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Abstract

The analysis of point patterns on linear networks is receiving current attention in spatial statistics. This refers to

the analysis of points in a spatial domain that coincide with a linear network like a road network. The linear network

is modelled as a set of lines that are connected at their ends or are intersecting, that is, modelled as mathematical

graphs. Limited research so far has been conducted on spatial points that fall on the Euclidean space containing

the linear network. This study addresses new steps by exploring points in the vicinity of the network that do not

necessarily fall on the linear network. We present a novel method that is motivated by crime locations amongst a

road network. The aim is to detect spatial hotspots around a linear network, where crime locations are considered

as a point pattern lying in the vicinity of the linear road network. A new connectivity measure is also introduced

to define the line segment neighbours of a line segment. The methodology is applied to crime data in Khayelitsha,

South Africa. We detect a pattern of crime locations within the network that can be well interpreted. We conclude

that our method is well applicable and could potentially help governmental organisations to allocate measures to

reduce criminality.

Keywords: linear network, point pattern, crime analysis, linear connectivity, Khayelitsha

1. Introduction

A linear network is a union of a finite collection of lines in a plane [1]. There are two types of network constrained

point data. The most common type is points that lie directly on the lines of a linear network (Figure 1(a)) and where

the shortest path on the network, namely a network distance, is used to calculate the distance. Some examples

of events restricted to linear networks are the locations of trees along the streets or rivers [2], road accidents and5

car-jacking on street networks [3]. The other type is points lying in the vicinity of the linear network (Figure 1(b)),

namely within the Euclidean space in which the linear network is embedded. An example are crimes that occur in

the vicinity of the road network e.g mugging.

There has been a recent increase in spatial statistics methodology for spatial linear networks. The focus there

has been for points lying on a linear network, such as, density estimation of points on a network [4, 5, 6, 7],10
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(a) A point pattern observed

on a linear network

(b) A point pattern observed in the vicinity of

a linear network

Figure 1: Possible point patterns in a linear network space

distance metrics and second order analysis [8], space-time analysis of points on a network [9], regression for points

on a network [10], summary statistics [11], directed networks [12], the use of network based quadrants to calculate

the features [13], the moving-segment approach, which uses distances along the network and also includes the

connectivity at intersections of networks [14], and local indicators of network-constrained clusters (LINCS) [15],

spatio-temporal analysis of points lying on a network [16] and a review [17]. The review [17] highlights important15

issues when dealing with a network space. The first is the intrinsic lack of homogeneity of the lines in the network,

with homogeneity as a common assumption in spatial analysis. Any spatial analysis conducted should therefore

account for this with a suitable distance metric. The theory for points that lie directly on a linear network has

been developed and implemented in literature. However, to our knowledge, [18] is the only existing research on

points within the vicinity of a linear network. Comas et al [18] develop methodology for the correlation between20

the points and the network. This is an important first step to confirm that in fact there is a relationship between

the linear network and the spatial point pattern data that is worth modelling. We propose new methodology for

the analysis of a point pattern in the vicinity of a linear network. This approach effectively uses a linear network

as an additional spatial structure in a spatial point pattern.

A spatial analysis on linear networks refers to spatial statistical methodology used to analyse point events that25

occur along linear networks [19]. If the points are in the vicinity of a linear network, however, traditional spatial

analysis needs to differ from current network spatial analysis since it assumes a continuous Euclidean space as

opposed to the network constrained space [20]. The methodology of this paper provides a mechanism for detection

of hotspots via analysis of the determined density for points that lie in the vicinity of a linear network.

A hotspot is defined as a sub-area within a larger area that has a higher than average number of points as30

compared to the neighbouring areas [21]. Local indicators of spatial association can be used to identify statistically

significant hotspots. These include the local Getis-Ord (G∗) statistic [22], Anselin’s local Moran’s I [23] and the

local Geary’s C [23, 24]. These techniques have been implemented in various studies, for instance the identification

of hot- and coldspots of orchard trees using the Getis-Ord (G∗) statistic [25] and finding clusters of high impact

accidents [26]. Local indicators rely on an initial partition of the spatial area into non-overlapping sub-areas most35
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often using an overlaid grid of a chosen resolution. The number of points are then obtained in each sub-area and

used as features where counts in neighbouring areas, i.e., touching grid cells, serve as spatial weights. Each cell

is then determined as a significant hot or cold spot. To extend methodology for points within the vicinity of a

linear network, we need a mechanism to determine line segments, the equivalent of sub-areas, and a definition of

the connectivity for these line segments within the linear network. We make use of the ideas in [27] to determine40

line segments, and define a new way to measure connectivity of these line segments. The possibility of such line

segments as crime facilitators is considered here and is covered in more detail in Section 3.

In this paper, we propose a methodology for statistically analysing a spatio-temporal point pattern located in

the vicinity of the lines of a linear network. The focus is on determining the implied density of the points onto the

linear network and on detecting statistically significant linear hotspots. We also introduce and define the concept45

of a linear hotspot. This methodology is compared with traditional hotspot detection, namely hotspot analysis on

a grid of the point pattern only, ignoring the effect of an associated linear network. The study is inspired by crime

data from a large township in South Africa.

The paper is organised as follows. Section 2 gives an overview of the existing hot route methodology of [27]

and our proposed linear hotspot methodology. Section 3 provides the result when the new methodology is applied50

on crime data from Khayelitsha, South Africa. The results are discussed in Section 4. And finally, the study is

concluded in Section 5.

2. Methodology

We consider a linear network and a related point pattern. A point process is a random mechanism whose

outcomes are point patterns [28]. A point pattern is a finite unordered set x = {x1, x2, ..., xnp
} resulting from a55

point process, where each point xi represents a location. Let ℓ = {tv1 + (1 − t)v2 : 0 ≤ t ≤ 1} represent a line

segment with endpoints v1 and v2. The union of a number of such line segments, L =
n⋃

i=1

ℓi, is called a linear

network, namely a finite collection of line segments {ℓ1, ..., ℓn} in the Euclidean plane [1]. A point pattern in the

vicinity of a linear network is a finite unordered set x = {x1, x2, ..., xnp
}, where each point xi represents a location

in the vicinity of a linear network [16]60

We define a linear hotspot as a line segment that exhibits a higher than average number of spatial points

associated with it than its neighbouring lines segment. Note that this definition holds for both points lying on a

linear network as well as points within a vicinity of a linear network. We focus on the latter. In order to detect

linear hotspots, an appropriate unbiased division of the network space into line segments is required, mimicking the

idea of grid cells in traditional hotspot detection. Furthermore, a definition of which line segments can be considered65

neighbours is needed. Grid cells are considered neighbours using 4- or 8-connectivity which is an obvious choice

for a spatial analysis in a Euclidean space but not for spatial analysis in the vicinity of a linear network. Due to

the structure of a linear network, the choice of the neighbourhood structure for spatial analysis in the vicinity of a

linear network requires a deeper insight since this has not been done before.
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2.1. Background Methodology70

A local intensity measure [28] is required to detect linear hot- and coldspots. The intensity of a point pattern

is the expected number of points per unit area, and is defined [28] as

λ(x) = lim
n→0

(
E[N(dx)]

|dx|

)
where E[N(dx)] is the expected number of points in a dx and |dx| is the area of the region. Determining the local

intensity in a linear network space involves splitting the linear network into smaller line segments. The method

introduced in this paper extends the hot route methodology of [27]. The extension is to points that are in the

vicinity of a linear network instead of points that lie directly on the linear network and importantly, to identify

statistically significant linear hotspots. Traditional hotspot detection relies on a grid overlaid on the spatial window.75

The hot route methodology [27] measures the distribution of points on a linear network by obtaining the rate of

events per line segment. The methodology does not conduct linear hotspot detection, but calculates and visualises

a density on each line segment. The significance of the densities with respect to neighbouring line segments is not

investigated in [27]. We add the methodology here for completeness, and provide an illustration in Figure 2

1. Create a grid overlaid on the spatial area of interest and linear network L (bold lines in Figure 2).80

2. Split every line ℓi where it intersects the grid cell boundaries (red lines in Figure 2).

3. Split every line ℓi at each line intersection (blue lines in Figure 2).

4. Relabel the lines as {ℓik} for i = 1, 2, ..., n, k = 1, 2, ..., ki, n the number of lines in a linear network and ki is

the number of splits for each original line ℓi.

5. Calculate the length |ℓik| of each line segment.85

6. Count the number of points nik lying on each line segment.

7. Determine the rate of points per line segment as the number of points divided by the length of the line they

occur on, rik = nik

|ℓik| .

8. Visualize the rate of event per line segment for each line segment

The values rik are visualised on the linear network as a density [27].90

How to choose the grid size is an important consideration. There is no unique way to define a grid and therefore

no unique way to split the linear network into line segments. Even a same size grid can be positioned differently.

The grid should therefore be chosen in a data-driven way. We discuss this with the crime application later.

2.2. Proposed Methodology

The hot route methodology of [27] was designed for points that lie directly on a linear network, and points are95

then uniquely allocated to a line segment. In reality, points do not always lie directly on a linear network, but

rather in the vicinity of the linear network. We extend the hot route methodology of [27] to accommodate such a

case.

The first step is to randomly split the linear network into line segments, as discussed in the hot route methodology.

The choice of the grid cells does have an effect on the size of the line segments, since small grid cells will mean100
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Figure 2: Line segment determination using the grid cell intercept locations with the linear network (red lines) and the linear network

intercept points within a grid cell (blue lines) as introduced in [27]

smaller line segments. The higher the resolution of the grid however, the larger the increase in the complexity of the

computations. Further however, if the resolution is too high, the line segments will be too small to be informative.

The same is true if the line segments are too large – in which case a long line segment could be classified as a

hotspot with points only present in a portion of the line segment. The choice of the grid cell also depends on the

overall number of points in the point pattern and their extent of clustering, since smaller grid cells might result105

in empty cells with respect to the point pattern. This choice of grid size holds for many approaches in spatial

analysis and GIS, and should be chosen appropriately based on the data under consideration, i.e. in a data driven

manner. There is thus a decision to be made between grid size choice and computations. There is growing interest

in assessing crime at very fine granularities, such as street segments, for a variety of reasons, one of which being that

coarse granularities obscure crime hotspots, but counts may become unreliable and unrepresentative if granularities110

are too fine. Therefore there should be a balance between the two. See [29] for an investigation of the effect of the

grid size.

Once the grid choice has been made, the points of the point pattern can be assigned to a line segment in one

of two ways. A point is allocated to only one line segment by projecting the point to its nearest line segment. Let

ns be the total number of line segments ℓik obtained from splitting the lines in a linear network and let the point115

pattern be x = {x1, x2, ..., xm}. Each point xj is assigned to line segment ℓik if the Euclidean distance ∥xj − pjℓik∥

is a minimum, where pjℓik is the position on ℓik closest to xj measured perpendicular from the point to the line

segment. This is visualised in Figure 3.

The counts for each line segment ℓik are then calculated as,

cik =

m∑
j=1

1jℓik (1)

where
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Figure 3: Illustration of the unique perpendicular distance of point xj to line segment ℓik

1jℓik =

 1 if ∥pjℓik − xj∥ is a minimum

0 otherwise,

for i = 1, 2, ..., n, j = 1, 2, ...,m.120

Alternatively, in a less deterministic mechanism, a point can be allocated to more than one line segment by

using weights according to how far they are from each line segment. The counts are then computed as,

cwik(r) =

m∑
j=1

wj
ℓik

1jℓik(r) (2)

where

1jℓik(r) =

 1 if ∥pjℓik − xj∥ ≤ r

0 otherwise,

for i = 1, 2, ..., n, j = 1, 2, ...,m. Here wj
ℓik

is the weight between point xj and line segment ℓik calculated as the

inverse distance [30] between a point and a line segment

wij =
1

∥pjℓik − xj∥
.

There are different ways to choose the weight matrix, such as the inverse exponential function wij = e
−∥pj

ℓik
−xj∥.

Ultimately, the aim is to apply more weight between a point and a line segment if the point is closer to that line

segment than to any other line segment. There is no unique way of assigning weights, but for spatial analysis125

the simplest and most commonly used weight is the inverse distance. Measures other than the distance can also

be used to assign weights. Consider for example a method including covariates [31]. Furthermore, due to spatial

dependence reducing as distance increases, only points that are within a certain radius r of the line segments of

interest are allocated the weights. The new methodology uses a weighted count of points for each line segment such

that points are given weights depending on how far they are from the line segment i.e., small weight for points that130

are far. In our application there are some points that are far away from the linear network. We do no not need to

remove the points since the method is designed to give small weight to the point that are far, therefore they will
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Figure 4: Illustration of the weighted distances from point xj to the line segments with a radius r

be automatically given a very small weight or excluded completely based on the radius chosen. This is visualised

in Figure 4.

To obtain the rate of events per unit distance for each line segment ℓik, the counts are divided by the corresponding135

standardised length of the line segment,

rik =
cik
|ℓik|

or
cwik
|ℓik|

. (3)

The rik’s are used to visualise the local density of points for each line segment.

2.2.1. Linear neighbours

Having calculated the rates per line segment, we next identify statistically significant line segments which we

call linear hotspots (coldspots). This requires one to identify the line segments with higher (lower) than average140

number of points in their vicinity as compared to its neighbouring line segments. This necessitates a new definition

of neighbours for line segments.

Figure 5 represents the neighbourhood structure that is introduced with this methodology. The blue line seg-

ments represent the line segment of interest and the black line segment represent its neighbours. The neighbourhoods

are defined as line segments that share an edge (start or end point), represented in Figure 5(a); line segments that145

are within a certain radius from start and end point of the line segment of interest, represented in Figure 5(b);

and line segments that are within a certain radius from the midpoint of the line segment of interest, represented

in Figure 5(c). The three neighbour definitions can be considered separately or as a combination. We define this

formally in Definition 1.

A weight matrix E = [est] is used to represent the structure of the line segment neighbours where line segments150

ℓs and ℓt are labeled neighbours if est = 1. Here s and t are indexes in I = {ik : i = 1, 2, ..., n, k = 1, 2, ..., ki}.

Definition 1. Let ℓk1 and ℓk2 be two line segments represented as

ℓk1
= {pk1

= (xk1
, yk1

) : yk1
= mk1

xk1
+ ck1

} (4)
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(a) (b) (c)

Figure 5: The neighbourhood structures: a) Line segments that share an edge (black) with the line segment of interest (blue), b) Line

segments (black) that are within a certain radius away from the start and end point of the line segment of interest (blue), c) Line

segments that are within a certain radius of the midpoint of the line segment of interest (blue)

and

ℓk2
= {pk2

= (xk2
, yk2

) : yk2
= mk2

xk2
+ ck2

}. (5)

Let dℓk1
,ℓk2

= min ∥pi − pj : pi ∈ ℓk1 , pj ∈ ℓk2∥2 be the minimum distance between ℓk1 and ℓk2 and Mk1 the midpoint

of ℓk1
.

1. If dℓk1
,ℓk2

= 0 then ℓk1 is a linear neighbour of ℓk2 , represented in Figure 5(a)155

2. If dℓk1
,ℓk2

≤ r then ℓk1
is a radial linear neighbour of ℓk2

, represented in Figure 5(b)

3. if dMk1
,ℓk2

= min ∥Mk1
− pj : pj ∈ ℓk2

∥2 ≤ r then ℓk1
is a radial midpoint linear neighbour of ℓk2

,

represented in Figure 5(c)

In this paper we use three neighbours defined in Definition 1, that is, all three neighbour types are considered

neighbours simultaneously.160

2.2.2. Linear hotspots

Getis-Ord statistics [32] are traditionally used to identify statistically significant hotspots by comparing the

local sum of a feature and its neighbours with the local sum of all the features. Herein, the features are the rate of

events per line segment as in equation (3). The adapted Getis-Ord statistic is obtained as

Gik =

∑
t∈I,s=ik

estrik

n∑
i=1

rik

. (6)

and is used to test the hypothesis the null hypothesis of complete spatial randomness [32] against the alternative

hypothesis of a spatial pattern existing, namely clustering. The standardised Gik statistic is given by

G∗
ik =

∑
t∈I,s=ik

estrik − r̄
∑

t∈I,s=ik

est

S

√√√√ns
∑

t∈I,s=ik

(est)2−
( ∑

t∈I,s=ik

est

)2

ns−1

(7)
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where r̄ =

ki∑
k=1

n∑
i=1

rik

ns
(8)

and S =

√√√√√ nik∑
k=1

n∑
i=1

(rik)2

ns
− (r̄)

2
. (9)

The limiting distribution of G∗
ik is a normal distribution1,2

The z-scores and p-values are used to identify significant linear hotspots and linear coldspots, as it is the165

probability of observing such an extreme G∗
ik value under the null hypothesis of complete spatial randomness. A

feature with a large positive z-score and a small p-value indicates a high degree of spatial clustering, namely a

hotspot. A small p-value and a large negative z-score imply a low degree of spatial clustering, namely a coldspot.

The higher the clustering, the larger the z-score. At a 95% confidence level a p-value less than 0.05 with a positive

z-score implies that the null hypothesis of no spatial pattern is rejected and a significant linear hotspot is present.170

At a 95% confidence level a p-value less than 0.05 with a negative z-score implies that the null hypothesis of no

spatial pattern is rejected and a significant linear coldspot is present.

It is also informative to analyse the spatial distribution of the point pattern over time, that is a spatio-temporal

point pattern {xt = {x1,t, ..., x2,t}}t∈T [28]. The z-scores from the Getis-Ord statistics for each line segment are

calculated at chosen time points. The Mann-Kendall test [33] is applied to the z-scores to analyse the trend in175

z-scores for each of the line segments and determine temporal hot- and coldspots. Consider the G∗
ik statistics for N

time points {G∗
ik,t1

, G∗
ik,t2

, ..., G∗
ik,tN

} for a line segment ℓik. The test statistic for the Mann-Kendall test is given

by

Sik =

N−1∑
s=1

N∑
p=i+1

sign(G∗
ik,p −G∗

ik,s), (10)

where

sign(G∗
ik,p −G∗

ik,s) =


1 if G∗

ik,s < G∗
ik,p

0 if G∗
ik,s = G∗

ik,p

−1 if G∗
ik,s > G∗

ik,p.

The z-scores and p-values associated with the test are used to determine if there are statistically significant180

trends in the data over time. A high negative z-score indicates a downward trend (diminishing hotspots), a high

positive z-score indicates an upward trend (emerging hotspots) and a z-score of 0 indicates no trend.

1If G∗
1, G

∗
2, ..., G

∗
n is a random sample from a distribution with mean µ and variance σ < ∞, then the distribution of Zn =

n∑
i=1

G∗
i −nµ

σ
√

n

is normal.
2The Getis-Ord statistic is a sum of events, therefore by the central limit theorem, if the number of features is large, the limiting

distribution of the sum is normal distribution. This therefore allows standardisation to obtain a standardised Getis-Ord function,

statistically represented as z-scores. The p-values are then calculated using the z-scores, as well understood in statistics.
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We next apply this new methodology to crime locations in Khayelitsha, South Africa.

3. Results

The data for the study consists of the longitude and latitude geographic locations, and date and time, of crimes185

reported in Khayelitsha from 2006 – 20163 as well as the road network of Khayelitsha available through ArcGIS4.

For the proposed methodology, the road network represents the linear network and the crime locations represent

the point pattern in the vicinity of the road network. Figure 6 shows the crime locations in blue with the underlying

road network in light grey. There are crime locations that fall outside the linear network, these would be excluded

in the analysis as they are too far away from the road network.190

Figure 6: Crime locations and the road network in Khayelitsha, South Africa 2006-2016.

Khayelitsha is a large township located approximately 30 kilometres from the city of Cape Town, South Africa.

Khayelitsha was established in 1983 as a late implementation of the Group Areas Act of 1950. The Group Areas

Act resulted in the forceful evacuation of Black African families to remote areas distant and distinct from the white

urban core and resulted in the complete racial segregation of most of the country’s major cities and towns under

apartheid. Khayelitsha is one of the poorest5 and most crime-ridden6 townships in South Africa with rates of crime195

consistently above the national average for most types of crime.

3Ethics approval obtained: NAS208/2019
4ArcGIS [GIS software]. Redlands, CA: Environmental Systems Research Institute, Inc., 2010. www.esri.com
5https://www.weforum.org/agenda/2016/10/these-are-the-worlds-five-biggest-slums/
6https://issafrica.org/crimehub
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This application of our methodology aims to better understand the spatial dimension of crime incident locations

in the township and in doing so, provide some insight in informing crime prevention strategies. In particular we aim

to investigate if the roads are crime facilitators using the proposed methodology developed herein. Crime facilitators

assist criminals in committing crimes or creating disruption [34]. Examples of crime facilitators are cell phones, used200

to communicate criminal ideas [34] or guns to overcome resistance during a criminal activity [35]. Streets such as in

townships, where there are no street lights, also act as crime facilitators since offenders take advantage of not being

easily identified in darker streets [36]. The methodology in this paper is applied to point patterns in the vicinity of

a linear network to investigate street segments as possible crime facilitators. Spatial crime analysis is occurring at

increasingly finer levels of aggregation with the street segment now the preferred unit of analysis in assessing crime205

risk [37]. Therefore, being able to accurately delineate points (crimes) to line segments (roads) is vital for future

statistical studies of crime. The concept of crime location in the vicinity of the road network is considered over the

concept of crime locations that occur directly on a road. To extend the analysis towards points within the vicinity

of a linear network, we use the proposed methodology and the new measure of connectivity defined herein, namely

neighbours of line segments.210

The first step is to determine the spatial distribution of points in the vicinity of a linear network. The adjusted

methodology has been applied to the data to obtain the rate of crime per road segment, calculated using the

weighted version of equation (3). The grid size was determined in a data driven manner based on the average stand

size in Khayelitsha. The stands have a uniform structure as the area was originally a forced formal settlement,

that is, forced movement of a certain population group to this area and designated housing spaces. A radius of215

r = 55m was used in determining the line neighbours (the combination of all three line neighbours in Definition 1)

considering the denseness of both the road network and the crime point pattern.

Figure 7 represents the visualisation of the rate of events per line segment (equation 3) of the road network of

Khayelitsha, where the road segments are colour coded according to the number of points in their vicinity. The

grey line segments represent roads with fewer crimes in their vicinity and the red line segments represent roads with220

a higher number of crimes in their vicinity.

Next we identify statistically significant hotspots. The proposed method is applied to the data to identify

statistically significant hotspots. Figure 8 represents statistically significant linear hotspots and Figure 9 represents

statistically significant linear coldspots. The red line segments represent roads with a higher than average number

of crimes in their vicinity at 90%, 95% and 99% confidence level. The blue line segments represent roads with a225

lower than average number of crimes in their vicinity 90%, 95% and 99% confidence level.

So far results take into account the spatial aspect of the data but ignore the temporal aspect. It is informative

to analyse the spatial-temporal distribution of the data. A trend test is conducted to analyse the 6 monthly and

yearly trends, which is possible since the exact times for the crime occurrences are known. The Mann-Kendall test

is applied to the Getis-Ord statistics obtained for each line segment over the time period. In Figure 10, the brown230

line segments represent line segments with an upward trend and green lines represent line segment with a downward

trend for a 6 month time interval (Figure 10(a)) and for a yearly interval (Figure 10(b)).
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Figure 7: Visualisation of the rate of events per line segment using equation (3)

We further investigate the spatial relationship between the detected linear hot- and coldspots by making use

of the multi-K (also known as the cross-K function) [38]. In Figure 11, the blue curve represents the multi-K

function calculated using the data in our study, while the black curve represents a simulated multi-K function in235

the case where the two point pattern cluster around each other with the confidence interval represented by the

red curves. If the blue line falls between the confidence interval, then it implies that the coldspots cluster around

the hotspots. Figure 11 shows that the two types in fact inhibit each other. The blue line represents the multi-K

function calculated using the data in our study, while the black line represents a simulated multi-K function in the

case where the two point pattern cluster around each other with the confidence interval represented by the red lines.240

If the blue line were to lie in the confidence interval, it would imply that the coldspots cluster around the hotspots.

We next provide a validation of this new methodology. Figure 12(a) shows traditional hotspot detection ignoring

the linear network. This uses the same grid as the grid used to determine the line segments ℓik to allow for a fair

comparison. To compare the new methodology to the traditional approach, we display the differences in the p-

values, using the average per grid cell for the linear hotspot method since there are a number of line segments per245

cell. We also display the variances of these p-values per grid cell in Figure 12(c), the maximum p-values per cell in

Figure 12(d) and the minimum p-values per cell in Figure 12(e).

In Figure 12(b), the far right indicates some large p-value differences. Figure 13 provides a closer look at this.

Figure 13(a) shows the traditional hotspots with the crime locations. There are some crimes which are not in a grid

cell due to no formal road network present there, resulting in the discrepancies between the two approaches. Figure250

13(b) shows the linear hotspot average p-values. Figure 13(c)-(e) show the variances, maximum and minimum

12



Figure 8: Linear hotspot detection using the neighbourhood structures defined in Definition 1

Figure 9: Linear coldspot detection using the neighbourhood structures defined in Definition 1
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values as well. In Figure 13(f) the linear hotspots are displayed.

4. Discussion

The proposed methodology presents a new definition of hotspots on a linear network, termed linear hotspots.

This includes a new definition of neighbours for line segments. We present an application of this new methodology255

on crime rates in a large township in South Africa. The study shows, in Figure 8, line segments (in red) with the

higher than average number of crimes in their vicinity as compared to neighbouring line segments. Figure 9 shows

line segments (in blue) with the lower than average number of crimes in their vicinity as compared to neighbouring

line segments. The Getis-Ord statistics and the corresponding z-scores for each of the line segments are calculated

and the statistically significant linear hotspots are obtained at a 95% confidence level. These line segments are thus260

the linear crime hotspots and coldspots. In our study we noticed that most of these occur on or near areas where

roads intersect and that they are then clustered together, namely that linear hotspots are spread over the road

network but occur locally. This crime phenomenon has also recently been observed in [39].

In the available data the crime locations have been recorded according to their date and time. Herein we also

present methodology for how linear hotspots change over time. The implementation in Figure 10 visualises areas265

with emerging (red) and diminishing hotspots (blue). Using finer time intervals e.g. 6 months, picks up fewer hot-

and coldspots. This could indicate a good sensitivity to the data. The study could be extended by investigating

linear hotspots of each crime type in order to identify the type of crimes that cluster in specific areas. It is likely

that different crime types exhibit different spatio-temporal characteristics with respect to a linear network. These

results are useful for law enforcement for tracking of hotspots and to investigate if resources allocated to the areas270

are useful i.e. to investigate if there is an increase or decrease in crime in areas of interest over the specified time

period, and if a change in resource allocation is needed.

With the linear hotspot methodology development in place, the results were validated. Traditionally, prior

information about an area is used to identify the validity of the results. In this case, no prior information is

available and the results can only be compared to traditional hotspot detection. The traditional hotspot technique275

identifies hotspots at the macro-level, namely grid cells, while the linear hotspot technique identifies linear hotspots

at the micro-level, namely roads within a grid cell. This is visible in Figure 12. The proposed methodology provides

a finer level of detection by taking into account the road network, which allows for micro-level determination of

what generated the hotspot. Note that the consistent coldspots detected around the boundary of Khayelitsha in

the traditional hotspot technique are emphasised due to edge effects. Nonetheless, these are still informative as280

there is little crime there as can be seen in Figure 6. The validation results in Figures 12 and 13 indicates that

the proposed methodology captures the same information as traditional hotspots, visible by the low variances and

differences, but captures finer scale information visible at line segment level.

The proposed methodology can also be applied to cases of curved roads and curved road segments, without

any significant changes besides checking that distances are calculated correctly. We did not consider the impact285

of in-homogeneous distribution of line segments across the spatial domain. The techniques in [14, 40] should be
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considered for extensions to take this into account.

5. Conclusion

This study provides for the first time a method for detecting linear hotspots for points in the vicinity of a linear

network that do not necessarily fall on the linear network. This method is motivated by crime locations amongst290

a road network. It effectively uses a linear network as additional spatial structural information to a spatial point

pattern. The detected inhibition between the linear hot- and coldspots opens up further discussion on covariates.

It is likely the location of a linear hot- or coldspot also relates to the covariates in its vicinity, rather than to the

location of another linear hot- or cold spot nearby. Future work will investigate inclusion of covariates, such as

population density, into the methodology.295

In this paper we identified road networks as crime facilitators. We used maps showing differences of p-values

from linear network methods and traditional methods to validate our results. The hypothesis is that most linear

hotspots are contained in the traditional hotspots since the road networks serve as crime facilitators. We explored

the grid size used for splitting the linear network in line segments in calculating traditional hotspots such that the

two methods are calculated at the same level of scale.300

Identification and characterisation of linear hotspots are important tools for law enforcement agencies in order

to better understand the pattern and genesis of crimes, and thus to reduce the crime rates and improve livability

in an urban area. This is phrased as one of the sustainable development goals, namely SDG 167, which aims to

significantly reduce all forms of violence, and work with governments and communities to find lasting solutions

to conflict and insecurity. The method presented in our study integrates graph theory and spatial statistics for305

detecting linear hotspots among points that occur in the vicinity of the network, incorporating the linear network

as a covariate for the spatial point pattern occurrence. For the specific application in Khayelitsha, the pattern

showed several linear hotspots that could be well interpreted and potentially help government organisations to

allocate measures that reduce criminality. Spatial hotspot determination was originally motivated exactly for crime

analysis [21]. Further research should test the sensitivity of the methodology to the optimal grid size and the radius310

used in determining linear neighbours. The proposed methodology is also suited for wider use where the aim is to

detect patterns in points in the vicinity of a network.

A road network is a common linear network, but there are are other types of linear networks, for example, river

networks or flight paths. The methodology developed in this paper is also not only limited to crime points in the

vicinity of a road network. It can be applied to cases such as the location of trees on or along the river network315

[2], the use of social network analysis in veterinary epidemiology to model the spread of animal diseases in different

farms [41] and determining how animals move within their environment by analysing the inter-connectivity of the

locations they move between [42]. The general methodology thus has many alternative applications as well.

The proposed methodology only considered how point patterns in a linear network change over time when the

7https://sustainabledevelopment.un.org/?menu=1300
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linear network stays constant. The methodology can be extended to analyse spatio-temporal distribution of point320

pattern in the vicinity of a linear network and how the change in the linear network structure over time affects the

spatial distribution of the point pattern.
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[6] M. M. Moradi, F. J. Rodŕıguez-Cortés, J. Mateu, On kernel-based intensity estimation of spatial point patterns

on linear networks, Journal of Computational and Graphical Statistics 27 (2) (2018) 302–311.

[7] J. Mateu, M. Moradi, O. Cronie, Spatio-temporal point patterns on linear networks: Pseudo-separable intensity

estimation, Spatial Statistics 37 (2020) 100400.345

[8] S. Rakshit, G. Nair, A. Baddeley, Second-order analysis of point patterns on a network using any distance

metric, Spatial Statistics 22 (2017) 129–154.

[9] M. Eckardt, J. Mateu, Structured network regression for spatial point patterns (2016). arXiv:1607.06685.

16

http://arxiv.org/abs/1607.06685


[10] M. Eckardt, J. Mateu, Point patterns occurring on complex structures in space and space-time: An alternative

network approach, Journal of Computational and Graphical Statistics 27 (2) (2018) 312–322.350

[11] O. Cronie, M. Moradi, J. Mateu, Inhomogeneous higher-order summary statistics for point processes on linear

networks, Statistics and Computing 30 (5) (2020) 1221–1239.

[12] J. G. Rasmussen, H. S. Christensen, Point processes on directed linear networks, Methodology and Computing

in Applied Probability 23 (2) (2021) 647–667.

[13] S. Shino, Analysis of a distribution of point events using the network-based quadrat method, Geographical355

Analysis 40 (4) (2008) 380–400.

[14] T. Steenberghen, K. Aerts, I. Thomas, Spatial clustering of events on a network, Journal of Transport Geog-

raphy 18 (3) (2010) 411–418.

[15] I. Yamada, J. Thill, Local indicators of network-constrained clusters in spatial point patterns, Geographical

Analysis 39 (3) (2007) 268–292.360

[16] N. D’Angelo, G. Adelfio, J. Mateu, Assessing local differences between the spatio-temporal second-order struc-

ture of two point patterns occurring on the same linear network, Spatial Statistics 45 (2021).

[17] A. Baddeley, G. Nair, S. Rakshit, G. McSwiggan, T. M. Davies, Analysing point patterns on networks—a

review, Spatial Statistics 42 (2021) 100435.

[18] C. Comas, S. Costafreda-Aumedes, N. Lopez, C. Vega-Garcia, On the correlation structure between point365

patterns and linear networks, Spatial Statistics 29 (2019) 192–203.

[19] A. Okabe, K. Sugihara, Spatial Analysis Along Networks: Statistical and Computational Methods, John Wiley

& Sons, 2012.

[20] B. Jiang, A. Okabe, Different ways of thinking about street networks and spatial analysis, Geographical Analysis

46 (4) (2014) 341–344.370

[21] S. Chakravorty, Identifying crime clusters: The spatial principles, Middle States Geographer 28 (1995) 53–58.

[22] A. Getis, J. Ord, The analysis of spatial association by use of distance statistics, Geographical Analysis 24 (3)

(1995).

[23] L. Anselin, Local indicators of spatial association—LISA, Geographical Analysis 27 (2) (1995) 93–115.

[24] L. Anselin, A local indicator of multivariate spatial association: extending Geary’s C, Geographical Analysis375

51 (2) (2019) 133–150.
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(a) Crime trends when aggregating at 6 month time intervals

(b) Crime trends when aggregating at yearly time intervals

Figure 10: Emerging and diminishing linear hot- and cold-spots over aggregated time intervals of 6 months and 1 year
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Figure 11: Multi-K function between the linear hot- and coldspots showing evidence of inhibition.
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(a) Traditional hotspot detection per grid cell using the Getis-Ord statis-

tic
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Figure 12: Validation of the proposed methodology using the average, variance, minimum and maximum of the difference in p-values

compared to the p-values from traditional hotspot analysis on a grid
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(a) Traditional hotspot detection per grid cell using the

Getis-Ord statistic
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(b) Differences per grid cell between the p-values of (a) and linear hotspot

average p-values
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(c) Variances of the differences in (b) per grid cell
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(d) Maximum difference per grid cell between the p-values of (a) and the

linear hotspot p-values
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(e) Minimum difference per grid cell between the p-values of (a) and the

linear hotspot p-values
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(f) The linear hot- and coldspots detected

Figure 13: A closer look at the South East corner of Khayelitsha 12
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