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Abstract

This study discusses the development and analysis of a nonlinear optimal control problem for a Lassa fever (LF) de-

terministic model featuring vertical transmission route, nonlinear form of incidence terms and effect of environmental

sanitation with a view to providing insightful information to the government, decision and policy makers about

how to prioritize the implementations of environmental fumigation, use of condom, use of antiviral therapy, rodent

reduction control and educational campaign in terms of efficacy and cost benefits. An existing seven-dimensional

deterministic model of LF dynamics is extended to take into account five time-dependent control variables account-

ing for environmental fumigation, use of condom, use of antiviral therapy, rodent reduction control and educational

campaign. Optimal control theory with the aid of Pontryagin’s maximum principle is employed to derive the

necessary conditions for the existence of optimal control quintuple. To investigate how the implementation of var-

ious single, double, triple, quadruple and quintuple control interventions minimize LF spread in the population at

minimum cost, numerical experiment is conducted on the derived optimality system. More importantly, efficiency

analysis is carried out to ascertain the most efficient interventions among the set of different control strategies under

consideration. While cost-effectiveness analysis is done to determine the least costly control intervention that can

be implemented to nip the spread of LF in the population.

Keywords: Cost-effectiveness analysis, Efficiency analysis, Lassa fever transmission, Optimal control Lassa fever

model, Incremental cost-effectiveness ratio
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1. Introduction

Lassa fever (LF) is a zoonotic disease associated with acute and potentially fatal haemorrhagic disease caused

by Lassa virus (LASV), a member of the Arenaviridae virus family (Eberhardt et al., 2019; Wiley et al., 2019;

Yaro et al., 2021). LASV was first discovered in Nigeria in 1969 (Wiley et al., 2019; Mari Saez et al., 2018) and

later detected in Liberia in 1972 (Wiley et al., 2019). The virus is now endemic in several West African countries

(Eberhardt et al., 2019; Tuite et al., 2019) and occurs sporadically as well as in annual outbreaks (Eberhardt et al.,

2019). Most of the confirmed LF cases are from Guinea, Liberia and Sierra Leone (the Mano River Union region)
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and Nigeria (Wiley et al., 2019; Yaro et al., 2021; Bell-Kareem and Smither, 2021; Purushotham et al., 2019),

although the disease has also been detected in other countries including Benin, Burkina Faso, Ghana, Côte d’Ivoire,

Mali, and Togo (Wiley et al., 2019; Purushotham et al., 2019), Central African Republic, Mali, Senegal and Congo

(Yaro et al., 2021; Purushotham et al., 2019).

Worldwide, LF is regarded the most consequential rodent-borne virus infection (Smither and Bell-Kareem, 2021).

Recognition of the disease as an important rodent-borne viral haemorrhagic fever is on the increase as it is presenting

a severe public health threat to some of the communities in the affected West African countries (Zhao et al., 2020).

Several factors, including reoccurring outbreaks, extensive domestic and international trade and civil unrest, have

made LASV an emerging virus of upmost importance (Bell-Kareem and Smither, 2021). LF is associated with

significant morbidity and mortality (Yaro et al., 2021), estimated to cause up to 300 thousand cases and 5 thousand

deaths annually in West Africa regions where the disease is endemic (Eberhardt et al., 2019; Wiley et al., 2019;

Yaro et al., 2021; Smither and Bell-Kareem, 2021) with about 58 million people at risk (Yaro et al., 2021).

The routes of transmission of LF include rodent to human, human to rodent, rodent to rodent, human to human

and environment to human (Abdulhamid et al., 2022). The rodent Mastomys natalensis, a common households’ rat

in West Africa, is regarded the natural host/reservoir of LASV (Mari Saez et al., 2018; Tuite et al., 2019). However,

there are newly reported hosts of LASV in Nigeria and Guinea Republic, namely, Mastomys erythroleucus (Guinea

multimammate mouse) and Hylomyscus pamfi (African wood mouse) (Eberhardt et al., 2019; Mari Saez et al.,

2018). These rodents are infected in utero and remain infectious until death (Asogun et al., 2019). In them, LASV

exhibits persistent and asymptomatic infection (Purushotham et al., 2019). The LASV-infected rodents shed the

virus in their urine and faeces. Human’s primary infection takes place via direct or indirect contact with LASV-

infected rodents. Those people living in rural areas where Mastomys rodents are commonly found, particularly in

communities with poor sanitation or crowded living conditions, are at greatest risk of acquiring LASV infection

(Asogun et al., 2019). Individuals contract LASV through direct contact with the excretions of rat such as urine

and faeces, eating of contaminated food, inhalation of aerosolized urine in droplets or dust particles, consumption

of the rat (Mari Saez et al., 2018; Smither and Bell-Kareem, 2021) and being bitten by the rodents (Mari Saez

et al., 2018). The occurrence of this human-vector interface is predominant in resource-limited communities where

health care and laboratory diagnostic testing are not easily accessible (Purushotham et al., 2019).

Secondary human to human transmission occurs in both the community and health care settings (Mari Saez

et al., 2018). This mode of the disease spread among individuals has been recorded in people in the community

with overcrowded living conditions, families in the course of providing health care for their sick person as well as

in communities in the context of burial practices (Asogun et al., 2019). Direct contact with blood or bodily fluids

(such as urine and semen) of infected individuals can also lead to human to human transmission of LASV (Yaro

et al., 2021; Tuite et al., 2019), thereby posing risk of sexual transmission (Yaro et al., 2021). Sexual transmission

occurring months after recovery from LASV infection has been documented (Asogun et al., 2019). Moreover, health

care workers are at high risk of LASV infection. Nosocomial transmission of LASV occurs within hospitals among

and between patients and health care workers. This usually occurs due to poor adherence to the disease prevention

and control practices. Inadequate barrier nursing and infection control practices also contribute majorly to the

disease transmission in health care facilities (Asogun et al., 2019).
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In humans, LASV is responsible for a wide spectrum of disease manifestations, ranging from asymptomatic

cases to acute and severe cases. Onset of acute LF is gradual and non-specific, often begins with intermittent fever

and malaise followed by myalgia, sore throat, facial oedema and severe headache. The virus has an incubation

period usually 7 to 10 days, with a range of 3 to 21 days (Yaro et al., 2021). After primary LASV infection, signs

and symptoms of LF manifest up to 21 days (Asogun et al., 2019). Recovery begins 8 to 10 days after disease

onset in a mild case of LASV infection (Purushotham et al., 2019; Gibb et al., 2017), while fatal cases progress

to shock, organ failure and death, sometimes with haemorrhagic manifestations (Gibb et al., 2017). Advanced life

support is required when fatal cases progress to shock (Asogun et al., 2019). The mortality rate of LF is low,

between 1 to 2%, in communities of endemic areas (Mari Saez et al., 2018; Zhao et al., 2020). Most cases are mild

(or asymptomatic) and do not result in hospitalisation (Eberhardt et al., 2019; Mari Saez et al., 2018). The case

fatality rate is approximately 20% amongst hospitalised patients and increases to above 50% in high risk groups,

including pregnant women and infants. In pregnant women, the severe case of LF results into almost 100% mortality

in foetuses (Purushotham et al., 2019).

Up to date, no vaccines have been licensed against LASV (Yaro et al., 2021). Antiviral treatment options for

LF are limited, with ribavirin considered to be effective when given early in the course of disease (between the first

six days counting from after the onset of the symptoms) to improve survival in LF patients (Mari Saez et al., 2018).

Using ribavirin can reduce the mortality risk to below 5% if administered early, whereas the benefits are greatly

diminished if the drug is started later in the course of disease (Purushotham et al., 2019). Also, nosocomial case

fatality and transmission can be reduced by treating patients with LF in dedicated treatment wards with facilities

for enhanced supportive care such as dialysis and respiratory support (Asogun et al., 2019). Thus, rodent control

and human behavioural changes are currently the main options available to prevent LF in highly endemic areas

(Mari Saez et al., 2018). Avoiding contact with Mastomys rodents can reduce the risk of primary transmission

of LASV to humans (Yaro et al., 2021). Placing food away in rodent-proof containers, ensuring clean homes and

surroundings and trapping in and around homes can be helpful to decrease rodent population and human contact

with rodents droppings or urine. Further, risk of LASV infection can be reduced by educating people, especially

those in high-risk areas, about ways to reduce the population of rodent in their homes and surroundings. The

spread of human LASV infection in health care settings can be prevented through mandatory strict adherence to

standard infection prevention and control precautions by health care workers (Asogun et al., 2019).

In several works, many mathematicians have studied nonlinear mathematical models governed by autonomous

systems of ordinary differential equations (ODEs) to facilitate understanding of the epidemiology of infectious

diseases (e.g., see Naik et al. (2020); Paul and Kuddus (2022); Anggriani and Beay (2022); Asma et al. (2022);

Abidemi and Aziz (2022); Alade (2021); Mishra et al. (2020) and some of the references therein). In few studies,

the technique of mathematical modelling has been applied to influence the decision-making processes as regard

the intervention programs for prevention and control of LF transmission dynamics in the community (Abdulhamid

et al., 2022; Abidemi et al., 2022b; Abdullahi, 2021; Alkahtani and Alzaid, 2020; Atangana, 2015; Faniran and

Ayoola, 2022; Goyal et al., 2019; Jain and Atangana, 2018; Lingas et al., 2021; Barua et al., 2021; Ogunmiloro,

2022).

The application of optimal control theory to infectious disease modelling provides insightful information about
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how the optimal implementation of control interventions can be achieved. Since the application of optimal control

theory to disease modelling, there is a significant number of researches in the literature of mathematical modelling

of infectious diseases that make use of optimal control theory concept (Falowo et al., 2022; Asamoah et al., 2020,

2022; Cantor and Ganiats, 1999). However, despite that optimal control theory has provided useful epidemiological

insights in ascertaining the optimal control interventions needed to minimize the dynamics of disease transmission

in the community at minimum cost of implementation, the number of studies that have made use of mathematical

modelling approach to investigate the optimal control of LF transmission dynamics in the literature of mathematical

epidemiology is limited (Peter et al., 2020; Higazy et al., 2021; Onah et al., 2020; Ojo et al., 2022; Ibrahim et al., 2021;

Musa et al., 2022). For instance, Peter et al. (2020) developed seven-dimensional non-optimal control and optimal

control compartmental models for LF transmission dynamics. Four control variables were incorporated into the

optimal control model to account for fumigation of the environment with pesticide, condom usage, early supportive

treatment for infected individuals, and indoor residual spray. To explicitly derive the necessary conditions for the

optimal control quadruple, Pontryagin’s maximum principle (PMP) was employed by the authors.

Higazy et al. (2021) constructed a 4-dimensional deterministic fractional-order optimal control model to describe

the dynamics of LF in pregnant woman population. Furthermore, the authors in Onah et al. (2020) have presented

and analysed both non-optimal control and optimal control mathematical models describing the transmission dy-

namics of LF in the interacting human and rodent populations. Stability theory of differential equations was used

for detailed stability analysis of the non-optimal control model. Moreover, the optimal control model was analysed

to derive the cost benefits associated with implementing optimal rodent control, external protection, treatment

and isolation interventions for the minimization of LF transmission dynamics at minimum cost. Recently, Ojo

et al. (2022) developed and analysed a nonlinear optimal control LF model including four time-dependent controls,

namely, educational campaign policy, use of condom, treatment control and use of rodents trap. The authors

further explored cost-effectiveness analysis to ascertain the most cost-effective strategy among the various optimal

control combination strategies implemented in the study. In a related development, Ibrahim et al. (2021) studied a

nonlinear optimal control model of LF dynamics which takes into account public awareness, standard precautions

in treatment and environmental sanitation as time-dependent control variables. Musa et al. (2022) proposed an op-

timal control model to assess the optimal use of proper sanitation and personal hygiene for exposed individuals and

adequate health resources for mild infectious individuals required for an effective management of LF transmission

in the community.

According to Abidemi et al. (2022b), none of the previously existing studies of LF transmission dynamics

captured vertical transmission (particularly mother to child transmission) route in human population, and hence

their work in Abidemi et al. (2022b) was the first to attempt to consider the effect of vertical transmission route in

human population in the formulation of the model presented by the authors. In addition, their model used a simple

approach to capture the effect of socio-economic factors like community hygiene through environmental sanitation.

A nonlinear mathematical epidemic model that features both vertical (including mother to child transmission) and

horizontal modes of transmission provides a foundation for the application of control intervention (Abidemi et al.,

2022b). In view of this, the work of Abidemi et al. (2022b) provides a more realistic mathematical modelling

framework for optimal control of the transmission dynamics of LF in the population. Hence, this paper aims at
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constructing and analysing a nonlinear optimal control LF transmission model featuring both vertical and horizontal

transmission routes, effect of socio-economic factors and nonlinear incidence functions. The new nonlinear optimal

control LF model, which is motivated by the work of Abidemi et al. (2022b), is developed by including five time-

dependent control functions accounting for environmental fumigation, use of condom, use of antiviral therapy,

rodent reduction control and educational campaign. Analysis of the new optimal control model is carried out by

employing optimal control theory. It is imperative to emphasize that the optimal control LF model proposed in

this work is novel compared to the existing optimal control LF models (Peter et al., 2020; Higazy et al., 2021;

Onah et al., 2020; Ojo et al., 2022). It can be seen that none of the aforementioned studies considered up to five

time-dependent control interventions in the model analysis. To the best of our knowledge, this work is the first to

attempt to explicitly consider educational campaign (such as enforcement of regular environmental sanitation) on

susceptible individuals with poor community hygiene as part of LF integrated control strategy.

The rest of this work is structured as follows. In Sect. 2, introduction to the non-optimal control LF transmission

model previously studied by Abidemi et al. (2022b) is made in brief. Section 3 is devoted to the development and

analysis of a new nonlinear optimal control LF model. Simulations of the optimality system emanating from the

theoretical analysis are carried out in Sect. 4. Efficiency and cost-effectiveness analyses are also conducted in this

section. Section 5 is concerned with the presentation of the results of numerical analysis of the optimal control LF

model as well as the efficiency and cost-effectiveness analyses. In Sect. 6, results are discussed in detail. Finally,

Sect. 7 gives the concluding remarks.

2. Non-optimal control LF transmission model

In Abidemi et al. (2022b), the authors studied a nonlinear mathematical model governed by a 7-dimensional

system of ODEs describing LF transmission dynamics. The model stratifies the total human population, Nh,

into five epidemiological classes, namely, susceptible individuals with good community hygiene (Sh1
), susceptible

individuals with poor community hygiene (Sh2
), infected and infectious individuals (Ih), treated (or hospitalized)

individuals (Th) and recovered individuals with temporary immunity (Rh). The total rodent (reservoir) population,

Nr, is made up of susceptible rodents (Sr) and infected and infectious rodents (Ir). The non-linear mathematical

model for LF transmission dynamics between the interacting human and rodent populations, which was studied in
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depth by the authors in Abidemi et al. (2022b), is given as

dSh1

dt
= (1− σ)Λh + πϕhRh + ψhSh2

− ϵ(1− ν)ΛhIh − η

(
βhIh

1 + α1Ih
+

βrhIr
1 + α2Ir

)
Sh1

− µhSh1
,

dSh2

dt
= σΛh + (1− π)ϕhRh − ϵνΛhIh −

(
βhIh

1 + α1Ih
+

βrhIr
1 + α2Ir

)
Sh2 − µhSh2 − ψhSh2 ,

dIh
dt

= ϵΛhIh +

(
βhIh

1 + α1Ih
+

βrhIr
1 + α2Ir

)
(ηSh1

+ Sh2
)− (αh + γh + µh + δh)Ih,

dTh
dt

= αhIh − θσhTh − (1− θ)δhTh − µhTh,

dRh

dt
= γhIh + θσhTh − (ϕh + µh)Rh,

dSr

dt
= Λr −

βhrSrIh
1 + α1Ih

− βrSrIr
1 + α2Ir

− µrSr,

dIr
dt

=
βhrSrIh
1 + α1Ih

+
βrSrIr
1 + α2Ir

− µrIr,

(1)

with initial conditions given as

x(0) = x0, where x = (Sh1
, Sh2

, Ih, Th, Rh, Sr, Ir). (2)

It should be noted that the population dynamics for each of the compartments of the non-optimal control LF model

(1) has been well-discussed in Abidemi et al. (2022b). However, for convenience, the full descriptions of all the

parameters of model (1), as done by Abidemi and co-workers in Abidemi et al. (2022b), are reproduced as shown

in Table 1. Also, it is important to state that detailed analysis of the non-optimal control LF model (1) has been

conducted in Abidemi et al. (2022b). Thus, we explore the optimal control version of the model in the next section.

3. Formulation of optimal control LF transmission model and its theoretical analysis

3.1. Formulation of optimal control LF transmission model

In view of the insightful results arising from the sensitivity analysis carried out on model (1) by Abidemi et al.

(2022b), we introduce five different time-dependent control variables ui(t), where i = 1, 2, . . . , 5, into the basic

model (1). The control variables are discussed as follows:

(i) u1(t) represents the control variable for environmental fumigation with pesticide, which is targeted towards

the prevention of rodent to human LF transmission.

(ii) u2(t) denotes the control function to reduce the secondary human to human transmission of LASV. This can

be achieved through the use of condom during sexual activities.

(iii) u3(t) denotes the control variable for antiviral therapy to step up the management of symptomatic infected

individuals in order to ensure prompt recovery and prevent deaths as a result of complications. Achievement

of this is possible by providing a timely supportive treatment with the antiviral drug ribavirin.

(iv) u4(t) represents the control variable aimed at reducing the rodent population. This can be achieved through

the use of indoor residual spray and rodents trap.
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Table 1: Descriptions of parameters of model (1)

Parameter Description

Λh Rate of recruitment into susceptible human subpopulations through birth

η Modification parameter on susceptible individuals with good hygiene

βh Effective transmission rate of LASV from human to human

βhr Effective transmission rate of LASV from human to rat

ϵ Rate of vertical transmission of LASV

µh Natural death rate of humans

δh LF-induced death rate in human population

ψh Proportion of Sh2
with improved community sanitation

α1, α2 Saturation constants

θ Proportion of treated humans that recovers due to treatment

1− θ Proportion of treated humans that die of LF

1− ν Proportion of Sh1
with vertical transmission of LASV

ν Proportion of Sh2
with vertical transmission of LASV

αh Rate of treatment of symptomatic infectious humans

1− σ Proportion of humans recruited into class Sh1

σ Proportion of humans recruited into class Sh2

σh Recovery rate of treated humans

γh Recovery rate of infected and infectious humans by natural immunity

ϕh Relapse rate for individuals in class Rh

π Proportion of individuals in class Rh that enter class Sh1
due to relapse

1− π Proportion of individuals in class Rh that loses immunity and enter class Sh2
again

Λr Rate of recruitment of rodents through birth

βr Effective transmission rate of LASV from rodent to rodent

βrh Effective transmission rate of LASV from rat to human

µr Natural death rate of rodents

(v) u5(t) accounts for educational campaign to promote good community or personal hygiene. This is achievable

through the enforcement of timely and proper environmental sanitation on the susceptible individuals with

poor hygiene.

After incorporating the five time-dependent controls ui(t) (i = 1, 2, . . . , 5) into the non-optimal control LF model
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(1), the optimal control version of the model becomes

dSh1

dt
= (1− σ)Λh + πϕhRh + u5(t)Sh2 − ϵ(1− ν)ΛhIh − η

(
(1− u2(t))βhIh

1 + α1Ih
+

(1− u1(t))βrhIr
1 + α2Ir

)
Sh1 − µhSh1 ,

dSh2

dt
= σΛh + (1− π)ϕhRh − ϵνΛhIh −

(
(1− u2(t))βhIh

1 + α1Ih
+

(1− u1(t))βrhIr
1 + α2Ir

)
Sh2

− µhSh2
− u5(t)Sh2

,

dIh
dt

=

(
(1− u2(t))βhIh

1 + α1Ih
+

(1− u1(t))βrhIr
1 + α2Ir

)
(ηSh1

+ Sh2
) + ϵΛhIh − (αh + γh + τ1u3(t) + µh + δh)Ih,

dTh
dt

= αhIh − θσhTh − (1− θ)δhTh − µhTh,

dRh

dt
= (γh + τ1u3(t))Ih + θσhTh − (ϕh + µh)Rh,

dSr

dt
= Λr −

(1− u1(t))βhrSrIh
1 + α1Ih

− (1− u1(t))βrSrIr
1 + α2Ir

− (µr + τ2u4(t))Sr,

dIr
dt

=
(1− u1(t))βhrSrIh

1 + α1Ih
+

(1− u1(t))βrSrIr
1 + α2Ir

− (µr + τ2u4(t))Ir,

(3)

with initial conditions given at time t = 0. In the optimal control model (3), τ1 denotes the recovery rate of the

symptomatic infectious individuals induced by antiviral therapy, while τ2 is the rodents mortality rate induced by

the rodent reduction control. Our goal is to minimize the cost functional

C(u1, u2, u3, u4, u5) =

∫ tf

0

(
A1Ih +A2(Sr + Ir) +

1

ρ

5∑
i=1

Biu
ρ
i (t)

)
dt (4)

constrained by the state system (3), where A1 and A2 are positive weight constants for symptomatic infectious

humans and total rodent (reservoir) population, respectively, Bi > 0, i = 1, 2, . . . , 5, are the respective balancing

weights for the controls ui, i = 1, 2, . . . , 5, the terms 1
ρ

5∑
i=1

Biu
ρ
i (t) define the cost control functions for environmental

fumigation, condom use, use of antiviral therapy, rodent reduction control and educational campaign, respectively,

ρ ∈ {1/2, 1, 2, . . . , n}, tf denotes the expected final time for implementation of the control interventions such that

t ∈ [0, tf ]. Notably, ρ defines the nature of control terms in the pay-off. For instance, setting ρ = 1 corresponds

to linear control terms in the pay-off leading to bang-bang controls. At ρ = 2, there correspond quadratic control

terms in the pay-off implying continuous controls. To comply with standard in many literature on mathematical

models of infectious diseases involving optimal control problems (for example, see Falowo et al. (2022); Asamoah

et al. (2022); Peter et al. (2020); Ojo et al. (2022) and some of the references cited therein), ρ is fixed at ρ = 2.

Of particular interest is to find an optimal control quintuple, u∗ = (u∗i ), i = 1, 2, . . . , 5, such that

C(u∗) = min
U

{C(ui), i = 1, 2, . . . , 5} , (5)

where U is a non-empty bounded Lebesgue measurable control set defined as

U = {ui(t) : ui(t) ∈ [0, 1], i = 1, 2, . . . , 5} . (6)

3.2. Theoretical analysis of the optimal control LF model (3)

3.2.1. Existence of optimal control quintuple

Establishment of the result concerned with the existence of optimal control quintuple necessary for minimizing

the objective functional (4) is explored in this section.
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Theorem 3.1. There exists an optimal control quintuple, u∗ = (u∗i ), i = 1, 2, . . . , 5, that minimizes the cost

functional C in (4), which is defined on the control set U in (6) and constrained by the state system (3) with

nonnegative initial conditions Sh1
(0), Sh2

(0), Ih(0), Th(0), Rh(0), Sr(0) and Ir(0) when the following properties

hold (Asamoah et al., 2022; Fleming and Rishel, 1975):

(i) The admissible control set U is convex and closed.

(ii) The state system (3) is bounded by a linear function in the state and control variables.

(iii) The integrand of the objective functional C in (4) is convex with respect to the controls.

(iv) There exist constants ϑ1, ϑ2 > 0 and ϑ3 > 1 such that the Lagrangian is bounded below by

ϑ1

(
5∑

i=1

|ui|2
)ϑ3/2

− ϑ2.

Proof. Let the control set U = [0, 1]5, u = (u1, u2, u3, u4, u5) ∈ U , x = (Sh1
, Sh2

, Ih, Th, Rh, Sr, Ir) and F (t, x, u),

the right-hand side of the state system (3), be expressed as

F (t, x, u) =



(1− σ)Λh + πϕhRh + u5(t)Sh2 − ϵ(1− ν)ΛhIh − η
(

(1−u2(t))βhIh
1+α1Ih

+ (1−u1(t))βrhIr
1+α2Ir

)
Sh1 − µhSh1

σΛh + (1− π)ϕhRh − ϵνΛhIh −
(

(1−u2(t))βhIh
1+α1Ih

+ (1−u1(t))βrhIr
1+α2Ir

)
Sh2

− µhSh2
− u5(t)Sh2(

(1−u2(t))βhIh
1+α1Ih

+ (1−u1(t))βrhIr
1+α2Ir

)
(ηSh1

+ Sh2
) + ϵΛhIh − (αh + γh + τ1u3(t) + µh + δh)Ih

αhIh − θσhTh − (1− θ)δhTh − µhTh

(γh + τ1u3(t))Ih + θσhTh − (ϕh + µh)Rh

Λr − (1−u1(t))βhrSrIh
1+α1Ih

− (1−u1(t))βrSrIr
1+α2Ir

− (µr + τ2u4(t))Sr

(1−u1(t))βhrSrIh
1+α1Ih

+ (1−u1(t))βrSrIr
1+α2Ir

− (µr + τ2u4(t))Ir


.

(7)

Then, it is easy to establish properties (i) to (iv) of Theorem (3.1) above.

(i) By definition of the control set U = [0, 1]5, U is closed. In addition, let y = (y1, y2, . . . , y5) ∈ U and

z = (z1, z2, . . . , z5) ∈ U be any two arbitrary points. Then, by the definition of a convex set (Rector et al.,

2005),

φyi + (1− φ)zi ∈ [0, 1]5, for all φ ∈ [0, 1], i = 1, 2, . . . , 5.

So, φy + (1− φ)z ∈ U , establishing the convexity of U .

(ii) Following the ideas of previous researchers (Asamoah et al., 2022), and making use of the explicit algorithm

presented in Abidemi et al. (2022a), this property is established as follows. Clearly, F (t, x, u) in (7) can be

written in the form

F (t, x, u) = F1(t, x) + F2(t, x)u,

9



where

F1(t, x) =



(1− σ)Λh + πϕhRh − ϵ(1− ν)ΛhIh −
(
µh + βhηIh

1+α1Ih
+ βrhηIr

1+α2Ir

)
Sh1

σΛh + (1− π)ϕhRh − ϵνΛhIh −
(
µh + βhIh

1+α1Ih
+ βrhIr

1+α2Ir

)
Sh2(

βhIh
1+α1Ih

+ βrhIr
1+α2Ir

)
(ηSh1

+ Sh2
) + ϵΛhIh − (αh + γh + µh + δh)Ih

αhIh − θσhTh − (1− θ)δhTh − µhTh

γhIh + θσhTh − (ϕh + µh)Rh

Λr − βhrSrIh
1+α1Ih

− βrSrIr
1+α2Ir

− µrSr

βhrSrIh
1+α1Ih

+ βrSrIr
1+α2Ir

− µrIr


and

F2(t, x) =



βrhηSh1
Ir

1+α2Ir

βhηSh1
Ih

1+α1Ih
0 0 Sh2

βrhSh2
Ir

1+α2Ir

βhSh2
Ih

1+α1Ih
0 0 −Sh2

−βrh(ηSh1
+Sh2

)Ir
1+α2Ir

−βh(ηSh1
+Sh2

)Ih
1+α1Ih

−τ1Ih 0 0

0 0 0 0 0

0 0 τ1Ih 0 0

βhrSrIh
1+α1Ih

+ βrSrIr
1+α2Ir

0 0 −τ2Sr 0

−βhrSrIh
1+α1Ih

− βrSrIr
1+α2Ir

0 0 −τ2Ir 0


.

Thus,

∥F (t, x, u)∥ ≤ ∥F1(t, x)∥+ ∥F2(t, x)∥∥u∥

≤ a1 + a2∥u∥,

where a1 > 0 and a2 > 0 are constants determined as

a1 =
√

max {b1, b2, b3, b4, b5, b6, b7} ((ΛhΛr)2 + Λ3
hΛr + ΛhΛ3

r + Λ2
h + Λ2

r + Λ4
h + Λ4

r)

and

a2 =
√
max {c1, c2, c3, c4, c5, c6} ((ΛhΛr)2 + ΛhΛ3

r + Λ2
h + Λ2

r + Λ4
h + Λ4

r),

with

b1 =
β2
rh(1 + η)2

µ2
h(µr + α2Λr)2

+
β2
hr

µ2
r(µh + α1Λh)2

,

b2 =
2βhβrh(1 + η)2

µ2
h(µh + α1Λh)(µr + α2Λr)

+
2βrhϵ(1 + η)

µ2
h(µr + α2Λr)

=
2βrh(1 + η)

µ2
h(µr + α2Λr)

[
βh(1 + η)

(µh + α1Λh)
+ ϵ

]
,

b3 =
2βrβhr

µ2
r(µh + α1Λh)(µr + α2Λr)

,

b4 =
1

µ2
h

[
µ2
h(1− 2σ + 2σ2) + α2

h + γ2h + ϕ2h − 2π(1− π)ϕ2h + θσh(θσh + 2γh) + 2µhϕh((1− σ)π + (1− π)σ)
]
,

b5 = 1, b6 =
1

µ2
h

[
βh(1 + η)

(µh + α1Λh)

(
βh(1 + η)

(µh + α1Λh)
+ 2ϵ

)
+ ϵ2

]
, b7 =

β2
r

µ2
r(µr + α2Λr)2

,

c1 =
2β2

rh(1 + η + η2)

µ2
h(µr + α2Λr)2

+
2β2

hr

µ2
r(µh + α1Λh)2

, c2 =
4βrβhr

µ2
r(µh + α1Λh)(µr + α2Λr)

, c3 =
2(1 + τ21 )

µ2
h

,

c4 =
2τ22
µ2
r

, c5 =
2β2

h(1 + η + η2)

µ2
h(µh + α1Λh)2

, c6 =
2β2

r

µ2
r(µr + α2Λh)2

.
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(iii) The integrand of the objective functional C in (4) is the Lagrangian which takes the form

L(t, x, u) = A1Ih +A2(Sr + Ir) +
1

2

5∑
i=1

Biu
2
i . (8)

So, let the two arbitrary points y, z ∈ U be as previously considered in (i) with φ ∈ [0, 1]. It is then suffices

to show that

L(t, x, (1− φ)y + φz) ≤ (1− φ)L(t, x, y) + φL(t, x, z). (9)

Now, in view of (8),

L(t, x, (1− φ)y + φz) = A1Ih +A2(Sr + Ir) +
1

2

5∑
i=1

(
Bi((1− φ)yi + φzi)

2
)

(10)

and

(1− φ)L(t, x, y) + φL(t, x, z) = A1Ih +A2(Sr + Ir) +
1

2
(1− φ)

5∑
i=1

Biy
2
i +

1

2
φ

5∑
i=1

Biz
2
i . (11)

Using inequality (9), the results in (10) and (11) lead to

L(t, x, (1− φ)y + φz)− ((1− φ)L(t, x, y) + φL(t, x, z)) = 1

2
φ(φ− 1)

5∑
i=1

Bi(yi − zi)
2

≤ 0, since φ ∈ [0, 1].

This indicates that the integrand L(t, x, u) of the objective functional C is convex.

(iv) Recall from (8) that the Lagrangian L(t, x, u) associated with the objective functional C is given as

L(t, x, u) = A1Ih +A2(Sr + Ir) +
1

2

5∑
i=1

Biu
2
i

≥ 1

2

5∑
i=1

Biu
2
i

≥ ϑ1
(
|u1|2 + |u2|2 + |u3|2 + |u4|2 + |u5|2

)ϑ3/2 − ϑ2

where, ϑ1 = 1/2max{Bi}, i = 1, 2, . . . , 5, ϑ2 > 0 and ϑ3 = 2.

3.2.2. Characterization of optimal control quintuple

In an attempt to derive the necessary conditions that an optimal control quintuple of the state system (3)

must satisfy, PMP by Pontryagin et al. (1962) is made use of. By employing this principle, the optimal control

problem involving the cost functional C (4) subject to the state system (3) is converted into a problem of minimizing

pointwise a Hamiltonian H with respect to the control functions u1, u2, u3, u4 and u5. The Hamiltonian H for the

optimal control problem is given by

H = L(t, x, u) +
7∑

j=1

λjGj , (12)

where the Lagrangian L(t, x, u) is as defined in (8), λj are the adjoint variables corresponding to the state variables

Sh1
, Sh2

, Ih, Th, Rh, Sr and Ir, respectively, and Gj is the right-hand side of the non-autonomous system (3) for

the j-th state. The characterization result summarized in Theorem 3.2 is claimed for the optimal control problem.
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Theorem 3.2. Given an optimal control quintuple u∗ = (u∗i ), i = 1, 2, . . . , 5, which satisfies (5), there exist adjoint

variables λj , j = 1, 2, . . . , 7, satisfying

dλ1
dt

= λ1µh + (λ1 − λ3)η

(
(1− u2)βhIh
1 + α1Ih

+
(1− u1)βrhIr

1 + α2Ir

)
,

dλ2
dt

= −λ1u5 + λ2(µh + u5) + (λ2 − λ3)

[
(1− u2)βhIh
1 + α1Ih

+
(1− u1)βrhIr

1 + α2Ir

]
,

dλ3
dt

= −A1 + λ1ϵ(1− ν)Λh + λ2ϵνΛh − λ3ϵΛh + λ3(αh + γh + τ1u3 + µh + δh)

+ (λ1 − λ3)
(1− u2)βhηSh1

1 + α1Ih
+ (λ3 − λ1)

(1− u2)βhηα1Sh1
Ih

(1 + α1Ih)2

+ (λ2 − λ3)
(1− u2)βhSh2

1 + α1Ih
+ (λ3 − λ2)

(1− u2)βhα1Sh2
Ih

(1 + α1Ih)2

− λ4αh − λ5(γh + τ1u3) + (λ6 − λ7)
(1− u1)βhrSr

1 + α1Ih
+ (λ7 − λ6)

(1− u1)βhrα1SrIh
(1 + α1Ih)2

,

dλ4
dt

= λ4(θσh + (1− θ)δh + µh)− λ5θσh,

dλ5
dt

= −λ1πϕh − λ2(1− π)ϕh + λ5(ϕh + µh),

dλ6
dt

= −A2 + λ6(µr + τ2u4) + (λ6 − λ7)(1− u1)

(
βhrIh

1 + α1Ih
+

βrIr
1 + α2Ir

)
,

dλ7
dt

= −A2 + (λ1 − λ3)
(1− u1)βrhηSh1

1 + α2Ir
+ (λ3 − λ1)

(1− u1)βrhηα2Sh1
Ir

(1 + α2Ir)2

+ (λ2 − λ3)
(1− u1)βrhSh2

1 + α2Ir
+ (λ3 − λ2)

(1− u1)βrhα2Sh2Ir
(1 + α2Ir)2

+ λ7(µr + τ2u4) + (λ6 − λ7)
(1− u1)βrSr

1 + α2Ir
+ (λ7 − λ6)

(1− u1)βrα2SrIr
(1 + α2Ir)2

,

(13)

with the terminal conditions

λj(tf ) = 0 (where j = 1, 2, . . . , 7) (14)

and control characterizations

u∗1 = min

{
max

{
0,

(λ3 − λ1)βrhηSh1
Ir(1 + α1Ih) + (λ3 − λ2)βrhSh2

Ir(1 + α1Ih) +Q

B1(1 + α1Ih)(1 + α2Ir)

}
, 1

}
,

u∗2 = min

{
max

{
0,

(λ3 − λ1)βhηSh1Ih + (λ3 − λ2)βhSh2Ih
B2(1 + α1Ih)

}
, 1

}
,

u∗3 = min

{
max

{
0,

(λ3 − λ5)τ1Ih
B3

}
, 1

}
,

u∗4 = min

{
max

{
0,

(λ6Sr + λ7Ir)τ2
B4

}
, 1

}
,

u∗5 = min

{
max

{
0,

(λ2 − λ1)Sh2

B5

}
, 1

}
,

(15)

where Q = (λ7 − λ6)[βhrSrIh(1 + α2Ir) + βrSrIr(1 + α1Ih)].
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Proof. The Hamiltonian H in (12) can be written in its explicit form as

H = A1Ih +A2(Sr + Ir) +
1

2

(
B1u

2
1 +B2u

2
2 +B3u

2
3 +B4u

2
4 +B5u

2
5

)
+ λ1

{
(1− σ)Λh + πϕhRh + u5(t)Sh2 − ϵ(1− ν)ΛhIh − η

(
(1− u2(t))βhIh

1 + α1Ih
+

(1− u1(t))βrhIr
1 + α2Ir

)
Sh1 − µhSh1

}
+ λ2

{
σΛh + (1− π)ϕhRh − ϵνΛhIh −

(
(1− u2(t))βhIh

1 + α1Ih
+

(1− u1(t))βrhIr
1 + α2Ir

)
Sh2

− µhSh2
− u5(t)Sh2

}
+ λ3

{(
(1− u2(t))βhIh

1 + α1Ih
+

(1− u1(t))βrhIr
1 + α2Ir

)
(ηSh1 + Sh2) + ϵΛhIh − (αh + γh + τ1u3(t) + µh + δh)Ih

}
+ λ4 {αhIh − θσhTh − (1− θ)δhTh − µhTh}

+ λ5 {(γh + τ1u3(t))Ih + θσhTh − (ϕh + µh)Rh}

+ λ6

{
Λr −

(1− u1(t))βhrSrIh
1 + α1Ih

− (1− u1(t))βrSrIr
1 + α2Ir

− (µr + τ2u4(t))Sr

}
+ λ7

{
(1− u1(t))βhrSrIh

1 + α1Ih
+

(1− u1(t))βrSrIr
1 + α2Ir

− (µr + τ2u4(t))Ir

}
.

Then, it is straightforward to derive the adjoint system (13) from

−dλj
dt

=
∂H
∂x

, λi(tf ) = 0,

where j = 1, 2, . . . , 7 and x = Sh1 , Sh2 , Ih, Th, Rh, Sr, Ir. Further, the optimal control quintuple u∗i , i = 1, 2, . . . , 5,

are derived by solving
∂H
∂ui

= 0 for u∗i , i = 1, 2, . . . , 5,

so that

B1u
∗
1 −

(λ3 − λ1)βrhηSh1Ir(1 + α1Ih) + (λ3 − λ2)βrhSh2Ir(1 + α1Ih) +Q

(1 + α1Ih)(1 + α2Ir)
= 0,

B2u
∗
2 −

(λ3 − λ1)βhηSh1
Ih + (λ3 − λ2)βhSh2

Ih
1 + α1Ih

= 0,

B3u
∗
3 − (λ3 − λ5)τ1Ih = 0,

B4u
∗
4 − (λ6Sr + λ7Ir)τ2 = 0,

B5u
∗
5 − (λ2 − λ1)Sh2

= 0,

(16)

where Q = (λ7 − λ6)[βhrSrIh(1 + α2Ir) + βrSrIr(1 + α1Ih)]. Hence, it follows from (16) that

u∗1 =
(λ3 − λ1)βrhηSh1Ir(1 + α1Ih) + (λ3 − λ2)βrhSh2Ir(1 + α1Ih) +Q

B1(1 + α1Ih)(1 + α2Ir)
,

u∗2 =
(λ3 − λ1)βhηSh1

Ih + (λ3 − λ2)βhSh2
Ih

B2(1 + α1Ih)
, u∗3 =

(λ3 − λ5)τ1Ih
B3

,

u∗4 =
(λ6Sr + λ7Ir)τ2

B4
, u∗5 =

(λ2 − λ1)Sh2

B5
.

(17)

Finally, imposition of the bounds 0 ≤ ui ≤ 1, i = 1, 2, . . . , 5, on the results derived in (17) leads to arriving at the

control characterization in (15).

Furthermore, by standard arguments, the control characterization (15) can be expressed in a piecewise form as

u∗i =


0 if ϖ∗

i ≤ 0

ϖ∗
i if 0 ≤ ϖi ≤ 1,

1 if ϖ∗
i ≥ 1,
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where i = 1, 2, . . . , 5 and with

ϖ∗
1 =

(λ3 − λ1)βrhηSh1Ir(1 + α1Ih) + (λ3 − λ2)βrhSh2Ir(1 + α1Ih) +Q

B1(1 + α1Ih)(1 + α2Ir)
,

ϖ∗
2 =

(λ3 − λ1)βhηSh1
Ih + (λ3 − λ2)βhSh2

Ih
B2(1 + α1Ih)

, ϖ∗
3 =

(λ3 − λ5)τ1Ih
B3

,

ϖ∗
4 =

(λ6Sr + λ7Ir)τ2
B4

, ϖ∗
5 =

(λ2 − λ1)Sh2

B5
.

4. Numerical simulations, and efficiency and cost-effectiveness analyses

4.1. Numerical simulations

Due to different time horizons for the state system’s initial conditions and the adjoint system’s terminal condi-

tions (14), the widely used Runge-Kutta-based forward-backward sweep method in literature (Falowo et al., 2022;

Asamoah et al., 2022) is employed for solving the optimality system numerically. The optimality system of 14-

dimensional system of ODEs consists of the non-autonomous system (3) and adjoint system (13) coupled with

the control characterization (15). The numerical experiments are carried out using MATLAB with the guide of

procedure for forward-backward sweep method outlined by Lenhart and Workman in Lenhart and Workman (2007).

For the simulations, initial conditions for the states are taken from Abidemi et al. (2022b) as Sh1
(0) = 137252,

Sh2
(0) = 68627, Ih(0) = 124, Th(0) = 79, Rh(0) = 58, Sr(0) = 2060160, and Ir(0) = 1240, while the numerical

values of the model parameters are as presented in Table 2. In addition, τ1 is assumed to be 0.35 while τ2 is fixed at

τ2 = 0.75 (Peter et al., 2020). The numerical values of the weight constants in the cost functional C (4) are chosen

as A1 = 1, A2 = 1, B1 = 0.010, B2 = 0.010, B3 = 0.010, B4 = 0.010, B5 = 0.010. The simulations are conducted

over the time horizon t ∈ [0, tf ], where the final duration of controls implementation tf = 50 days. It is worthy of

noting that all the weight values considered in the simulations are theoretical as they are used only for illustrations

of the control interventions proposed by this study.

Table 2: Parameters of model (1) with their numerical values (Abidemi et al., 2022b)

Parameter Value Parameter Value

Λh 0.01 α1 0.65

Λr 0.00001 α2 0.65

η 0.65 θ 0.612

βh 0.0844 ν 0.5

βhr 0.0844 αh 0.2148541

βrh 0.0372 σ 0.5

βr 0.0372 σh 0.0123

ϵ 0.015 γh 0.433

µh 0.0003 µr 0.0627

δh 0.0001923 ϕh 0.7354

ψh 0.2985 π 0.5
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To optimize the objective functional (4), implementation of different set of control combination strategies ranging

from single to quintuple control interventions are considered.

4.1.1. Single control implementation

To be specific, the set of single interventions consists of five different control strategies, namely, environmental

fumigation with pesticide (u1(t)) only, use of condom (u2(t)) only, use of antiviral therapy (u3(t)) only, rodent

reduction control (u4(t)) only and educational campaign (u5(t)) only.

4.1.2. Double control implementation

To optimize the objective functional (4) with the efforts of double control interventions, five different combination

strategies of two out of the five optimal controls ui(t), i = 1, 2, . . . , 5, are considered in this paper. These are

combination of environmental fumigation (u1(t)) and use of condom (u2(t)) only, combination of environmental

fumigation (u1(t)) and rodent reduction control (u4(t)) only, combination of condom usage (u2(t)) and use of

antiviral therapy (u3(t)) only, combination of condom usage (u2(t)) and rodent reduction control (u4(t)) only and

combination of use of antiviral therapy (u3(t)) and educational campaign (u5(t)) only.

4.1.3. Triple control implementation

For triple control intervention, we are particular about five optimal control combination strategies defined

as follows: Combination of environmental fumigation with pesticide (u1(t)), use of condom (u2(t)) and rodent

reduction control (u4(t)) only, combination of environmental fumigation (u1(t)), use of antiviral therapy (u3(t))

and educational campaign (u5(t)) only, combination of environmental fumigation (u1(t)), rodent reduction control

(u4(t)) and educational campaign (u5(t)) only, combination of use of condom (u2(t)), use of antiviral therapy (u3(t))

and rodent reduction control (u4(t)) only and combination of use of antiviral therapy (u3(t)), rodent reduction

control (u4(t)) and educational campaign (u5(t)) only.

4.1.4. Quadruple control implementation

Here, quadruple control intervention is implemented by specifically consider the following five optimal control

combination strategies: Combination of environmental fumigation with pesticide (u1(t)), use of condom (u2(t)),

use of antiviral therapy (u3(t)) and rodent reduction control (u4(t)) only, combination of environmental fumigation

(u1(t)), use of condom (u2(t)), use of antiviral therapy (u3(t)) and educational campaign (u5(t)) only, combination of

environmental fumigation (u1(t)), use of condom (u2(t)), rodent reduction control (u4(t)) and educational campaign

(u5(t)) only, combination of environmental fumigation (u1(t)), use of antiviral therapy (u3(t)), rodent reduction

control (u4(t)) and educational campaign policy (u5(t)) only and combination of condom usage (u2(t)), use of

antiviral therapy (u3(t)), rodent reduction control (u4(t)) and educational campaign (u5(t)) only.

4.1.5. Quintuple control implementation

Quintuple control intervention is a single optimal control strategy which combines all the five control inter-

ventions, namely, environmental fumigation with pesticide (u1(t)), use of condom (u2(t)), use of antiviral therapy

(u3(t)), rodent reduction control (u4(t)) and educational campaign (u5(t)). This control intervention is considered
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as part of the implemented control interventions investigated in this work with a view to effectively optimize the

objective functional (4).

4.2. Efficiency and cost-effectiveness analysis

In economic evaluation of an intervention strategy, efficiency and cost-effectiveness are two different important

keys in prioritizing the implementation of a particular intervention from the set of competing and alternative

strategies in disease control.

On one hand, efficiency analysis (EA) helps to identify the intervention that prevents the highest number of

infections in human population with no regard to the cost of control implementation (Ghosh et al., 2019). According

to this analysis, an intervention with the highest efficiency index (EI) is most efficient (Abidemi and Aziz, 2022;

Falowo et al., 2022). On the other hand, cost-effectiveness analysis (CEA) helps in determining the intervention

strategy that averts infection mostly at the least possible cost Falowo et al. (2022). Following the ideas of authors

in some previous works (Abidemi and Aziz, 2022; Falowo et al., 2022), EI is simply given as

EI =
Total infection averted by intervention

Total infection without intervention
× 100. (18)

In carrying out the cost-effectiveness analysis, the incremental cost-effectiveness ratio (ICER) is often adopted.

This cost analysis method has been applied to determine the most cost-effective intervention in the control of diseases

by a number of researchers (Asamoah et al., 2020, 2022; Cantor and Ganiats, 1999; Ojo et al., 2022; Omame et al.,

2021). ICER measures the ratio between costs and health benefits of any two interventions competing for the same

limited resources. The calculation of ICER makes use of the following formula:

ICER =
∆ in total costs of interventions

∆ in total infection averted by interventions
. (19)

5. Results

5.1. Numerical results of the optimal control LF model (3)

Figure 1 shows how the objective functional C (4) is optimized when any of the single control interventions is

implemented. The numerical solutions of the optimal control variables ui(t), i = 1, 2, . . . , 5, associated with the

implementation of single control interventions are displayed in Fig. 2.
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Fig. 1: Effects of single control (SC) implementation on the dynamics of model (3)
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Fig. 2: Single control (SC) profiles of the LF model (3)
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In Fig. 3, the time series plots of the simulations of optimal control LF model (3) which show the comparisons

of application of five different combinations of two of the five optimal control variables and when no intervention

is put in place are demonstrated, while Fig. 4 displays the control profiles for the implementation of these double

interventions.
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Fig. 3: Effects of double control (DC) implementation on the dynamics of model (3)
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Fig. 4: Double control (DC) profiles of the LF model (3)
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Furthermore, the time series plots of the simulations of optimal control LF model (3) which reveal the compar-

isons of the implementation of combinations of three out of the five control variables with no control intervention

at the human and rodent populations level are displayed in Fig. 5. The numerical solutions of the time-dependent

control variables for the triple interventions are graphically illustrated in Fig. 6.
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Fig. 5: Effects of triple control (TC) implementation on the dynamics of model (3)
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Fig. 6: Triple control (TC) profiles of the LF model (3)
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Comparisons of the impacts of five different combinations of four out of the five control variables and when no

any effort of control implementation is put in place on the dynamics of LF between the interacting populations of

human and rodent are assessed through the numerical simulation of the optimal control LF model (3) as presented

by the time series plots in Fig. 7. The corresponding profiles for the control solutions for different combinations

of four of the given five control variables ui(t), i = 1, 2, . . . , 5, necessary for minimizing the objective functional (4)

are presented in Fig. 8.
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Fig. 7: Effects of quadruple control (QdC) implementation on the dynamics of model (3)
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Fig. 8: Quadruple control (QdC) profiles of the LF model (3)
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Figure 9 shows how the optimal control LF model (3) behaves when the combination of all the five optimal

controls ui(t), i = 1, 2, . . . , 5, is implemented and the solutions of the optimal control variables associated with the

intervention strategy.
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Fig. 9: Effects of quintuple control (QtC) implementation on the dynamics of model (3)

5.2. Results of the efficiency and cost-effectiveness analyses

5.2.1. The most efficient and cost-effective single control

In view of the results arising from the implementation of single control interventions on the optimality system,

as illustrated in Figs. 1 and 2, EA and CEA are carried out on the single interventions ui(t), i = 1, 2, . . . , 5. In

Table 3, the EI and ICER for individual single interventions arranged from the least to the highest total number of

infection averted are shown. As observed from Table 3, intervention u2(t), denoting condom use, has the highest

EI of 45.374%. This is followed by intervention u3(t) representing antiviral drug therapy, with EI of 18.024%.
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The next intervention with highest EI is u1(t), denoting environmental fumigation, with EI of 13.158% followed by

intervention u4(t), representing rodent reduction control, having EI of 7.749%, while intervention u5(t) representing

educational campaign has the least EI of 5.110%. Thus, intervention u2(t) representing condom use is the most

efficient single control intervention strategy.

Table 3: EI and ICER for single control interventions

Intervention Total infection averted Total cost expended on the in-

tervention

Efficiency (%) ICER (×10−4)

u5 8.8535× 104 49.994 5.110 5.6468

u4 1.3426× 105 43.852 7.749 −1.3432

u1 2.2798× 105 0.500 13.158 −4.6257

u3 3.1228× 105 49.994 18.024 5.8712

u2 7.8614× 105 0.500 45.374 −1.0445

In CEA, the dominance of one over the other of any two competing interventions for the same limited resources

implies the greater effectiveness at cheaper cost (Cantor and Ganiats, 1999). On this note, an intervention that

is being dominated is excluded from the list, while an intervention that dominates in terms of cost effectiveness is

retained.

Now, making use of the formula in (19), the ICER is calculated for each of the five single interventions ui(t), i =

1, 2, . . . , 5. For the competing interventions u5(t) with u4(t), there is a cost saving of 0.00013432 for intervention

u4(t) over intervention u5(t). This follows the comparison of ICER values for the two control interventions, which

reveals that the ICER value for intervention u4(t) is less than that of intervention u5(t) (as Table 3 shows). The

lower ICER value for intervention u4(t) suggests that intervention u5(t) is strongly dominated by intervention u4(t).

Consequently, intervention u5(t) representing educational campaign is eliminated from the list. Intervention u4(t)

is further compared with intervention u1(t). The calculated ICER values for the two intervention strategies in view

of formula (19) are summarized in Table 4.

Table 4: ICER for single control interventions excluding u5

Intervention Total infection averted Total cost expended on the interven-

tion

ICER (×10−4)

u4 1.3426× 105 43.852 3.2662

u1 2.2798× 105 0.500 −4.6257

u3 3.1228× 105 49.994 5.8712

u2 7.8614× 105 0.500 −1.0445

As Table 4 shows, the ICER value for intervention u4(t) is higher than that of intervention u1(t), implying

that intervention u1(t) strongly dominates intervention u4(t). Thus, intervention u4(t) is removed from the list of

interventions and alternative control interventions to implement. So, intervention u1(t) is further compared with

intervention u3(t). In view of formula (19), the computed ICER values for the two competing control interventions
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are as displayed in Table 5.

Table 5: ICER for single control interventions further excluding u4

Intervention Total infection averted Total cost expended on the interven-

tion

ICER

u1 2.2798× 105 0.500 2.1932× 10−6

u3 3.1228× 105 49.994 5.8712× 10−4

u2 7.8614× 105 0.500 −1.0445× 10−4

As shown in Table 5, the ICER value for intervention u3(t) is higher than that of intervention u1(t), suggesting

that intervention u3(t) is strongly dominated by intervention u1(t). Hence, intervention u3(t) is discarded from

the set of control interventions. Now, we are left with comparing intervention u1(t) with intervention u2(t). At

this juncture, it is needless to recalculate ICER further since it can be observed that the same cost is expended

on both interventions u1(t) and u2(t). However, intervention u2(t) averts higher number of infection compared to

intervention u1(t). Therefore, intervention u2(t) representing the use of condom is considered the most cost-effective

among the five single interventions examined in this paper. We therefore conclude that condom use intervention

u2(t) is considered the most efficient and most cost-effective single intervention among the five single optimal control

interventions under consideration.

5.2.2. The most efficient and cost-effective double control

Table 6 presents the EI and ICER values of different optimal control combination strategies of two of the five

control variables. The interventions are arranged in an increasing order with respect to the averted infection. A

look at Table 6 shows that the double intervention u1, u2 produces 99.689 efficiency, positioning the intervention

the most efficient double intervention.

Furthermore, the ICER for each of the interventions is calculated using the formula (19). The results obtained

from the calculations are shown in Table 6.

Table 6: EI and ICER for double control interventions

Intervention Total infection averted Total cost expended on the in-

tervention ($)

Efficiency (%) ICER

u1, u4 2.2854× 105 0.637 13.191 2.7873× 10−6

u3, u5 4.0996× 105 1.000 23.662 2.0009× 10−6

u2, u3 1.0453× 106 1.000 60.330 −

u2, u4 1.3294× 106 0.888 76.728 −3.9423× 10−7

u1, u2 1.7272× 106 1.000 99.689 2.8155× 10−7

It is seen from Table 6 that the ICER value for the double intervention u1, u4 is higher when compared with

intervention u3, u5. This suggests that intervention u1, u4 is strongly dominated. Hence, the double intervention

u1, u4 is discarded from the list. The double intervention u3, u5 is further compared with intervention u2, u3. The
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computed ICER values using (19) are given in Table 7. The same cost of $1.00 is expended on both the double

Table 7: ICER for double control interventions excluding intervention u1, u4

Intervention Total infection averted Total cost expended on the interven-

tion ($)

ICER

u3, u5 4.0996× 105 1.000 −

u2, u3 1.0453× 106 1.000 −

u2, u4 1.3294× 106 0.888 −3.9423× 10−7

u1, u2 1.7272× 106 1.000 2.8155× 10−7

interventions u3, u5 and u2, u3 as Table 7 shows. However, the intervention u2, u3 averts higher infection compared

to intervention u3, u5. Thus, the double intervention u3, u5 is eliminated from the list. Then, intervention u2, u3

is further compared with intervention u2, u4. Using the formula (19), Table 8 presents the summary of computed

ICER values. A look at Table 8 indicates that the ICER value for double intervention u2, u4 is lower that of

Table 8: ICER for double control interventions further excluding intervention u3, u5

Intervention Total infection averted Total cost expended on the interven-

tion ($)

ICER

u2, u3 1.0453× 106 1.000 9.5666× 10−7

u2, u4 1.3294× 106 0.888 −3.9423× 10−7

u1, u2 1.7272× 106 1.000 2.8155× 10−7

intervention u2, u3, implying that the double intervention u2, u4 strongly dominates the double intervention u2, u3.

This means that the double intervention u2, u3 is more costly to implement. Therefore, double intervention u2, u3

is discarded from the list. Finally, double intervention u2, u4 is compared with double intervention u1, u2. Table

9 provides the calculated ICER values based on formula (19). It is observed from Table 9 that the ICER value

Table 9: ICER for double control interventions further excluding intervention u2, u3

Intervention Total infection averted Total cost expended on the intervention

($)

ICER

u2, u4 1.3294× 106 0.888 6.6797× 10−7

u1, u2 1.7272× 106 1.000 2.8155× 10−7

for intervention u2, u4 is higher than the ICER value of intervention u1, u2, suggesting that double intervention

u2, u4 is strongly dominated by intervention u1, u2. Consequently, double intervention u2, u4 is removed from

the list. Therefore, when the available resources are limited, double intervention u1, u2 is the most cost-effective

intervention among the five different combinations of two controls analysed in this paper. This leads us to arriving

at the double intervention u1, u2 regarded the most efficient and most cost-effective double intervention of all the

five double interventions considered.
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5.2.3. The most efficient and cost-effective triple control

Using the simulated results arising from the implementation of five different combination strategies of three of

the five control variables (see Fig. 5), Table 10 presents the EI and ICER values for the triple interventions ranked

in an increasing order of infection averted. From Table 10, it is seen that combination of the control variables

Table 10: EI and ICER for triple control interventions

Intervention Total infection averted Total cost expended on the in-

tervention ($)

Efficiency (%) ICER

u1, u4, u5 3.3200× 105 1.209 19.162 3.6416× 10−6

u3, u4, u5 5.5861× 105 1.437 32.242 1.0061× 10−6

u1, u3, u5 6.5215× 105 1.500 37.640 6.7351× 10−7

u2, u3, u4 1.4581× 106 1.235 84.158 −3.2880× 10−7

u1, u2, u4 1.7287× 106 1.050 99.777 −6.8367× 10−7

u1, u2 and u4 produces the most efficient triple intervention with efficiency of 99.777%. To ascertain the most

cost-effective triple intervention, the ICER values for the five different combination strategies consisting of three of

the five control variables are calculated using formula (19). By comparing the ICER for triple intervention u1, u4, u5

and u3, u4, u5, the ICER value for intervention u3, u4, u5 is lower when compared with the ICER for intervention

u1, u4, u5, implying that intervention u3, u4, u5 strongly dominates intervention u1, u4, u5. This means that triple

intervention u1, u4, u5 is more costly to implement, and therefore discarded from the list. Based on formula (19),

the ICER is recalculated for the rest of triple interventions. See Table 11 for the summary of the results. As shown

Table 11: ICER for triple control interventions excluding intervention u1, u4, u5

Intervention Total infection averted Total cost expended on the interven-

tion ($)

ICER

u3, u4, u5 5.5861× 105 1.437 2.5725× 10−6

u1, u3, u5 6.5215× 105 1.500 6.7351× 10−7

u2, u3, u4 1.4581× 106 1.235 −3.2880× 10−7

u1, u2, u4 1.7287× 106 1.050 −6.8367× 10−7

in Table 11, the ICER value for intervention u3, u4, u5 is higher than the ICER value for intervention u1, u3, u5.

Therefore, intervention u3, u4, u5 is eliminated from the list to preserve the available limited resources. The ICER

is further recalculated for the remaining triple control interventions and their ICER values are displayed in Table

12. As Table 12 shows, the ICER value for intervention u1, u3, u5 is higher than that of intervention u2, u3, u4.

This implies that intervention u1, u3, u5 is strongly dominated by intervention u2, u3, u4. Therefore, intervention

u1, u3, u5 is discarded from the list to preserve the available limited resources. Lastly, the ICER is recalculated

for the rest of the two competing triple interventions with their ICER values presented in Table 13. Following the

comparison of the ICER values for interventions u2, u3, u4 and u1, u2, u4, it is observed that the ICER value for

intervention u2, u3, u4 is higher than the ICER for intervention u1, u2, u4. This simply suggests that intervention
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Table 12: ICER for triple control interventions further excluding intervention u3, u4, u5

Intervention Total infection averted Total cost expended on the interven-

tion ($)

ICER

u1, u3, u5 6.5215× 105 1.500 2.3001× 10−6

u2, u3, u4 1.4581× 106 1.235 −3.2880× 10−7

u1, u2, u4 1.7287× 106 1.050 −6.8367× 10−7

Table 13: ICER for triple control interventions further excluding intervention u1, u3, u5

Intervention Total infection averted Total cost expended on the interven-

tion ($)

ICER

u2, u3, u4 1.4581× 106 1.235 8.4699× 10−7

u1, u2, u4 1.7287× 106 1.050 −6.8367× 10−7

u1, u2, u4 strongly dominates intervention u2, u3, u4. Thus, intervention u1, u2, u4 is cheaper to implement than

intervention u2, u3, u4. Therefore, intervention u1, u2, u4 is the most cost-effective triple intervention of the five

triple interventions analysed in this paper. As a result, intervention u1, u2, u4 is considered the most efficient and

cost-effective triple intervention among the five triple interventions examined.

5.2.4. The most efficient and cost-effective quadruple control

Using the simulation results obtained from the implementation of quadruple interventions on the optimality

system as shown in Fig. 7, we further examine the most efficient and most cost-effective intervention from the

implemented five different quadruple interventions. The EI and ICER values for the quadruple interventions ranked

from least to highest in respect of the infection averted are displayed in Table 14 A look at Table 14 reveals that

Table 14: EI and ICER for quadruple control interventions

Intervention Total infection averted Total cost expended on the

intervention ($)

Efficiency (%) ICER

u1, u3, u4, u5 6.5270× 105 560.23 37.672 8.5833× 10−4

u2, u3, u4, u5 7.1926× 105 530.68 41.514 −4.4396× 10−4

u1, u2, u3, u5 1.7277× 106 51.024 99.719 −4.7564× 10−4

u1, u2, u3, u4 1.7288× 106 86.918 99.783 0.0326

u1, u2, u4, u5 1.7292× 106 54.341 99.805 −0.0814

combination of controls u1, u2, u4, u5 produces the most efficient quadruple intervention with 99.805% efficiency. In

addition, the ICER values for the five quadruple interventions are calculated using formula (19) (see the results

in Table 14). Comparing the ICER values for quadruple intervention u1, u3, u4, u5 and u2, u3, u4, u5 reveals that

the ICER value for intervention u2, u3, u4, u5 is lower than the ICER value for u1, u3, u4, u5. Thus, quadruple

intervention u1, u3, u4, u5 is left out, and the ICER is recalculated for the rest of quadruple interventions. Table 15
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gives the summary of the results. From Table 15, it is observed that the ICER for intervention u2, u3, u4, u5 is higher

Table 15: ICER for triple control interventions excluding intervention u1, u3, u4, u5

Intervention Total infection averted Total cost expended on the interven-

tion ($)

ICER

u2, u3, u4, u5 7.1926× 105 530.68 7.3781× 10−4

u1, u2, u3, u5 1.7277× 106 51.024 −4.7564× 10−4

u1, u2, u3, u4 1.7288× 106 86.918 0.0326

u1, u2, u4, u5 1.7292× 106 54.341 −0.0814

when compared with intervention u1, u2, u3, u5. This simply means that intervention u1, u2, u3, u5 is less costly to

implement than intervention u2, u3, u4, u5. Thus, intervention u2, u3, u4, u5 is removed from the list and ICER is

recalculated for the rest of quadruple interventions. The results obtained from the computation are presented in

Table 16 From Table 16, it is shown that intervention u1, u2, u3, u4 strongly dominated by intervention u1, u2, u3, u5

Table 16: ICER for triple control interventions further excluding intervention u2, u3, u4, u5

Intervention Total infection averted Total cost expended on the interven-

tion ($)

ICER

u1, u2, u3, u5 1.7277× 106 51.024 2.9533× 10−5

u1, u2, u3, u4 1.7288× 106 86.918 0.0326

u1, u2, u4, u5 1.7292× 106 54.341 −0.0814

as the ICER value for the former is higher than that of the latter. Therefore, intervention u1, u2, u3, u4 is eliminated

from the list, and the rest two competing quadruple interventions are re-examined by calculating their ICER

values. See the summary of the results arising from the calculation in Table 17. The ICER value for intervention

Table 17: ICER for triple control interventions further excluding intervention u1, u2, u3, u4

Intervention Total infection averted Total cost expended on the intervention

($)

ICER

u1, u2, u3, u5 1.7277× 106 51.024 0.000029533

u1, u2, u4, u5 1.7292× 106 54.341 0.0022

u1, u2, u3, u5 is lower compared to the ICER value of intervention u1, u2, u4, u5 (as Table 17 shows), implying that

intervention u1, u2, u3, u5 strongly dominates intervention u1, u2, u4, u5. Hence, intervention u1, u2, u4, u5 is left

out to preserve the limited resources. Therefore, from the above analysis, quadruple intervention u1, u2, u3, u5 is

the most cost-effective among the five possible combinations of four control variables in case of limited available

resources. Whereas quadruple intervention u1, u2, u4, u5 is the most efficient intervention to be implemented when

no attention is paid to the cost of control implementation.
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5.2.5. Efficiency of quintuple control

In light of the results graphically illustrated in Fig. 9, the efficiency of the quintuple intervention is 99.813%,

which led to the intervention averting the highest number of symptomatic infections in humans with 1.7293× 106

(see Table 18) when compared with all other possible combinations analysed in this paper.

Table 18: EI for quintuple control intervention

Intervention Total infection averted Total cost expended on the interven-

tion ($)

Efficiency (%)

u1, u2, u3, u4, u5 1.7293× 106 71.536 99.813

5.2.6. Determination of the overall most cost-effective control intervention

Apart from determining the most cost-effective single, double, triple, quadruple and quintuple interventions

among the various interventions in the same categories, it is also desirable to ascertain the overall most cost-

effective intervention to be implemented. In this regard, all the single, double, triple, quadruple and quintuple

interventions considered the most cost-effective are re-examined by calculating ICER for them. The interventions

are ranked in ascending order according to the total infection averted as Table 19 shows.

Table 19: ICER for the most cost-effective single, double, triple, quadruple and quintuple interventions

Intervention Total infection averted Total cost expended on the interven-

tion ($)

ICER

u2 7.8614× 105 0.500 6.3602× 10−7

u1, u2 1.7272× 106 1.000 5.3132× 10−7

u1, u2, u3, u5 1.7277× 106 51.024 0.1000

u1, u2, u4 1.7287× 106 1.050 −0.0500

u1, u2, u3, u4, u5 1.7293× 106 71.536 0.1175

Comparing the single intervention u2 and double intervention u1, u2, it is shown that the ICER value for former is

higher than that of latter. Thus, the single intervention u2 is left out, and the rest of interventions are re-examined.

The results of computations are presented in Table 20.

Table 20: ICER for the most cost-effective double, triple, quadruple and quintuple interventions

Intervention Total infection averted Total cost expended on the interven-

tion ($)

ICER

u1, u2 1.7272× 106 1.000 5.7897× 10−7

u1, u2, u3, u5 1.7277× 106 51.024 0.1000

u1, u2, u4 1.7287× 106 1.050 −0.0500

u1, u2, u3, u4, u5 1.7293× 106 71.536 0.1175
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From Table 20, comparison of double intervention u1, u2 and quadruple intervention u1, u2, u3, u5 reveals that

the ICER of intervention u1, u2 is lower than the ICER of u1, u2, u3, u5. This simply implies that quadruple

intervention u1, u2, u3, u5 is strongly dominated by double intervention u1, u2. Therefore, quadruple intervention

u1, u2, u3, u5 is discarded from the list to preserve the limited resources. Further computations are carried out

for the rest of competing interventions as Table 21 displays. Comparing the double intervention u1, u2 and triple

Table 21: ICER for the most cost-effective double, triple and quintuple interventions

Intervention Total infection averted Total cost expended on the interven-

tion ($)

ICER

u1, u2 1.7272× 106 1.000 5.7897× 10−7

u1, u2, u4 1.7287× 106 1.050 3.3333× 10−5

u1, u2, u3, u4, u5 1.7293× 106 71.536 0.1175

intervention u1, u2, u4, the triple intervention u1, u2, u4 is discarded and the remaining two competing intervention

are re-examined as shown in Table 22.

Table 22: ICER for the most cost-effective double and quintuple interventions

Intervention Total infection averted Total cost expended on the interven-

tion ($)

ICER

u1, u2 1.7272× 106 1.000 5.7897× 10−7

u1, u2, u3, u4, u5 1.7293× 106 71.536 3.3589× 10−2

Table 22 shows that the ICER of quintuple intervention u1, u2, u3, u4, u5 is higher when compared with the

ICER of double intervention u1, u2. This means that double intervention u1, u2 strongly dominates quintuple

intervention u1, u2, u3, u4, u5, implying that the quintuple intervention is more costly to implement. Therefore,

quintuple intervention u1, u2, u3, u4, u5 is left out to preserve the limited resources. Therefore, double intervention

u1, u2 is the overall most cost-effective intervention of all the possible combinations of optimal controls u1, u2, u3,

u4 and u5 analysed in this paper.

6. Discussion of results

Under Sect. 5, five different single control interventions are implemented. It is noticed from Fig. 1(c) that the

population of infected individuals with control is mostly reduced with the implementation of single intervention u2(t),

followed by interventions u3(t), u1(t), u4(t) and u5(t), respectively, when compared with the population without any

single control intervention. Figure 1(d) shows that the number of infected rodents diminishes when either of single

interventions u1(t) or u4(t) is put in place, whereas implementation of the three other single interventions (u2(t),

u3(t) and u5(t)) makes no significant impact in the reduction of infected rodent population size. Furthermore,

the use of intervention u5(t) led to most of the susceptible individuals with poor community hygiene improving

their community hygiene over the duration of control implementation as Figs. 1(a) and 1(b) show. To achieve the
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optimal solutions illustrated by Fig. 1, each of environmental fumigation u1(t), condom use u2(t), antiviral drug

therapy u3(t) and educational campaign u5(t) is to be fully implemented for about 49 days before reducing sharply

to the minimum level in final time of implementation (see Figs. 2(a) to 2(c) and Fig. 2(e), respectively), while

rodent reduction control u4(t) should be implemented at 100% maximum level in the first 33 days of implementation

period before dropping gradually to the minimum level over the remaining control implementation time horizon

t ∈ (34, 50] (in days) as shown in Fig. 2(d).

By implementing the various double control interventions under consideration, it is noticed from Fig. 3(a) that

subpopulation of infectious individuals with double control intervention mostly reduced with combination of u1(t)

and u2(t), followed by combinations of u2(t) and u4(t), u2(t) and u3(t), u3(t) and u5, and u1(t) and u4(t) compared

to the subpopulation without any intervention. Moreover, the subpopulation of infectious rodent diminishes with

combinations of u1(t) and u2(t), u1(t) and u4(t), and u2(t) and u4(t), whereas the interventions combining u2(t) and

u3(t), and u3(t) and u5 do not affect the dynamic of the subpopulation significantly as shown in Fig. 3(b). Control

profiles for the double interventions are displayed in Fig. 4. It is seen that the combination of u1(t) and u2(t)

will optimize the objective functional (4) if the both controls are sustained at maximum level of implementation

for about 49 days before dropping to the minimum level in the final time as Fig. 4(a) shows. Similar observations

are made for double interventions u2(t) and u3(t) (see Fig. 4(c)) and u3(t) and u5(t) (see Fig. 4(e)). Further, the

combination u1(t) and u4(t) requires the maximal use of u1(t) and u4(t) in the first 25 days and 23 days, respectively,

before reducing gradually to the minimum level in the final time of control implementation to optimally minimize

the objective functional (4) as seen in Fig. 4(b). Figure 4(d) suggests that, to minimize the objective functional (4)

with combination u2(t) and u4(t), control u2(t) should be held maximally for almost the implementation period,

while control u4(t) should be maintained at maximal level for 36 days before decreasing gradually to the minimal

level at final time.

With application of triple control interventions, it is observed that combination u1(t), u2(t) and u4(t) most

positively impacts the dynamics of symptomatic infectious subpopulation. See Fig. 5(a). This is followed by

combination u2(t), u3(t) and u4(t), combination u1(t), u3(t) and u5(t) and combination u3(t), u4(t) and u5(t).

The subpopulation is least affected positively by combination u1(t), u4(t) and u5(t). In addition, all the five triple

interventions are sufficient to diminish the total number of infectious rodents in the rodent population as depicted

in Fig. 5(b). To achieve the optimal solutions illustrated in Fig. 5, Fig. 6 describes how the combinations of

three of the given five control variables should be optimally used over the implementation period. It is noticed that

the combination of u1(t), u2(t) and u4(t) will optimize the objective functional (4) if control u2(t) is implemented

maximally for almost full period, while the controls u1(t) and u4(t) are maintained at upper bound for 25 days

and 23 days, respectively, before reducing gradually to the lower bound in final time as shown in Fig. 6(a). For

combination u1(t), u3(t) and u5(t), Fig. 6(b) suggests that it requires all the three controls to be maximally used for

49 days before dropping sharply to the minimum level in final time. From Fig. 6(c), it is observed that combination

u1(t), u4(t) and u5(t) requires maximal use of control u5(t) for almost implementation period while controls u1(t)

and u2(t) need to be maintained at maximum level for about 25 days and 23 days, respectively. Combination u2(t),

u3(t) and u4(t) requires maximal use of u2(t) for almost full period with maximal use of controls u3(t) and u4(t)

for 35 days before reducing to zero use (see Fig. 6(d)). As shown in Fig. 6(e), combination u3(t), u4(t) and u5(t)
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requires maximal use of controls u3(t) and u5(t) for almost full implementation period (49 days) and maximal use

of control u4(t) for about 33 days before decreasing gradually to zero use in final time.

Similarly, quadruple control interventions are implemented in order to optimize the objective functional (4).

From Fig. 7, it is seen that combination u1(t), u2(t), u4(t) and u5(t) most positively impacts the dynamics of

symptomatic infectious subpopulation (see Fig. 7(a)). The next most positively impactful combination is u1(t),

u2(t), u3(t) and u4(t), followed by combination u1(t), u2(t), u3(t) and u5(t), combination u2(t), u3(t), u4(t) and

u5(t) then combination u1(t), u3(t), u4(t) and u5(t). Further, it is noticed that all the five quadruple interventions

are sufficient to diminish the total number of infectious rodents when implemented (as Fig. 7(b) reveals). To achieve

these optimal solutions, combination u1(t), u2(t), u3(t) and u4(t) requires the controls to be maximally implemented

for about 23 days, 49 days, 3 days and 20 days, respectively (as shown in Fig. 8(a)). For combination u1(t), u2(t),

u3(t) and u5(t), maximal use of controls u1(t), u2(t) and u3(t) is required for almost full implementation period,

while control u5(t) starts at a rate of about 0.34 (34%) and slowly increase to a maximum of about 0.80 (80%) (as

Fig. 8(b) displays). Combination u1(t), u2(t), u4(t) and u5(t) requires maximal use of controls u1(t), u2(t) and

u4(t) for about 23 days, 49 days and 20 days, respectively, while control u5(t) starts at about 0.2 (20%) and slowly

increase to a maximum of about 0.3 (30%) as observed from Fig. 8(c). Combination u1(t), u3(t), u4(t) and u5(t)

will minimize the objective functional (4) if the controls are used maximally for 22 days, 49 days, 16 days and 49

days, respectively (see Fig. 8(d)). It is noticed that combination u2(t), u3(t), u4(t), u5(t) requires maximal use of

controls u3(t), u4(t) and u5(t) for 49 days, 27 days and 49 days, respectively, while control u2(t) is constantly held

at a maximal level of about 0.25 (25%) for almost full period of implementation (see Fig. 8(e)).

Noticeably, application of quintuple control intervention (combined effort of all the controls) diminishes the

number of symptomatic infectious individuals in human population (as shown in Fig. 9(a)). Furthermore, the use

of quintuple intervention minimizes the number of infectious rodents as well as the total rodent population (see

Figs. 9(b) and 9(c), respectively). To achieve this optimal solutions, combination of all controls u1(t), u2(t), u3(t),

u4(t) and u5(t) requires maximal use of controls u1(t), u2(t), u3(t) and u4(t) for 23 days, 49 days, 3 days and 20

days, respectively, while control u5(t) is held at about 0.31 (31%) for almost full implementation period (as Fig.

9(d) shows).

Furthermore, the efficiency and cost-effectiveness analyses conducted in Sect. 5 suggest that implementation of

optimal use of condom averts the highest number of LF infections in the interacting human and rodent populations

with the efficiency of 45.374%, and the intervention strategy is also regarded the most cost-effective strategy among

the five single control interventions under consideration. The least efficient and cost-effective single intervention is

the application of optimal educational campaign policy. Also, combination of optimal environmental fumigation

with pesticide and optimal use of condom is the most efficient (with efficiency of 99.689%) and most cost-effective

double intervention among the five different double control interventions examined in this paper. Combination

of optimal environmental fumigation and rodent reduction control is the least efficient and cost-effective double

intervention. For triple interventions, combination of optimal environmental fumigation, optimal condom usage

and rodent reduction control is not only the most efficient triple intervention, but also the most cost-effective triple

intervention among the five various triple interventions analysed. The triple intervention which combines optimal

environmental fumigation, optimal rodent reduction control and optimal educational campaign does not only avert
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the least number of LF infections (with efficiency of 19.162%), but also regarded the least cost-effective triple in-

tervention. For quadruple interventions, combination of optimal environmental fumigation, optimal condom usage,

optimal rodent reduction control and optimal educational campaign is the most efficient quadruple intervention,

while the combination of optimal environmental fumigation, optimal use of condom, optimal use of antiviral ther-

apy and optimal educational campaign is the most cost-effective quadruple intervention among the five quadruple

interventions examined. Combination of optimal environmental fumigation, optimal use of antiviral therapy, op-

timal rodent reduction control and optimal educational campaign is regarded the least efficient and cost-effective

quadruple intervention. Finally, determination of the overall most efficient and cost-effective strategies from the set

of single, double , triple, quadruple and quintuple control interventions under consideration reveals that the quintu-

ple control intervention (combination of optimal environmental fumigation, optimal condom usage, optimal use of

antiviral therapy, optimal rodent reduction control and optimal educational campaign) is the overall most efficient

control intervention with 99.813% efficient, whereas the double intervention which combines optimal environmental

fumigation and optimal condom usage is the overall most cost-effective control intervention.

7. Conclusion

In this work, five time-dependent control variables, namely, environmental fumigation, condom use, use of an-

tiviral drug therapy, rodent reduction control and educational campaign, are incorporated into an existing nonlinear

mathematical LF model featuring vertical mode of transmission, nonlinear incidence functions and effect of socio-

economic factors such as community hygiene to investigate the best optimal control strategy for the minimization

of transmission dynamics of the disease in the population at minimal cost. Using Pontryagin’s maximum principle,

the new optimal control framework is analysed to show the existence and characterization of the control quintuple.

The impacts of various set of single, double, triple, quadruple and quintuple interventions implementation on LF

transmission and spread dynamics in the interacting human and rodent populations are evaluated through numerical

simulations of the optimality system. The epidemiological insights from the results show that all the implemented

interventions produce positive impact in reducing the disease burden in the population compared to when no in-

tervention is in place. In particular, we adopt EA and CEA (ICER in particular) to identify the most efficient

and most cost-effective intervention, respectively. EA suggests that the use of quintuple control (combination of all

the five controls) is the most efficient intervention, while CEA shows the most cost-effective single, double, triple

and quadruple interventions for controlling the community spread of LASV. More importantly, CEA reveals that

double intervention combining environmental fumigation with condom use is the overall most cost-effective interven-

tion. Therefore, the most efficient quintuple intervention is recommended when resources are available. However,

adoption of the most cost-effective intervention (double intervention which combines environmental fumigation and

condom use) is highly recommended when the resources are limited. Alternatively, each of the most cost-effective

single, double, triple and quadruple interventions may be adopted for effective and optimal control of LF in case of

limited available resources.
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