may be due 

to a decrease in pH in the reactor. Therefore, it would be interesting to study how would a 

controlled pH inside the reactor affect the Cr(VI) bioreduction rates and the overall 

performance of the reactor. The model predicted effluent Cr(VI) concentration with more 
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than 99.6% confidence. Overall, the transient-state model successfully simulated the trends 

in influent and effluent Cr(VI) concentrations under different Cr(VI) loadings. Even though 

the effluent Cr(VI) concentration trend in the reactor was successfully traced by the model, 

adjustments would be needed to take into account the loss of working volume and decreasing 

flow rate due to the growth of biomass in the reactor. 

Table 7-1: Physical parameters and optimum values of kinetic parameters for Cr(VI) reduction in the 

biological barrier 

Parameter Description Units Optimum 

km Specific Cr(VI) reduction reaction rate mg/L/d 1.068 

Kc Half velocity concentration mg/L 11.14 

Rc Cell Cr(VI) reduction capacity mg/mg 0.75 

θ Porosity _ 0.42 

rho_s Solid particle density kg/m3 2300 

Qin Inflow rate m3/d 0.0048 

kL Dispersion coefficient m2/d 6.7x10-6 

A Cross-sectional area m2 0.0165 
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Figure 7-1: Simulation and optimization of influent and effluent Cr(VI) in the biological barrier 

SUMMARY 

This chapter evaluated the transient-state model defined by a complex system of non-linear 

equations to optimise kinetic parameters in a biological system and to predict effluent Cr(VI) 

concentration under different operation conditions using the optimum parameter values. The 

continuous-flow packed bed reactor was modelled as a plug flow system based on a one-

dimensional advective-diffusive transport. The obtained kinetic parameters in this study 

showed lower removal kinetics than those obtained previously in batch systems. This was 

ascribed to low pH values in the reactor which reduced the bacteria activity. The developed 

model predicted the Cr(VI) effluent well under various Cr(VI) influent concentration 

loadings (40–60 mg/L) with 99.6% confidence. Despite the fact, that the effluent Cr(VI) 

concentration trend in the reactor was successfully traced by the model, adjustments would 
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be needed to take into account the loss of working volume and decreasing flow rate due to 

the growth of biomass in the reactor. The model modification may result in a proper 

application in engineered biological systems for the treatment of groundwater with higher 

Cr(VI) concentrations and multiple toxic contaminants.
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 CONCLUSION AND RECOMMENDATIONS 

CONCLUSIONS  

Environmental pollution is a global problem that affects both developed and developing 

countries by contaminating soil and water, threatening biodiversity, ecosystems, and human 

health. South Africa holds the largest chrome ore reserves in the world, and it is one of the 

largest producers of ferrochrome. The production process of steel and chromate generates 

enormous quantities of ferrochrome wastes which are discharged in dumps. These waste has 

been shown to contain significantly higher levels of Cr(VI) than the maximum acceptable 

risk concentration that is allowed for waste disposal in South Africa, which becomes a 

serious concern for soil and groundwater pollution. Thus, research into the remediation of 

Cr(VI) pollution has attracted widespread attention. 

The current study was aimed at exploring and evaluating the prospect of Cr(VI) 

contamination control in groundwater aquifers at contaminated sites using natural microbial 

processes. Experiments were conducted in batch and continuous flow bioreactor systems for 

Cr(VI) reduction using wastewater sludge microorganisms. 

Batch experiments under varying initial Cr(VI) concentrations of 50 - 400 mg/L in mineral 

salt media with harvested and concentrated cells were capable of reducing Cr(VI) at 

concentrations, up to 400 mg/L. Complete Cr(VI) reduction of 50 mg/L concentration was 

observed in 6 h under aerobic and neutral pH conditions. The Cr(VI) reduction rate decreases 

with increasing initial Cr(VI) concentration, due to Cr(VI) toxicity on bacterial cells. It was 

observed that Cr(VI) reduction increases with increasing the initial pH of the solution until 
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the optimal pH of 7, a further increase in pH results in decreased Cr(VI) removal. Co-existing 

heavy metals did not have an effect on Cr(VI) reduction at both low and high heavy metal 

concentrations with exception of Cu2+ and Zn2+ which enhanced Cr(VI) reduction, while 

Pb2+ and Ni2+ showed inhibitory effects at high concentrations. 

The effectiveness of bioremediation of Cr(VI) contaminated water using biological 

permeable reactive barrier technology was evaluated through bench-scale studies. 

Successful Cr(VI) reduction was achieved with 95.9% removal over the 90 days operational 

period of the BPRB system. When glucose was used as the carbon source, a drastic decline 

in effluent pH from 6.91 to below 5.5 was observed in the effluent. The decrease in pH 

values was ascribed to the oxidation of glucose forming several types of organic acids by 

different Bacillus species and other bacterial species which result in a subsequent drop in 

medium pH. However, it did not influence the overall reactor performance. The results 

suggest that the biological permeable reactive barrier technology using indigenous bacterial 

strains has potential application for Cr(VI) remediation in contaminated environments.  

The reaction kinetic parameters km, Kc, Rc, and kL were estimated successfully using both the 

batch and continuous experiment data, and this was simulated using Aquasim 2.0. The batch 

modelling results showed that the performance of the mixed bacteria culture was well 

represented by the non-competitive model with cell inactivation for various Cr(VI) initial 

concentrations (50 mg/L - 400 mg/L) under aerobic conditions. Though there was slight 

difficulty in fitting Cr(VI) concentration above 200 mg/L due to excessive loss of biomass 

which is not captured by the model. The sensitivity of the estimated parameters showed that 

km, and Kc were the most sensitive parameters to the model prediction than Rc.  
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The mass transport kinetics and Cr(VI) removal in the permeable reactive barrier was 

represented by a diffusion-reduction model formulated using a set of ODEs which were 

solved by Aquasim for numerical solutions. The model simulated the operation of a mixed 

reactor with dispersion and a plug flow regime. The developed model predicted the Cr(VI) 

effluent well under various Cr(VI) influent concentration loadings (40–60 mg/L) with 99.6% 

confidence. 

RECOMMENDATIONS 

The studies presented here provide insight into fundamental processes involved in the areas 

of Cr(VI)  mass transport in aquifers, and the application of wastewater sludge as a 

permeable reactive barrier for Cr(VI) remediation. This biological permeable reactive barrier 

technology is presently in its infancy, and future studies are anticipated to continually fill in 

the existing gaps of knowledge. Some specific recommendations for future work being 

considered are as follows. 

The permeable reactive barrier reactor was operated for 90 days and therefore longer study 

period is required to understand how reactor performance will be affected.  

Further studies are required to understand the interaction of bacteria with other heavy metals 

that co-exist with Cr(VI) in the environment and also to evaluate the effect of operating the 

BPRB under various HRTs while occasionally backwashing or dislodging the accumulated 

precipitate from the system. 

To evaluate the effect of controlling pH inside the reactor on the overall performance of 

permeable reactive barrier.  
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Finally, experiments should be conducted with real contaminated groundwater to study the 

effect of different chemical compositions and conditions of contaminated water on the 

Cr(VI) removal efficiency by bacteria and the hydraulic behaviour of the used mixtures. 
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APPENDIX A: AQUASIM SIMULATION 

BATCH STUDIES    

************************************************************************ 

AQUASIM Version 2.0 (win/mfc) - Listing of System Definition 

************************************************************************

Date and time of listing:  01/19/2022  18:48:22 

************************************************************************ 

Variables 

************************************************************************ 

C:             Description:          Cr(VI) concentration at time t 

               Type:                 Dyn. Volume State Var. 

               Unit:                 ML-1 

               Relative Accuracy:    1e-006 

               Absolute Accuracy:    1e-006 

------------------------------------------------------------------------ 

C_0:           Description:          initial Cr(VI) concentration 

               Type:                 Constant Variable 

               Unit:                 ML-3 

               Value:                50 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



       

148 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              55 

               Sensitivity Analysis: inactive 

               Parameter Estimation: inactive 

------------------------------------------------------------------------ 

C_meas:        Description:          Cr(VI) concentration measured 

               Type:                 Real List Variable 

               Unit:                 ML-3 

               Argument:             t 

               Standard Deviations:  global 

               Rel. Stand. Deviat.:  0 

               Abs. Stand. Deviat.:  1 

               Minimum:              0 

               Maximum:              1e+009 

               Interpolation Method: linear interpolation 

               Sensitivity Analysis: inactive 

               Real Data Pairs (9 pairs): 

                  0               45.733607 
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                  1               32.243169 

                  2               17.489071 

                  3               7.2909836 

                  4               3.1789617 

                  5               0 

                  6               0 

                  7               0 

                  24              0 

------------------------------------------------------------------------ 

K_c:      Description:          Half velocity constant 

               Type:                 Constant Variable 

               Unit:                 ML-3 

               Value:                1072.7685 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              1500 

               Sensitivity Analysis: inactive 

               Parameter Estimation: active 

------------------------------------------------------------------------ 
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k_m:      Description:      maximum specific Cr(VI) reduction rate coefficient 

               Type:                 Constant Variable 

               Unit:                 T-1 

               Value:                0.62412878 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              10 

               Sensitivity Analysis: inactive 

               Parameter Estimation: active 

------------------------------------------------------------------------ 

R_c:           Description:          finite Cr(VI) reduction capacity 

               Type:                 Constant Variable 

               Unit:                 ML-3 

               Value:                26.593488 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              50 

               Sensitivity Analysis: inactive 

               Parameter Estimation: active 
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------------------------------------------------------------------------ 

t:             Description:          time 

               Type:                 Program Variable 

               Unit:                 h 

               Reference to:         Time 

------------------------------------------------------------------------ 

X_0:           Description:          initial active cell concentration 

               Type:                 Constant Variable 

               Unit:                 ML-3 

               Value:                994.87565 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              1500 

               Sensitivity Analysis: inactive 

               Parameter Estimation: active 

************************************************************************ 

 

 

************************************************************************ 
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Processes 

************************************************************************ 

Cr_reduction:  Description:          Cr(VI) reduction 

               Type:                 Dynamic Process 

               Rate:                 (k_m*C/(K_c+C))*(X_0-((C_0-C)/R_c)) 

               Stoichiometry: 

                 Variable : Stoichiometric Coefficient 

                 C : -1 

************************************************************************ 

************************************************************************ 

Compartments 

************************************************************************ 

Batch100:      Description:          Batch reactor with 100 mg/L Cr(VI)  

               Type:                 Mixed Reactor Compartment 

               Compartment Index:    0 

               Active Variables:     C 

               Active Processes:     Cr_reduction 

               Initial Conditions: 

                 Variable(Zone) : Initial Condition 
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                 C(Bulk Volume) : C_0 

               Inflow:               0 

               Loadings: 

               Volume:               1 

               Accuracies: 

                 Rel. Acc. Q:        0.001 

                 Abs. Acc. Q:        0.001 

                 Rel. Acc. V:        0.001 

                 Abs. Acc. V:        0.001 

************************************************************************ 

************************************************************************ 

Definitions of Calculations 

************************************************************************ 

CrReduction:   Description:          Cr(VI) reduction 

               Calculation Number:   0 

               Initial Time:         0 

               Initial State:        given, made consistent 

               Step Size:            0.01 

               Num. Steps:           12500 
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               Status:               active for simulation 

                                     inactive for sensitivity analysis 

************************************************************************ 

************************************************************************ 

Definitions of Parameter Estimation Calculations 

************************************************************************ 

fit1:          Description: 

               Calculation Number:   0 

               Initial Time:         0 

               Initial State:        given, made consistent 

               Status:               active 

               Fit Targets: 

                 Data : Variable (Compartment,Zone,Time/Space) 

                 C_meas : C (Batch100,Bulk Volume,0) 

************************************************************************ 

 

 

 

************************************************************************ 
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Plot Definitions 

************************************************************************ 

Cr:            Description:          Cr(VI) reduction 

               Abscissa:             Time 

               Title:                Cr(VI) reduction 

               Abscissa Label:       Time (h) 

               Ordinate Label:       Cr(VI) concentration (mg/L) 

               Curves: 

                 Type : Variable [CalcNum,Comp.,Zone,Time/Space] 

                 Value : C_meas [0,Batch100,Bulk Volume,0] 

                 Value : C [0,Batch100,Bulk Volume,0] 

************************************************************************ 

************************************************************************ 

Calculation Parameters 

************************************************************************ 

Numerical Parameters:    Maximum Int. Step Size:  1 

                         Maximum Integrat. Order: 5 

                         Number of Codiagonals:   1000 

                         Maximum Number of Steps: 1000 
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------------------------------------------------------------------------ 

                         Fit Method:              simplex 

                         Max. Number of Iterat.:  100 

************************************************************************ 

************************************************************************ 

Calculated States 

************************************************************************ 

Calc. Num.  Num. States Comments 

0           9            Range of Times: 0 - 24 

************************************************************************ 

CONTINUOUS FLOW STUDIES 

************************************************************************ 

AQUASIM Version 2.0 (win/mfc) - Listing of System Definition 

************************************************************************ 

Date and time of listing:  03/15/2022  17:08:47 

************************************************************************ 

Variables 

************************************************************************ 

A:             Description:          Cross-sectional area 

               Type:                 Constant Variable 

               Unit:                 m2 

               Value:                0.0165 

               Standard Deviation:   1 
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               Minimum:              0 

               Maximum:              10 

               Sensitivity Analysis: inactive 

               Parameter Estimation: inactive 

------------------------------------------------------------------------ 

Af:            Description:          Biofilm surface area 

               Type:                 Constant Variable 

               Unit:                 m2 

               Value:                0.095 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              10 

               Sensitivity Analysis: inactive 

               Parameter Estimation: inactive 

------------------------------------------------------------------------ 

Alpha:         Description: 

               Type:                 Formula Variable 

               Unit: 

               Expression:           0.5 

------------------------------------------------------------------------ 

C:             Description:          Cr(VI) concentration 

               Type:                 Dyn. Volume State Var. 

               Unit: 

               Relative Accuracy:    1e-006 

               Absolute Accuracy:    1e-006 

------------------------------------------------------------------------ 

Cin:           Description:          Influent Concentration 

               Type:                 Real List Variable 

               Unit:                 mg/L 

               Argument:             t 
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               Standard Deviations:  global 

               Rel. Stand. Deviat.:  0 

               Abs. Stand. Deviat.:  1 

               Minimum:              0 

               Maximum:              1e+009 

               Interpolation Method: linear interpolation 

               Sensitivity Analysis: inactive 

               Real Data Pairs (82 pairs): 

                  0               43.103825 

                  1               46.027322 

                  2               45.754098 

                  3               46.57377 

                  4               45.918033 

                     .               . 

                     .               . 

                  86              62.47541 

                  87              60.808743 

                  88              63.903825 

                  89              65.754098 

                  90              62.885246 

------------------------------------------------------------------------ 

Cout:          Description:          Effluent concentration 

               Type:                 Real List Variable 

               Unit:                 mg/L 

               Argument:             t 

               Standard Deviations:  global 

               Rel. Stand. Deviat.:  0 

               Abs. Stand. Deviat.:  1 

               Minimum:              0 

               Maximum:              1e+009 
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               Interpolation Method: linear interpolation 

               Sensitivity Analysis: inactive 

               Real Data Pairs (81 pairs): 

                  0               0 

                  1               0 

                  2               0 

                  3               0 

                  4               0 

                     .               . 

                     .               . 

                  86              2.2295082 

                  87              6.3278689 

                  88              7.9672131 

                  89              11.874317 

                  90              21.765027 

------------------------------------------------------------------------ 

Cr:            Description:          Cr(VI) toxicity threshold  

               Type:                 Constant Variable 

               Unit: 

               Value:                10 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              100 

               Sensitivity Analysis: inactive 

               Parameter Estimation: inactive 

------------------------------------------------------------------------ 

K:             Description:          Dimensionless Cr(VI) inhibition con 

                                     stant 

               Type:                 Constant Variable 

               Unit: 
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               Value:                1 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              1000 

               Sensitivity Analysis: inactive 

               Parameter Estimation: inactive 

------------------------------------------------------------------------ 

kad:           Description: 

               Type:                 Constant Variable 

               Unit: 

               Value:                0.41640783 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              1000 

               Sensitivity Analysis: inactive 

               Parameter Estimation: active 

------------------------------------------------------------------------ 

Kc:            Description:          Saturation concentration 

               Type:                 Constant Variable 

               Unit: 

               Value:                0.85661238 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              1000 

               Sensitivity Analysis: inactive 

               Parameter Estimation: active 

------------------------------------------------------------------------ 

kL:            Description:          Dispersion coeffient 

               Type:                 Constant Variable 

               Unit: 
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               Value:                3e-006 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              100 

               Sensitivity Analysis: inactive 

               Parameter Estimation: active 

------------------------------------------------------------------------ 

km:            Description:          Cr(VI) specific reduction rate 

               Type:                 Constant Variable 

               Unit: 

               Value:                1.1482897 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              100 

               Sensitivity Analysis: inactive 

               Parameter Estimation: active 

------------------------------------------------------------------------ 

Lw:            Description:          Biofilm length 

               Type:                 Constant Variable 

               Unit:                 m 

               Value:                0.15 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              10 

               Sensitivity Analysis: inactive 

               Parameter Estimation: inactive 

------------------------------------------------------------------------ 

p:             Description:          Density of sand 

               Type:                 Constant Variable 

               Unit:                 kg/m3 
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               Value:                10 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              3000 

               Sensitivity Analysis: inactive 

               Parameter Estimation: inactive 

------------------------------------------------------------------------ 

Q:             Description:          flow rate 

               Type:                 Constant Variable 

               Unit:                 m3/day 

               Value:                0.0048 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              10 

               Sensitivity Analysis: inactive 

               Parameter Estimation: inactive 

------------------------------------------------------------------------ 

Rc:            Description:          Cell reduction capacity 

               Type:                 Constant Variable 

               Unit: 

               Value:                0.05 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              100 

               Sensitivity Analysis: inactive 

               Parameter Estimation: active 

------------------------------------------------------------------------ 

S:             Description:          Adsorbed Cr(VI) conc 

               Type:                 Dyn. Volume State Var. 

               Unit: 
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               Relative Accuracy:    1e-006 

               Absolute Accuracy:    1e-006 

------------------------------------------------------------------------ 

S_eq:          Description: 

               Type:                 Constant Variable 

               Unit: 

               Value:                0.01 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              100 

               Sensitivity Analysis: inactive 

               Parameter Estimation: inactive 

------------------------------------------------------------------------ 

t:             Description:          time 

               Type:                 Program Variable 

               Unit:                 days 

               Reference to:         Time 

------------------------------------------------------------------------ 

theta:         Description:          Porosity 

               Type:                 Constant Variable 

               Unit: 

               Value:                0.42 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              10 

               Sensitivity Analysis: inactive 

               Parameter Estimation: inactive 

------------------------------------------------------------------------ 

V:             Description:          reactor volume 

               Type:                 Formula Variable 
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               Unit:                 m3 

               Expression:           0.00195 

------------------------------------------------------------------------ 

X0:            Description:          Initial biomass concentration 

               Type:                 Constant Variable 

               Unit: 

               Value:                0.14248886 

               Standard Deviation:   1 

               Minimum:              0 

               Maximum:              1000 

               Sensitivity Analysis: inactive 

               Parameter Estimation: active 

************************************************************************ 

 

************************************************************************ 

Processes 

************************************************************************ 

Reduction:     Description:          Cr(VI)_biological _reduction 

               Type:                 Dynamic Process 

               Rate:                 km*C*(X0-((Cout-C)/Rc))/((C+Kc)) 

               Stoichiometry: 

                 Variable : Stoichiometric Coefficient 

                 C : -1 

------------------------------------------------------------------------ 

Sorption:      Description:          Cr(VI) adsorption 

               Type:                 Dynamic Process 

               Rate:                 kad*(S_eq-S) 

               Stoichiometry: 

                 Variable : Stoichiometric Coefficient 

                 S : 1 
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************************************************************************ 

 

************************************************************************ 

Compartments 

************************************************************************ 

BRP_reactor:   Description:          Cr(VI) reduction compartment 

               Type:                 Soil Column Compartment 

               Compartment Index:    0 

               Active Variables:     C, S 

               Active Processes:     Reduction, Sorption 

               Initial Conditions: 

                 Variable(Zone) : Initial Condition 

                 C(Advective Zone) : 0 

               Inflow:               Q 

               Loadings: 

                 Variable : Loading 

                 C : Q*Cout 

               Lateral Inflow:       0 

               Start Coordinate:     0 

               End Coordinate:       1 

               Cross Section:        A 

               Adv. Vol. Fract.:     theta 

               Dispersion:           kL 

               Parallel Zones: 

               Num. of Grid Pts:     52 (low resolution) 

               Accuracies: 

                 Rel. Acc. Q:        0.0001 

                 Abs. Acc. Q:        1e-006 

                 Rel. Acc. D:        1e-006 

                 Abs. Acc. D:        1e-006 
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************************************************************************ 

 

************************************************************************ 

Definitions of Calculations 

************************************************************************ 

calc1:         Description: 

               Calculation Number:   0 

               Initial Time:         0 

               Initial State:        given, made consistent 

               Step Size:            0.01 

               Num. Steps:           9000 

               Status:               active for simulation 

                                     active for sensitivity analysis 

************************************************************************ 

 

************************************************************************ 

Definitions of Parameter Estimation Calculations 

************************************************************************ 

fit1:          Description: 

               Calculation Number:   0 

               Initial Time:         0 

               Initial State:        given, made consistent 

               Status:               active 

               Fit Targets: 

                 Data : Variable (Compartment,Zone,Time/Space) 

                 Cout : C (BRP_reactor,Advective Zone,0) 

************************************************************************ 

 

************************************************************************ 

Plot Definitions 
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************************************************************************ 

plot1:         Description: 

               Abscissa:             Time 

               Title:                Cr(VI) reduction 

               Abscissa Label:       Time (days) 

               Ordinate Label:       C (mg/L) 

               Curves: 

                 Type : Variable [CalcNum,Comp.,Zone,Time/Space] 

                 Value : C [0,BRP_reactor,Advective Zone,0] 

                 Value : Cin [0,BRP_reactor,Advective Zone,0] 

                 Value : Cout [0,BRP_reactor,Advective Zone,0] 

************************************************************************ 

************************************************************************ 

Calculation Parameters 

************************************************************************ 

Numerical Parameters:    Maximum Int. Step Size:  1 

                         Maximum Integrat. Order: 5 

                         Number of Codiagonals:   1000 

                         Maximum Number of Steps: 1000 

------------------------------------------------------------------------ 

                         Fit Method:              secant 

                         Max. Number of Iterat.:  100 

************************************************************************ 

 

************************************************************************ 

Calculated States 

************************************************************************ 

Calc. Num.  Num. States Comments 

0           9001         Range of Times: 0 - 90 

**********************************************************************
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APPENDIX B: STANDARD CURVE 

 

Figure B-0-1: Standard curve for absorbance variation with Cr(VI) concentration at 540 nm 

wavelength 
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