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Abstract

In this work, we focus on a general procedure for finding exact travelling wave

solutions for evolution equations with polynomial nonlinearites. Mathemat-

ically, looking for travelling wave solutions is asking the question whether a

given PDE has solutions invariant under a Galilean transformation; in such

a case, it can be reduced to an ODE. We discuss the existence of travelling

wave solutions by using phase plane analysis. We show that popular methods

such as the tanh-method, G′/G-method and many more are special cases of

the presented approach. Analytical solutions to several examples of nonlin-

ear equations are illustrated. In the application, we use the Maple program

to compute solutions to nonlinear systems of equations.
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Chapter 1

Introduction

The study of non-linear partial differential equations has been conducted in

many fields of study by various researchers. The fields like Applied Mathe-

matics, Theoretical Physics and Engineering utilize partial differential equa-

tions (PDEs) to solve their daily problems [1]. These equations are classi-

fied as linear PDEs or nonlinear PDEs. PDEs may be divided into three

categories, which are elliptic equations, parabolic equations and hyperbolic

equations. The Laplace equation is the example of an elliptic equation,

heat equations are parabolic equation and wave equations are hyperbolic

equations. Both linear and non-linear PDEs often appear in various fields,

like Mathematical Biology [2], Physics [28], Plasma Physics [4], Solid-state

Physics [5], and Chemistry [6]. Equations like reaction-diffusion equations

are used to model the spread of populations and tumors in mathematical

biology, and they are also used in chemistry to study heat conduction prob-

lems. Physicists use the Schrödinger equation in quantum mechanics and

Maxwell’s equation in electrodynamics. The mathematical methods devel-
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oped to deal with linear and nonlinear equations are different. The solution

space for a linear, homogeneous PDE is a vector space and the linear structure

of that space can be used in constructing solutions with desired properties

that can meet diverse boundaries and initial conditions. This is not the case

for nonlinear equations [1]. Nonlinear PDEs are more useful to solve world

problems. The solution methods for nonlinear equations are perturbation

methods, similarity methods, transformation, numerical methods and trav-

elling wave solutions. In current mathematics, the theory of travelling wave

solutions of nonlinear PDEs is applied to describe various situations in ecol-

ogy [7], farming [8], forestry [9], cell structure [10], etc. The motive of the

presented study is to find exact solutions to nonlinear PDEs using an ap-

propriate method. Methods like variation iteration [18], tanh method [23],

G′/G-expansion method [24], extended G′/G-expansion method [22], etc.,

have been employed to generate exact traveling wave solutions of nonlinear

PDEs. Some other researchers claim that their methods produce travelling

wave solutions when, in fact, this is not true. For instance, by the definition

of the travelling wave solution to be introduced, the modified tanh− coth

method [25] does not generate travelling wave solutions. It must be noted

that no single method mentioned above can be utilized to solve all types of

nonlinear PDE’s. The hyperbolic tangent method (tanh-method) is men-

tioned and tested as a potent method helps in finding exact traveling waves

solutions of nonlinear PDEs [23]. The tanh method was first introduced by

W. Malfliet. Its solutions are functions of a hyperbolic tangent.

In this thesis, we focus on a general procedure for finding exact travelling

8
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wave solutions of nonlinear evolution equations with polynomial nonlineari-

ties. The structure of the thesis is as follows. In Chapter 2, we introduce the

theory behind travelling wave solutions. In Chapter 3 we give theory for sys-

tems of differential equations. The chapter then proceeds to the phase plane

analysis showing the existence of travelling wave solutions for non-integrable

equations (equations like reaction-diffusion, one of them is the Fisher equa-

tion). Chapter 4 gives an overview of the method used to find travelling

wave solutions. In Chapter 5, we apply the method outlined in Chapter 4.

In Chapter 6, we present the second approach (slightly different from the one

presented in Chapter 4) to finding exact travelling wave solutions and their

application. Chapter 7 summarizes the results we obtained with the method

developed in the thesis and compares the results with previous results by

other authors.
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Chapter 2

Travelling wave solutions

The travelling wave is a wave that moves in a certain direction and keeps the

same shape as it moves. Its travelling speed remains constant for the entire

motion. In real life, travelling waves describe movement processes. The

normal case is a movement from one equilibrium to another. The travelling

wave solutions of Reaction-Diffusion PDE can be obtained using the tanh-

method, G′/G-method and many more. We want to show that all these

methods are examples of one general approach. The objective of the thesis is

to describe the theory behind method of finding travelling wave solutions and

later demonstrate its application by giving examples. The number of natural

processes involve mechanisms of both diffusion and reaction [16], and such

problems are often modelled with equations of the form

∂u

∂t
= du

∂2u

∂x2
+ f(u). (2.1)

In this equation, f is a nonlinear function (which describes reaction processes)

and du is a diffusion constant. Our interest is to investigate the existence of
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travelling wave solutions to Eq.(2.1). The method of travelling wave solutions

discussed in this work is based on the assumption that the solution of a

PDE is a function of a linear combination of the space variable x and time

t, z(x, t) = k(x − ct). Then the solutions of the form u(x, t) = U(k(x −

ct)) = U(z), where the function U(z) has finite limits as z → ±∞, are

called travelling wave solutions. The constants, k and c, are called the wave

number and wave speed, respectively. The wave front solution is described

as a travelling wave solution with different constant states at ±∞, that is,

lim
z→−∞

U(z) = u1 and lim
z→+∞

U(z) = u2. (2.2)

Figure 2.1 shows the profile of a travelling wave front. Here, U(z) decreases

monotonically with z from the constant value u1 to the constant value u2.

The wave front occurs in waves of combustion, waves in chemical kinetics,

etc. If u1 = u2, then the travelling wave is called a pulse. The wave form

U , k and c are unknown. The function U is called a standing wave solution

when c is equal to zero. If Eq.2.1 transforms from two independent variables

to a single independent variable u(x, t) = U(z) and use the Chain Rule, we

obtain
dU
dz

∂z

∂t
= du

∂z

∂x

[
∂z

∂x

d2U
dz2

+
dU
dz

d

dz

(
∂z

∂x

)]
+ f(U). (2.3)

Hence, Eq.2.1 can be written as the ordinary differential equation (ODE)

−ckdU
dz

= duk
2d

2U
dz2

+ f(U). (2.4)

The canonical form of Eq.2.4 is

dU
dz

= h
d2U
dz2

+ ηf(U), (2.5)

where h = duk
c

and η = 1
ck

. To further illustrate the various forms of travelling

11
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Figure 2.1: Travelling wave: wave front.

wave solutions, we present the travelling wave solutions of two equations ,

the Burgers equation and the KdV equation.

2.1 Burgers equation

As the first example, we consider the Burgers equation arising in fluid dy-

namics,
∂u

∂t
+ u

∂u

∂x
− d∂

2u

∂x2
= 0, (2.6)

where d is a constant. It is an equation consisting of three terms, time

evolution ∂u
∂t

, nonlinear convection term u∂u
∂x

and linear diffusion term ∂2u
∂x2 .

Using the travelling wave transformation, we get

−ckdU
dz

+ kU dU
dz
− dk2d

2U
dz2

= 0. (2.7)
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Integrating Eq.2.7 with respect to z yields

−ckU +
k

2
U2 − dk2dU

dz
+ A2 = 0, (2.8)

where A2 is a constant of integration. After rearranging, we have

dk2dU
dz

= −ckU +
k

2
U2 + A2. (2.9)

Factorizing the right hand side of Eq.2.9, we obtain

−ckU +
k

2
U2 + A2 = (U − u1)(U − u2), (2.10)

where

u1 = ck +
√
c2k2 − 2kA2 and u2 = ck −

√
c2k2 − 2kA2, (2.11)

provided c2k2 > 2kA2. Hence, the wave speed

c =
u1 + u2

2k
. (2.12)

Eq.2.9 turns to

dk2dU
dz

= (U − u1)(U − u2). (2.13)

We assume that u1, u2 ∈ R and u1 > u2. Introducing the integral in Eq.2.13

results in ∫
1

(U − u1)(U − u2)
dU =

1

dk2
(z + A3). (2.14)

Integration gives

−1

u2 − u1

∫
1

U − u1

dU +
1

u2 − u1

∫
1

U − u2

dU =
1

dk2
(z + A3). (2.15)

1

u1 − u2

ln

∣∣∣∣U − u1

U − u2

∣∣∣∣ =
1

dk2
(z + A3). (2.16)
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In Eq.2.16, we only consider the case where u2 < U < u1 (travelling wave

solution exists only in between this interval; more details are given in the

next section on the theory for systems of ODEs). This leads us to

ln

(
u1 − U
U − u2

)
=
u1 − u2

dk2
(z + A3) . (2.17)

Hence, the wave form is given by

U(z) =
u1 + u2e

u1−u2
dk2 (z+A3)

1 + e
u1−u2
dk2 (z+A3)

. (2.18)

From Eq.2.18, we notice that indeed

lim
z→−∞

U(z) = u1 and lim
z→+∞

U(z) = u2. (2.19)

The plot of Eq.2.18 takes the same shape as in Figure.2.1, U(z) decreases

monotonically with z from the constant value u1 to u2. The wave profile

travels from left to the right at a constant speed c = u1+u2

2k
. The presence

of the diffusion term in this problem prevents formation of the shock wave.

The diffusion coefficient d changes the shape of the wave profile. Large d has

a significant diffusive effect and the wave profile has a shallow gradient. If d

is small, the gradient becomes steeper.

2.2 Korteweg-de Vries equation.

The KdV equation is
∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0. (2.20)

It is derived from fluid mechanics to describe shallow water waves in a rect-

angular channel [1]. Rewriting Eq.2.20 in terms of z by setting u(x, t) =
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U(k(x− ct)) = U(z), we get the ODE

−ckdU
dz

+ kU dU
dz

+ k3d
3U
dz3

= 0. (2.21)

We can integrate Eq.2.21 to get

−ckU + k
U2

2
+ k3d

2U
dz2

+ A1 = 0, (2.22)

where A1 is a constant of integration. Multiplying Eq.2.22 by dU
dz

, we get

−ckU dU
dz

+
k

2
U2dU

dz
+ k3dU

dz

d2U
dz2

+ A1
dU
dz

= 0. (2.23)

After integrating Eq.2.23, we obtain

k3

2

(
dU
dz

)2

= −k
6
U3 + ckU2 + A1U + A2, (2.24)

hence

dU
dz

=

√
− 1

3k2
U3 +

2c

k2
U2 +

2

k3
A1U +

2

k3
A2 =

√
M(U), (2.25)

where A2 is the constant of integration and we use plus sign in the square root.

Imposing boundary conditions limz→−∞ U(z) = u1 and limz→+∞ U(z) = u2,

we get

A1 =
k

6
u2

1 − kcu1 − A2u1,

A1 =
k

6
u2

2 − kcu2 − A2u2.

(2.26)

From Eq.2.26, we determine the wave speed to be

c =
1

6
(u2 + u1)− A2

k
. (2.27)

Eq.2.25 is separable and its expression on the right-hand side is a cubic

in U . To factorize the cubic expression, different cases must be considered
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depending on the number of real roots. The cases lead to solitary waves and

cnoidal waves. The cnoidal wave case is when the solution oscillates between

two values h1 < h2 (which we can assume are also roots of M(U) without

loss of generality). In this study, we are interested in the case when one is a

double root (solitary wave), hence

− 1

3k2
U3 +

2c

k2
U2 +

2

k3
A1U +

2

k3
A2 = (U − α1)2(α2 − U) , 0 < α1 < α2.

(2.28)

After arranging Eq.2.25 and integrating, we get∫
1√

(U − α1)2(α2 − U)
dU =

∫
dz + A3, (2.29)

where A3 is a constant of integration. If we let

U = α1 + (α2 − α1)sech2w,

then

dU = −2(α2 − α1) tanhwsech2wdw, (2.30)

and

(U − α1)2(α2 − U) = (α2 − α1)2sech4w
(
(α2 − α1)− (α2 − α1)sech2w

)
,

= (α2 − α1)3sech4w
(
1− sech2w

)
,

= (α2 − α1)3sech4w tanh2w.

(2.31)

Substituting Eq.2.31 and Eq.2.30 into Eq.2.29, we get∫
−2(α2 − α1) tanhwsech2w√

(α2 − α1)3sech4w tanh2w
dw =

∫
dz + A3,

∫
−2(α2 − α1) tanhwsech2w

(α2 − α1)sech2w tanhw
√
α2 − α1

dw =

∫
dz + A3.

(2.32)
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Eq.2.32 becomes ∫
−2√
α2 − α1

dw = z + A3. (2.33)

Evaluating the integral, we get

w =

√
α2 − α1

−2
(z + A3). (2.34)

Hence, the travelling wave solution is given by

U(z) = α1 + (α2 − α1)sech2

√
α2 − α1

2
(z + A3),

= α1 + (α2 − α1)

(
1− tanh2

√
α2 − α1

2
(z + A3)

)
= α1 + (α2 − α1)

(
4

e
√
α2−α1

2
(z+A3) + 2 + e

−
√
α2−α1
2

(z+A3)

)
.

(2.35)

2.3 Solving PDEs

Many equations of mathematical physics present pulse-type solutions, e.g.,

the Boussinesq equation, the Sine-Godon equation, the Born-Infeld equation,

and the nonlinear Schrodinger equation [28]. The methods used in Example

1 and Example 2 can not solve more challenging PDEs problems. Reaction-

diffusion equations can not be solved in closed form. In the following Chapter

we give a geometric approach for solving reaction-diffusion equations. Before

we introduce reaction-diffusion travelling wave solution theory, we start by

giving a relevant theory for ODEs which might be useful in determining the

existence of travelling waves for R-D equations.
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Figure 2.2: Pulse wave profile (KdV equation profile), where α1 = 1, α2 = 2.
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Chapter 3

Theory for systems of

differential equations

In this chapter we introduce the general theory of one and two dimensional

(scalar) autonomous equations and use it to find qualitative information

about their solutions.

3.1 Equilibria and their stability

Consider the system of autonomous equations

dU

dz
= P(U), (3.1)

where P : Rn → Rn, n ≥ 1. Eq.3.1 is called an autonomous system because

function P(U) does not depend explicitly on z. A point U∗ is an equilibrium

point of Eq.3.1 if

P(U∗) = 0.

19
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Then, the equilibrium solution is

U(z) = U∗, ∀z.

The stability definition states that the solution U(z) of Eq.3.1 is stable if ev-

ery other solution U(z0) = U0 (for different choice of initial data) that starts

sufficiently close to U(z) will remain close to it for all times and asymp-

totically stable if it returns to equilibrium point. The precise definition of

stability of equilibrium points is:

Definition 3.1.1 The equilibrium point U∗ is stable if for any given ε > 0

there exists a δ > 0 such that if U0 satisfies

||U0 −U∗|| < δ,

then the solution U(z) satisfies

||U(z)−U∗|| < ε, ∀z > 0.

If U∗ is not stable, then it is called unstable. Additionally, U∗ is called

attracting if there is δ∗ such that if

||U0 −U∗|| < δ∗,

then

lim
z→∞

U(z,U0) = U∗.

If δ∗ = ∞, then U∗ is called a globally attracting equilibrium. Furthermore,

the equilibrium U∗ is called asymptotically stable if it is both stable and at-

tracting. If U∗ is globally attracting and stable, then it is called globally

asymptotically stable equilibrium.
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3.2 Scalar equations

Consider a one dimensional scalar autonomous equation

dU

dz
= P (U), (3.2)

where P (U) is a nonlinear function. All autonomous equations are separable

and hence can be solved by quadrature. Although the explicit formula for

the solution is often impossible or difficult to derive, can we use graphical

methods to represent and better understand it. As an example, we consider

P (U) = ρU2 + γU + σ, then

dU

dz
= ρU2 + γU + σ. (3.3)

In this case, P (U) = 0 implies

U0 =
−γ +

√
γ2 − 4ρσ

2ρ
or U1 =

−γ −
√
γ2 − 4ρσ

2ρ

where γ2−4ρσ > 0. These points represent what we call equilibrium solutions

to Eq.3.3. These are solutions of the form U(z) = U0 and U(z) = U1. An

equilibrium solution means that, if we start the system from the initial state

being an equilibrium point, the physical system does not move. The next

step is to present a solution of Eq.3.3 by constructing a phase diagram. For

simplicity, we let ρ = −1, γ = 1 and σ = 0, then we plot the polynomial

function P (U) = U − U2. Hence, the equilibrium points are U0 = 0 and

U1 = 1. In the interval P > 0, we have an increasing solution (that is

indicated by right arrow) and if P < 0, the solution decreases (shown by left

arrow), as shown in Figure 3.1. The phase diagram of Eq.3.3 is shown in

Figure 3.1. Equilibrium point (1, 0) is an attractor (stable), point (0, 0) is a

21
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U

P (U)

(0,0)

(1,0)

Figure 3.1: The graph of P (U) = U − U2.

repeller (unstable). We also have semi-stable (but not graphically represented

here) if and only if the solution flows towards the equilibrium point on one

side and flows away from the other side.

Theorem 3.2.1 (Stability of nonlinear equation) Let U0 be an equilib-

rium point of Eq.3.2 such that P ′(U0) 6= 0.

• The equilibrium point U0 is stable if and only if P ′(U0) < 0.

• The equilibrium point U0 is unstable if and only if P ′(U0) > 0.

The last step is to plot solutions on the Uz-plane using information in Figure

3.1. Here, we take the horizontal axis of Figure 3.1 to be the vertical axis

of the Uz-plane. In Figure 3.2, the z-dependent solutions are in red or green

and the equilibrium solution in blue. Equilibrium points in Figure 3.2 are

called equilibrium solutions in the Uz-plane. The equilibrium solution U = 1

is stable (represented by a blue solid line) and the equilibrium solution U = 0

is unstable (represented by a blue dotted line). Next we find the analytical

22
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z

U

stable

unstable

1

Figure 3.2: The graph of solution U for different U(0).

solutions for Eq.3.3
dU

dz
= ρU2 + γU + σ.

Eq.3.3 is a separable first order ODE which can be solved by integrating both

sides, that is,∫
1

ρU2 + γU + σ
dU =

∫
dz + A, if ρU2 + γU + σ 6= 0, (3.4)

where A is the integration constant. The integral of this kind can give us three

different solutions under different cases of the discriminant of ρU2 + γU + σ,

which are γ2 − 4ρσ > 0(we get two real roots), γ2 − 4ρσ = 0 (one real root)

and γ2 − 4ρσ < 0 (no real roots). In this study we only consider the case

γ2 − 4ρσ > 0. (3.5)
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Factorizing the polynomial, we get

ρU2 + γU + σ =

[
U −

(
−γ +

√
∆

2ρ

)][
U −

(
−γ −

√
∆

2ρ

)]
=

1

4ρ
(2ρU + γ −

√
∆)(2ρU + γ −

√
∆),

(3.6)

where ∆ = γ2 − 4ρσ. The equilibrium points of Eq.3.3 are

U =
−γ +

√
∆

2ρ

and

U =
−γ −

√
∆

2ρ
.

We then rewrite our integral as

4ρ

∫
1

(2ρU + γ −
√

∆)(2ρU + γ +
√

∆)
dU =

∫
z + A. (3.7)

After introducing partial fractions on the left hand side of Eq.3.7, we get

2ρ√
∆

∫
1

2ρU + γ −
√

∆
dU − 2ρ√

∆

∫
1

2ρU + γ +
√

∆
dU =

∫
z + A. (3.8)

Substituting x = 2ρU + γ −
√

∆ and y = 2ρU + γ +
√

∆, we get

1√
∆

∫
1

x
dx− 1√

∆

∫
1

y
dy = z + A,

1√
∆

ln

∣∣∣∣∣2ρU + γ −
√

∆

2ρU + γ +
√

∆

∣∣∣∣∣ = z + A.

(3.9)

An absolute value can be eliminated by considering three cases:

ln

∣∣∣∣∣2ρU + γ −
√

∆

2ρU + γ +
√

∆

∣∣∣∣∣ =


ln
(

2ρU+γ−
√

∆

2ρU+γ+
√

∆

)
if (2ρU + γ) >

√
∆,

ln
(

2ρU+γ−
√

∆

2ρU+γ+
√

∆

)
if (2ρU + γ) < −

√
∆,

ln
(√

∆−(2ρU+γ)

2ρU+γ+
√

∆

)
if −
√

∆ < (2ρU + γ) <
√

∆.
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Due to its implications for travelling wave solutions, described later, we shall

focus on the case which lies between equilibrium points. Then the third case

−
√

∆ < (2ρU + γ) <
√

∆ leads us to

1√
∆

ln

(√
∆− (2ρU + γ)

2ρU + γ +
√

∆

)
= z + A. (3.10)

Solving Eq.3.10, we get U as an exponential or hyperbolic function

√
∆− (2ρU + γ)

2ρU + γ +
√

∆
=e
√

∆(z+A)

2ρUe
√

∆(z+A) + 2ρU =
√

∆− γ − γe
√

∆(z+A) −
√

∆e
√

∆(z+A)

U(2ρ(1 + e
√

∆(z+A))) =
√

∆(1− e
√

∆(z+A))− γ(1 + e
√

∆(z+A))

U(z) =

√
∆(1− e

√
∆(z+A))− γ(1 + e

√
∆(z+A))

2ρ(1 + e
√

∆(z+A))

=
−γ
2ρ

+

√
∆

2ρ

(
1− e

√
∆(z+A)

1 + e
√

∆(z+A)

)
.

(3.11)

Furthermore,

tanh

(
−
√

∆

2
(z + A)

)
=
e
−
√

∆
2

(z+A) − e
√

∆
2

(z+A)

e
−
√

∆
2

(z+A) + e
√

∆
2

(z+A)
.

If we multiply tanh
(
−
√

∆
2

(z + A)
)

by e

√
∆
2 (z+A)

e

√
∆
2 (z+A)

we get

tanh

(
−
√

∆

2
(z + A)

)
=

(
1− e

√
∆(z+A)

e
√

∆(z+A) + 1

)
.

Substituting tanh
(
−
√

∆
2

(z + A)
)

in Eq.3.11, we get

U(z) =
−γ
2ρ

+

√
γ2 − 4ρσ

2ρ
tanh

(
−1

2

(√
γ2 − 4ρσ (z + A)

))
. (3.12)
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3.3 Two-dimensional nonlinear system

Consider a two-dimensional autonomous system

dx1

dt
= g1(x1, x2),

dx2

dt
= g2(x1, x2),

(3.13)

where functions g1(x1, x2) and g2(x1, x2) are nonlinear. The solution of

Eq.3.13 is graphically represented in the x1x2 plane, called phase plane. The

solution curve is called an orbit, path, or trajectory of Eq.3.13. The function

g1(x1, x2) determines the motion of the solutions in a phase plane in the x1

direction at location (x1, x2). Similarly, g2(x1, x2) determines the motion in

x2 direction at location (x1, x2). The point (ξ1, ξ2) is called equilibrium point

if and only if

g1(ξ1, ξ2) = 0, g2(ξ1, ξ2) = 0. (3.14)

The trajectories of Eq.3.13 and equilibrium points graphed in the phase plane

are called the phase diagram. We then assume that g1, g2 have Taylor ex-

pansion at equilibrium point ξ. That is,

g1(x1, x2) = g1(ξ1, ξ2) +
∂g1

∂x1

(ξ1, ξ2)(x1 − ξ1) +
∂g1

∂x2

(ξ1, ξ2)(x2 − ξ2) + · · · ,

g2(x1, x2) = g2(ξ1, ξ2) +
∂g2

∂x1

(ξ1, ξ2)(x1 − ξ1) +
∂g2

∂x2

(ξ1, ξ2)(x2 − ξ2) + · · · .

Let X1 = (x1 − ξ1), X2 = (x2 − ξ2) and G1 = g1(ξ1, ξ2), G2 = g2(ξ1, ξ2).

Therefore, we get

g1(x1, x2) = G1 +
∂G1

∂x1

X1 +
∂G1

∂x2

X2 + · · · ,

g2(x1, x2) = G2 +
∂G2

∂x1

X1 +
∂G2

∂x2

X2 + · · · .
(3.15)
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Looking back, we have x1 = X1 +ξ1 and x2 = X2 +ξ1 and equilibrium points

(ξ1, ξ2) are constants, that means

dx1

dt
=
dX1

dt
and

dx2

dt
=
dX2

dt
. (3.16)

If we substitute Eq.3.16 and Eq.3.15 into Eq.3.13, we get

dX1

dt
= G1 +

∂G1

∂x1

X1 +
∂G1

∂x2

X2 + · · · ,

dX2

dt
= G2 +

∂G2

∂x1

X1 +
∂G2

∂x2

X2 + · · · .
(3.17)

If we neglect second order terms in X1, X2 and use G1 = G2 = 0 since ξ1, ξ2

are equilibrium points, then we obtain linearization of Eq.3.17 at (ξ1, ξ2)

dX1

dt
=
∂G1

∂x1

X1 +
∂G1

∂x2

X2,

dX2

dt
=
∂G2

∂x1

X1 +
∂G2

∂x2

X2,

(3.18)

which can be written as

d

dt

X1

X2

 =

∂G1

∂x1

∂G1

∂x2

∂G2

∂x1

∂G2

∂x2
,

X1

X2

 (3.19)

or, in compact form,
dX(t)

dt
= GX(t), (3.20)

where G is the Jacobi matrix at (ξ1, ξ2). The equilibrium points of two di-

mensional nonlinear systems are classified in line with the eigenvalues of their

corresponding linearization. The eigenvalues λ of a square matrix G(ξ1, ξ2)

are the solutions of

det(G(ξ1, ξ2)− λI) = 0. (3.21)

Classification of an equilibria of linear 2-dimensional systems.
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Definition 3.3.1 [16] The equilibrium point (ξ1, ξ2) of a square matrix (2X2)

is:

• a stable node if λ2 < λ1 < 0, both eigenvalues of G are negative;

• a unstable node if 0 < λ1 < λ2, both eigenvalues of G are positive;

• a saddle if λ1 < 0 < λ2 or λ2 < 0 < λ1, one eigenvalue of G is positive

and the other is negative;

• a stable degenerate node if λ1 = λ2 = λ < 0, equal negative eigen-

values;

• a unstable degenerate node if λ1 = λ2 = λ > 0, equal positive

eigenvalues;

• a center if λ1 = v+ iw, λ2 = v− iw and v = 0, both eigenvalues of G

are pure imaginary;

• a stable focus if λ1 = v + iw, λ2 = v − iw and v < 0;

• a unstable focus if λ1 = v + iw, λ2 = v − iw and v > 0.

Equilibrium point (ξ1, ξ2) is sometimes called hyperbolic if real part of λ1,2 6=

0.

Theorem 3.3.1 [16] Suppose that g is a differentiable function in some

neighborhood of the equilibrium point (ξ1, ξ2). Then,

• The equilibrium point (ξ1, ξ2) is asymptotically stable if all the eigenval-

ues of the matrix G have negative real parts, that is, if the equilibrium
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solution X(t) = 0 of the linearized system is asymptotically stable. In

particular, for sufficiently small initial conditions the solutions are de-

fined for all t.

• The equilibrium point (ξ1, ξ2) is unstable if at least one eigenvalue has

a positive real part.

• If all the eigenvalues of G have non-negative real part but at least one

of them has real part equal to 0, then the stability of the equilibrium

point (ξ1, ξ2) of the Eq.3.20 can not be determined from the stability of

its linearization.

In summary, a phase diagram can be determined by finding all equilibrium

points, analyzing their nature and stability and examining global behavior

and structure of the trajectories. If a trajectory connects two equilibrium

points in the system, that connection is called a heteroclinic trajectory. The

trajectory connecting an equilibrium point to itself is called homoclinic tra-

jectory.

3.4 Reaction-diffusion travelling wave solu-

tions: theory

In this subsection, we give a procedure to understand the travelling wave

solutions of reaction-diffusion equations and we also perform phase plane

analysis. We then consider the reaction-diffusion equation,

∂u

∂t
= du

∂2u

∂x2
+ f(u), x ∈ R, (3.22)
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where f(u) represents reaction and it is a nonlinear function of u. Applying

u(x, t) = U(z) in Eq.2.1, we get

−ckdU
dz

= duk
2d

2U
dz2

+ f(U), z ∈ R. (3.23)

We now have a second order ODE of a single independent variable. The

equation can’t be solved explicitly. To understand its solution, we write the

equation as a first order system. The system turns out to be an autonomous

system. A phase plane can then be used to study it. Transforming Eq.3.23

into a first order ODEs of two unknowns, U and dU
dz

= V , we get

dU
dz

= V ,

dV

dz
= − c

duk
V − 1

duk2
f(U).

(3.24)

To continue with our investigation, let us assume that f(U) = U(1−U). Then

the equation becomes the well known Fisher equation. Eq.3.24 becomes

dU
dz

= V ,

dV

dz
= − c

duk
V − 1

duk2
U(1− U).

(3.25)

We are interested in travelling wave solutions, i.e., the solutions U such that

lim
z→±∞

U(z) = u±∞.

It can be proved that

lim
z→±∞

dU
dz

(z) = lim
z→±∞

V(z) = 0.

So, we are interested in solution such that

lim
z→±∞

(U ,V) = (u±∞, 0).
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But points (u±∞, 0) are the equilibria of Eq.3.22. So, looking for travelling

wave solutions for Eq.3.22 is equivalent to looking for solutions of Eq.3.22

joining equilibrium points. Points ξ1 and ξ2 are equilibrium points of Eq.3.25

if

g1(U ,V) =V = 0,

g2(U ,V) =
−cV
duk

− 1

duk2
(U − U2) = 0.

(3.26)

Hence, we get two equilibrium points, ξ1 = (0, 0) and ξ2 = (1, 0). The Jacobi

matrix of the linearized system is

G(U ,V) =

 0 1

2U−1
duk2

−c
duk

 . (3.27)

Jacobi matrix of the linearized system at the equilibrium point θ1 is

G(0, 0) =

 0 1

−1
duk2

−c
duk

 . (3.28)

By using Eq.3.21, we get two eigenvalues,

λ1 =
−c−

√
c2 − 4du

2duk
and λ2 =

−c+
√
c2 − 4du

2duk
. (3.29)

If c2 ≥ 4du, the eigenvalues are real and both are negative (thus point (0, 0)

is a stable node) and if c2 < 4du, (0, 0) is a stable spiral (the eigenvalues are

complex with negative real part). The second equilibrium point, ξ2 leads us

to

G(1, 0) =

 0 1

1
duk2

−c
duk
.

 (3.30)

and the eigenvalues are

λ1 =
−c−

√
c2 + 4du

2duk
and λ2 =

−c+
√
c2 + 4du

2duk
. (3.31)
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Here λ1, λ2 are real numbers of opposite signs. It means (1, 0) is a saddle

point. Point (0, 0) is stable and point (1, 0) is unstable and they are sepa-

rated. For the existence of a travelling wave, there must be a path connecting

two points: (0, 0) and (1, 0). As indicated by arrows, the path only connects

from unstable point (1, 0) to stable point (0, 0). Figure 3.3 shows how we

connected the stable and unstable points using dashed lines. Assuming that

the path connecting (0, 0) and (1, 0) exists, then the path is expressed by

U , V with boundary conditions

U

V

(0,0)

(1,0)

Travelling wave trajectory

Figure 3.3: The Fisher equation phase plane trajectories.

lim
z→−∞

U(z) = 1 and lim
z→+∞

U(z) = 0. (3.32)

The path connecting (0, 0) and (1, 0) represents a monotone decreasing trav-

elling wave solution (Figure.3.4). The existence of a travelling wave solution

is based on the existence of a path connecting two equilibrium points in the
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−6 −4 −2 0 2 4 6 8

1

z

U

Figure 3.4: Travelling wave solution to Fisher’s equation when c2 ≥ 4du

phase plane.
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Chapter 4

Beyond the ’tanh’ expansion

The method is based on a method proposed by [15]. In this section we

propose a more systematic way of that extent to find exact solutions of

nonlinear equations with polynomial nonlinearities. The examples include

equations such as the KdV equation, Burgers Equation, as well as Reaction

Diffusion equations. We focus on nonlinear PDEs of only two independent

variables, space x and time t of the form

∂u

∂t
= uτ

∂u

∂x
+ du

∂ωu

∂xω
+ Φ(u), (4.1)

where

Φ(u) =

β∑
j=0

cju
j, (4.2)

and τ , ω,β are natural numbers. As explained earlier, we seek travelling

wave solutions using travelling wave coordinates, u(x, t) = U(z), where z =

k(x− ct), c > 0. Then Eq.4.1 turns to an ODE in terms of z,

ck
dU
dz

+ kU τ dU
dz

+ duk
ω d

ωU
dzω

+ Φ(U) = 0. (4.3)
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We presume that the solution of Eq.4.3 can be written as

U(z) =
m∑
i=1

aifi, (4.4)

where ai = a1, a2, · · · , am, m, are constants to be determined and f1, · · · , fm
are functions from a given set F = {f1, f2, · · · , fm, · · · }. We denote the

set of linear combinations of fi’s by LinF . We assume that F satisfies the

following assumptions

A1. F = {f1, f2, · · · , fm, · · · } is a given linearly independent set of func-

tions.

The infinite set of functions F = {f1, f2, · · · , fm, · · · } is linearly inde-

pendent if and only if every finite subset G = {f1, f2, · · · , fm} of F is

linearly independent. A subset {f1, f2, · · · , fm} is linearly independent

if {f1, · · · , fm} of functions

c1f1(x) + c2f2(x) + · · ·+ cmfmx = 0, ∀x, (4.5)

implies that c1 = c2 = · · · = cm = 0, where c1, c2, · · · , cn are constants.

Sometimes it is not easy to just use definition to show that a given set

of functions is linearly independent. We find Wronskian as a powerful

tool to determine independence of functions. The Wronskian matrix of

{f1, f2, · · · , fm} is

W (f1, f2, · · · , fm) =


f1 f2 · · · fm

f
′
1 f

′
2 · · · f

′
m

...
...

...
...

f
(m−1)
1 f

(m−1)
2 · · · f

(m−1)
m

 . (4.6)
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Then, the set {f1, f2, · · · , fm} is linearly independent if and only if

det(W (f1, f2, · · · , fm)) 6= 0.

A2. The product of any two functions fi, fj ∈ F satisfies fi ∗ fj ∈ F .

Lemma 4.0.1 For any fi, fj ∈ LinF , fi ∗ fj ∈ LinF .

Proof of Lemma 4.0.1: Let g =
∑m1

i=0 aifi and h =
∑m2

j=0 bjfj be two

of functions in LinF . Then,

g ∗ h =

m1∑
i=0

m2∑
j=0

aibjfifj =

m3∑
s=0

csfs,

where ai ∗ bj = cs and fi ∗ fj = fs, s ∈ N. By A2, fs ∈ F and we

conclude that fi ∗ fj ∈ LinF .

A3. If fj ∈ F , then d
dz
fj ∈ LinF .

Lemma 4.0.2 (a) If g ∈ LinF , then d
dz
g ∈ LinF .

(b) If g ∈ LinF , dn

dzn
g ∈ LinF ,n ∈ N.

(c) g ∗ dn

dzn
h ∈ LinF for any g, h ∈ LinF .

Proof of lemma 4.0.2.

(a) Let g ∈ LinF , then

d

dz
g =

m1∑
i=0

ai
d

dz
fi

=

m1∑
i=0

ai

m2∑
j=0

bjfj

=

m1,2∑
i=0

cifi,

(4.7)
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for fi ∈ F , hence dg
dz
∈ LinF by A3. (b) Consider higher derivative,

from proof (a), let d
dz
g = g1 ∈ LinF , then

g1 =

m1∑
i=0

ai
d

dz
fi

=

m3∑
j=0

αjfj,

(4.8)

and

d

dz
g1 =

m4∑
i=0

αi
d

dz
fi

=

m4∑
i=0

αj

m5∑
j=0

βjfj

=

m4,5∑
i=0

γifi

(4.9)

for fi ∈ F , thus d
dz
g1 ∈ LinF . It follows the same trend for the third,

fourth, derivative. Therefore

dn

dzn
g ∈ LinF , (4.10)

where n is a natural number.

(c) If g ∈ LinF , then from (b) dn

dzn
h ∈ LinF , therefore

g ∗ dn

dzn
h =

m1∑
i=0

aifi

m2∑
j=0

bj
dn

dzn
fj

=

m1∑
i=0

aifi

m2∑
j=0

bj

m3∑
k=0

ckfk

=

m6∑
i,j,k=0

aibjckfi ∗ fk.

(4.11)
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From A2 fi ∗ fk ∈ LinF = fs, then

g ∗ dn

dzn
h =

m7∑
i=0

βifs.

Therefore g ∗ dn

dzn
h ∈ LinF for any g, h ∈ LinF .

In the next subsections, we introduce four different examples of functions

that can be used to express a nonlinear PDE solution. In each example, we

also demonstrate that the introduced conditions are satisfied.

4.1 Example 1

As an example, we consider a function U(z). We define

F = {1, U, U2, · · · }. (4.12)

We assume that the solution of Eq.4.3 is expressed as

U(U) =
m∑
i=0

aiU
i, (4.13)

with U = U(z) satisfies Eq.3.2. We then introduce the Wronskian (W (f1, · · · , fn))

to test independence. Any finite subset {1, U, U2, · · · } is contained in {1, U, U2, · · · , Un}

for some n. Then, from the definition of linear independence of functions,

the set {1, U, U2, · · · } is linearly independent iff for any n, the only solution
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to Eq.4.14 is 0 = cn = · · · = cn+1 = 0.

1 U U2 · · · Un

0 1 2U · · · nUn−1

0 0 2 · · · n(n− 1)Un−2

0 0 0 · · · n(n− 1)(n− 2)Un−3

...
. . .

...

· · · n!




c1

c2

...

cn+1

 =


0

0
...

0

 . (4.14)

For condition A2, we let

fi = U i, fi ∈ F , i ∈ N, (4.15)

and

fj = U j, fj ∈ F , j ∈ N. (4.16)

Then,

fi ∗ fj = U i+j. (4.17)

Therefore, fi ∗ fj ∈ F . Conditions A1 and A2 are satisfied. to prove that

A3 to satisfied, we use fi = U i. Then

d

dz
fi = iU i−1dU

dz
.

We see that for A3 to be satisfied, dU
dz

must be a polynomial in U , hence we

must have dU
dz

= P (U), see section 3.2. Postulate is that

lim
z→±∞

U = u±∞.

This means that

lim
z→±∞

U = ū±∞,

where U(z) is given by Eq.3.12.
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4.2 Example 2

Here, we consider function Uα,with 0 < α < 1, we define F as

F = {1, Uα, (Uα)2, · · · }. (4.18)

We then assume that the solution is expressed as

U(U) =
m∑
i=0

ai(U
α)i. (4.19)

In this study, we assume that α = 1
k

for k ∈ N. By following the same

procedure as in Example 1, we can easily conclude that all three conditions

are satisfied if F = {1, Uα, (Uα)2, · · · }.

4.3 Example 3

Now consider the extended-Example 1 method. This extended method is

derived from the so-called the extended-G′/G method. The G′/G method

was introduced by Wang, Li and Zhang [17] to search for travelling wave

solutions of nonlinear evolution equations. The main step of this method is

to assume that the solutions of Eq.4.3 can be expressed in the form

U =
N∑
i=0

ai

(
G′

G

)i
, (4.20)

where G = G(z) satisfies the differential equation

G′′ + λG′ + µG = 0. (4.21)

Later, Shimin Guo and Yubin Zhou expanded the so-called G′/G method.

They formed the method called the extended G′/G-expansion method. The

40

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



method is applied to find travelling wave solutions of Whitham-Broer-Kaup-

Like equations and coupled Hirota-Satsuma KdV equations [22]. In the ex-

tended method, we assume that the solution of the nonlinear ODE is ex-

pressed as

U(z) = a0 +
n∑
i=1

ai

(
G′

G

)i
+

n∑
i=1

bi

(
G′

G

)i−1

√√√√σ

(
1 +

1

µ

(
G′

G

)2
)
, (4.22)

where a0, ai, bi are constants to be computed; σ = ±1, n is a positive integer

and G = G(z) satisfies

G′′ + µG = 0, (4.23)

where µ is a constant. Simplifying and modifying the method, we let G′/G =

U and obtain

U(z) = a0 +
n∑
i=1

ai(U)i +
n∑
i=1

bi(U)i−1
√
ρU2 + γU + σ, (4.24)

where U = U(z) satisfies the first order ODE

dU

dz
= −(ρU2 + γU + σ) = −P (U). (4.25)

Here (Example 3), F is a set given by

F = {1, U,
√
P (U), U2, U

√
P (U), · · · }. (4.26)

We assume that the solution is expressed as

U(U) = a0 +
m∑
i=1

aiU
i +

m∑
i=1

biU
i−1
√
P (U). (4.27)

To show that the product of two functions belongs to F , we let

gi = U i + U i−1
√
ρU2 + γU + σ, gi ∈ F , i ∈ N, (4.28)
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and

gj = U j + U j−1
√
ρU2 + γU + σ, gj ∈ F , j ∈ N. (4.29)

Then,

gi ∗ gj = U i+j + ρU i+j + γU i+j−1 + σU i+j−2 + 2U i+j−1
√
P . (4.30)

Hence, gi∗gj ∈ F . For the third condition, we only prove that gi2 = U i−1
√
P

satisfies condition A3 because we already proved that gi1 = U i satisfies all

conditions in Example 1. Then,

dgi
dz

=(i− 1)U i−2dU

dz

√
P +

U i−1

2
√
P

dP

dU

dU

dz

=(i− 1)
(
ρU i
√
P + γU i−1

√
P + σU i−2

√
P
)
−

ρU i
√
P − γ

2
U i−1
√
P .

(4.31)

Hence, dgi
dz
∈ F , dngi

dzn
∈ F and gj

dngi
dzn
∈ F .

4.3.1 Description of method

Summary of main steps of finding travelling wave solutions by using Exam-

ple 1-3.

Step 1. We transform the nonlinear PDE to a nonlinear ODE using travel-

ling wave coordinates z = k(x− ct) such that

u(x, t) = U(z).
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Step 2. We assume that the solution of a nonlinear ODE can be expressed

by one of the following (depending on the type of equation under study):

U(U) =
m∑
i=0

aiU
i,

U(U) =
m∑
i=0

ai(U
α)i,

U(U) =a0 +
m∑
i=1

aiU
i +

m∑
i=1

biU
i−1
√
P (U),

(4.32)

where U = U(z) satisfies the first order linear ODE in form

dU

dz
= ρU2 + γU + σ′.

The positive integer m can be determined by balancing the highest degree

terms in U . It can be achieved by substituting one of E.q4.32 together with

a linear ODE into a nonlinear ODE.

Step 3. After determining the value of m, we then substitute one of Eq.4.32

along with a linear ODE into a nonlinear ODE. We collect all terms of the

same order of U , U
√
P (U), U lnU together and equate their coefficients to

zero.

Step 4. We then solve for the unknown constants (a0, · · · , am), (b1, · · · , bm),

k and c. Substituting these constants and the general solution Eq.3.12 of a

linear ODE, into one of Eq.4.32, we can obtain a travelling wave solution.

4.3.2 Balancing exponents

In this study we consider the equations containing the following elements:

linear diffusion, nonlinear advection and nonlinear reaction. Such an equation
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is given by Eq.4.1. By reconsidering an ODE of Eq.4.1, we assume that the

solution of Eq.4.3 has the form:

U =
m∑
i=0

aifi,

where fi is any function in Examples 1-3 and U = U(z) satisfies first order

ODE dU/dz = ρU2+γU+σ. Here, we want to determine the parameter m by

balancing highest degree terms in U . In giving the formula of m for balancing

exponents of Eq.4.3, we consider three cases or equations that can come from

Eq.4.1. The Eq.4.1 is a nonlinear advection reaction diffusion equation. For

equations of this type, we can mention the Burgers like-Huxly equation, and

many more. The second equation arises by dropping the advection term

to get a diffusion equation with nonlinear source terms, normally called the

reaction-diffusion equation,

∂u

∂t
= du

∂ωu

∂xω
+ Φ(u). (4.33)

There are many equations of this form; equations like the Fisher equation, the

Zeldovich equation, the Nagumo equation, the Newell-Whitehed equation,

ect. The third case is obtained if the reaction term does not form part of

Eq.4.1. We get a nonlinear advection diffusion equation

∂u

∂t
= uτ

∂u

∂x
+ du

∂ωu

∂xω
. (4.34)

Equations of this kind are the Burgers equation, KdV equation, ect. So,

Eq.4.1 accommodates three different equations. The next step is to give

formulas of the value of m for different functions, based on Examples 1-3.

We write the terms with the highest powers coming from each term in Eq.4.3.
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4.3.2.1 Example 1, balancing

In Example 1, by writing the term with highest powers, we assume that the

solution is expressed as

U = amU
m + · · · , (4.35)

where am 6= 0 and U = U(z) satisfies Eq.3.2. Taking derivatives of Eq.4.35,

we get

dU
dz

=mρamU
m+1 +mγamU

m +mσamU
m−1 + · · · ,

d2U
dz2

=m(m− 1)pam
(
ρUm+2 + γUm+1 + σUm

)
+ · · · ,

...

dωU
dzω

=(m2 −m)pam
(
ρUm+ω + γUm+ω−1 + σUm+ω−2

)
+ · · · ,

(4.36)

U τ dU
dz

= mρa2
mU

m+mτ+1 +mγa2
mU

m+mτ +mσa2
mU

m+mτ−1 + · · · . (4.37)

The polynomial Φ(U) becomes

Φ(u) =

β∑
j=2

cju
j,

=

β∑
j=2

cj

(
m∑
i=0

aiU
i

)j

,

= cβa
β
mU

mβ + · · · .

(4.38)

The highest power of Φ(U) is Umβ, U τ dU
dz

is Umτ+m+1, dωU
dzω

is Um+ω, and dU
dz

is Um+1. Equating the exponents of U , we have

m =
ω

β − 1
, (4.39)
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where balancing is between diffusion term and reaction term. If the balancing

is between nonlinear advection term and diffusion term, we have

m =
ω − 1

τ
. (4.40)

To determine the term with the highest exponents between diffusion, advec-

tion and reaction terms, we start by using both Eq.4.39 and Eq.4.40. After

comparing the two values, we then use the lowest value of m. If the obtained

m value is found to be a fraction, we then use Example 2 and Table 2 to

address the problem. We only use Eq.4.40 to determine the value of m for the

Table 4.1: Possible values of ω, β, τ and m.

Cases ω β τ m

ω ≥ β − 1 1 2 1

2 2 2

2 3 1

β ≥ 2 3 2 3

3 4 1

4 2 4

4 3 2

4 5 1

ω > τ and ω + τ = odd 2 1 1

ω ≥ 2 3 2 1

τ ≥ 1 4 1 3

4 3 1

KdV equation, Burger equations and many more if the following conditions
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are satisfied:

ω ≤ β − 1, ω, β ≥ 2, (4.41)

and

ω + τ = 2N + 1, ω > τ, ω, τ ≥ 2, (4.42)

where N is a natural number. Table 1 shows the possible values of β, ω, τ

and m. Balancing the reaction diffusion equation with no advection term, we

use Eq.4.39. If the mentioned conditions are not satisfied, we use Example

2.

Table 4.2: Possible values of ω, β, τ , α and m.

Cases ω β τ m α Results (m)

ω < β − 1 2 5 1/2α 1/2 1

ω ≥ 2 2 4 2/3α 2/3 2

β > 2 3 5 3/4α 3/4 3

ω > β − 1 3 3 3/2α 3/2 3

β > 2, ω > 2 4 4 4/3α 4/3 4

5 3 5/2α 5/2 5

ω > τ and ω + τ = even 5 3 4/3α 4/3 4

4 2 3/2α 3/2 3

8 2 7/2α 7/2 7

ω − 1 ≤ τ 2 2 1/2α 1/2 1

2 3 1/2α 1/2 1

2 4 1/4α 1/4 1
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4.3.2.2 Example 2, balancing

In Example 2, we have U =
∑m

i=0 ai(U
α)i. Balancing terms with highest

powers lead us to

m =
ω

α(β − 1)
, (4.43)

if the balancing is between a nonlinear advection term and diffusion term,

but

m =
ω − 1

ατ
, (4.44)

if the balancing is between diffusion term and the reaction term. Table 2

gives possible values of α, ω, τ and m.

4.3.2.3 Example 3, balancing

U(U) = a0 +
∑m

i=1 aiU
i +
∑m

i=1 biU
i−1
√
P (U), we obtain same results as of

U(U) =
∑m

i=0 aiU
i.
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Chapter 5

Application

5.1 Whitham-Broer-Kaup equation

In this chapter, we have studied the 1-dimensional Whitham-Broer-Kaup

equation, Fisher equation and Burger Fisher equation by using Example

1-3 to find exact travelling wave solutions. The Whitham-Broer-Kaup equa-

tion is an important equation in the field of mathematical physics. The

Whitham-Broer-Kaup model is generally used to study tsunami waves. The

model describes the tsunami wave dynamics under gravity [26]. It was de-

veloped based on the fluid mechanics assumption, which says that fluid is

incomprehensible and irrotational. The Whitham-Broer-Kaup model can be

written as

∂u

∂t
+ u

∂u

∂x
+ ~

∂h

∂x
+ b

∂2u

∂x2
= 0,

∂h

∂t
+

∂

∂x
(hu) + a

∂3u

∂x3
− b∂

2h

∂x2
= 0,

(5.1)
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where ~, a, b, are constants. The main variables u describe the horizontal

velocity and h is the height deviating from the equilibrium position of the

liquid. After the transformation of u(x, t) = U(z) and h(x, t) = H(z), we get

−ckdU
dz

+ kU dU
dz

+ k~
dH
dz

+ k2b
d2U
dz2

= 0,

−ckdH
dz

+ k
d

dz
(HU) + k3a

d3U
dz3
− k2b

d2H
dz2

= 0.

(5.2)

Integrating Eq.5.2 with respect to z, we get

−ckU +
1

2
kU2 + k~H + k2b

dU
dz

+ A1 = 0,

−ckH + kHU + k3a
d2U
dz2
− k2b

dH
dz

+ A2 = 0,

(5.3)

where A1 and A2 are integration constants. By Example 3, we assume that

the solution of Eq.5.3 is expressed as

U(z) = a0 +
n∑
i=1

aiU
i +

n∑
i=1

biU
i−1
√
U − U2,

H(z) = c0 +

n1∑
i=1

ciU
i +

n1∑
i=1

diU
i−1
√
U − U2,

(5.4)

where U = U(z) satisfies a first order ODE

dU

dz
= U2 − U.

The highest power of the product of H and U is given by

HU = ancn1U
n1+w + · · · . (5.5)

Balancing the highest exponents between d2U
dz2 and HU in the second equation

of Eq.5.3, we have n + 2 and n + n1 respectively. Hence, n1 = 2. The value
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of n in the first equation can be determined using table 4.1. That is, n = 1.

Therefore

U(z) = a0 + a1U + b1

√
U − U2,

H(z) = c0 + c1U + c2U
2 + d1

√
U − U2 + d2U

√
U − U2.

(5.6)

Substituting Eq.5.6 in Eq.5.3 and equating coefficients of powers of U i and

U i
√
U − U2 (i = 0, 1, · · · ) to zero, we obtain the following:

U0 : −2cka0 + ka2
0 + 2~kc0 + 2A1 = 0,

U1 : −2cka1 + 2ka0a1 + kb2
1 + 2k~c1 − 2k2ba1 = 0,

U2 : ka2
1 − kb2

1 + 2k~c2 + 2k2ba1 = 0,

U0
√
U − U2 : −2ckb1 + 2a0b1 + 2k~d1 − k2bb1 = 0,

U
√
U − U2 : ka1b1 + k~d2 + k2bb1 = 0,

U0 : ka0c0 − ckc0 + A2 = 0,

U1 : k2aa1 + k2bc1 + ka0c1 + ka1c0 + kb1d1 − ckc1 = 0,

U2 : −3k3aa1 − k2bc1 + 2k2bc2 + ka0c2 + ka1c1 − kb1d1+

kb1d2 − ckc2 = 0,

U3 : 2k3aa1 − 2k2bc2 + ka1c2 − kb1d2 = 0,

U0
√
U − U2 : k3ab1 + 2k2bd1 + 4ka0d1 + 4kb1c0 − 4ckd1 = 0,

U
√
U − U2 : −4k3ab1 − 2k2bd1 + 3k2bd2 + 2ka1d1 + 2kb1c1−

2ckd2 + 2ka0d2 = 0,

U2
√
U − U2 : 2k3ab1 − 2k2bd2 + ka1d2 + kb1c2 = 0.

(5.7)
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After solving the unknowns of Eq.5.7, we get the following list of solutions.

Solution 1:

A1 =
1

2
kc2 − 1

16
b2

1, A2 = 0, a =
−d2

2 − c2
2

2k2c2

, a0 = c, a1 = 0,

b =
−b1d2

2c2k
, b1 = b1, c = c, c0 =

c2

8
, c1 = −c2, c2 = c2,

d1 =
−1

2
d2, d2 = d2, ~ =

b2
1

2c2

, k = k

Solution 2:

A1 = −1

2
ka2

0 + cka0, A2 = 0, a =
−b2k2 + a2

0 − 2a0c+ c2

k2~
, a0 = a0,

a1 = −2a0 + 2c, b = b, b1 = 0, c = c, c0 = 0, c1 =
(2a0 − 2c)(−bk + a0 − c)

~
,

c2 =
(2c− 2a0)(−bk + a0 − c)

~
, d1 = 0, d2 = 0, ~ = ~, k = k.

(5.8)

We get the following exact solutions of the systems,

Solution 1:

U(U) = c±
√

−k2

2ak2 + 1

√
U − U2,

H(U) =
−k2

4~(2ak2 + 1)
+

2k2

~(2ak2 + 1)
U +

−2k2

~(2ak2 + 1)
U2+

− 2bk3

~
1

±
√
−2ak4 − k2

√
U − U2 +

4bk3

~
1

±
√
−2ak4 − k2

U
√
U − U2.

(5.9)
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Figure 5.2: Solution 1:The pulse wave profiles of Witham-Broer-Kaup

equation where ~1 = 1, c = 2, b = 1, and a = −1.
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By substituting Eq.3.12 into Eq.5.9 yields a pulse wave solution

U(z) = c±
√

−k2

2ak2 + 1

( √
ez

1 + ez

)
,

H(z) =
−k2

4~(2ak2 + 1)
+

2k2

~(2ak2 + 1)

(
1

1 + ez

)
+

−2k2

~(2ak2 + 1)

(
1

1 + ez

)2

+

− 2bk3

~
1

±
√
−2ak4 − k2

( √
ez

1 + ez

)
+

4bk3

~
1

±
√
−2ak4 − k2

( √
ez

(1 + ez)2

)
,

(5.10)

or

u(x, t) = c±
√

−k2

2ak2 + 1

( √
ek(x−ct)

1 + ek(x−ct)

)
,

h(x, t) =
−k2

4~(2ak2 + 1)
+

2k2

~(2ak2 + 1)

(
1

1 + ek(x−ct)

)
+

−2k2

~(2ak2 + 1)

(
1

1 + ek(x−ct)

)2

−

2bk3

~
1

±
√
−2ak4 − k2

( √
ek(x−ct)

1 + ek(x−ct)

)
+

4bk3

~
1

±
√
−2ak4 − k2

( √
ek(x−ct)

(1 + ek(x−ct))2

)
,

(5.11)

Solution 2:

U(U) = c±
√
ak2~ + b2k2 ± 2

√
ak2~ + b2k2U,

H(U) =
±
√
ak2~ + b2k

(
bk ±

√
ak2~ + b2k2

)
~

U+

±
√
ak2~ + b2k

(
−bk ±

√
ak2~ + b2k2

)
~

U2.

(5.12)
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Again, substituting Eq.3.12 in Eq.5.12, we get an exact travelling wave solu-

tion

U(z) = c±
√
ak2h+ b2k2 ± 2

√
ak2h+ b2k2

(
1

1 + ez

)
,

H(z) =
±
√
ak2~ + b2k

(
bk ±

√
ak2~ + b2k2

)
~

(
1

1 + ez

)
+,

±
√
ak2~ + b2k

(
−bk ±

√
ak2~ + b2k2

)
~

(
1

1 + ez

)2

,

(5.13)

or

u(x, t) = c±
√
ak2h+ b2k2 ± 2

√
ak2h+ b2k2

(
1

1 + ek(x−ct)

)
,

h(x, t) =
±
√
ak2~ + b2k

(
bk ±

√
ak2~ + b2k2

)
~

(
1

1 + ek(x−ct)

)
+,

±
√
ak2~ + b2k

(
−bk ±

√
ak2~ + b2k2

)
~

(
1

1 + ek(x−ct)

)2

,

(5.14)

In this example, we applied Example 3 to find exact travelling wave so-

lutions of the Whitham-Broer-Kaup equation. Comparing the solutions re-

ported by [22], we notice that we obtained the same wave speed in Solution

1 and parameter d1 as an arbitrary parameter, while in their case d1 = 0.

They also wrongly claimed that by setting A1 = 0, A2 6= 0 you get a pulse

wave solution. In Figure 5.2, pulse wave solutions b, c, and d might not be

used in application of the study of tsunami waves because they are negative

pulse wave solutions. Solution 2 is the travelling wave front of Eq.5.1. The

travelling wave profile is shown by Figure 5.4. Application of Example 1 has

successfully lead us to new pulse wave solutions. The Example 1 method is

very powerful and that is emphasized by some similarities in wave profiles ob-

tained by [26]. By using Example 3, we more clearly illustrate the method’s
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utility, simplicity, and briefness in comparison to the extended G′/G method

for finding travelling solutions for Whitham-Broer-Kaup equations.
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Figure 5.4: Solution 2:The travelling wave profiles of Witham-Broer-Kaup

equation where ~1 = 1, c = 2, b = 1, k = 1 and a = 1.

56

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



5.2 Fisher equation

The Fisher’s equation [2],

∂u

∂t
=
∂2u

∂x2
+ u(1− u),

is the model that describes the evolution of a population density function

u(x, t) at time t and location x. It is a model of diffusion of a species in a one

dimensional habitat. As in the previous example, we first transform Eq.6.15

to get

ck
dU
dz

+ k2d
2U
dz2

+ U(1− U) = 0. (5.15)

We introduced earlier the Example 1, hence we assume that the solution of

Eq.5.15 is expressed as Eq.4.13 with U = U(z) satisfies Eq.3.2. From Table

1, we can see that m = 2. Therefore, we have

U(z) = a0 + a1U + a2U
2. (5.16)

Substituting Eq.5.16 into Eq.5.15 with Eq.3.2 and equating coefficients of

powers of U to zero, we obtain the following system of nonlinear equations:

U0 : a0 − a2
0 + ckσa1 + k2γσa1 + 2k2σ2a2 = 0,

U1 : a1 − 2a0a1 + ckγa1 + 2ckσa2 + 2k2ρσa1+

k2γ2a1 + 6k2γσa2 = 0,

U2 : a2 − 2a0a2 − a2
1 + ckρa1 + 2ckγa2+

3k2ργa1 + 8k2ρσa2 + 4k2γ2a2 = 0,

U3 : −2a1a2 + 2ckρa2 + 2k2ρ2a1 + 10k2ργa2 = 0,

U4 : 6k2ρ2a2 − a2
2 = 0.

(5.17)
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In solving the above algebraic equations with the aid of Maple, we get

a0 =
−3

2
k2γ2 +

1

2
(6kγ ±

√
6)kγ +

1

4
, k = k,

a1 = (6kγ ±
√

6)ρk, a2 = 6k2ρ2, c = ±5

6

√
6,

ρ = ρ, γ = γ, σ =
1

24

6k2γ2 − 1

k2ρ
.

(5.18)

Hence, putting what we obtained in Eq.5.18 into Eq.5.16 we get

U(z) =
−3

2
k2γ2 +

1

2
(6kγ ±

√
6)kγ +

1

4
+

(6kγ ±
√

6)ρkU + 6k2ρ2U2.

(5.19)

By substituting Eq.3.12 into Eq.5.19, we obtain the final solution of the

Fisher equation to be

u(x, t) =
1

4
± k
√

6

2

√
γ2 − 4ρσ tanh

(
−
√
γ2 − 4ρσ

2

(
kx± 5k√

6
t+ A

))
+

3k2γ2

2
tanh2

(
−
√
γ2 − 4ρσ

2

(
kx± 5k√

6
t+ A

))
−

6k2σρ tanh2

(
−
√
γ2 − 4ρσ

2

(
kx± 5k√

6
t+ A

))
.

(5.20)

It is the travelling wave moving to the left or right if Eq.2.2 is satisfied.

Hence, that can be achieved by considering different values of ρ, σ and γ.

Here, we consider few cases:
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• case 1: If ρ = −1, γ = 0, σ = 1, then

i) u(x, t) =
1

4
− 1

2
tanh

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
+

1

4
tanh2

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
,

ii) u(x, t) =
1

4
+

1

2
tanh

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
+

1

4
tanh2

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
.

(5.21)

• case 2: On condition that ρ = 1, γ = 0, σ = −1 we get

i) u(x, t) =
1

4
− 1

2
tanh

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
+

1

4
tanh2

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
,

ii) u(x, t) =
1

4
+

1

2
tanh

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
+

1

4
tanh2

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
.

(5.22)

• case 3: Given that ρ = 4, γ = 3, σ = −1, we get

i) u(x, t) =
1

4
− 1

2
tanh

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
+

1

4
tanh2

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
,

ii) u(x, t) =
1

4
+

1

2
tanh

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
+

1

4
tanh2

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
.

(5.23)
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• case 4: For ρ = −1, γ = 1, σ = 0, we obtain

i) u(x, t) =
1

4
− 1

2
tanh

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
+

1

4
tanh2

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
,

ii) u(x, t) =
1

4
+

1

2
tanh

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
+

1

4
tanh2

(
± 1

2
√

6

(
x± 5√

6
t

)
+ A

)
.

(5.24)

In each case we got two travelling waves solutions, propagating in different

directions. Therefore, Eq.5.20 becomes a travelling wave solution if

γ2 − 4ρσ > 0.

The four cases demonstrate that we get same result for γ2 − 4ρσ > 0.

5.3 Burgers-Fisher equation

The Burgers-Fisher equation is normally used to model fluid dynamics, num-

ber theory, heat conduction, elasticity and many more [27], [28]. The tanh

method for generalized forms of Burgers-Fisher equations was presented by

[28]. As an example, we provide solution of the generalized Burgers-Fisher

equation by using Example 2. The generalized Burgers-Fisher equation is

given by
∂u

∂t
+ u2∂u

∂x
− ∂2u

∂x2
= u(1− u2). (5.25)

Transforming to the z variable yields

ck
dU
dz
− kU2dU

dz
+ k2d

2U
dz2

+ U − U3 = 0. (5.26)
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After comparing the values of m using Eq.4.39 and Eq.4.40, we obtained m

to be a fraction. Hence, we move to Example 2 and Table 2 to find that

m = 1 and α = 1/2. Therefore, we can seek the solution of Eq.5.26 in the

form

U(U) =
1∑
i=0

ai(U
1/2)i, (5.27)

where U = U(z) satisfies
dU

dz
= U2 − U.

Putting Eq.5.27 into Eq.5.26 together with Eq.3.3, collecting all terms with

like powers U j and U1/j and setting them to zero, we get the system of six

equations,

U0 :a0 − a3
0 = 0,

U1 :ka0a
2
1 − 3a0a

2
1 = 0,

U2 :− ka0a
2
1 = 0,

U1/2 :− 2cka1 + k2a1 + 2ka1a
2
0 − 12a2

0a1 + 4a1 = 0,

U3/2 :2cka1 − 4k2a1 − 2ka1a
2
0 + 2ka3

1 − 4a3
1 = 0,

U5/2 :3k2a1 − 2ka3
1 = 0.

(5.28)

Solving the above equations, we get the following set of solutions:{
a0 = 0, a1 = 1, c =

10

3
, k =

2

3

}
,{

a0 = 0, a1 = −1, c =
10

3
, k =

2

3

}
.

(5.29)

Substituting the above set into Eq.5.27, we get

U(U) = ±U1/2. (5.30)
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Finally, after substituting Eq.3.12 into Eq.5.30, we get two travelling wave

solutions:

u(x, t) = −1

2

(
1 + tanh

(
x

3
− 10

9
t

)
+
A

2

)1/2

,

u(x, t) =
1

2

(
1 + tanh

(
x

3
− 10

9
t

)
+
A

2

)1/2

.

(5.31)

Figure 5.5 shows the shape of two exact travelling solutions, in which both

waves are travelling at the same speed but in opposite directions. The same

results have been obtained by many researchers. In [28] work, they found m

−2 −1 0 1 2−2

0

2

0

0.5

x
t

(a) Burger Fisher solution,

u(x, t) = 1
2

(
1 + tanh

(
x
3 −

10
9 t
))1/2

, A = 0

.

−2 −1 0 1 2−2

0

2
−0.5

0

x
t

(b) Burger Fisher solution,

u(x, t) = −1
2

(
1 + tanh

(
x
3 −

10
9 t
))1/2

, A = 0

.

Figure 5.5: Burger Fisher solution profiles

to be a fraction. Hence, they utilize substitution to get rid of that fraction.

Here, we demonstrate a simple, general and straightforward method that can

be used to solve problems that involve m as a fraction. Example 2 together
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with Table 1 and Table 2 proved to be an effective way of solving such

problems without any tedious calculations. Our results are totally different

to what [25] obtained. The modified tanh− coth method utilized in [25] does

not produce travelling wave solutions.
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Chapter 6

Second approach of finding

exact travelling wave solutions

In Chapter 2, we stated that travelling wave solutions occur between two

equilibrium. We also assume that P (U) is a quadratic polynomial. Here, we

want to show that P (U) can be U lnU−U . Consider a first order autonomous

equation
dU

dz
= U lnU − U , U > 0. (6.1)

We then find the exact expression for the solution to Eq.6.1. An ODE is

separable. By arranging and integrating both sides, we get∫
1

U(lnU − 1)
dU =

∫
dz + A1. (6.2)

Let h = lnU − 1, so dh = 1
U
dU , implies∫

1

h
dU =

∫
dz + A1, (6.3)
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where A1 is the integration constant. By using partial fractions, we get

ln | lnU − 1| = z + A1,

| lnU − 1| = ez+A1 ,
(6.4)

| lnU − 1| = lnU − 1, if U > e. (6.5)

Finally, we have

U(z) = ee
z+A1+1. (6.6)

In this case, Eq.6.6 does not need to satisfy Eq.2.2 but Eq.2.2 needs to be

satisfied when Eq.6.6 is substituted into the following assumption. Let us

assume that the solution of an ODE is of the form:

U(z) = a0 +
m∑
i=1

n∑
j=1

aibjU
−i+1(lnU)−j, (6.7)

where U = U(z) satisfies the first order nonlinear ODE:

dU

dz
= U lnU − U , U > 0. (6.8)

We then demonstrate the application of the method by solving two well

known equations, the Fisher equation and Korteweg-de Vries equation.

6.1 Korteweg-de Vries equation

The Korteweg-de Vries equation is a third order nonlinear partial differential

equation. It was derived from fluid mechanics to describe shallow water

waves in a rectangular channel. The equation is written as

∂u

∂t
+ u

∂u

∂x
+ b

∂3u

∂x3
= 0, (6.9)
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where constant b > 0. After transformation and integrating once, we obtain

−ckU + k
1

2
U2 + bk2d

2U
dt2
−B1 = 0, (6.10)

where B1 is the integration constant. After balancing exponents, we again

have m = 1 and n = 2. Then, Eq.6.7 leads us to

U(z) = a0 + a1b1(lnU)−1 + a1b2(lnU)−2 (6.11)

Substituting Eq.6.11 with Eq.6.6 into Eq.6.10 and collecting and equating

coefficients of U−i+1(lnU)−j to zero, we obtain

U0(lnU)0 :− 2cka0 + ka2
0 − 2B1 = 0,

U0(lnU)−1 :− cka1b1 + ka0a1b1 + bk2a1b1 = 0,

U0(lnU)−2 :− 2cka1b2 + 2ka0a1b2 + ka2
1b

2
1 − 6bk2a1b1 + 8bk2a1b2 = 0,

U0(lnU)−3 :ka2
1b1b2 + 2bk2a1b1 − 10bk2a1b2 = 0,

U0(lnU)−4 :ka2
1b

2
2 + 12bk2a1b2 = 0.

(6.12)

Solving the above equations, we have{
B1 =

1

2
b2k3 − 1

2
c2k, a0 = −bk + c, a1 = −12bk

b2

,

b = b, b1 = −b2, b2 = b2, c = c, k = k
}
.

(6.13)

Hence, Eq.6.11 becomes

U(U(z)) = (−bk + c) + 12bk(lnU)−1 − 12bk(lnU)−2,

U(z) =(−bk + c) + 12bk

(
ez+A1

(ez+A1 + 1)2

)
=(−bk + c) + 3bk

(
4

ez+A + 2 + e−z−A

)
.

(6.14)
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Figure 6.1: Korteweg-de Vries equation profiles, where A1 = 0, c = 2, k = 1,

b = 1.

Comparing these results with the results we obtained in Chapter 2 ( Eq.2.35),

we have same results.

6.2 Fisher equation

Reconsider the Fisher equation,

∂u

∂t
=
∂2u

∂x2
+ u(1− u), (6.15)
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After balancing the exponents, we get m = 1 and n = 2. Following all steps

as in previous examples, we get the system of equations

U0(lnU)0 :a0 − a2
0 = 0,

U0(lnU)−1 :a1b1 − 2a0a1b1 − cka1b1 + k2a1b1 = 0,

U0(lnU)−2 :a1b2 − 2a0a1b2 − a2
1b

2
1 + cka1b1 − 2cka1b2 − 3k2a1b1 + 4k2a1b2 = 0,

U0(lnU)−3 :− 2a2
1b1b2 + 2cka1b2 + 2k2a1b1 − 10k2a1b2 = 0,

U0(lnU)−4 :− a2
1b

2
2 + 6k2a1b2 = 0.

(6.16)

From the above equations, we get the following results,{
a0 = 0, a1 =

1

b2

, b1 = 0, b2 = b2, c =
5

6

√
6, k =

1

6

√
6

}
,{

a0 = 0, a1 =
1

b2

, b1 = 0, b2 = b2, c =
−5

6

√
6, k = −1

6

√
6

}
,{

a0 = 1, a1 =
1

b2

, b1 = −2b2, b2 = b2, c =
−5

6

√
6, k =

1

6

√
6

}
,{

a0 = 1, a1 =
1

b2

, b1 = −2b2, b2 = b2, c =
5

6

√
6, k = −1

6

√
6

}
,

(6.17)

The the following exact travelling wave solutions are produced,

u(x, t) =
1(

e
√

6
6 (x− 5

6

√
6t)+A1 + 1

)2 ,

u(x, t) =
1(

e−
√

6
6 (x+ 5

6

√
6t)+A1 + 1

)2 ,
(6.18)

and

u(x, t) = 1− 2

e
√

6
6 (x− 5

6

√
6t)+A1 + 1

+
1

(e
√

6
6 (x− 5

6

√
6t)+A1 + 1)2

,

u(x, t) = 1− 2

e
−
√

6
6 (x+ 5

6

√
6t)+A1 + 1

+
1

(e−
√

6
6 (x+ 5

6

√
6t)+A1 + 1)2

.
(6.19)
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The presented solution of the Fisher equation solutions shows the same result

as the previous method where P (U) was treated as a second order polynomial.

The intention of presenting the second approach was to emphasize that any

function P (U) (either a polynomial or not, but it must have more than

one root) can be utilized to produce exact travelling wave solutions. That

goal has been achieved; the Fisher equation and KdV equation produced

travelling wave solutions in both cases. The application to established PDEs,

demonstrated that the method technique is simple and capable of finding

analytical travelling wave solutions for nonlinear evolution equations.
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Chapter 7

Discussion

The general presented method of finding travelling wave solutions for non-

linear PDEs as linear combinations of functions satisfying certain assump-

tions provides a straightforward algorithm to work out nonlinear PDEs ex-

act travelling wave solutions. It is shown that the methods like the G′/G,

tanh-method and many more, are examples of th general method introduced

in the dissertation. The main procedure of the method lies in the fact

that U(z) must approach constant states, that is U(z → −∞) = u1 and

U(z → +∞) = u2, which must be at equilibria of P (U), hence P (U) must

have at least two roots.
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