Appendix A Rubric for assessing enacted PCK during the teaching of electromagnetism | Components | Restricted | Adequate | Rich | |---|--|--|---| | Curricular
saliency | Never elicits learners' knowledge of pre-concepts Does not show evidence of knowledge of scaffolding of concepts No logical sequencing of concepts evident – "jumping around" | Elicits knowledge of some of the preconcepts, but assumes knowledge of others Sequencing of concepts is logical, but omits important ideas. Effective scaffolding not evident throughout | Elicits knowledge of all applicable preconcepts at appropriate phases in the lesson Shows awareness of the scaffolding of concepts in the topic by referring to pre- or forthcoming ideas Reminds learners of pre-concepts when these are applicable in the conceptualisation of new ideas. Teaches key ideas and sub-ordinate ideas with logical sequencing | | What makes
the topic
difficult to
teach? | Does not pay attention to typical difficulties that can arise Shows no evidence of techniques to address difficulties Mainly uses (verbatim) repetition to address learner difficulties. | Misses some indications that learners find a concept difficult to understand. Attempts to change approach to address the difficulties. | Breaks down difficult ideas into understandable units that are sequenced logically Pays attention to possible misinterpretations such as the meaning of "opposed to" in Lenz's law. Uses techniques such as "slowing down", and a different approach to address learner difficulties. | | Learner prior
knowledge | Knowledge of learner thinking not evident Does not pay attention to possible existing misconceptions (e.g. confusion between magnetic poles and charges) | Pays attention to some known misconceptions. Misses some opportunities to address possible misconceptions. | Pays attention to all (or most) known misconceptions. Knowledge of learner thinking evident. Responds to and addresses gaps in knowledge of pre-concepts. Uses analogies from learners' world to explain ideas | | Representations | Own misinterpretations and misconceptions are evident Relies mostly on explaining and telling. The use of representations is restricted to drawings also available in textbooks. | Use of representations restricted to one type of representation only. Uses objects as illustrations or artefacts. Uses a representation with no apparent conceptual development in learners. | Makes extensive use of representations in combination, e.g. videos and diagrams or demonstrations and diagrams Uses representations to support understanding of concepts Uses representations effectively to stimulate conceptual reasoning | |--------------------------------------|--|--|--| | Conceptual
teaching
strategies | Questions elicits chorus or yes/no responses. Answers own questions before learners make an attempt. Ignores learners' answers when not in line with the expected answer. Does not show awareness when learners reveal the existence of misconceptions Does not make an effort to incorporate representations to support conceptual understanding. | Questions asked mostly requires rote learning Answers own questions after only one or two attempts by learners – does not rephrase questions. Addresses misconceptions through procedural teaching. Uses representations in combination with direct instruction – telling learners what they are supposed to see or as confirmation of theory only. | Shows an attempt to work towards problem-solving and inquiry Shows creative interaction of TSPCK components Shows awareness of typical learner errors and misconceptions and works towards conceptual change. Uses a variety of representations with logical sequencing in combination with appropriate questions. Asks questions to elicit learner thinking that requires conceptual reasoning Waits for responses and does not answer own questions; rephrases questions. | ## Appendix B ## Description of the training sessions during the Physical Sciences teaching methodology course | Components addressed | Discussions/activities | | | |-----------------------------|--|--|--| | Session 1 | Unpack magnetism and electromagnetism from CAPS | | | | Curricular saliency | Class discussion | | | | | What is the sequence in which topics are introduced? Why? | | | | | Can you identify possible gaps in the content in CAPS - knowledge that need to be in place for certain topics? | | | | | Why is it important to understand the curricular saliency of topics? | | | | | How can knowledge about the curricular saliency of topics help to transform the knowledge for teaching? | | | | Session 2 | Reading: Saglam & Millar (2006) | | | | Curricular saliency | Class discussion | | | | Prior knowledge | Magnetism Gr 10 - Knowledge that should be in place before teaching electromagnetism Gr. 11 | | | | Teaching strategies | Possible misconceptions and other shortcomings in the prior knowledge of learners about basic magnetism ideas | | | | | Suggest teaching strategies, approaches and representations to address these misconceptions. | | | | | • What is a misconception? What is the origin and nature of misconceptions in magnetism according to Sağlam and Millar (2006)? | | | | | • Identify two misconceptions prevalent in leaners of science regarding magnetism and discuss strategies you will employ to transform the correct knowledge and bring about conceptual change. | | | | Session 3 | Identifying key ideas in electromagnetism (gr11) | | | | Curricular Saliency | Class discussion: | | | | Prior knowledge | What are the key and subordinate ideas when dealing with electromagnetism in Gr11? | | | | What is difficult to teach? | • What are misconceptions that learners may have when starting this topic and that may arise while teaching this topic? (Sağlam & Millar, 2006; Maloney et al., 2001) | | | | | What topics or sub-topics are difficult to teach? Why? | | | | | How do topics in Gr 10 and Gr 12 link with the Gr 11 topics? | | | | | | | | | Session4 | Focus on specific apparatus, practical demonstrations and simulations that can be used when teaching electromagnetism | | | |----------------------------|---|--|--| | Representations | Class discussion: | | | | and analogies | How can each of the demonstrations be used to support the transformation of content knowledge? | | | | Teaching strategies | Think about: | | | | Prior knowledge | Aspects to focus on during the demonstration | | | | | Important questions to ask and the sequencing of questions | | | | | Possible learner difficulties that can be addressed | | | | | Possible misconceptions that may arise | | | | | Using PHet simulations to teach electromagnetism | | | | | Using the right hand to represent the relationship between the directions of vector quantities in electromagnetism | | | | | Drawing magnetic fields - How to represent 3D magnetic fields on a 2D writing surface. | | | | Session 5 | Class discussion: | | | | Conceptual teaching | Think about general strategies for conceptual teaching, | | | | strategies. | • Thinking about key ideas and sub-ordinate ideas in electromagnetism and the strategy that can be used to teach the idea | | | | (all of the other four | • Considering other knowledge required of the topic and about learners when planning a strategy. | | | | components) | demonstrations and experiments that would support conceptual understanding. | | | | | how to explain concepts that learners usually struggle to understand | | | | | questions to ask to elicit critical reasoning | | | | Session 6 | Planning and presenting a micro-lesson about a key idea in electromagnetism | | | | Putting TSPCK into | | | | | practice | | | |