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Abstract

Malaria is a vector-borne disease that poses major health challenges globally, with the highest burden
in children less than 5 years old. Prevention and treatment have been the main interventions measures
until the recent groundbreaking highly recommended malaria vaccine by WHO for children below five.
A two-group malaria model structured by age with vaccination of individuals aged below 5 years old is
formulated and theoretically analyzed. The disease-free equilibrium is globally asymptotically stable when
the disease-induced death rate in both human groups is zero. Descarte’s rule of signs is used to discuss
the possible existence of multiple endemic equilibria. By construction, mathematical models inherit the
loss of information that could make prediction of model outcomes imprecise. Thus, a global sensitivity
analysis of the basic reproduction number and the vaccination class as response functions using Latin-
Hypercube Sampling in combination with partial rank correlation coefficient are graphically depicted. As
expected, the most sensitive parameters are related to children under 5 years old. Through the application
of optimal control theory, the best combination of interventions measures to mitigate the spread of malaria is
investigated. Simulations results show that concurrently applying the three intervention measures, namely:
personal protection, treatment, and vaccination of childreen under-five is the best strategy for fighting against
malaria epidemic in a community, relative to using either single or any dual combination of intervention(s)
at a time.

Keywords: Malaria, Vaccination, Optimal control, Sensitivity analysis

1 Introduction

Malaria is a vector-borne disease transmitted during blood meal by infectious Anopheles mosquitoes via in-
sertion of sporozoites in the blood of susceptible humans [24]. The worldwide casualties of malaria are huge,
particularly in sub-Sahara Africa, and especially in the children population [4]. The World Health Organization
(WHO) estimated about 241 million malaria cases globally in 2020 that resulted in 627, 000 deaths. The tropical
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and sub-tropical regions (mainly Africa) carry a disproportionately high share of the global malaria burden with
as much as 95% of malaria cases, 96% of malaria deaths with about 80% of these deaths are the children less
than 5 years of age [3].

Malaria is a severe life-threatening vector-borne disease, and with the ongoing COVID-19 pandemic, malaria
morbidity and mortality could increase [29]. While several prevention and therapeutic measures have been im-
plemented to fight against this deadly disease, the recent groundbreaking malaria vaccine for children now rec-
ommended by the WHO [4] after successful pilots in Ghana, Kenya, and Malawi, is expected to help strengthen
the fight against malaria infection [1]. Also, the development of Transmission Blocking Drugs (TBDs) conferring
protection against malaria will play a significant role in mitigating morbidity and mortality in malaria-prone
regions [33]. It is expected that the widespread use of the RTS malaria vaccine (trade name Mosquirix), a
recombinant protein-based malaria vaccine in children in sub-Saharan Africa and other areas with moderate or
high transmission of Plasmodium falciparum malaria along with other preventive measures could help mitigate
the spread and eventually the eradication of the disease [1].

Since the eighteen century, the development of mathematical models has been critical in to provide framework
and understanding of the dynamics of infectious diseases [9, 21, 13]. Several mathematical models of malaria
dynamics investigating various aspects of the disease have flourished in the literature [18]. While mosquito’s
population fluctuates between climatic seasons, seasonal factor tends to impact on the dynamics of infected
mosquitoes and human populations in regions with hot climate [18, 28]. Because of mathematical tractability
and convenience, though important, we will not account for seasonality in the birth rate of mosquitoes. For
several decades, concerted global stringent efforts have been underway to develop effective and safe vaccine for
use against malaria in humans [14, 20], with several candidate vaccines targeting different stages of the malaria
parasite’s lifecycle [32]. An overview of integrated mathematical models for predicting the epidemiologic and
economic effects of malaria vaccines on the clinical epidemiology and natural history of Plasmodium falciparum
malaria both at the individual and population level has been reported in [26, 6]. It is noted that these models
provide a unique platform for predicting both the short- and long-term effects of malaria vaccines on the burden
of disease, allowing for the temporal dynamics of effects on immunity and transmission. With mathematical
models being increasingly used to inform decisions throughout product development pathways from pre-clinical
studies to country implementation of novel health interventions, Galactionova et al., [16] illustrate the utility
of simulation approaches by reviewing malaria vaccine modelling studies. A mathematical model of vaccine
combination adapted to murine malaria studies based on simple probabilistic assumptions was developed in [6].

Transmission-blocking vaccines of malaria have been investigated in [34, 27] where as expected, vaccination has
a positive impact on reducing the disease burden, while malaria could be controlled if the duration of efficacy
is in the order of a human life-span [22] . Public health impact of dynamics model of a transmission-blocking
alongside existing interventions suggests that school-aged children are an attractive population to target for
vaccination [11]. That is, benefit of vaccination distributed across the population averts the greatest number
of cases in younger children. Even an imperfect anti-malaria vaccine (with a modest efficacy and coverage
rate) can lead to effective disease control [30]. Handari et al., [17] analyze an optimal control model of malaria
incorporating pre-erythrocytic vaccine and transmission-blocking treatment.

Previous studies have been theoretical because there was no approved/licensed malaria vaccine, and also vac-
cination was applied to the entire population. As predicted in [11, 19], the first approved malaria vaccine is
for children age five and below, and consequently, we propose a mathematical model of malaria transmission
dynamic by extending our previous work [29], incorporating vaccination in the class of children less than 5
years old, but with no seasonal birth rate [18]. The population of children 5 months (minimum age to take the
vaccine) to 5 years are vaccinated at a certain rate. The vaccinated class comprises fully vaccinated children
(i.e., those who have taken all the 4 doses of the S/AS01 (RTS,S) vaccine). It is important to note that in
[29], the authors studied a two-group malaria model structured by age with no vaccination, while herein, while
herein, to realistically capture what is currently know about the state of the vaccine development, we incorpo-
rate vaccination for children less than five years old only to capture the recently approved children vaccine. To
the best of our knowledge, this is the first mathematical model investigating the impact of the newly approved
children malaria vaccine on the dynamics of the disease.

Here is the outline of the rest of the paper. The mathematical model of our proposed malaria model with
vaccination of children under five years old with no seasonality is formulated in Section 2.1. Theoretical analy-
ses of the model using the fundamental theory of dynamical systems is carried out in Section 3. In Section 4, we
formulate an optimal control problem to investigate the impact of the optimal control strategy on mitigating the
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spread of the disease. Conditions for the existence of optimal control and the optimality system are established
using the Pontryagin’s Maximum Principle. Numerical simulations along with global sensitivity analysis using
the vaccinated class as our response variable are carried out in Section 5. while Section 6 is the conclusion.

2 Malaria model without control

2.1 Model formulation

A deterministic compartmental modeling approach is used to describe the disease transmission dynamics. The
model flow is a susceptible-vaccinated-exposed-infected-recovered-susceptible SV EI(R)S malaria model in the
human population, and SEI in the mosquitoes population. Susceptibles (Se) under 5 years old are recruited
at the constant rate Λe and can die naturally at the rate µh, or grow to become susceptible over 5 years old
at the rate ξ, becoming vaccinate (Ve) at the rate ϑe, or infected (Ee) after a bite from an infectious mosquito

with a strength of infection λe. After a latency period
1

σe
, infected individuals become infectious (Ie), they can

recover and become susceptible again at the rate ωe, or die naturally at the rate µh or as a result of an illness
at rate d1. Entry into susceptible humans over 5 years old (Sa) comes from the growth of susceptible humans
under 5 years old, who can die naturally at the rate µh, become infected (Ea) with the infection strength equal
to λa. Infected individuals become infectious (Ia) at the rate σa or die naturally at the rate µh. An infectious
over 5 years recovers at the rate ωa and becomes susceptible (Sa), or recovered (Ra) with probability 1− p and
p respectively, or dies naturally at the rate µh or due to illness at rate d2. A treated human over 5 years old
can die at rate µh, or lose immunity at rate δa to become susceptible. Similarly, following an infectious bite,
susceptible mosquitoes (Sv) can become infected (Ev) with the strength of the infection λv before becoming
infectious themselves (Iv) at rate σv. Mosquitoes do not recover from malaria, they all die naturally at the rate
µv. The schematic flow diagrams of human and mosquito components of the model are depicted in Figures 1
and 2.1.

Se

Ve

Ee Ie

Sa Ea Ia Ra

µh

µh µh µh + d1

µh µh µh + d2 µh

ϑe

ξ

pωa

Λe

ωe
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(1
− ε)λ

e

λa
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Figure 1: Model flow diagram of the human component of the model

Sv Ev Iv
Λv λv σv

µv µv µv

Figure 2: Model flow diagram of the mosquito component of the model
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2.2 The Model

The variables and parameters values of the model are presented in the following Tables 1 and 2, respectively.

Table 1: Variable of model
Variable Description
Humans
Se Population of susceptible humans under 5 years old
Ve Population of vaccinated humans under 5 years old
Ee Population of infected humans under 5 years old
Ie Population of infectious humans under 5 years old
Sa Population of humans over 5 years old
Ea Population of infected humans over 5 years old
Ia Population of infectious humans over 5 years old
Ra Population of recovered humans over 5 years old
Mosquitoes
Sv Population of susceptible mosquitoes
Ev Population of infected mosquitoes
Iv Population of infectious mosquitoes

Table 2: Model parameter
Parameter Description
b1 Average biting rate of mosquitoes on susceptible humans over 5 years old
b2 Average biting rate of mosquitoes on susceptible humans under 5 years old
Λe Recruitment rate of humans under 5 years old
σe Progression rate from exposed to infectious for humans under 5 years old
ωe Recovery rate of infectious humans under 5 years old
ϑe Vaccination rate of susceptible humans under 5 years old
ε Vaccination efficacy
βe Probability of infection of susceptible humans under 5 years old per mosquito bite
d1 Disease-induced mortality rate for humans under 5 years old
ξ Maturation rate for human under 5 years old
σa Progression rate from exposed to infectious for humans over 5 years old
ωa Recovery rate of infectious humans over 5 years old
u Proportion of infectious humans over 5 years old that becomes immune
βa Probability of infection of susceptible humans over 5 years old per mosquito bite
δa Rate of loss of natural immunity for humans over 5 years old
µh Natural death rate of humans
d2 Disease-induced mortality rate for humans over 5 years old
Λv Birth rate of adult mosquitoes
σv Progression rate from exposed to infectious mosquitoes
βv Probability of infection of susceptible vectors per mosquito bite of the infected human
µv Natural death rate of mosquitoes

Based on our model description and assumptions, we establish the following system of non-linear system of
ordinary differential equations.
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

S′
e = Λe + ωeIe − (λe + ϑe + ξ + µh)Se,

V ′
e = ϑeSe − ((1− ε)λe + µh)Ve,

S′
a = ξSe + uωaIa + δaRa − (λa + µh)Sa,

E′
e = λe(Se + (1− ε)Ve)− (σe + µh)Ee,

E′
a = λaSa − (σa + µh)Ea,

I ′e = σeEe − (ωe + µh + d1)Ie,
I ′a = σaEa − (ωa + µh + d2)Ia,
R′

a = (1− u)ωaIa − (δa + µh)Ra,
S′
v = Λv − (λv + µv)Sv,

E′
v = λvSv − (σv + µv)Ev,

I ′v = σvEv − µvIv,

(1)

with initial conditions

(Se(0), Ve(0), Sa(0), Sv(0), Ee(0), Ea(0), Ev(0), Ie(0), Ia(0), Iv(0), Ra(0)) ∈ R11
+

.

The forces of infections are given by

λe =
b2βe

Nh
Iv, λa =

b1βa

Nh
Iv, λv =

βv[b2Ie + b1Ia]

Nh
.

3 Model Analysis

3.1 Existence, uniqueness and positivity of solutions

The functions on the right-hand side of the system (1) are Lipschitz continuous, therefore by Picard’s existence
Theorem, the system (1) has a solution.

Theorem 3.1 The solutions of the model system (1) with non-negative initial conditions are all non-negative.

Proof. Assume that there exists a time t̃ such that Se(t̃) = 0, S′
e(t̃) < 0, Se(t) > 0, Sa(t) > 0, Ie(t) > 0,

Ia(t) > 0, Ve(t) > 0, Ee(t) > 0, Ea(t) > 0, Ev(t) > 0, Ra(t) > 0, Sv(t) > 0, Iv(t) > 0, for 0 < t < t̃. From the
first equation of (1), we have

dSe(t̃)

dt
= Λe + weI > 0.

This contradicts the assumption that S′
e(t̃) < 0. Therefore S(t) is positive.

Similarly, Sa(t), Ie(t), Ia(t), Ve(t), Ee(t), Ea(t), Ev(t), Ra(t), Sv(t), Iv(t) are all positive.

Theorem 3.2 Solutions the model system (1) are bounded in the invariant region

Ω =

{
(Se, Sa, Ie, Ia, Ve, Ee, Ea, Ev, Ra, Sv, Iv, ) ∈ R11

+ : Nh(t) ≤
Λe

µh
, Nv(t) ≤

Λv

µv

}
.

Proof. GivenNh(t) = Sa(t)+Se(t)+Ie(t)+Ia(t)+Ve(t)+Ee(t)+Ea(t)+Ra(t) andNv(t) = +Ev(t)+Sv(t)+Iv(t).

dNh

dt
= (Λe − µhNh)− (d1Ie + d2Ia),

≤ Λe − µhNh.

Solving the differential inequality, we obtain

Nh(t) ≤
Λe

µh
+

(
Λe

µh
−Nh(0)

)
exp (−µht).

Therefore,

lim sup
t−→∞

Nh(t) =
Λe

µh
.
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SinceNh(t) = Sa(t)+Se(t)+Ie(t)+Ia(t)+Ve(t)+Ee(t)+Ea(t)+Ra(t), it follows that Se(t) ≤
Λe

µh
, Sa(t) ≤

Λe

µh
,

Ee(t) ≤
Λe

µh
, Ea(t) ≤

Λe

µh
, Ie(t) ≤

Λe

µh
, Ia(t) ≤

Λe

µh
, Ve(t) ≤

Λe

µh
, Ra(t) ≤

Λe

µh
.

dNv

dt
= Λv − µvNv.

Thus, the solution of this differential equation is

Nv(t) =
Λv

µv
−
(
Λv

µv
−Nv(0)

)
exp (−µvt).

Therefore,

lim sup
t−→∞

Nv(t) =
Λ

µv
,

and it follows that Sv(t) ≤
Λv

µv
, Ev(t) ≤

Λv

µv
and Iv(t) ≤

Λv

µv
.

In what follows, for simplicity, let k = (ϑe + ξ + µh), k0 = (σe + µh), k1 = (σa + µh), k2 = (ωe + µh + d1),
k3 = (ωa + µh + d2), k4 = (µh + δa), and k5 = (σv + µv).

3.2 Disease-free equilibrium and basic reproduction number

We first show the existence of a trivial disease-free equilibrium (DFE) for our malaria model without control
(MMWC) which is used in computing the basic reproduction number. The MMWC DFE is

M0 =
(
S0
e , V

0
e , S

0
a, S

0
v , E

0
e , E

0
a, E

0
v , I

0
e , I

∗
a , I

∗
v , R

∗
a

)
=

(
Λe

k
,
ϑeΛe

µhk
,
ξΛe

µhk
,
Λv

µv
, 0, 0, 0, 0, 0, 0, 0

)
.

To calculate the basic reproduction number, we apply the next generation method in [31]. We now have that

F =


λe(Se + (1− ε)Ve)

λaSa

λvSv

0
0
0

 , and V =


k0Ee

k1Ea

k5Ev

k2Ie − σeEe

k3Ia − σaEa

µvIv − σvEv



F =



0 0 0 0 0
βeb2

(
k + (1− ε)ϑe

)
k

0 0 0 0 0
βab1ξ

k

0 0 0
βvb2Λvµh

µvΛe

βvb1Λvµh

µvΛe
0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,


and V =


k0 0 0 0 0 0
0 k1 0 0 0 0
0 0 k5 0 0 0

−σe 0 0 k2 0 0
0 −σa 0 0 k3 0
0 0 −σv 0 0 µv

 .

Hence,

Rm
C =

√
Λvβvµhσv

[
b22βek1k3σe(µh + (1− ε)ϑe) + b21βak0k2σaξ

]
Λeµ2

vkk0k1k2k5
·

3.3 Global stability of the DFE

To prove the global asymptotically stability (GAS) of the DFE, we use the approach as described in [10]. We
then re-write the malaria model (1) as follows

dX

dt
= F

(
X, I

)
,

dI

dt
= G

(
X, I

)
, G

(
X, 0

)
= 0,

(2)
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in which X =
(
Se, Ve, Sa, Ra, Sv

)
∈ R5 and I =

(
Ee, Ea, Ev, Ie, Ia, Iv

)
∈ R6. We note here that X and I

represents the classes of the un-infectious and infectious individuals, respectively. Let the DFE from Section
3.2 to be

M0 = (X0, 0) =
(
S0
e , V

0
e , S

0
a, Ra,

0 S0
v , E

0
e , E

0
a, E

0
v , I

0
e , I

0
a , I

0
v

)
=

(
Λe

k
,
ϑeΛe

µhk
,
ξΛe

µhk
, 0,

Λv

µv
, 0, 0, 0, 0, 0, 0

)
.

For the model to be GAS at M0, it needs to satisfy the following conditions as adopted from [10], which are

C1) Local stability is guaranteed at M∗ whenever Rm
C < 1.

C1) At
dX

dt
= F (X0, 0) the DFE is globally asymptotically stable.

C3) G(X, I) = AI − Ĝ(X, I), Ĝ(X, I) ≥ 0 for (X, I) ∈ Ω, where A = DIG(M0) is an Metzler matrix, and Ω is
the model biologically feasible region defined earlier.

Theorem 3.3 If the disease-induced rate is zero (d1 = d2 = 0), then the disease-free equilibrium M0 is globally
asymptotically (GAS) stable when Rm

C < 1.

Proof. To prove that the DFE is GAS when Rm
C < 1, we have to verify the conditions C1 to C3.

Using the approach in [31], we obtain that the DFE M0 is LAS when Rm
C < 1, so the condition C1 is verified.

Next, we re-write the model system (1) in the form given in (2) as

dX

dt
= F (X, I) =


Λe + ωeIe − (λe + k)Se

ϑeSe − ((1− ε)λe + µh)Ve

ξSe + uωaIa + δaRa − (λa + µh)Sa

Λv − (λv + µv)Sv,
(1− u)ωaIa − k4Ra

 , and
dI

dt
= G(X, I) =


λe(Se + (1− ε)Ve)− k0Ee

λaSa − k1Ea

λvSv − k5Ev

σeEe − k2Ie
σaEa − k3Ia
σvEv − µvIv

 .

(3)
We have

dX

dt
= F (X0, 0) ⇔


Ṡe = Λe − kSe,

V̇e = ϑeSe − µhVe,

Ṡa = ξSe + δaRa − µhSa,

Ṙa = −k4Ra,

Ṡv = −µvSv.

(4)

This equation has a unique equilibrium point

(
Λe

k
,
ϑeΛe

µhk
,
ξΛe

µhk
, 0,

Λv

µv

)
which is globally asymptotically stable.

Therefore, the condition C2 is satisfied.
Linearizing the second matrix in equation (3) gives the Metzler Matrix

A = DZG(M∗) =



−k0 0 0 0 0
βeb2
N∗

h

(S∗
e + (1− ε)V ∗

e )

0 −k1 0 0 0
βab1
N∗

h

S∗
a

0 0 −k5
βvb1
N∗

h

S∗
v

βvb2
N∗

h

S∗
v 0

σe 0 0 −k2 0 0
0 σa 0 0 −k3 0
0 0 σv 0 0 −µv


.

Computing Ĝ(X,Z) and after some algebraic simplifications, we have

Ĝ(X, I) = AI − G(X, I) =



βeb2Iv

[
S∗
e

N∗
h

− Se

Nh
+ (1− ε)

(
V ∗
e

N∗
h

− Ve

Nh

)]
βab1Iv

[
S∗
a

N∗
h

− Sa

Nh

]
βv (b2Ie + b1Ia)

[
S∗
v

N∗
h

− Sv

Nh

]
0
0
0


.
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Thus,

Ĝ(X, I) ≥



βeb2Iv [S
∗
e + (1− ε)V ∗

e ]

(
1

N∗
h

− 1

Nh

)

βab1IvS
∗
a

(
1

N∗
h

− 1

Nh

)
βv (b2Ie + b1Ia)S

∗
v

(
1

N∗
h

− 1

Nh

)
0
0
0


.

Since for

(
1

N∗
h

− 1

Nh

)
=

Nh −N∗
h

NhN∗
h

, when d1 = d2 = 0, Nh(t) −N∗
h =

(
Λe

µh
−Nh(0)

)
exp (−µht) is positive,

and we obtain Ĝ(X, I) ≥ 0. The condition C3 is satisfied. We can conclude that if d1 = d2 = 0, then, the DFE
is GAS when Rm

C < 1.

Remark 3.1 When the disease-induced death rate is not zero, the condition Rm
C < 1 is not sufficient for

the global stability of disease-free equilibrium and the phenomenon of backward bifurcation may occur. In this
case, to mitigate the spread of the disease, it is necessary to reduce Rm

C to less than another threshold, say

R#
C < Rm

C < 1.

3.4 Existence of the endemic equilibrium

By setting the left-hand side of the model system 1 to zero and solving it, we obtain the endemic equilibrium
point as follows:

S∗
e =

(
Λ∗
vb2βe(1− ε)λ∗

vσv +N∗
hk5λ

∗
vµhµv +N∗

hk5µhµ
2
v

)
ΛeN

∗
hk0k2k5(λ

∗
v + µv)µv

ΛeN∗
hb2βeσvλ∗

v [k5µv(λ∗
v + µv)((1− ε)(kk0k2 − ωeσeϑe) + µh(k0k2 − ωeσe))] + k6

, (5)

where k6 = (Λvb2βeσvλv)
2(1− ε)(k0k2 − ωeσe) +N∗

hkk0k2k5µhµ
2
v(λv + µv)

2, and N∗
h =

Λe

µh
.

We also have

S∗
v =

Λv

λv + µv
, E∗

v =
λvS

∗
v

k5
, I∗v =

σvE
∗
v

µv
,

λ∗
e =

b2βeI
∗
v

N∗
h

, V ∗
e =

ϑS∗
e

(1− ε)λ∗
e +muh)

, E∗
e =

λ∗
e(S

∗
e + (1− ε)V ∗

e )

k0
, Ie =

σeE
∗
e

k2

, (6)

S∗
a =

ΛeS
∗
ek1k3k4k5ξ(λ

∗
v + µv)

µv [Λek1k3k4k5µv(λ∗
v + µv) + Λvb1βaσvλ∗

v(k1k3k4 − δaωaσa − uωaσaµh)]
, (7)

λ∗
a =

b1βaI
∗
v

N∗
h

, E∗
a =

λ∗
aS

∗
a

k1
, I∗a =

σaE
∗
a

k3
, R∗

a =
(1− u)ωaI

∗
a

k4
. (8)

Substituting the expressions for I∗a and I∗e into the expression for λv, we obtain the polynomial

a3λ
∗3
v + a2λ

∗2
v + a1λ

∗
v + a0, (9)

where the expressions of a0, a1, a2 and a3 are given in the Appendix.
Because the model monitors human populations, all associated state variables should be non-negative for all
time t ≥ 0. We therefore use Descarte’s rule of signs to discuss the existence of possible positive roots of
equation (9). The results are summarized in Table 3
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Case a3 a2 a1 a0 Possible positive roots R0 Condition
(1) + + + − 1 R0 < 1
(2) + + + + 0 R0 > 1
(3) + + − − 1 R0 < 1
(4) + + − + 0 or 2 R0 > 1
(5) + − + − 1 or 3 R0 < 1
(6) + − + + 0 or 2 R0 > 1
(7) + − − − 1 R0 < 1
(8) + − − + 0 or 2 R0 > 1
(9) − + + − 0 or 2 R0 < 1
(10) − + + + 1 R0 > 1
(11) − + − − 0 or 2 R0 < 1
(12) − + − + 1 or 3 R0 > 1
(13) − − + − 0 or 2 R0 < 1
(14) − − + + 1 R0 > 1
(15) − − − − 0 R0 < 1
(16) − − − + 1 R0 > 1

Table 3: Number of possible positive roots of equation (9) using Descarte’s rule of signs.

The following remark summarizes the results in Table 3

Remark 3.2 • If all the coefficients of the polynomial (9) have the same signs, then the model system (1)
has no endemic equilibrium point,

• If R0 ̸= 1, then the system has zero, one, two or three endemic equilibrium points,

• If R0 = 1, then the system has either zero, one or two endemic equilibrium points.

The last two conditions above imply that the model system (1) could exhibit the phenomenon of back-
ward/subcritical bifurcation, when a stable DFE co-exists with a stable endemic equilibrium. This is an
epidemiological situation in which the classical requirement of having the basic reproduction number less than
unity although necessary is not sufficient to eliminate the disease.

4 Optimal control model

The application of optimal control enables us to forecast or choose the best scenario that if well implemented
could help mitigate the spread of the disease. Thus, to investigate the potential impact of the implemented
intervention measures, the following control variables are incorporated into the model system 1:

c1(t) representing the use of personal protection measures to prevent mosquitoes bites during the day
and the night such as the use of insecticide-treated nets, application of repellents to skin or spraying of
insecticides,

c2(t) representing the treatment, and

c3(t) representing the use of vaccination to prevent malaria,

9



as follows 

S′
e = Λe + c2ωeIe − ((1− c1)λe + c3ϑe + ξ + µh)Se,

V ′
e = c3ϑeSe − ((1− c1)(1− ε)λe + µh)Ve,

S′
a = ξSe + (1− p)c2ωaIa + δaRa − ((1− c1)λa + µh)Sa,

E′
e = (1− c1)λe(Se + (1− ε)Ve)− (σe + µh)Ee,

E′
a = (1− c1)λaSa − (σa + µh)Ea,

I ′e = σeEe − (c2ωe + µh + d1)Ie,

I ′a = σaEa − (c2ωa + µh + d2)Ia,

R′
a = pc2ωaIa − (µh + δa)Ra,

S′
v = Λv − ((1− c1)λv + µv)Sv,

E′
v = (1− c1)λvSv − (σv + µv)Ev,

I ′v = σvEv − µvIv.

(10)

Consider the following quadratic objective functional which measures the cost of the control. This cost includes
the above interventions. The the nonlinear objective function is

J
(
c1, c2, c3

)
=

∫ T

0

[
A1Ee(t) +A2Ea(t) +A3Ie(t) +A4I(t) +A5Nv(t) +

w1

2
c21 +

w2

2
c22 +

w3

2
c23

]
dt, (11)

where T is the final time, Ai, i = 1, · · · , 5 are positive weight constants, Nv = Sv++Ev+Iv and wi, i = 1, · · · , 3
are weight constants for the strategies and treatments against proliferation of the Malaria. The fact that the
controls are linearly in (10) and quadratic in the objective functional allows the Hamiltonian, associated to
the optimal control problem to be maximized. Therefore, we seek to find, using the maximum principle of
Pontryagin [25], an optimal control (c∗1, c

∗
2, c

∗
3) ∈ U satisfying (10), such that

J
(
c∗1, c

∗
2, c

∗
3

)
= min

{
J
(
c1, c2, c3

)
| (c1, c2, c3) ∈ U

}
. (12)

The associated pseudo-Hamiltonian is
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H = A1Ee(t) +A2Ea(t) +A3Ie(t) +A4Ia(t) +A5Nv(t) +
w1

2
c21 +

w2

2
c22 +

w3

2
c23

+ ξ1

[
Λe + c2ωeIe − ((1− c1)λe + c3ϑe + ξ + µh)Se

]

+ ξ2

[
c3ϑeSe − ((1− c1)(1− ε)λe + µh)Ve

)
+ ξ3

[
ξSe + (1− u)c2ωaIa + δaRa − ((1− c1)λa + µh)Sa,

]

+ ξ4

[
(1− c1)λe(Se + (1− ε)Ve)− (σe + µh)Ee

]

+ ξ5

[
(1− c1)λaSa − (σa + µh)Ea

]

+ ξ6

[
σeEe − (c2ωe + µh + d1)Ie

]

+ ξ7

[
σaEa − (c2ωa + µh + d2)Ia

]

+ ξ8

[
uc2ωaIa − (µh + δa)Ra

]

+ ξ9

[
Λv − ((1− c1)λv + µv)Sv

]

+ ξ10

[
(1− c1)λvSv − (σv + µv)Ev

]

+ ξ11

[
σvEv − µvIv

]
,

(13)

where the ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9, ξ10, ξ11 are the associated adjoints for the states Se, Ve, Sa, Ee, Ea, Ie, Ia, Ra, Sv, Ev, Iv.

The system of equations is found by taking the appropriate partial derivatives of the Hamiltonian (13) with respect to

the associated state variable.

where ξi, i = 1, · · · , 11 are the adjoint variables satisfying

ξ
′

1 = − ∂H
∂Se

ξ
′

2 = − ∂H
∂Ve

,

ξ
′

3 = − ∂H
∂Sa

ξ
′

4 = − ∂H
∂Ee

,

ξ
′

5 = − ∂H
∂Ea

ξ
′

6 = − ∂H
∂Ie

,

ξ
′

7 = − ∂H
∂Ia

ξ
′

8 = − ∂H
∂Ra

,

ξ
′

9 = − ∂H
∂Sv

ξ
′

10 = − ∂H
∂Ev

.

ξ
′

7 = − ∂H
∂Iv

.

(14)

That is,
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ξ
′

1 = λe(1− c1)(ξ1 − ξ4) + c3ϑe(ξ1 − ξ2) + ξ(ξ1 − ξ3) +
λeSe

Nh
(1− c1)(ξ4 − ξ1) +

λaSa

Nh
(1− c1)(ξ5 − ξ3)

+
λvSv

Nh
(1− c1)(ξ10 − ξ9) +

(1− ε)λeVe

Nh
(1− c1)(ξ4 − ξ2) + µhξ1,

ξ
′

2 =
λeSe

Nh
(1− c1)(ξ4 − ξ1) +

λeVe

Nh
(1− c1)(1− ε)(ξ4 − ξ2) + λe(1− c1)(1− ε)(ξ2 − ξ4)

+
λvSv

Nh
(1− c1)(ξ10 − ξ9) +

λaSa

Nh
(1− c1)(ξ5 − ξ3) + µhξ2,

ξ
′

3 =
λeSe

Nh
(1− c1)(ξ4 − ξ1) +

λeVe

Nh
(1− c1)(1− ε)(ξ4 − ξ2) +

λaSa

Nh
(1− c1)(ξ5 − ξ3) + (1− c1)λa(ξ3 − ξ5)

+
λvSv

Nh
(1− c1)(ξ10 − ξ9) + µhξ3,

ξ
′

4 =
λeSe

Nh
(1− c1)(ξ4 − ξ1) +

λeVe

Nh
(1− c1)(1− ε)(ξ4 − ξ2) +

λaSa

Nh
(1− c1)(ξ5 − ξ3) + σe(ξ4 − ξ6)

+
λvSv

Nh
(1− c1)(ξ10 − ξ9) + µhξ4 −A1,

ξ
′

5 =
λeSe

Nh
(1− c1)(ξ4 − ξ1) +

λeVe

Nh
(1− c1)(1− ε)(ξ4 − ξ2) +

λaSa

Nh
(1− c1)(ξ5 − ξ3) + σa(ξ5 − ξ7)

+
λvSv

Nh
(1− c1)(ξ10 − ξ9) + µhξ5 −A2,

ξ
′

6 =
λeSe

Nh
(1− c1)(ξ4 − ξ1) +

λeVe

Nh
(1− c1)(1− ε)(ξ4 − ξ2) +

λaSa

Nh
(1− c1)(ξ5 − ξ3) + c2ωe(ξ6 − ξ1)

λvSv

Nh
(1− c1)(ξ10 − ξ9) +

b2βvSv

Nh
(1− c1)(ξ9 − ξ10) + (µh + d1)ξ6 −A3,

ξ
′

7 =
λeSe

Nh
(1− c1)(ξ4 − ξ1) +

λeVe

Nh
(1− c1)(1− ε)(ξ4 − ξ2) +

λaSa

Nh
(1− c1)(ξ5 − ξ3) +

b1βvSv

Nh
(1− c1)(ξ9 − ξ10)

−c2ωa(uξ8 + (1− u)ξ3) +
λvSv

Nh
(1− c1)(ξ10 − ξ9) + (c2ωa + µh + d2)ξ7 −A4,

ξ
′

8 =
λeSe

Nh
(1− c1)(ξ4 − ξ1) +

λeVe

Nh
(1− c1)(1− ε)(ξ4 − ξ2) +

λaSa

Nh
(1− c1)(ξ5 − ξ3) + δa(ξ8 − ξ3)

+
λvSv

Nh
(1− c1)(ξ10 − ξ9) + µhξ8,

ξ
′

9 = λv(1− c1)(ξ9 − ξ10) + µvξ9 −A5,

ξ
′

10 = σv(ξ10 − ξ11) + µvξ10 −A5,

ξ
′

11 = λeSe(1− c1)(ξ1 − ξ4) + λeVe(1− ε)(1− c1)(ξ2 − ξ4) + λaSa(1− c1)(ξ3 − ξ5) + µvξ11 −A5,

Considering the optimality conditions, the Hamiltonian function is differentiated with respect to the control
variables resulting in
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0 =
∂H

∂c1
= w1c1 + (ξ1 − ξ4)λ2Se + (ξ2 − ξ4)ελ3Ve + ξ4λeVe + (ξ3 − ξ5)λaVa + (ξ9 − ξ10)λvSv

0 =
∂H

∂c2
= w2c2 + (ξ1 − ξ6)ωeIe + (ξ8 − ξ3)pωaIa + (ξ3 − ξ7)ωaIa.

0 =
∂H

∂c3
= w3c3 + (ξ2 − ξ1)ϑeSe,

(15)

on the interior of the control set U . Then, solving for c∗1 (on the interior of the control set) gives

c∗1 =
λ2Se(ξ4 − ξ1) + (1− ε)λeVe(ξ4 − ξ2) + λaSa(ξ5 − ξ3) + λvSv(ξ10 − ξ9)

w1
,

c∗2 =
ωeIe(ξ6 − ξ1) + ωaIa(ξ7 − ξ3) + uωaIa(ξ3 − ξ8)

w2
,

c∗3 =
ϑeSe(ξ1 − ξ2)

w3

(16)

Using the bounds on the controls, we obtain the characterization, and hence

c∗1 = min

{
b,max

[
a, − (ξ1 − ξ4)λ2Se + (ξ2 − ξ4)ελ3Ve + (ξ3 − ξ5)λaVa + (ξ9 − ξ10)λvSv

w1

}
,

c∗2 = min

{
d,max

[
c, − (ξ1 − ξ6)ωeIe + (ξ8 − ξ3)pωaIa + (ξ3 − ξ7)ωaIa

w2

}

c∗3 = min

{
d,max

[
c, − (ξ2 − ξ1)ϑeSe

w3

}
.

5 Numerical simulations

Graphical representations using the model parameter values in Table 4 are illustrated below. Because when c1(t) = 0
there is no vaccination at all, we set the lower bound of the controls to 0 and the upper bound to 1, that is, a = c = 0,
b = d = 1. Thus, 0 ≤ c1(t), c2(t) ≤ 1. The model parameter values in Table Table 4 are taken from the literature, or
assumed for illustrative purpose.
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Table 4: Model parameter values
Parameter Value/units Ref.
b1 [0.1,0.75] [7]
b2 [0.1,0.5342] [7]
Λe 1520 [15]
σe 0.10333 [5]
ωe 0.0027 [15]
ϑe 0.0085 Assumed
ε [0,1] Varried
βe 0.471 [29]

d1
274, 000

409, 000 ∗ 635
= 0.00183542 [2]

ξ 0.00000986 [5]
σa 0.08333 [5]
ωa 0.0027 [15]
u 0.01 Assumed
βa 0.471 [29]
δa 0.0000174 [15]
µh 0.00004 [5]

d2
627000

24100000 ∗ 365
=0.0000071278 [2]

Λv 5000 [15]
σv 0.091 [5]
βv 0.833 [5]
µv 0.05 [5]

5.1 Global sensitivity analysis of RC and Ve

This subsection is devoted to the global sensitivity analyses of the model reprodcution number RC and the vaccination
compartment Ve. The threshold RC is chosen because of its crucial role in forecasting the spread/persistence of an epi-
demic, while the vaccination class is chosen considering ’prevention is better than cure’. In general, mathematical models
possess some uncertainties due to variations such as demography and geographical location incorporated during the
model formulation. Due to these uncertainties, we have an inherent epistemic uncertainty in our model parameterization
for those estimated or calculated [23]. For this reason, we will investigate these uncertainties in the model parameters
by applying the method of Latin-Hyper-Cube Sampling (LHS) with a combination of partial rank correlation coefficient
(PRCC) to bypass unbiased estimates of the parameters [23, 8]. This method takes an input variable and generates an
output containing the tornado and/or scatter plots [8]. More details on this can be found in [18, 12] and the references
therein. Following [8], parameters with PRCC value output less than −0.5 or greater than 0.5 are assumed to be most
sensitive while below these ranges are less significant. the global sensitivity analysis is carried out using Matlab and R
softwares.

Figure 3 is the tornado plot for the PRCC of the model parameters from the reproduction number RC , while Figure 4
depicts the scatter plots obtained against the vaccination compartment.
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Figure 3: Tonardo plot showing all the model parameters against RC . The longer the bar, the more sensitive if
the corresponding parameter.

Table 5: PRCC values and p-values with their significant impact.

Symbol PRCC p-value Keep?
βs 0.513775674 0.0000 TRUE
βh 0.481893775 0.0000 TRUE
βa 0.024026121 0.4503 FALSE
γa 0.001059474 0.9734 FALSE
γh 0.532874887 0.0000 TRUE
γs 0.513588913 0.0000 TRUE
µc −0.526427244 0.0000 TRUE
µm −0.516304961 0.0000 TRUE
µs −0.776046728 0.0000 TRUE
τ1 0.433204750 0.0000 TRUE
τ2 0.444561365 0.0000 TRUE
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(a) (b)

(c) (d)

Figure 4: Scatter plots simulation showing the PRCC values of parameters λa ϑe, ξ and µh against the vacci-
nation class Ve.

From Figure 3, the parameter b2, βe and βv are strongly positively correlated with positive PRCC, while the parameter
µv has a strong negative PRCC value. The biological implication of the positive PRCC values implies their increase will
certainly increase the numerical value of the RC , and the contrast is true for the negative PRCC values. Last, with a
1000 sample size and a unit 1, we performed a global sensitivity using the Ve class as our response variable. The results
are presented using a scatter plot for visualization of the sensitivity of the model parameters. It can be seen that λa has
a strong positive correlation, while ϑe, ξ and µh have a strong negative PRCC values. These suggest a need to decrease
the transmission parameters and increase vaccination of children less than 5 years old, a strategy that could help contain
the spread of malaria in the human population. Importantly, Table 5 gives the PRCC values of each model parameter
in the RC with the associated p-values showing the level statistically significance. Those parameters with p-values less
than 0.05 are said to be significant and have more effect on the reproduction number when compared to other parameters.

5.2 Effect of implementing control measures

5.2.1 Personal protection c1 ̸= 0, treatment c2 ̸= 0, and vaccination c3 ̸= 0

Figure 5 below depicts the time series of the scenario when the three control measures, namely personal protection
c1 ̸= 0, Treatment c2 ̸= 0,and vaccination of children under 5 years old c3 ̸= 0 are implement.
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(a) (b)

(c) (d)

(e)

Figure 5: Effect of implementing controls of the model state variables for (a) Susceptible humans under 5-years.
(b) Susceptible humans over 5-years. (c) Infectious humans under 5-years. (d) Infectious humans over 5-years.
(e) Vaccinated humans under 5-years.

Results of the strategy that combines the three intervention measures indicate that the number of susceptible humans
under over 5-years of age decreases, whereas the number of susceptible individuals over 5-years increase in time, as seen
in Figures 5(b) and 5(a) respectively. On the other hand, in the presence of control measures, we have a reduced number
of infectious individuals in both of these sub-groups of less and greater than five as shown in Figures 5(d) and 5(c). This
very interesting result suggests a need for simultaneous implementation of treatment, vaccination of less than 5-years
old, and personal protective measures to help mitigate the spread of malaria outbreak(s). In addition, Figure 5(e) shows
that the use of vaccination does have a significant positive impact on individuals under the age of five, this is significant
as this group bears the highest burden of malaria morbidity and mortality in the community. This results further asserts
the WHO recommendation to vaccinate children under five [4], and thanks to the availability of the vaccine currently
for this age group.
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(a) (b)

(c)

Figure 6: Control profiles for the use of optimal control variables (a) c1-personal protective measures. (b)
c2-Treatment effort (c) c3-vaccination effort.

Figure 6 shows the control profiles for three types of controls we considered in this paper. It can be seen in Figures 6(a)
and 6(b) that it is important to keep the use of personal protective measures and the treatment effort at its maximum
level throughout the modeling time to achieve the control of malaria. In contrast, vaccination is effective at the start
of the simulation for about 200 days, but start to reduce, Figure 6(c). This may not be surprising as mass vaccination
is expected because the vaccine has just been available for the first time recently, but it is expected that after a while,
vaccination rate will decrease. This results can be ascertain as well based on the Covid19 vaccination campaign in the
early 2021 which has now drastically fade down.

5.2.2 Personal protection c1 ̸= 0, treatment c2 = 0, and vaccination c3 = 0

The implementation of personal protection alone has a positive impact on reducing the malaria spread in the community
as depicted in Figure 7. The control profile of c1 is at its maximum value through the intervention period, Figure 7(f).
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Effect of implementing only control c1 of the model state variables for (a) Susceptible humans under
5-years. (b) Susceptible humans over 5-years. (c) Infectious humans under 5-years. (d) Infectious humans over
5-years. (e) Vaccinated humans under 5-years.

5.2.3 Personal protection c1 = 0, treatment c2 ̸= 0, and vaccination c3 = 0

The implementation of treatment as a sole control measure is depicted in Figure 8. As in the case of singly implementing
personal protection only, though treatment alone has a positive population level impact, it is not sufficient to eradicate
the disease. The control profile of c2 is at its maximum value through the intervention period, Figure 8(f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Effect of implementing only control c2 of the model state variables for (a) Susceptible humans under
5-years. (b) Susceptible humans over 5-years. (c) Infectious humans under 5-years. (d) Infectious humans over
5-years. (e) Vaccinated humans under 5-years.

5.2.4 Personal protection c1 = 0, treatment c2 = 0, and vaccination c3 ̸= 0

Vaccination of children under five also has a positive population level impact, see Figure 9. But, in this case, the
vaccination should be kept at its maximum for about 600 days, which is about 3 times more than when the three
intervention strategies are concurrently implemented, Figure 9(f).
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Effect of implementing only control c3 of the model state variables for (a) Susceptible humans under
5-years. (b) Susceptible humans over 5-years. (c) Infectious humans under 5-years. (d) Infectious humans over
5-years. (e) Vaccinated humans under 5-years.

When treatment is the only implemented control measure, it takes more than 3 years of treatment of infected individuals
at the maximum control level as depicted in Figure 8(f) to have a meaningful population-level impact. On the other
hand, in Figure 9(f), when vaccination alone is implemented for children less than 5 years old, it takes about a year of
optimally administering vaccination for a meaningful population-level impact.

6 Conclusion

Malaria is an infectious vector-borne disease of global public health concern, with children less than 5 years old bearing
the highest burden. While several prevention and therapeutic measures have been implemented to fight against malaria,
the recent groundbreaking RTS malaria vaccine (trade name Mosquirix), a recombinant protein-based malaria vaccine
for children age five and below, recommended by the WHO could be a game changer.

A two-group malaria model structured by age with individuals above and below five years of age is formulated and
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analyzed. The basic reproduction number defined as the expected number of secondary infections generated by one
infected individual during its entire period of infectiousness in a naive population is computed using the next generation
method. The disease-free equilibrium is shown to be globally asymptotically stable when the disease-induced death rate
in both human groups is zero. Descarte’s rule of signs is used to discuss the possible existence of multiple endemic
equilibria, in which case the model undergoes a backward or subcritical bifurcation. This epidemiological implication
of this situation when a stable DFE co-exists with a stable endemic equilibrium is that having the basic reproduction
number less than unity although necessary is not sufficient to eliminate the disease.

By construction, mathematical models inherit the loss of information that could make model outcomes imprecise.
Therefore, global sensitivity analysis of the basic reproduction number and the vaccination class using Latin-Hyper
Cube Sampling (LHS) in combination with partial rank correlation coefficient (PRCC) are investigated and results de-
picted graphically. The most sensitive parameters are related to children under five years old such as the average biting
rate of mosquitoes on susceptible individuals under 5 years old b2, the progression rate from exposed to infectious for
humans under 5 years old σe, and the probability of infection of susceptible humans under 5 years old per mosquito bite βe.

To mitigate the spread of infectious diseases, intervention measures (both therapeutic and non-therapeutic) are paramount.
Consequently, we extended the proposed model by incorporating three time-dependent controls, namely personal protec-
tion, treatment, and vaccination of children under-five. Using Pontryagin’s maximum principle, we prove the existence
of an optimal control problem and find the optimal control combination. Numerical simulations reveal that concurrently
applying the three intervention measures is the best scenario for fighting against malaria epidemic in a community,
compared to using either single or any dual combination of intervention(s) at a time. While singly or dual intervention
measure implemented at a time still has a positive population effect, they are all less effective than concurrently imple-
menting the triple intervention strategy at a time.

The proposed model has some limitations. We considered that individuals in the population mix homogeneously. The
model could be extended by developing an agent-based two-group malarial model. Also, since the new malaria vaccine
for children less than five years old is not yet widely available, a stochastic version of the model is another avenue that
warrant further investigation. As countries data become available, fitting the model to real data could enable better
estimation of some model parameters, which herein are mainly extracted from existing literature. In general, the density
of mosquitoes fluctuates between climatic seasons. For this reason, accounting for seasonal factor (in the birth rate of
mosquitoes) as well as the influence of climate (temperature-dependent model), two important drivers of the malaria
dynamics are important.
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Appendix

The coefficients a0, a1, a2 and a3 of the polynomial 9 are given below.
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