Validation of Species-Specific PCR Assays for the Detection of *Pantoea* ananatis, *P. agglomerans*, *P. allii*, and *P. stewartia*

Gi Yoon Shin¹, Amy Smith¹, Teresa A. Coutinho², Bhabesh Dutta³, Brian H. Kvitko¹[†]

¹Department of Plant Pathology, University of Georgia, Athens, GA 30602, U.S.A.

²Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria 0002, South Africa

³Department of Plant Pathology, University of Georgia, Tifton, GA 31793, U.S.A.

† Corresponding author: B. H. Kvitko; bkvitko@uga.edu

Abstract

Species of *Pantoea* represent a group of plant pathogenic bacteria that infect a variety of agro-economically important plant species. Among these, a complex of P. ananatis, P. allii, P. agglomerans, and P. stewartii subsp. indologenes cause center rot in onion, resulting in significant economic losses. As species of *Pantoea* are phenotypically closely related, identification of *Pantoea* species relies on the sequencing and phylogenetic analysis of housekeeping genes. To aid in rapid identification of *Pantoea* species, efforts have been made in developing species-specific primers to be used in PCR assays. In the current study, two P. ananatis, one P. allii, one P. agglomerans, and three P. stewartii published primers as well as newly developed P. agglomerans PagR primers were evaluated for their specificity against 79 Pantoea strains, belonging to 15 different species. To ensure that selected primers were evaluated against accurately identified species, sequencing and phylogenetic analysis of housekeeping gene *infB* were conducted. Thereafter, PCR assays using selected speciesspecific primers were performed. The results showed that previously described P. ananatisspecific PANA 1008; P. allii-specific allii-leuS; P. stewartii-specific PANST rpoB, 3614galE, and DC283galE primers; and one newly designed *P. agglomerans*-specific PagR primer pair were highly specific for their target Pantoea species. They accurately identified these strains into their species and, in some cases, their subspecies level. The findings of the current study will facilitate rapid and reliable identification of *P. ananatis*, *P. agglomerans*, P. allii, and P. stewartii.

Keywords: conventional PCR assay, identification, Pantoea, speciesspecific primers

The genus *Pantoea* within the family *Erwiniaceae* (Adeolu et al. 2016) comprises a group of gram-negative, rod-shaped, yellow-pigmented bacteria that are distributed in varied ecological niches including soil (Selvakumar et al. 2008; Sulbaran et al. 2009), rivers (Morohoshi et al. 2007), insect gut (Dutta et al. 2014; Krawczyk et al. 2021; Maccollom et al. 2009), the phyllosphere (Lindow and Brandl 2003; Nadarasah and Stavrinides 2014), and the rhizosphere (Shariati et al. 2017). Some members of this genus have been reported as opportunistic human pathogens (Brady et al. 2010; Volksch et al. 2009), and many form close associations with crop plants and weeds as beneficial or commensalistic endo- or epiphytes (Gitaitis et al. 2002; Lu et al. 2021; Quecine et al. 2012; Rijavec et al. 2007). Nevertheless, *Pantoea* species are primarily known as plant pathogens that cause economically important diseases in many agriculturally important plant species including corn (Goszczynska et al. 2007; Paccola-Meirelles et al. 2001), onion (Gitaitis and Gay 1997), rice (Cother et al. 2004, Kini et al. 2017), sorghum (Cota et al. 2010), and wheat (Krawczyk et al. 2020).

Center rot of onion (*Allium cepa* L.) is a bacterial disease that is characterized by watersoaked lesions on leaves that develop into necrotic streaks, leading to stalk and internal scale rot of onion bulbs (Gitaitis and Gay 1997). The yield losses can occur both in the field and postharvest conditions with losses up to 100% (Walcott et al. 2002). *Pantoea ananatis* (Carr et al. 2010; Gitaitis and Gay 1997) and *P. agglomerans* (Edens et al. 2006; Hattingh and Walters 1981; Tho et al. 2015) were initially known as the causal agents of center rot of onion, but other *Pantoea* species such as *P. allii* (Brady et al. 2011; Edens et al. 2006) and *P. stewartii* subsp. *indologenes* pv. *cepacicola* (Koirala et al. 2021; Stumpf et al. 2018) have also been identified as pathogens of onion. Of these, *P. ananatis* and *P. agglomerans* are transmitted by *Thrips tabaci*, the onion thrips (Dutta et al. 2014), and as these pathogens are seed-borne (Brady et al. 2011; Goszczynska et al. 2006; Walcott et al. 2002), the management of the disease caused by *Pantoea* species is challenging, especially in the absence of resistant onion cultivars.

Rapid identification of *Pantoea* species using phenotypic characteristics is problematic due to the metabolic versatility and morphological similarity displayed by *Pantoea* species at an intraspecific and interspecies level (Coutinho and Venter 2009; Walterson and Stavrinides 2015), respectively. Furthermore, as different *Pantoea* species often coexist in the same onion tissue, (Vahling-Armstrong et al. 2016), species isolation and identification based solely on colony morphology or biochemical characteristics are unreliable. To circumvent this problem, a genotypic or PCR-based detection method has been developed to detect and identify a specific species of *Pantoea* (Asselin et al. 2016; Braun-Kiewnick et al. 2012; Gehring et al. 2014; Kini et al. 2021; Rahimi-Khameneh et al. 2019). These detection methods make use of a single PCR assay using species-specific primers to yield accurate taxonomic identification, thereby bypassing the need for sequencing. As conventional PCR is still a widely used tool that can rapidly process numerous samples at an economic cost, validation of these *Pantoea* species-specific primers against off-target *Pantoea* species would be useful and important for their application.

Therefore, in this study, we evaluated the specificity of the eight selected and newly designed *Pantoea* species-specific primers against the collection of 79 *Pantoea* strains, which included 15 different *Pantoea* species that were recovered from a wide range of plant hosts (25 plant hosts) and geographical regions (16 countries). To accurately assess the primers' specificity, species identity of the *Pantoea* collection used in this study was first verified by sequencing and phylogenetic analysis of the housekeeping gene *infB*. Afterward, the same genomic DNA extracted from the pure cultures of 79 *Pantoea* strains for the phylogenetic analysis was used

for the species-specific PCR assays. The findings of this study will provide valuable information that will aid in rapid and reliable species level identification of *P. ananatis*, *P. agglomerans*, *P. allii*, and *P. stewartii*.

The list of strains used in this study and their information is found in Table 1. The strains were streaked on Luria-Bertani agar plates (10 g/liter sodium chloride, 10 g/liter tryptone, 5 g/liter yeast extract, and 15 g/liter agar; pH 7.0) and incubated at 28°C for growth overnight. The resulting pure cultures were collected for genomic DNA extraction using the *Quick*-DNA Miniprep kit (Zymo Research). The purified DNA was quantified with the Eppendorf Biospectrometer basic and was adjusted to a final concentration of 40 to 50 ng/µl with 1× TE buffer (10 mM Tris-HCl and 1 mM EDTA; pH 8.0) and stored at 4°C until PCR.

Lane in gel	Abbreviation used in Fig. 2	Species	Strain	Source	Location (country)	Year	Source/reference	<i>infB</i> GenBank accession
1	Pana	P. ananatis	BCC 0026	insect (Miriidae)	South Africa	NR	T. Coutinho Collection	OM272848
2	Pana	P. ananatis	LMG 20103	eucalyptus	South Africa	2000	De Maayer et al. 2010	OM272849
3	Pana	P. ananatis	LMG 2665 ^T	pineapple	Brazil	1928	LMG Bacteria Collection	OM272850
4	Pana	P. ananatis	CTB 1135	rice	Japan	1995	Kido et al. 2008	OM272851
5	Pana	P. ananatis	ATCC 35400	honey melon	U.S.A.	1981	Brady et al. 2008	OM272852
6	Pana	P. ananatis	LMG 5342	human	U.S.A.	1983	De Maaver et al. 2012	OM272854
7	Pana	P. ananatis	DAR 76143	rice	Australia	2004	NSW Plant Pathology & Mycology Herbarium	OM272855
8	Pana	P. ananatis	ICMP 10132	sugarcane	Brazil	1991	ICMP Culture Collection	OM272853
9	Pana	P. ananatis	BD 250	onion	South Africa	2004	T. Coutinho Collection	OM272856
10	Pana	P. ananatis	BD 442	maize	South Africa	2004	Weller-Stuart et al. 2017	OM272857
11	Pana	P. ananatis	PNA 97-1R	onion	U.S.A.	1997	Gitaitis and Gay 1997	OM272859
12	Pana	P. ananatis	CO119	NR	U.S.A.	1994	H. Shwartz Collection	OM272858
13	Pagg	P. agglomerans	LMG 1286 ^T	human	Zimbabwe	1967	Brady et al. 2008	OM272860
14	Pagg	P. agglomerans	LMG 2565	cereal	Canada	1979	Brady et al. 2008	OM272861
15	Pagg	P. agglomerans	BCC 0383	eucalyptus	Uruguay	2004	T. Coutinho Collection	OM272862
16	Pagg	P. agglomerans	BCC 0560	gypsophila	U.S.A.	1946	T. Coutinho Collection	OM272863
17	Pagg	P. agglomerans	LMG 2596	onion	South Africa	1977	Hattingh and Walters 1981	OM272864
18	Pagg	P. agglomerans	ATCC 13329	beet	U.S.A.	1984	Cooksey 1986	OM272865
19	Pagg	P. agglomerans	LMG 2554	runner bean	U.K.	1981	Brady et al. 2008	OM272866
20	Pagg	P. agglomerans	LMG 2572	wheat	Canada	1968	Brady et al. 2008	OM272867
21	Pagg	P. agglomerans	BD 1274	onion	South Africa	NR	Moloto et al. 2020	OM272868
22	Pagg	P. agglomerans	BD 823	daisy	South Africa	2008	T. Coutinho Collection	OM272869
23	Pagg	P. agglomerans	PNG 06-1	onion	U.S.A.	2006	UGA-CPES	OM272870
24	Pagg	P. agglomerans	Ptg016	onion	U.S.A.	2010	L. du Toit Collection	OM272871
25	Psi	P. stewartii subsp. indologenes	0696-21	sudangrass	U.S.A.	1996	Azad et al. 2000	OM272872
26	Psi	P. stewartii subsp. indologenes	MKB 0035	eucalyptus	South Africa	NR	T. Coutinho Collection	OM272873
27	Psi	P. stewartii subsp. indologenes	LMG 2632 ^T	foxtail millet	India	1960	Brady et al. 2008	OM272874
28	Pss	P. stewartii subsp. stewartii	LMG 2713	corn	U.S.A.	1963	Brady et al. 2008	OM272875
29	Pss	P. stewartii subsp. stewartii	LMG 2718	NR	U.S.A.	1982	Brady et al. 2008	OM272876
30	Psi	P. stewartii subsp. indologenes	LMG 2674	pineapple	Hawaii	1982	LMG Bacteria Collection	OM272877
31	Psi	P. stewartii subsp. indologenes	LMG 2630	guar gum powder	NR	1966	Brady et al. 2008	OM272878
32	Psi	P. stewartii subsp. indologenes	ICMP 12183	cassia	Brazil	1991	ICMP Culture Collection	OM272879
33	Psi	P. stewartii subsp. indologenes	LMG 2629	pearl millet	India	1963	LMG Bacteria Collection	OM272880
34	Psi	P. stewartii subsp. indologenes	BCC 1640/ BD 641	com	South Africa	2005	T. Coutinho Collection	OM272881
35	Psi	P. stewartii subsp. indologenes	LMG 2635	maize	India	1981	LMG Bacteria Collection	OM272882
36	Psi	P. stewartii subsp. indologenes	BCC 1502/ BD 313	onion	South Africa	2002	T. Coutinho Collection	OM272883
37	Pall	P. allii	LMG 24202/ BD 309	onion	South Africa	2004	Brady et al. 2011	OM272884

Table 1. List of strains used in this study for the testing of Pantoea species-specific primers^a

			DD 307					
38	Pall	P. allii	LMG 24203/	onion	South Africa	2004	Brady et al. 2011	OM272885
39	Pall	P. allii	LMG 24248 ^T /	onion	South Africa	2004	Brady et al. 2011	OM272886
			BD 390					
40	Pall	P. allii	BCC 1493/	onion	South Africa	2002	T. Coutinho Collection	OM272887
			BD 304					01 40 2000
41	Pall	P. allu	201X20	onion	U.S.A.	2020	S. Malla Collection	OM272888
42	Pall	P. allú	1901001	onion	U.S.A.	2019	C. Nischwitz Collection	OM272889
43	Peuc	P. eucalypti	LMG 24197*	eucalyptus	Uruguay	NR	Brady et al. 2008	OM272890
44	Peuc	P. eucalypti	BCC 0676	eucalyptus	South Africa	2006	T. Coutinho Collection	OM272891
45	Peuc	P. eucalypti	BCC 1489	onion	South Africa	2002	T. Coutinho Collection	OM272892
46	Peuc	P. eucalypti	BCC 0760	eucalyptus	Uruguay	2004	T. Coutinho Collection	OM272893
47	Peuc	P. eucalypti	20TX118	onion	U.S.A.	2020	S. Malla Collection	OM272895
48	Peuc	P. eucalypti	PNG09-2	onion	U.S.A.	2009	B. Dutta collection	OM272894
49	Pvag	P. vagans	LMG 24195	eucalyptus	Uruguay	2004	Brady et al. 2008	OM272896
50	Pvag	P. vagans	LMG 24196	eucalyptus	Argentina	2004	Brady et al. 2008	OM272897
51	Pvag	P. vagans	LMG 24199 ⁴	eucalyptus	Uganda	2003	Brady et al. 2008	OM272898
52	Pvag	P. vagans	BCC 0662	sunflower	NR	NR	T. Coutinho Collection	OM272899
53	Pvag	P. vagans	BCC 1638	maize	South Africa	2005	T. Coutinho Collection	OM272900
54	Pvag	P. vagans	Ptg010 / C9-1	apple	U.S.A.	NR	L. du Toit Collection	OM272901
55	Pant	P. anthophila	LMG 2560	marigold	NR	1966	Brady et al. 2008	OM272902
56	Pant	P. anthophila	LMG 2941	crab apple	NR	1979	LMG Bacteria Collection	OM272903
57	Pant	P. anthophila	LMG 2558 ^T	balsam	India	1964	Brady et al. 2008	OM272904
58	Pant	P. anthophila	BCC 1643	maize	South Africa	2005	T. Coutinho Collection	OM272906
59	Pant	P. anthophila	BCC 1592	maize	South Africa	2005	T. Coutinho Collection	OM272905
60	Pant	P. anthophila	BCC 1651	maize	South Africa	2005	T. Coutinho Collection	OM272907
61	Pdis	P. dispersa	LMG 2749	human	NR	1979	LMG Bacteria Collection	OM272909
62	Pdis	P. dispersa	LMG 2603 ^T	soil	Japan	1979	Brady et al. 2010	OM272911
63	Pdis	P. dispersa	BCC 0210	eucalyptus	Thailand	2004	T. Coutinho Collection	OM272913
64	Pdis	P. dispersa	LMG 2602	sorghum	India	1970	LMG Bacteria Collection	OM272908
65	Pdis	P. dispersa	LMG 2605	cowpea	Tanzania	1965	LMG Bacteria Collection	OM272910
66	Pdis	P. dispersa	20TX134	onion	U.S.A.	2020	S. Malla Collection	OM282912
67	Pcon	P. conspicua	BCC 0541	milkpowder	U.K.	2008	T. Coutinho Collection	OM272915
68	Pcon	P. conspicua	LMG 24534 ^T	human	France	2006	Brady et al. 2010	OM242914
69	Psep	P. septica	LMG 5345 ^T	human	U.S.A.	1983	Brady et al. 2010	OM272916
70	Pbre	P. brenneri	LMG 5343 ^T	human	U.S.A.	1983	Brady et al. 2010	OM272917
71	Pbre	P. brenneri	LMG 24532	human	U.S.A.	2006	Brady et al. 2010	OM272918
72	Pcyp	P. cypripedii	BCC 0889	marula	South Africa	2007	T. Coutinho Collection	OM272920
73	Pcyp	P. cypripedii	LMG 2657 ^T	orchid	U.S.A.	1982	Brady et al. 2010	OM272919
74	Pwal	P. wallisii	LMG 26277 ^T	eucalyptus	South Africa	2006	Brady et al. 2012	OM272921
75	Pwal	P. wallisii	BD $946^{T} =$	eucalyptus	South Africa	2006	Brady et al. 2012	OM272922
			LMG 26277 ^T					
76	Pbej	P. beijingensis	BCC 1348	oyster mushroom	China	2012	Liu et al. 2013	OM272926
77	Pbej	P. beijingensis	BCC 1349	oyster mushroom	China	2012	Liu et al. 2013	OM272925
78	Pdel	P. deleyi	LMG 24200 ^T	eucalyptus	Uganda	NR	Brady et al. 2008	OM272923
79	Peucr	P. eucrina	LMG 2781 ^T	human	U.S.A.	1981	Brady et al. 2010	OM272924
							2	

^a NR = Not recorded.

To verify the taxonomic identification of the strains belonging to the collection, a housekeeping gene *infB* (translation initiation factor β -subunit, Brady et al. 2008) was sequenced and phylogenetically examined for all 79 strains (Table 1). A total volume of 25 µl of PCR reaction was used for the amplification of the *infB* gene. Per reaction consisted of 12.5 µl of 2× GoTaq Green Master Mix (Promega Corporation), 2.5 µl of 10 µM forward primer, 2.5 µl of 10 µM reverse primer, 6.5 µl of nuclease-free water, and 1 µl of template DNA, and the reaction was run on the FlexCycler² (Analytik Jena AG, Jena, Germany) according to the cycling condition suggested by Brady et al. (2008).

The *infB* PCR product was column-purified using the Monarch PCR and DNA clean-up kit (NEB, Ipswich, MA) and was sequenced at Eurofins Genomics LLC (Louisville, KY). The *infB* gene sequences of the type species of *Pantoea* were downloaded from GenBank database and aligned with the sequences resulting from the collection using MAFFT v 7.48 (Katoh et al. 2002). The overhangs were trimmed in BioEdit v 7.2 (Hall 1999). The best-fit evolutionary model was searched by jModelTest v 2.1.10 (Darriba et al. 2012; Guindon and Gascuel 2003), and the maximum-likelihood phylogenetic tree was constructed using online PhyML v 3.0 (Guindon and Gascuel 2003). The 1,000 replicate bootstrap analysis was conducted to test the reliability of the branches. Lastly, the tree was visualized and edited in MEGA X (Kumar et al. 2018).

A total of eight primer pairs consisting of two *P. Ananatis*-, one *P. allii*-, two *P. agglomerans*-, and three *P. stewartii*-specific primers were evaluated against 79 *Pantoea* strains. The sequences, annealing temperature, and expected PCR amplicon size of the species-specific primers are listed in Table 2. In addition to previously published primers, a pair of *P. agglomerans*-specific primers was newly designed for this study. The *pagR* gene region had been previously used to design *P. agglomerans*-specific qPCR assays (Braun-Kiewnick et al. 2012). The *pagR* gene from the publicly available, complete genome of *P. agglomerans* strain C410P1 (GenBank genome accession number: NZ_CP016889, *pagR* gene locus tag in C410P1: BEE12_RS09685) was used to conduct NCBI nucleotide BLAST search against the genomes, and sequences were deposited in GenBank. A total of 95 nucleotide sequences of *P. agglomerans pagR* and its homologs were downloaded and aligned using Clustal W (Thompson et al. 1994) function in BioEdit v 7.2 (Hall 1999). The conserved regions in the *pagR* gene that were distinctive to *P. agglomerans* were manually searched on which the *P. agglomerans*-specific PCR primers were designed using Geneious Prime 2022.0.1 (https://www.geneious.com).

Target species	Name	Sequence	Target gene	Amplicon size (bp)	temperature (°C)	Extension time (s)	i Source
Pantoea species	infB-01_F infB-02_R	ATYATGGGHCAYGTHGAYCA ACKGAGTARTAACGCAGATCCA	Translation initiation factor IF2 encoding gene (<i>infB</i>)	1124	55	60	Brady et al. 2008
P. ananatis	PANAN_gyrB_fwd PANAN_gyrB_rev	GATGACGARGCCATGCTGC GATCTTGCGGTATTCGCCAC	DNA gyrase β-subunit encoding gene (gyrB)	423	58	30	Kini et al. 2021
	PANA_1080_61F PANA_1080_1009R	ACCCTGTCCCCGTTGGCACTGT AATGATGCCCACTGTTGAAGGAAT	Hypothetical protein encoding gene	949	55	60	Asselin et al. 2016
P. allii	allii-leuS181F allii-leuS235R	GTCCGGACACCTTCTATGGCGCAA GGTTGCTTGCGGAAGCCTGCAGT	Leucine t-RNA ligase encoding gene (leuS)	54	60	30	Rahimi- Khameneh et al. 2019
P. agglomerans	PANAG_infB_fwd PANAG_infB_rev	GATGACGARGCCATGCTGC TGTCCGGCGTGCCGGCTG	Translation initiation factor IF2 encoding gene (<i>infB</i>)	730	58	60	Kini et al. 2021
	PagR_210F PagR_626R	TCAGAGTTTACGTTGTGTTGAAG GTGTGGCGTTATTCACTCCGAGC	LuxR family transcriptional regulator protein gene	416	55	30	This study
P. stewartii	PANST_rpoB_fwd PANST_rpoB_rev	CACCGGTGAACTGATTATCG GTCCTGAGGCATCAATGTGT	RNA polymerase β-subunit encoding gene (<i>rpoB</i>)	559	58	30	Kini et al. 2021
P. stewartii subsp. indologenes	3614galE 3614galEc	CGACCTGTTTGCCTCTCACC CATCAGCTTGGAGGTGCCG	UDP-glucose 4-epimerase encod-	250	68 ightarrow 63	30	Gehring et al. 2014
P. stewartii subsp. stewartii	DC283galE DC283galEc	CGACCTGTTTGCCTCTCACT CATCAGCTTGGAGGTGCCA	ing gene (galE)	250	68 → 63	30	Gehring et al. 2014

Table 2. List of Pantoea species-specific primers used in this study

For species-specific PCR assays, 10 ul of reaction was used, which was composed of 5 μ l of 2× GoTaq Green Master Mix, 1 μ l of 10 μ M forward primer, 1 μ l of 10 μ M reverse primer, 2 μ l of nuclease-free water, and 1 μ l of template DNA. The PCR reactions were run with the following conditions: 2 min initial denaturation at 95°C, 30 cycles of 1 min denaturation at 95°C, 1 min annealing at a primer-specific temperature (Table 2), 30 s extension at 72°C (1 min/kb), and a final extension at 72°C for 5 min until it holds at 4°C.

For the amplification of *P. stewartii* subsp. *indologenes* and subsp. *stewartii*-specific *galE* gene, a two-step PCR cycling condition, previously described by Gehring et al. (2014), was used with a slight modification. The first step consisted of 10 cycles of denaturation at 95°C for 45 s, annealing at 68°C for 30 s, and extension at 72°C for 30 s. The second step used 20 cycles of the same conditions but with a lower annealing temperature of 63°C.

A volume of 5 µl of PCR product was visualized in 1% TBE (130 mM Tris-HCl, 45 mM boric acid, and 2.5 mM EDTA; pH 8.0) agarose gel stained with SYBR Safe dye (Thermo Scientific). The PCR reactions were loaded in a uniform manner for all assays, as indicated by the lane number in Table 1. The amplicon sizes of the PCR assays using previously described species-specific primers were checked against the PCR product sizes that were described in the original literatures (Asselin et al. 2016; Gehring et al. 2014; Kini et al. 2021; Rahimi-Khameneh et al. 2019).

Species identity verification of the Pantoea collection.

The strains used in this study were largely represented by the four target species (*P. ananatis*, *P. agglomerans*, *P. allii*, and *P. stewartii* subsp. *indologenes*) that were isolated from symptomatic plant hosts, including corn, millet, onion, pineapple, and rice (Table 1). However, other plant associated *Pantoea* species like *P. anthophila*, *P. cypripedii*, *P. deleyi*, *P. dispersa*, *P. eucalypti*, *P. vagans*, and *P. wallisii* and clinical strains of *P. brenneri*, *P. consipcua*, *P. eucrina*, and *P. septica* have also been included.

Prior to the assessment of specificity of selected primers, species identity of our *Pantoea* collection which was previously established (data not shown) was re-evaluated to ensure that the primers are tested against correctly identified species. For this step, genomic DNA extracted from pure cultures of 79 *Pantoea* strains (Table 1) were utilized for the sequencing of the *infB* gene, a housekeeping gene that is frequently used for the identification of *Pantoea* species (Brady et al. 2008, 2010, 2011). The GenBank accession numbers of the *infB* gene sequences generated from this study are also included in Table 1. Subsequently, the maximum-likelihood phylogenetic analysis of the *infB* sequences of 79 strains against that of known, type *Pantoea* species showed that our collection of *Pantoea* strains were in fact accurately identified (Fig. 1) with one exception. Two strains, BCC 1348 and BCC 1349, grouped with the *Erwinia* branch instead of *Pantoea* branches, indicating closer association of these two strains as well as the type strain of *P. beijingensis* LMG27579 to the species of *Erwinia* rather than that of *Pantoea*. However, grouping of *P. beijingensis* with *Erwinia* species agrees with the findings of Rezzonico et al. (2016) and Xu et al. (2021), and *P. beijingensis* is likely to be reclassified as *E. beijingensis*.

Fig. 1. A maximum-likelihood phylogenetic tree based on the partial *infB* gene sequences (615 bp) of *Pantoea* strains used in this study (highlighted by colored boxes). The NCBI GenBank accession numbers are specified in the brackets, and underlined names indicate the reference sequences that are downloaded from GenBank. The bootstrap values below 70% are not shown, and *Escherichia coli* K12 was used as an outgroup.

P. ananatis-specific PCR assay.

The *P. ananatis*-specific primers, PANA_1080_61F and PANA_1080_1009R, designed by Asselin et al. (2016) were highly specific for *P. ananatis* (Fig. 2A, lane 1 to 12). These primers did not amplify any amplicon from *P. allii* DNA samples, a phylogenetically closely related taxon of *P. ananatis*, nor from the DNA belonging to any other species. Furthermore, Asselin et al. (2016) demonstrated that PANA_1080 primers could specifically detect *P. ananatis* from environmental (onion) DNA samples that were mixed with other onion pathogenic bacteria and showed that the specificity of PANA_1080 primers were superior to other published *P. ananatis* primers that were not able to differentiate between *P. ananatis* and *P. allii* (Carr et al. 2010; Figueiredo and Paccola-Meirelles 2012; Gitaitis et al. 2002). The second pair of *P. ananatis*-specific primers tested in this study, PANAN gyrB fwd and

PANAN_gyrB_rev (Kini et al. 2021), have accurately identified DNA samples of *P. ananatis* (Fig. 2B, lane 1-12). However, the PCR also resulted in unspecific amplification of the template DNA belonging to multiple *Pantoea* species (Fig. 2B, lane 13 to 79). The similarity in the amplicon size (below 500 bp marker) between *P. ananatis* and that of other species (for example, lane 28 and 29) can make visual calling of the species identity difficult.

Fig. 2. Gel images of PCR assay using **A**, *Pantoea ananatis* specific primers PANAN_gyrB; **B**, *P. ananatis* specific primers PANA_1080; **C**, *P. allii* specific primers allii-leuS; **D**, *P. agglomerans* specific primers PANAG_infB; **E**, *P. agglomerans* specific primers PagR; **F**, *P. stewartii* specific primers PANST_rpoB; **G**, *P. stewartii* subsp. *indologenes* specific primers 3614galE; **H**, *P. stewartii* subsp. *stewartii* specific primers DC283galE; and **I**, a schematic diagram of gels illustrating the order of samples loaded into the wells. Abbreviations are as follows: L = DNA 1 kb ladder (Thermo Scientific) which was loaded on the left end of each gel except for **C**, for which DNA 1 kb plus ladder (Thermo Scientific) was used; Pana = *P. ananatis*; Pagg = *P. agglomerans*; Psi = *P. stewartii* subsp. *indologenes*; Pss = *P. stewartii* subsp. *stewartii*; Pall = *P. allii*; Peuc = *P. eucalypti*; Pvag = *P. vagans*; Pant = *P. anthophila*; Pdis = *P. dispersa*; Pcon = *P. conspicua*; Psep = *P. septica*; Pbre = *P. brenneri*; Pcyp = *P. cypripedii*; Pwal = *P. wallisii*; Pbej = *P. beijingensis*; Pdel = *P. deleyi*; Peucr = *P. eucrina*; and NC = Negative Control.

P. allii-specific PCR assay.

P. allii-specific primers, allii-leuS181F and allii-leuS235R, were designed for Taqman-based quantitative real-time PCR (qRT-PCR) by Rahimi-Khameneh et al. (2019). However, in this study, these primers were used in conventional PCR reactions. In addition to four housekeeping genes (*atpD*, *gyrB*, *infB*, and *rpoB*) that are frequently employed in the multilocus sequence analysis for description of novel *Pantoea* species (Brady et al. 2008, 2010, 2011), the gene *leuS* (leucine t-RNA ligase encoding gene) has also been identified as a reliable marker for analyzing phylogenies of the genus *Pantoea* (Tambong et al. 2014). The allii-leuS181F and allii-leuS235R primers utilized the polymorphic nucleotides in *leuS* gene to allow differentiation of *P. allii* strains from rest of the *Pantoea* species. Despite small amplicon size, a distinct band (~50 bp) was produced for the reactions containing the DNA templates of *P. allii* strains (Fig. 2C, lane 37 to 42). A faint band, approximately 1,000 bp in size, was seen in lane 24 (Fig. 2C), but due to the size difference between the two amplicons, the use of allii-leuS181F and allii-leuS235R as diagnostic qRT-PCR should not be affected.

P. agglomerans-specific PCR.

For the detection of *P. agglomerans*, two pairs of primers were evaluated. The PCR assay of the first pair, PANAG infB fwd and PANAG infB rev, did not yield a P. agglomeransspecific 730-bp product as reported by Kini et al. (2021). The presence of multiple bands across the *Pantoea* species suggests that these primers may not be specific for their target gene *infB* and thus failed to detect *P. agglomerans* (Fig. 2D, lane 13 to 24). The second pair, PagR 210F and PagR 626R, was designed for this study based on previous finding that pagR (LuxR family transcriptional regulator encoding gene) is a useful gene region for identifying *P. agglomerans*, specifically; it is chromosomally encoded in both the plant pathogenic and nonpathogenic strains of P. agglomerans by Rezzonico et al. (2009). Braun-Kiewnick et al. (2012) designed a qPCR assay based on 28 pagR gene sequences extracted from different *P. agglomerans* strains. However, the forward and reverse primers of this aPCR assay were designed on highly conserved regions of the *pagR* gene belonging to both P. agglomerans and the Enterobacter species. This would allow the amplification of the pagR gene in species other than P. agglomerans. In the 10 years since the original publication, many additional *Pantoea*, as well as other bacterial species genomes, have become available in public databases. Thus, we designed a new pair of conventional PCR primers on variable regions of the pagR gene to differentiate P. agglomerans from its phylogenetically close relative P. vagans, as well as from the Enterobacter species. For this purpose, a total of 85 pagR gene sequences were identified and downloaded from GenBank which is composed of 40 P. agglomerans, 10 P. vagans, three Citrobacter sp., and 42 Enterobacter spp. The nucleotide identity within P. agglomerans ranged from 96 to 100%, whereas similarity shared between P. agglomerans and non P. agglomerans pagR sequences was below 82%. Therefore, despite the presence of *pagR* homolog in other species, PagR 210F and PagR 626R primers were designed on the regions that were conserved within P. agglomerans but were polymorphic in other species. The PCR guided by PagR 210F and PagR 626R primers was highly discriminatory, where amplicons (416 bp) were only seen in the samples containing *P. agglomerans* DNA (Fig. 2E, lane 13 to 24).

P. stewartii-specific PCR.

All three primer sets tested were highly specific for *P. stewartii* at varying levels. PANST_rpoB_fwd and PANST_rpoB_rev primers were able to unambiguously detect both

subspecies of *P. stewartii* (Fig. 2F, lane 25 to 36), whereas 3614galE primers and DC283galE primer pairs each distinguished its target subspecies, *P. stewartii* subsp. *indologenes* (Fig. 2G, lane 25 to 27 and 30 to 36) and *P. stewartii* subsp. *stewartii*, respectively (Fig. 2H, lane 28 to 29). According to Gehring et al. (2014), a subspecies-level identification of *P. stewartii* strains is crucial for distinguishing *P. stewartii* subsp. *indologenes* contaminants from the quarantine pathogen and causal agent of Stewart's wilt of maize, *P. stewartii* subsp. *indologenes* are pathogenic on onion (Koirala et al. 2021; Stumpf et al. 2018), and a PCR test using 3614galE primers will aid in identifying *P. stewartii* subsp. *indologenes* from other *Pantoea* species that may also be present in the onion tissue.

In this study, we showed that the use of *Pantoea*-specific primers in conventional PCR assays accurately identified four *Pantoea* species: *P. ananatis*, *P. allii*, *P. agglomerans*, and *P. stewartii* subsp. *indologenes*. Out of the eight primer pairs, *P. ananatis*-specific PANA_1008; *P. allii*-specific allii-leuS; *P. agglomerans*-specific PagR; and *P. stewartii*-specific PANST_rpoB, 3614galE, and DC283galE primers were highly specific for their target *Pantoea* species when tested against 14 different *Pantoea* species. Furthermore, the species calls made by these PCR assays correlated with the species identity resolved by the sequencing and phylogenetical analysis of the *infB* gene. As demonstrated in this study, PCR assays using these primers will serve as an effective and sufficient tool in screening of *P. ananatis*, *P. allii*, *P. agglomerans*, and *P. stewartii* strains.

Acknowledgments

We would like to acknowledge L. du Toit, S. Malla, M. Uchanski, and C. Nischwitz for providing *Pantoea* strains and Beth Gugino for helpful comments and critiques regarding the preparation of this manuscript. Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Funding: This work is supported by Specialty Crops Research Initiative Award 2019-51181-30013 from the USDA, National Institute of Food and Agriculture, to BD and BK.

The author(s) declare no conflict of interest.

Literature Cited

Adeolu, M., Alnajar, S., Naushad, S., and Gupta, R. S. 2016. Genome-based phylogeny and taxonomy of the '*Enterobacteriales*': Proposal for *Enterobacterales* ord. nov. divided into the families *Enterobacteriaceae*, *Erwiniaceae* fam. nov., *Pectobacteriaceae* fam. nov., Yersiniaceae fam. nov., *Hafniaceae* fam. nov., *Morganellaceae* fam. nov., and *Budviciaceae* fam. nov. Int. J. Syst. Evol. Microbiol. 66:5575-5599.

Asselin, J. E., Bonasera, J. M., and Beer, S. V. 2016. PCR primers for detection of *Pantoea* ananatis, *Burkholderia* spp., and *Enterobacter* spp. from onion. Plant Dis. 100:836-846.

Azad, H. R., Homes, G. J., and Cooksey, D. A. 2000. A new leaf blotch dis-ease of sudangrass caused by *Pantoea ananas* and *Pantoea stewartii*. PlantDis. 84:973-979.

Brady, C., Cleenwerck, I., Venter, S., Vancanneyt, M., Swings, J., and Coutinho, T. 2008. Phylogeny and identification of *Pantoea* species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst. Appl. Microbiol. 31:447-460.

Brady, C. L., Cleenwerck, I., Venter, S. N., Engelbeen, K., De Vos, P., and Coutinho, T. A. 2010. Emended description of the genus *Pantoea*, description of four species from human clinical samples, *Pantoea septica* sp. nov., *Pantoea eucrina* sp. nov., *Pantoea brenneri* sp. nov. and *Pantoea conspicua* sp. nov., and transfer of (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus as *Pantoea cypripedii* comb.nov. Int. J. Syst. Evol. Microbiol. 60:2430-2440.

Brady, C. L., Goszczynska, T., Venter, S. N., Cleenwerck, I., De Vos, P., Gitaitis, R. D., and Coutinho, T. A. 2011. *Pantoea allii* sp. nov., isolated from onion plants and seed. Int. J. Syst. Evol. Microbiol. 61:932-937.

Brady, C. L., Cleenwerck, I., Van der Westhuizen, L., Venter, S. N., Coutinho, T. A. and De Vos, P., 2012. *Pantoea rodasii* sp. nov., *Pantoea rwandensis* sp. nov. and *Pantoea* wallisii sp. nov., isolated from *Eucalyptus*. International Journal of Systematic and Evolutionary Microbiology, 62:1457-1464.

Braun-Kiewnick, A., Lehmann, A., Rezzonico, F., Wend, C., Smits, T. H. M., and Duffy, B. 2012. Development of species-, strain- and antibiotic biosynthesis-specific quantitative PCR assays for *Pantoea agglomerans* as tools for biocontrol monitoring. J. Microbiol. Methods 90:315-320.

Carr, E. A., Bonasera, J. M., Zaid, A. M., Lorbeer, J. W., and Beer, S. V.2010. First report of bulb disease of onion caused by *Pantoea ananatis* in New York. Plant Dis. 94:916.

Cooksey, D. A. 1986. Gall of *Gypsophila paniculate* caused by *Erwinia herbicola*. Plant Dis. 70:464-468.

Cota, L. V., Costa, R. V., Silva, D. D., Parreira, D. F., Lana, U. G. P., and Casela, C. R. 2010. First report of pathogenicity of *Pantoea ananatis* in sorghum (Sorghum bicolor) in Brazil. Australas. Plant Dis. Notes 5:120-122.

Cother, E. J., Reinke, R., McKenzie, C., Lanoiselet, V. M., and Noble, D. H.2004. An unusual stem necrosis of rice caused by *Pantoea ananas* and the first record of this pathogen on rice in Australia. Australas. Plant Pathol. 33:495-503.

Coutinho, T. A., and Venter, S. N. 2009. *Pantoea ananatis*: An unconventional plant pathogen. Mol. Plant Pathol. 10:325-335.

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9:772.

De Maayer, P., Chan, W., Rezzonico, F., Buhlmann, A., Venter, S. N., Blom, J., Goesmann, A., Frey, J. E., Smits, T. H. M., Duffy, B., and Coutinho, T. A. 2012. Genome announcement: Complete genome sequence of clinical isolate *Pantoea ananatis* LMG 5342. J. Bacteriol. 194:1615-1616.

De Maayer, P., Chan, W., Venter, S. N., Toth, I. K., Birch, P. R. J., Joubert, F., and Coutinho, T. A. 2010. Genome announcement: Genome sequence of *Pantoea ananatis* LMG20103, the causative agent of *Eucalyptus* blight and dieback. J. Bacteriol. 192:2936-2937.

Dutta, B., Barman, A. K., Srinivasan, R., Avci, U., Ullman, D. E., Langston, D. B., and Gitaitis, R. D. 2014. Transmission of *Pantoea ananatis* and *P. agglomerans*, causal agents of center rot of onion (*Allium cepa*), by onion thrips (*Thrips tabaci*) through feces. Phytopathology 104:812-819.

Edens, D., Gitaitis, R., Sanders, F., and Nischwitz, C. 2006. First report of *Pantoea* agglomerans causing a leaf blight and bulb rot of onions in Georgia. Plant Dis. 90:1551.

Figueiredo, J. E. F., and Paccola-Meirelles, L. D. 2012. Short communication: Simple, rapid and accurate PCR-based detection of *Pantoea ananatis* in maize, sorghum and *Digitaria* sp. J. Plant Pathol. 94:663-667.

Gehring, I., Wensing, A., Gernold, M., Wiedemann, W., Coplin, D. L., and Geider, K. 2014. Molecular differentiation of *Pantoea stewartia* subsp. *indologenes* from subspecies *stewartia* and identification of new isolates from maize seeds. *J. Appl. Microbiol.* 116:1553-1562.

Gitaitis, R., and Gay, J. 1997. First report of a leaf blight, seed stalk rot, and bulb decay of onion by *Pantoea ananas* in Georgia. Plant Dis. 81:1096.

Gitaitis, R., Walcott, R., Culpepper, S., Sanders, H., Zolobowska, L., and Langston, D. 2002. Recovery of *Pantoea annatis*, causal agent of center rot of onion, from weeds and crops in Georgia, USA. Crop Prot. 21:983-989.

Goszczynska, T., Moloto, V. M., Venter, S. N., and Coutinho, T. A. 2006. Isolation and identification of *Pantoea ananatis* from onion seed in South Africa. *Seed Sci. Technol.* 34:655-668.

Goszczynska, T., Venter, S. N., and Coutinho, T. A. 2007. Isolation and identification of the causal agent of brown stalk rot, a new disease of corn in South Africa. Plant Dis. 91:711-718.

Guindon, S., and Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704.

Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program. Nucleic Acids Symp. Ser. 41:95-98.

Hattingh, M. J., and Walters, D. F. 1981. Stalk and leaf necrosis of onion caused by *Erwinia herbicola*. Plant Dis. 65:615-618.

Katoh, K., Misawa, K., Kuma, K., and Miyata, T. 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transfer. Nucleic Acids Res. 30:3059-3066.

Kido, K., Adachi, R., Hasegawa, M., Yano, K., Hikichi, Y., Takeuchi, S., Atsuchi, T., and Takikawa, Y. 2008. Internal fruit rot of netted melon caused by *Pantoea ananatis* (*=Erwinia ananas*) in Japan. J. Gen. Plant Pathol. 74:302-312.

Kini, K., Agnimonhan, R., Afolabi, O., Soglonou, B., Silue, D., and Koebnik, R. 2017. First report of a new bacterial leaf blight of rice caused by *Pantoea ananatis* and *Pantoea stewartia* in Togo. Plant Dis. 101:241.

Kini, K., Agnimonhan, R., Dossa, R., Silue, D., and Koebnik, R. 2021. Geno-mics-informed multiplex PCR scheme for rapid identification of rice-associated bacteria of the genus *Pantoea*. Plant Dis. 105:2389-2394.

Koirala, S., Zhao, M., Agarwal, G., Stice, S., Gitaitis, R., Kvitko, B., and Dutta, B. 2021. Identification of two novel pathovars of *Pantoea stewartia* subsp. indologenes affecting sp. and millets. Phytopathology 111:1509-1519.

Krawczyk, K., Foryś, J., Nakonieczny, M., Tarnawska, M., and Bereś, P. K.2021. Transmission of *Pantoea ananatis*, the causal agent of leaf spot disease of maize (*Zea mays*), by Western corn rootworm (*Diabrotica virgifera virgifera* LeConte). Crop Prot. 141:105431.

Krawczyk, K., Wielkopolan, B., and Obrepalska-Steplowska, A. 2020.Pantoeaananatis, a new bacterial pathogen affecting wheat plants (*Triticum* L.) in Poland. Pathogens 9:1079.

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol.Biol. Evol. 35:1547-1549.

Lindow, S. E., and Brandl, M. T. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:1875-1883.

Liu, Y., Wang, S., Zhang, D., Wei, S., Zhao, S., Chen, S. and Xu, F. 2013. *Pantoea beijingensis* sp. nov., isolated from the fruiting body of *Pleurotus eryngii*. Antonie Van Leeuwenhoek, 104:1039-1047.

Lu, L., Chang, M., Han, X., Wang, Q., Wang, J., Yang, H., Guan, Q., and Dai, S. 2021. Beneficial effects of endophytic *Pantoea ananatis* with ability to promote rice growth under saline stress. J. Appl. Microbiol. 131:1919-1931.

Maccollom, G. B., Lauzon, C. R., Sjogren, R. E., Meyer, W. L., and Olday, F. 2009. Association and attraction of blueberry maggot fly curran (Diptera: Tephritidae) to *Pantoea* (*Enterobacter*) agglomerans. Environ. Entomol. 38:116-120.

Moloto, V. M., Goszczynska, T., Hassen, A. I., Pierneef, R., and Coutinho, T. A. 2020. Draft genome sequences of *Pantoea agglomerans* strains BD1274 and BD1212, isolated from onion seeds, reveal major differences in pathogenicity and functional genes. Microbiol. Resour. Announc. 9:45.

Morohoshi, T., Nakamura, Y., Yamazaki, G., Ishida, A., Kato, N., and Ikeda, T. 2007. The plant pathogen *Pantoea ananatis* produces N-acylhomoserine lactone and causes center rot disease of onion by quorum sensing. J. Bacteriol. 189:8333-8338.

Nadarasah, G., and Stavrinides, J. 2014. Quantitative evaluation of the host colonizing capabilities of the enteric bacterium *Pantoe*a using plant and insect hosts. Microbiology 160:602-615.

Paccola-Meirelles, L. D., Ferreira, A. S., Meirelles, W. F., Marriel, I. E., and Casela, C. R. 2001. Detection of a bacterium associated with a leaf spot dis-ease of maize in Brazil. J. Phytopathol. 149:275-279.

Quecine, M. C., Araujo, W. L., Rossetto, P. B., Ferreira, A., Tsui, S., Lacava, P. T., Mondin, M., Azevedo, J. L., and Pizzirani-Kleiner, A. A. 2012. Sugar-cane growth promotion by the endophytic bacterium *Pantoea agglomerans* 33.1. Appl. Environ. Microbiol. 78:7511-7518.

Rahimi-Khameneh, S., Hsieh, S., Xu, R., Avis, T. J., Li, S., Smith, D., Dutta, B., Gitaitis, R., and Tambong, J. T. 2019. Pathogenicity and a TaqMan real-time PCR for specific detection of *Pantoea allii*, a bacterial pathogen of onions. Plant Dis. 103:3031-3040.

Rezzonico, F., Smits, T. H. M., Born, Y., Blom, J., Frey, J. E., Goesmann, A., Cleenwerck, I., de Vos, P., Bonaterra, A., Duffy, B., and Montesinos, E.2016.*Erwinia gerundensis* sp. nov., a cosmopolitan epiphyte originally isolated from pome fruit trees. Int. J. Syst. Evol. Microbiol. 66:1583-1592.

Rezzonico, F., Smits, T. H. M., Montesinos, E., Frey, J. E., and Duffy, B.2009. Genotypic comparison of *Pantoea agglomerans* plant and clinal strains. BMC Microbiol. 9:204.

Rijavec, T., Lapanje, A., Dermastia, M., and Rupnik, M. 2007. Isolation of bacterial endophytes from germinated maize kernels. Can. J. Microbiol. 53:802-808.

Selvakumar, G., Kundu, S., Joshi, P., Nazim, S., Gupta, A. D., Mishra, P. K., and Gupta, H. S. 2008. Characterization of a cold tolerant plant growth-promoting bacterium *Pantoea dispersa* 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J. Microbiol. Biotechnol. 24:955-960.

Shariati, J. V., Malboobi, M. A., Tabrizi, Z., Tavakol, E., Owlia, P., and Safari, M. 2017. Comprehensive genomic analysis of a plant growth-promoting rhizobacterium *Pantoea* agglomerans strain P5. Sci. Rep. 7:15610.

Stumpf, S., Kvitko, B., Gitaitis, R., and Dutta, B. 2018. Isolation and characterization of novel *Pantoea stewartia* subsp. *indologenes* strains exhibiting center rot in onion. Plant Dis. 102:727-733.

Stewart, F. C. 1897. A bacterial disease of sweet corn. Bulletin - New York Agricultural Experiment Station, Geneva 130:422-439.

Sulbarán, M., Pérez, E., Ball, M. M., Bahsas, A., and Yarzábal, L. A. 2009. Characterization of the mineral phosphate-solubilizing activity of *Pantoea agglomerans* MMB051 isolated from an iron-rich soil in Southeastern Venezuela (Bolivar State). Curr. Microbiol. 58:378-383.

Tambong, J. T., Xu, R., Kaneza, C.-A., and Nshogozabahizi, J.-C. 2014. An in-depth analysis of multilocus phylogeny identifies *leuS* as a reliable phylo-genetic marker for the genus *Pantoea*. Evol. Bioinform. 10:115-125.

Tho, K. E., Wiriyajitsomboon, P., and Hausbeck, M. K. 2015. First Report of *Pantoea* agglomerans causing leaf blight and bulb rot in Michigan. Plant Dis. 99:1034.

Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.

Vahling-Armstrong, C., Dung, J. K. S., Humann, J. L., and Schroeder, B. K.2016. Effects of postharvest onion curing parameters on bulb rot caused by *Pantoea agglomerans*, *Pantoea ananatis* and *Pantoea alliiin* storage. Plant Pathol. 65:536-544.

Völksch, B., Thon, S., Jacobsen, I. D., and Gube, M. 2009. Polyphasic study of plant- and clinic-associated *Pantoea agglomerans* strains reveals in distinguishable virulence potential. Infect. Genet. Evol. 9:1381-1391.

Walcott, R. R., Gitaitis, R. D., Castro, A. C., Senders, F. H., and Diaz-Perez, J. C. 2002. Natural infestation of onion seed by *Pantoea ananatis*, causal agent of center rot. Plant Dis. 86:106-111.

Walterson, A. M., and Stavrinides, J. 2015. *Pantoea*: Insights into a highly versatile and diverse genus within the *Enterobacteriaceae*. FEMS Microbiol.Rev. 39:968-984.

Weller-Stuart, T., De Maayer, P., and Coutinho, T. A. 2017.*Pantoea ananatis*: Genomic insights into a versatile pathogen. Mol. Plant Pathol. 18:1191-1198.

Xu, F., Yan, H., Zhao, S., Song, S., Gu, T., Song, Z., Xie, J., and Rong, C.2021. A reevaluation of the taxonomy and classification of the type III secretion system in a pathogenic bacterium causing soft rot disease of *Pleurotus eryngii*. Curr. Microbiol. 78:179-189.