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ABSTRACT Addressing crime detection, cyber security and multi-modal gaze estimation in biometric
information recognition is challenging. Thus, trained artificial intelligence (AI) algorithms such as Support
vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) have been proposed to recog-
nize distinct and discriminant features of biometric information (intrinsic hand features and demographic
cues) with good classification accuracy. Unfortunately, due to nonlinearity in distinct and discriminant
features of biometric information, accuracy of SVM and ANFIS is reduced. As a result, optimized AI
algorithms ((ANFIS) with subtractive clustering (ANFIS-SC) and SVM with error correction output code
(SVM-ECOC)) have shown to be effective for biometric information recognition. In this paper, we com-
pare the performance of the ANFIS-SC and SVM-ECOC algorithms in their effectiveness at learning
essential characteristics of intrinsic hand features and demographic cues based on Pearson correlation
coefficient (PCC) feature selection. Furthermore, the accuracy of these algorithms are presented, and their
recognition performances are evaluated by root mean squared error (RMSE), mean absolute percentage error
(MAPE), scatter index (SI), mean absolute deviation (MAD), coefficient of determination (R2), Akaike’s
Information Criterion (AICc) and Nash-Sutcliffe model efficiency index (NSE). Evaluation results show
that both SVM-ECOC and ANFIS-SC algorithms are suitable for accurately recognizing soft biometric
information on basis of intrinsic hand measurements and demographic cues. Moreover, comparison results
demonstrated that ANFIS-SC algorithms can provide better recognition accuracy, with RMSE,AICc,MAPE,
R2 and NSE values of ≤ 3.85, 2.39E+02, 0.18%, ≥ 0.99 and ≥ 99, respectively.

INDEX TERMS ANFIS, artificial intelligence, biometric features recognition, demographic cues, SVM,
misclassifications, optimization.

I. INTRODUCTION
The geometric models for biometric hand features (skin
fingerprint and palm model) are easy to hack in contrast
with biometric bones-based system (phalangeal biometric
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models). This is because hand geometric model is based
on external measurement of hand features (hand patterns;
knuckle creases) which are highly exposable. Suspects leave
traces everyday and everywhere they have utilized biometric
resources. Even more aggravating, if suspects have com-
mitted crimes, third party presence or interfering on the
same system might have defeated biometric cue traces when
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matching sample to suspect. However, in cyberspace context,
utilization of external hand measurements and/or knuckle
creases may allow criminals to easily utilize information of
legitimate users for unauthorized access or activities. Another
limitation of these features is that, it does not favor victims
of skin diseases, in a situation where top layers of their skin
(palm and fingerprints) are affected [1]. Thus, victims may
no longer get access to any external hand measurement-based
biometric recognition system, even if they have fully recov-
ered [1], [2]. However, these problems might have defeated
crime detection, accident rescue, amnesia victims identifi-
cation, missing persons, unknown deceased, and cyberspace
authentication. In contrast, the phalangeal biometric model
require intrinsic hand features such as length/width of Proxi-
mal Phalanx, Distal Phalanx etc. which are not as exposed as
their counterparts [2]. Therefore, hand biometric recognition
based on intrinsic measurement of human bones stand as
solution for human identification and crime detection. More-
over, an appropriate selection of intrinsic hand features yield
an excellent result [3]. Due to these reasons, evaluation of
intrinsic hand features based on demographic cues by learn-
ing models aid in recognizing biometric hand information.
It is well known that recognition of biometric hand features
and demographic cues is a complex non-linear procedure
that happens by a complex interaction of different redundant
hand features. Pearson Correlation coefficient (PCC) features
selection is generally appreciated as a stable feature repre-
sentation of complex and non-linear dynamical behaviour of
hand biometric information. This analysis minimize mod-
els training complexity, and reduce misclassification during
recognition. Recognition from selective intrinsic hand fea-
tures by PCC is an effective and reliable method for critical
infrastructure.

Studies of human demographic characteristics from bio-
metric hand features have been extensively proved in the body
of literature purposely on Artificial Intelligence (AI) learning
or descriptive statistics analysis. It is being documented that
external hand features (geometric features) are deployed in
biometric recognition, such information involves measure-
ment of lengths, circumference, thickness, width of fingers,
palm, wrist, skin texture etc. to predict human sex, age, and
human height [4]. Karki and Singh demonstrate a strong
relationship between the pattern of fingerprints and human
gender [5]. Meanwhile, in [6] relationship of biometric infor-
mation in cross-domain identity recognition is demonstrated.
Among well-known biometric gesture recognition method is
Discriminant analysis [7], which was followed by descriptive
statistics approaches [8]. Likewise, Thakar et al. propose
method of gender determination using ridge characteristics
and ridge density of fingerprints. These features were sta-
tistically analyzed and their results proved the usefulness of
biometric information in determining demographic informa-
tion [9]. Another variation of the descriptive statistics model
is a bootstrap estimate, where a large number of sample
sizes similar to actual samples are drawn with replacement
from samples, and desired statistic was determined within

each sample. Bootstrap fails to approximate different ratios if
they belong to similar finger measurements [10]. Linear and
curvilinear regression models were built to investigate two
hundred and fifty (250) students using measurements of their
height, hand length and breadth to predict gender. However,
these models return low accuracy, features are not robust for
biometric predictions [11]. In [12] Stevenage et al. proposed
method to demonstrate restrictions while matching a suspect
hand, analysis was carried out using Analysis of Variance
(ANOVA).

As visited from the literature above, these models may not
provide good prediction results, which lead to wrong con-
clusions. Misclassification from descriptive statistics, such
as linear or curvilinear is correlated to cut-off point and
there is no cut-off value that should be optimal. Nevertheless,
AI algorithms are independent of any value of this cut-off.
In addition, misclassifications from classical and analytical
statistics approaches happen because of nonlinearity from
biometric features and model parameter settings. To handle
nonlinearity of biometric features, AI algorithms remain as
good choice [13], [14]. Multiple AI algorithms are com-
bined using a fuzzy inference system, where hand geometry
is particularly considered as intrinsic biometric cues from
near-infrared human hand images to locate interphalangeal
joints of human fingers [2]. The paper employed pulse
response, hand geometry and finger vein using Convolutional
Neural Network fuzzy (CNN-fuzzy) inference for detec-
tion of a live human body to improve performance against
counterfeit attempts [2]. A part from the fuzzy recognition
algorithms, Alias and Radzi [15], adopted an SVM for fin-
gerprint classification. Gavrilova et al. in [16], used kinect
sensor to extract human emotion cues in multimodal con-
text, which are trained with SVM classifier. Recognition of
human hand gestures is performed using ECOC-SVM [17].
Their results indicate feasibility of using SVM in real-world
applications. Henceforth, to further explore the capabilities
of AI-based algorithms to learn intrinsic hand features in
human demographic cues recognition, SVM demonstrates
to be better as it strikes a better balance between nonlinear
feature points to predict four demographic information (sex,
height, foot size, and log-weight) [18]. The results obtained
using the above-mentioned AI algorithms are quite promising
and motivated us to explore other AI-based algorithms for
recognition of demographic cues from biometric informa-
tion. However, the major drawback of all these algorithms
is that they do not prove to be robust in case of nonlinear
features and have large parameter computation which lead to
low accuracy. Therefore, to further explore the capabilities
of AI-based algorithms and to overcome the drawbacks of
different parameters estimation, the Error Correction Output
Code (ECOC) scheme is usedwith Pearson correlation coeffi-
cient features (PCC) to recognize the demographic cues from
biometric hand features.

Inspired by the above contributions, in this paper, we com-
pare the performance of two improved AI algorithms
for high-precision recognition of demographic cues from
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biometric hand features. The first algorithm is composed
of SVM and Error correction output code (ECOC), namely
SVM-ECOC with PCC. ECOC algorithm is robust in han-
dling unreliable and noisy features. It has benefit to min-
imize a single multi-class problem [19]–[21]. The second
algorithm is composed of Adaptive Neuro-fuzzy Inference
System (ANFIS) optimized by subtractive clustering (SC)
with least square approximation, namely ANFIS-SC with
PCC. SC has good estimating capability to ANFIS parame-
ters, and it is robust in high dimensional data for moderate
features. These two algorithms are validated using distinct
intrinsic hand features selected using PCC from biometric
and physiological hand data set in [18]. In what follows,
we give an outline of the contributions made in this paper.
(a) We investigate the impact of intrinsic hand features on

biometric information recognition.
(b) We extend PCC technique for selecting key hand

biometric features to ease AI recognition/learning
algorithm.

(c) Some of the available optimization schemes are
employed to avoid redundant parameter estimation
of AI learning algorithms, so that the dimensions of
parameter vector are reduced and the computational
accuracy is improved.

(d) Computational comparison is carried out between
ANFIS-SC and SVM-ECOC algorithm to illustrate the
high efficiency of the ANFIS-SC algorithm.

(e) Increase in recognition accuracy is the major contri-
bution of this article in the field of biometric crime
detection and human identification.

(f) Numerical results show that the ANFIS-SC algorithm
maximizes recognition performance for soft biometric
cues.

Organization of our paper proceeds as follows: related
state-of-the-art methods, research gap, motivation, and con-
tributions formed Section I. The details of ANFIS, and
SVM are described in Section II. This section also dealt
with the optimization procedures of our adopted algorithms.
Section III described data description and its characteristics.
It also dealt with PCC test, feature extractions and selec-
tions, recognition phase, parameter settings, and performance
metrics. Section IV give out results of the AI recognition
algorithms and their various performance evaluations. It also
interpreted performance comparison between our works and
some existing model, and running time. Conclusion, appli-
cations and limitations as well as future direction formed
Section V. To make more precise explanation, we list the
notations used throughout the article in Table 1.

II. MATERIALS AND METHODS
Artificial intelligence (AI) is superior technique when there
is a nonlinearity problem among biometric features recogni-
tion. AI can handle problems that have non-linear solutions
irrespective of fitness of non-linear features. In addition,
AI learning approach is suitable when needed to solve bio-
metric features within certain time. Exploiting the benefits of

TABLE 1. Nomenclature.

AI algorithm, we proposed to build features from PCC [22]
into optimized AI algorithm. PCC-based feature selection
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minimized features dimensionality [23] and AI learning com-
plexity. This section describe architectures of the following
adopted AI algorithms; (a) ANFIS-SC (b) SVM-ECOC and
steps of the methods are described in flowchart 1.

A. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
ANFIS is an AI approach, composing Artificial Neural Net-
work (ANN) and fuzzy inference networks (FIS) as a single
ANFIS model, leveraging individual limitations of ANN and
FIS methods [24], [25]. One major advantage of ANFIS
is its ability to make good representation of complex and
non-linear connections among features [24]. In addition, its
soft computing and rapid convergence raised interest of using
ANFIS in prediction of complicated relationships [26]–[29].
ANFIS aim to enhance/optimize FIS parameters by refer-
ring learning protocol according to input-output relationship
vector. ANFIS optimization is carried out such that calibra-
tion errors among trained samples and original samples are
minimized [13]. The following equations define and describe
ANFIS:

Here two inputs combination are used to formulate ANFIS
layers, for two inputs there exists linear and nonlinear param-
eters, where A and B rule from 1st and 2nd order Sugeno FIS
utilized η1, η2,�1,�2, ω1 and ω2 as consequent parameters,
so that τ of hi tunes in ε1; τ of hi tunes in �1; and τ of hi,
tunes in ε2, and τ of h2 tunes in�2, respectively. The output of
the system is illustrated by χι,d . Where ι and d stand for order
and node order combination respectively. Henceforth, 1st and
2nd fuzzy rules could be produced from the combination of
two hand input feature sets hi as:

A = η1hi + ω1hi +�1;

B = η2hi + ω2hi +�2.

where ηi, ωi, and �i denote consequent parameters. Accord-
ing to two fuzzy rules, feed-forward layers of ANFIS can be
designed as follows:

Layer One: The nodes are adaptive here and fulfills quan-
tifier rule, then node output can be given as:

χ1,d = τε,1(hi), d = 1, 2, (1)

where ld and εd denote premise parameters, that determine
shape of Gaussian membership function (MF). The Gaussian
MF is given in Eq. (2),

τε1 (hi) =
1

1+ e−εd (hi−ld ).
(2)

Layer Two: Contain fixed nodes. It calculates explosion
power per each rule, which is given as:

χ2,d = Td = τε1 (hi)× ε�1 (t), d = 1, 2. (3)

Layer Three: The nodes are fixed in this layer. The output of
this layer is called normalized firing strength Td , formulated
as:

χ3,d = Td =
Td∑2
1 Td

, d = 1, 2. (4)

Layer Four: This layer consist of adaptive nodes. It calculate
consequent parameters from successive node as product of Td
and the first order polynomial. It output is given as:

χ4,d = Td fd = Td (ηdhd + ωdhd +�d ). (5)

Layer five: This layer has single fixed node 6. It computes
the input signals from all antecedent layers. Function of this
layer Z5,i could be calculated using:

χ5,d =
∑
d

Td fd =

∑
d Td f d∑
d Td

. (6)

However, from Eq. (6), fd can be estimated to be nearly
equal to the original information with respect to the observed
function fd , so that demographic cues could be recognized for
any available intrinsic hand features. But one main challenge
is how to produce recognized demographic cues to be nearly
equal to the original intrinsic hand gestures, therefore, this
brought matter of minimizing function, which is defined as
follows:

χ5,d = min
t∑

d=1

[fd (hd , · · · , hd,t )− fd ]2. (7)

However, ANFIS layers Eqs. (1)-(7) suffer from thorny-
parameter estimation, which seriously lead to noise during
recognition. Nature-inspired optimizers [30]–[32] played sig-
nificant role in estimating ANFIS parameters. In contrast,
parameter estimation is achieved through clustering mecha-
nisms. Clustering serve as robust technique to handle cluster
information. Therefore, empowering ANFIS with clustering
is a substitute to nonlinear features estimation. There exist
other ANFIS parameter estimations according to clustering
mechanism such as: Fuzzy C-mean (FCM); which optimize
ANFIS parameters by minimizing FCM-based derived objec-
tive function. Its major limitation is inability to estimate large
number of parameters [25], [33]. Grid partition algorithm
(GP); effectively handle ANFIS parameters for small sample
size, its flexibility is due to inherent large amount of rules and
parameters generation. However, its main challenge is inher-
ent exponential growth of fuzzy rules due to increase in sam-
ple size [25]. Subtractive clustering (SC); where generated
clusters are utilized to derive iterative-based optimization
clustering to estimate ANFIS parameters. This method has
good representation, if high dimensional case is utilized for
moderate biometric hand features [25], [32]. Optimization of
ANFIS parameters using SC achieved best performance [34].

1) SUBTRACTIVE CLUSTERING (SC)
In SC, every biometric features are considered as competent
cluster centre. The competent cluster over entire input-output
feature pose is computed as their Euclidean distance equa-
tion over the whole feature poses. The poses having high
competent greater than the threshold value are considered
cluster centers. The primary concept is to calculate the den-
sity index ϑi, corresponding to the biometric hand features
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FIGURE 1. Proposed method flowchart.

hi having positive constant bt (determine distance between
cluster centres), which is given as:

ϑi =

S∑
i=1

exp(−
||hi − hk ||2

( bn2 )
2

). (8)

Henceforth, SC algorithm decides to select topmost density
index as the first cluster center which is modified as:

ϑ1 = ϑi − ϑh1exp(−
||hi − hh1||2

( ao2 )
2 ). (9)

We have chosen feature with high competent as next cluster
centre. This loop in Eq. (9) is iterated until the stopping
criteria is achieved. The cluster centres are utilized to generate
fuzzy rules and parameters which lead to design FIS model.
The rules are fuzzified using Eq. (2), which adaptively alter
characteristics of FIS to make the pattern looks like corre-
sponding antecedent function. The major contribution to the
existing ANFIS-SC is made on lines 9-17 in Algorithm 1,
where we fine tune FIS and ANFIS-based model every itera-
tions with presently labeled recognizer (calculated cluster).

Therefore, computed clusters are applied to generate
iterative optimization-based clustering for ANFIS model
parameters identification [34]. In this paper, number of clus-
ter centers are set to be 14 for 112 biometric hand pose
h1, h2, · · · , hD. Every biometric hand pose represents a par-
ticular member of cluster centre. Thus, making same amount
of fuzzy rules set � and cluster centres, and each correspond
to features of cluster. Formulation Eq. (9) is iterated until
convergence, which lead to achieve sufficient cluster cen-
tres. Biometric hand features vector is fuzzified by adopt-
ing Gaussian MF with sigmoid activation (hybrid MFs),
which yield membership degree per each feature (equals to
112× �). As a result, raises dimensionality of the biometric
hand features input vector. The hybrid MFs allow smooth
transition among linear and nonlinear parameters, when com-
pared to triangular and trapezoidal MFs [35]. In addition,
hybrid MF has less parameters in contrast with bell and tri-
angular MF thus make it more flexible. Therefore, Gaussian
MFs is formulated as in Eq. (2). However, ith rule can be
obtained as follows: if in1= τ i1, and in2= τ

i
2, · · · ,in112= τ

i
112,
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hence output is given as fi. Where i = 1 : τ . Then, first
order Sugeno-type fuzzy model for τ in at ithMF and jth hand
intrinsic features dimension, where n = 1 : 112, is moderated
as:

fi = ηi1in1 + η
i
2in2 + · · · + η

i
112in112 + ωi, (10)

where [ηi1, · · · , η
i
112, ωi] denote consequent parameters. The

premise parameters are obtained from τ in Gaussian MF
Eq. (2). Tuning the values of these parameters will vary MF,
and also alter behaviors of FIS. FIS union is described as
follows:

τ in(inn) =
1

1+ e−εi(inn−lin )
, (11)

where lin denotes nth element of cluster centre li and εi
denotes radius of neighborhood. However, we estimated con-
sequent parameters using least-squares estimation method.
Finally, output of Sugeno-type fuzzy algorithm is computed
with Eq. (6). Then, defining ηi = [ηi1, η

i
2, · · · , η

i
112] as

row vector of linear parameters ηi1 · · · , η
i
112 and H =

[in1, in2, · · · , in112]T denote hand intrinsic gestures space,
then substituting for fi in Eq. (6), it becomes:

χ =

�∑
i=1

Ti(ηiH + ωi). (12)

B. SUPPORT VECTOR MACHINE (SVM)
SVM is an artificial intelligence classifier, applies to nonlin-
ear data recognition and classification. SVM gain superiority
among classical machine learning and AI classifiers in daily
life application due to flexibility and ease-of-use for handling
various classification issues [36]. One benefit of SVM is the
modeling and conversion of a dimension for high altitude
pattern recognition problems, empirical risk minimization,
efficient learning, and good generalization ability [37]. The
SVM model formulation is defined by letting hi to be the
extracted features from both left and right hand, hl and hr
respectively. Then we let Osi , O

q
i , O

p
i , O

f
i to represent set

of outputs for sex, height, weight, and foot-size respectively
where i = 1 : n samples of measured data. In short biometric
hand information used for training comprises of sample and
label pairs as: Dt = (hi,Osi ) : i = 1, 2, 3, . . . , 112. Where
hi ∈ Osi , each class Osi represent male or female (1 or -1).
Therefore, hyper-plane can be used to separate cluster hi
which belongs to either Osi = 1 and Osi = −1. Hyper-plane
can be formulated using set of hand poses hi satisfying the
following equation;

f (h) = wT · hi + b = 0, (13)

where w is a vector of n row features and b denote bias which
is constant. Therefore w and b can be solved using finest
separating plane. Now w can be formulated as;

w =
n∑
i=1

αiOsihi. (14)

Algorithm 1 ANFIS-SC
1: start
2: set ao, bo, hsi , h

q
i , h

p
i , h

f
i ,E {inputs}

3: Output Osi ,O
q
i ,O

p
i ,O

f
i

4: set τn {FIS}
5: set MF {membership function}
6: set Iter . {max. iteration no.}
7: initialize SC
8: generateMF using hi
9: compute ϕi in Eq. (8)
10: modify Eq. (8) to get ϕ1 in Eq. (9)
11: update ϕi
12: generate FIS using STEP 11
13: repeat
14: if hi ∈ ϕi do
15: update FIS in Eq. (12)
16: evaluate 2(FIS,M ) Eq. (12)
17: do estimate ANFIS parameters
18: else
19: repeat STEPS 10-13
20: else if
21: estimate STEP 16
22: else
23: repeat from STEP 8
24: until Eq. (7) converge
25: return Eq. (12)
26: stop
27: Get O′i best model using Eqs. (29) and (32)
28: compute AI parameters Eqs. (30), (33), (34), and (40).
29: end

To solve for b there is need to minimize ||w|| such that
biometric hand features vector can be given as (hi,Osi )

b =
1
n

n∑
i=1

(Osi−w · hi), (15)

where ci is a box constraint. Hence, distance between
hyper-planes is 2

||w|| . Thus, to maximize distance, there is
need to minimize ||w||. To avoid any hand pose to fall within
hyper-plane margin, there is need to add constraints so that
each hand pose must fall on its correct margin side as follows;
wT hi − b ≥ 1, if Osi = 1 and
wT hi − b ≤ 1, if Osi = −1. Which can be rewritten as;

Osi (w
T hi − b ≥ 1), for all 1 ≤ i ≤ n, (16)

min.||W || subject to Osi (w
T hi − b ≥ 1), for i = 1, . . . , n.

However, support vectors can be realized from maximum
hyper-plane margin which is completely determine by closet
hi to margin. Support vectors are hi on boundary, those for
which

Osi f (hi) = 1. (17)

Therefore, Eq. (17) can not fit to non-linear biometric fea-
tures. Thus, Hinge loss function is very useful for hand poses
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that are linearly non-separable max(0, 1 − Osi (w
T hi − b)),

where Osi and w
T hi − b denote desired output (1 or -1), and

actual output respectively. Now Eq. (16) is configured with
Hinge loss function and becomes Eq. (18).

1
n
[
n∑
i=1

max(0, 1− Osi (w
T hi − b))]+ λ||w||2, (18)

where λ represent parameter which increase margin for hi to
fall within rightful side and λ||w||2 represent loss function.
For simplifying Eq. (18), we let ξi = max(0, 1−Osi (w

T hi−b))
for every i ∈ {1, 2, . . . , n} as minimum non-negative number,
which satisfy ξi = max(0, 1−Osi (w

T hi−b) ≥ 1−ξ ). There-
fore, optimization problem in Eq. (18) becomes Eq. (19) at
some conditions:

1
n

n∑
i=1

ξi + λ||w||2. (19)

Under conditions of ξi = Osi (w
T hi − b) ≥ 1 − ξ and ξ ≥ 0,

for every i. To swap among maximizing distance between
1 and −1 from Eq. (19) we now added a box constraint
parameter c, where c = 0.05. Furthermore, to achieve max-
imum non-linear separation among classes, it is imperative
to transform biometric features hi. This can allow to achieve
high dimension projection. However, available SVM kernel
function such as Polynomial, Radial Basis Function (RBF),
Hyperbolic tangent are highly robust for high dimension pro-
jection and efficiency of SVM model. Although, RBF kernel
function achieved best performance [38]. RBF is known as
Gaussian kernel which is mostly applied to non-linear data
such as biometric hand poses. Since SVM general equations
are formulated, then we are now to handle classification on
our proposed hand intrinsic features on it transformed shape
φ(hi) and configuring RBF kernel function. RBF can be given
as follows:

R(hi, hj) = φ(hi) · φ(hj). (20)

We now configure RBF kernel function in Eq. (20), then it
becomes:

R(h1, h2) = exp(−γ ||hi − h̃i). (21)

where h̃i represent hand intrinsic features, γ represent param-
eter for kernel adjusting. For γ > 0 and sometimes rep-
resented as γ = 1/(2σ 2). The values of γ and c are
hyper-parameters tuned to attain optimum SVM model with
RBF kernel. Then, value of γ defines influence and extent
to which training hand poses attain. Lower value means ‘far’
while higher value means ‘close’, higher value of γ result
in good accuracy. However, c find model tolerance towards
misclassification, its low value yield low accuracy for SVM
model while its high value yield good accuracy but may result
to failure in generalization.We settled these hyper-parameters
with middle values. Finally, we can achieved SVM classifier
with w =

∑n
i=1 ciO

s
iφ(hi), ci which can be obtained through

Error Correcting Output Code (ECOC) optimization problem
solution. Classifier is equivalently given as:

f (c1 . . . cn) =
n∑
i=1

ci −
1
2

n∑
i=1

n∑
j=1

(Osi ci(φ(hi)φ(hj)O
s
j cj)

=

n∑
i=1

ci −
1
2

n∑
i=1

n∑
j=1

(Osi ciR(hi, hj)O
s
j cj) (22)

Eq. (22) can be achieved by the following conditions:∑n
i=1 ciO

s
ihi and 0 ≤ ci ≤ 1

2nλ for every i. However,
optimized b can be obtained from the following:

b = wT · φ(hi)− Osi = [
n∑
j=1

Osi ciφ(hj) · φ(hi)]− O
s
i (23)

It is worthy noting, that SVM algorithm is designed for a
binary classification, which need ensemble ECOC strategy
for multi-classification problem [17]. ECOC is adopted to
handle samples with unreliable or noisy information [39].
Application of ECOC is extended to multi-classification
SVM algorithm to minimize single multi-class problem. The-
oretical background of ECOC is provided in the following
section II-C. The concept behind SVMmulti-class classifica-
tion problem of non-linear mapping with soft computing is
achieved from modified SVM using ensemble ECOC design.

C. ERROR CORRECTING OUTPUT CODE (ECOC)
The ideology of ECOC, implies, the coding/decoding over
the scheme itself. Its input consists of set E classes, with e
set of binary partition classes, that are considered as poten-
tial dichotomizers, which are learned against the partitions.
Therefore, codeword having length e is achieved per class,
inside codeword each bit matches output of dichotomizer:
usually coded by +1 or −1 based on their classes and set
of membership. Aligning the codeword in a matrix shape,
such that matrix z, it is defined as z ∈ [−1,+1]E×e.
In this case, the matrix z is coded with five dichotomiz-
ers [19] [υ1, · · · , υ5] with respect to four class problem
[s1, · · · , s4] and codewords [κ1, · · · , κ4]. The goal of the
alignment is to learn the input sets with respect to label
[(h1,D1), · · · , (hn,Dn)] at a given input sets and labels Dl .
Considering Fig. 2, entries with orange and red represents
+1 and −1 for dichotomizer and null inside matrix z. Thus,
learning of first classifier is to distinguish among s3 versus s1,
s2 and s4, whereas the learning behavior of second classifier
is to recognize s2 and s3 versus s1 and s4. Moreover, ECOC
is also encoded on ternary schemes as shown in Fig. 2b.
In ternary symbol-based ECOC, symbol zero is added, which
lead to the generation of seven dichotomizers [υ1, · · · , υ7]
per matrix, thus the coding matrix and codewords for a
four class problem is obtained as z ∈ [−1, 0,+1]E×e

and [κ1, · · · , κ4], respectively. Therefore, the computation of
dichotomizers can be formulated as follows:

υ1(z) =

{
+1, if z ∈ [s3].
−1, if z ∈ [s1, s2, s4], · · · ,

(24)
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FIGURE 2. ECOC code from four class argument.

υ5(z) =

{
+1, if z ∈ [s2, s4].
−1, if z ∈ [s1, s3].

(25)

The principle of decoding is shown in Fig. 2. The code
z is realized when employing binary classifiers e, per each
input sets hi during verification. Therefore, z is collated with
root code words (κi, i ∈ [1, · · ·E]) of each class, which
is defined in z. These input sets are allocated to the clos-
est code word from available schemes such as Hamming
decoding, inverse Hamming decoding, and euclidean decod-
ing. The second decoding strategy in ECOC is referred as
ternary decoding. Ternary decoding is performed from any
of attenuated euclidean decoding, loss-based decoding, and
probabilistic-based decoding [40]–[42]. For ternary scheme,
Hamming decoding strategy classify the validation input sets
by class s1. However, the validation codeword do not include
the zero bit, this is because the response per dichotomizer is
given as υj ∈ [−1,+1]. For details of this scheme authors are
encouraged to read [19]–[21]. Inspired by the above benefits,
in this paper, we extended application of ternary ECOC on
SVM binary learners. The major contribution to the existing
SVM-ECOC is made on lines 12-28 in Algorithm 1, where
we fine tune the SVM-ECOC model every 10 iterations with
presently labeled recognizer. We achieved finest combina-
tion of SVM-ECOC with suitable RBF kernel and box con-
straint.The rest of the parameter combinations are reported in
Table 10.

III. EXPERIMENT
The reviewed literature highlighted the understanding of the
principal practices to achieve best performance and effi-
ciency. Based on the reviewed literature, the biometric and
physiological data set was taken for experimental investi-
gation and a flowchart was designed to achieve the paper
objective.

A. BIOMETRIC HAND FEATURES
We adopted biometric and physiological data set in [18]. The
data was extracted from 112 participants (with equal number

Algorithm 2 SVM-ECOC
1: start
2: set w, b, hsi , h

q
i , h

p
i , h

f
i ,E {inputs}

3: Output Osi ,O
q
i ,O

p
i ,O

f
i

4: set γ, ci, iteration.
5: initialize SVM Eq. (13)
6: min. w in Eq. (14) to solve for b in (15)
7: if Eq. (16) is satisfied
8: do max. hyper-plane margin
9: else
10: configure λ||w||2 in Eq. (18)
11: end if
12: transform hi in Eq. (20)
13: configure γ in Eq. (21) and choose ci in Eq. (22)
14: update Eq. (18) using STEPS 14-16
15: repeat
16: construct z matrix
17: if z ∈ [−1,+1]E×e do
18: compute dichotomizers in Eq. (24)
19: else
20: generate z ∈ [−1, 0,+1]E×e

21: end if
22: if length hi is 2E−1 − 1 do
23: choose ternary scheme
24: min E(E−1)

2 and ψ <
E(E−1)

2
25: display CORRECT CLASS
26: else
27: repeat STEPS 16-24
28: until Eq. (23) converge
29: end if
30: return Eq. (13)
31: stop
32: Get b best model using Eqs. (29) and (32)
33: compute AI parameters Eqs. (30), (33), (34), and (38).
34: end

of male and female to be 56). The participants were all Cau-
casians aged within 18 to 35 years. Demographic informa-
tion gathered from the participants consisted of sex (male or
female), height, weight and foot size. Demographic descrip-
tive analysis is extended from the work in [18]. The steps for
the proposed methods are explained in flow chart Fig. 1. The
extracted biometric hand featuresmodel are defined by letting
hi to be the extracted features from both left and right hand,
hl and hr respectively, such that each hi contained; Wrist
Breadth WB, Wrist to LittleWL, Wrist to Ring WR, Wrist to
Middle WM, Wrist to Index WI, Wrist to Thumb WT, Little
Proximal Phalanx LPP, Little Intermediate Phalanx LIP, Lit-
tle Distal Phalanx LDP, Ring Proximal Phalanx RPP, Ring
Intermediate Phalanx RIP, Ring Distal Phalanx RDP, Middle
Proximal Phalanx MPP, Middle Intermediate Phalanx MIP,
Middle Distal Phalanx MDP, Index Proximal Phalanx IPP,
Index Intermediate Phalanx IIP, Index Distal Phalanx IDP,
Thumb Proximal Phalanx TPP, Thumb Distal Phalanx TDP,
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Hand breadthHB. Then we letOsi ,O
q
i ,O

p
i ,O

f
i to represent set

of outputs for sex, height, weight, and foot-size respectively,
where i = 1 : n samples of measured data. In short biometric
information used for training comprises of sample and label
pairs as: Dt = (hi,Osi ) : i = 1, 2, 3, . . . , 112. Where hi ∈ Osi ,
each class Osi represent male or female (1 or -1).

B. PEARSON CORRELATION COEFFICIENT (PCC)
We first consider Pearson’s correlation coefficient (PCC)
to investigate most significant and reliable features for
algorithms training. PCC test is successful to give insight
and clues in choosing best model features in real applica-
tions [43], [44]. Another reason for PCC test is to minimize
AI learning complexity. Here, ϕ denotes two parameters that
are independent between (hi,Oi), the covariance among those
variables is donated by COV, having their respective standard
deviations as σhi and σOi . Therefore, PCC is explained by:

ϕ =
COV (hi,Oi)
√
σhi .σOi

(26)

Results of test are displayed on Tables 2 - 9. The Tables
demonstrated that eleven (11) hand intrinsic features are
independent of each other, with the exception that some
samples have independent correlation between features less
than 0.5, which is statistically negligible. Each table demon-
strate PCC between features. Diagonal entries stand for the
correlation of a particular feature with itself. Any cell that has
value not less than 0.5 is assume to possess high correlation.
We can deduced that majority of features are highly corre-
lated. There are some few features with lower correlation and
may be preserved. These correlational patterns were found
to be steady among data of participants. Nevertheless, these
features can still be chosen as independent variables. The
significant features will be selected, and procedures for that
will be explained in the next section.

C. FEATURE EXTRACTIONS AND SELECTIONS
Now features have been defined and evaluated using Eq. (26).
For better understanding of evaluated features, we measured
importance and significance of these features using coeffi-
cient of determination R metrics, as shown in Figs. 3 - 4.
Feature correlation was explored because of its possibility in
feature reduction. It is pointed that more compact feature set
will lessen complexity of AI learning and exclude dropping
important variances. Features relationship is illustrated in
Tables 2-5. Since biometric features vector βi contain hand
features hi, then the feature selection M can be treated as
maximization problem, which is formulated using

M = max
β∈[0,1]i

{ ∑i
l=1,u=1(hiβi)

2∑i
l=1(βi)+

∑i
u6=l 2× (hlβlβl,u)

}
(27)

We averaged significant features and emphasize on feature
fusion β̃ which decrease training complexity of the AI model.
The performance of fused features 5, with regards to the rate

FIGURE 3. Correlational analysis of selected features.

FIGURE 4. Correlational analysis of selected features.

of recognition, would be discussed in brief. In this experi-
ment, we design our input features vector from the following
selected input information:
(a) Seven (7) features for height recognition from right

hand are selected as shown in Table 2.
(b) Nine (9) features for height recognition from left hand

as shown in Table 3.
(c) Three (3) features for sex recognition from right hand

as shown in Table 4.
(d) Two (2) features for sex recognition from left hand as

shown in Table 5.
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TABLE 2. Statistical confidence of selected features for Height from right-hand.

TABLE 3. Statistical confidence of selected features for Height from left-hand.

TABLE 4. Statistical confidence of selected features for Sex from
right-hand.

TABLE 5. Statistical confidence of selected features for Sex from
left-hand.

(e) Nine (9) features for weight recognition from right
hand as shown in Table 6.

(f) Thirteen (13) features for weight recognition from left
hand as shown in Table 7.

(g) Four (4) features for foot-size recognition from right
hand as shown in Table 8.

(h) Eleven (11) features for foot-size recognition from left
hand as shown in Table 9.

To further visualize insight of selected features, we
employed curve-fitting tool for generating fitting plot. Per-
formance of fitting analysis is demonstrated using metric in
Eq. (32). The results demonstrated that most of the selected
features are statistically significant with R2 of 0.2-1.0. It indi-
cates that less significant features were below 0.65 which are
still considered in our models development. Though these

FIGURE 5. Model of extracted features.

features are not proportionate for recognition task, can still
serve as vital information for lessening complexity of design-
ing hand camera rig and AI. Results show that not all features
are equally significant in biometric gestures discrimination.
This is required to validate whether ECOC-SVM andANFIS-
SC are sufficiently enough for recognizing demographic cues
from biometric hand features.

D. RECOGNITION PHASE
We have selected SVM-ECOC and ANFIS-SC recognition
algorithms to validate the selected biometric hand features.
The two algorithms are constructed in MATLAB R2020a
software. The selected parameter values for these algorithms
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TABLE 6. Statistical confidence of selected features for Weight from right-hand.

TABLE 7. Statistical confidence of selected features for Weight from left-hand.

TABLE 8. Statistical confidence of selected features for Foot-size from
right-hand.

are detailed in Table 10. The extracted features are shown in
Fig. 5.

1) RECOGNITION USING SVM-ECOC
SVM is designed as explained in section II-B, to divide line
between two classes and to maximize margin. To achieve
multi-class binary recognition, we ensemble ECOC codewith
SVM. We have chosen kernel function in SVM algorithm for
nonlinear intrinsic hand features evaluation, to enable more
increase of features to fit hyper-plane. Biometric intrinsic
hand features are divided into 70% training and 30% valida-
tion. The features are trained using SVM-ECOC algorithm
for better optimization. γ > 0 is chosen (that is, γ =
1/(2σ 2)). Then, value of γ defines influence and extent to
which training hand poses attain good accuracy. The values
of γ and c are hyper-parameters tuned to attain optimum
SVM-ECOC recognition. However, c find model tolerance
towards misclassification, its low value yield low accuracy,

while its high value yield good accuracy but may result to
failure in generalization. We settled these hyper-parameters
with middle values. Finally, we achieved SVM classifier with
w =

∑n
i=1 ciO

s
iφ(hi), ci which can be obtained through

Error Correcting Output Code (ECOC) optimization problem
solution. The ensemble ECOC code log2 4 = 4 is sufficient
to characterize four different demographic classes. Extracted
features are shown in Fig. 5 to represent multi-class labels
1, · · · , 4. However, if minimum Hamming distance among
each pair of code words is E, then code may correct minimum
E(E−1)

2 per bit errors. In as much as error 9 distant away
less than E(E−1)

2 from actual feature, the nearest feature is
classified as correct one. This code can correct up to 2 errors
per four input features, and can correct up to 3 errors per 13
biometric intrinsic hand features. As our number of classes
E is 3 < E ≤ 7. Then per biometric intrinsic hand feature
has length 2E−1−1. Also, the matrixz needs 13 binary clas-
sifiers (i.e. 13 columns) altogether. Then finally, evaluation
metrics are used to analyze performance of the SVM-ECOC
algorithm.

2) RECOGNITION USING ANFIS-SC
ANFIS-SC is activated using randomly selected 70% and
30% of biometric intrinsic hand dataset for both training
and validation phases, respectively. ANFIS-SC is adopted
here to recognize size, height, weight and sex (Oi). The
chosen parameter values of ANFIS-SC is described in
Table 10. Accordingly, we achieved finest combination
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TABLE 9. Statistical confidence of selected features for Foot-size from left-hand.

TABLE 10. Parameters choice of the proposed models.

of ANFIS model having maximum number of inputs hi
plus one output Oi, making 113 input-output vector, with
fourteen (14) Gaussian MF in each biometric hand pose.
Every feature takes in two parameters, generating one
hundred and forty nonlinear parameters. The linear equa-
tions take in five parameters having fourteen (14) rules,
which generate eighty four (84) linear parameters in total.
The finest model is obtained with 0.3 as the value of
cluster radius, versus three hundred and fifty maximum
iteration. Furthermore, unlike SVM, ANFIS has complex
non-linear projection. Thus it is suitable to learn biometric
information.

E. PARAMETER SETTINGS
The following parameters in Table 10 are chosen for the two
adopted AI algorithms design.

F. PERFORMANCE METRICS
The evaluation metrics are used to realized the performance
of the input-feature models and the adopted algorithms,
as given below. Variables Oi,O′i, S,, θ , σ 2

r and Oa denotes
observed data, verified (predicted) features, number of sam-
ples, number of parameters, as well as mean observed fea-
tures, respectively.

1) ROOT MEAN SQUARE ERROR (RMSE)

RMSE =

√√√√ 1
S

S∑
i=1

(O′i − Oi)2. (28)

2) MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

MAPE =
1
S

√√√√ S∑
i=1

|
O′i − Oi
O′i

|. (29)

3) SCATTER INDEX (SI)

SI =

√√√√∑S
i=1[(O′i − O′a)− (Oi − Oa)]2∑S

i=1(Oi)2
. (30)

4) MEAN ABSOLUTE DEVIATION (MAD)

MAD =
∑S

i=1(Oi − Oai )
S

. (31)

5) COEFFICIENT OF DETERMINATION (R2)

R2
= 1−

∑S
i=1(Oi − O

′
i)2∑S

i=1(Oi − Oai )2
. (32)

Furthermore, we reported ANFIS-SC model’s simplicity,
flexibility and degree of fitness according to the follow-
ing two metrics: Akaike’s Information Criterion correction
(AICc), and Nash-Sutcliffe model efficiency index (N-S).

6) AKAIKE’S INFORMATION CRITERION (AICC)
AIC estimate degree of information lost for a model [45].
If small number of datasets are employed for model devel-
opment, AIC index may likely to overfit, thus corrected
AIC (AICc) is formulated to handle AIC overfit. Small
sample-size AICc metrics evaluate the quality of a model
according to structural flexibility and level of deviation from
average value. It is obtained during model’s verification of
unseen observations [25], [46]. Therefore, low value of AICc
describes best model. AICc is computed as

AICc =
(2θS + (Sln(σ 2

r )(S − θ − 1))
S − θ − 1

. (33)
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TABLE 11. Generalization performance of AI algorithms for sex from
right-hand features.

TABLE 12. Generalization performance of AI algorithms for sex from
left-hand features.

TABLE 13. Generalization performance of AI algorithms for height from
right-hand features.

TABLE 14. Generalization performance of AI algorithms for height from
left-hand features.

7) NASH-SUTCLIFFE MODEL EFFICIENCY INDEX (NSE)
This metric is defined to evaluate the model fitness and
the level of its deviation, it has an index value ranging
from −∞ to 1 [25]:

NSE = 1− [

∑S
i=1(Oi − O

′
i)
2∑S

i=1(Oi − O
′
i)
2
]× 100. (34)

IV. RESULTS AND ANALYSIS
In this section, performance results of two adopted algorithms
according to generalization of demographic information
are presented. Generalization performance of the algo-
rithms is computed using well-defined evaluation metrics of
section III-F. Our results demonstrated that optimized ANFIS
model with SC tracks nonlinear data pattern of intrinsic
hand features in most of the data pattern. ANFIS-SC outper-
forms optimized SVM with ECOC model. The best results
were settled at model 1 (includes all the selected features
from PCC scheme). Best results are illustrated bold-faced
in Tables 11-18. The performance speed of the two algo-
rithms are explained in section IV-B. However, optimized
SVM-ECOC model outperforms conventional SVM from
one of the existing model.

TABLE 15. Generalization performance of AI algorithms for weight from
right-hand features.

TABLE 16. Generalization performance of AI algorithms for weight from
left-hand features.

TABLE 17. Generalization performance of AI algorithms for foot-size
from right-hand features.

TABLE 18. Generalization performance of AI algorithms for foot-size
from left-hand features.

A. COMPARISON BETWEEN PERFORMANCE OF
OPTIMIZED ANFIS-SC, SVM-ECOC AND SOME
EXISTING MODELS
According to Table 19, our adopted algorithms are com-
pared based on the work in [18]. Evaluation metrics in
Section III-F were used, but in some metrics where conven-
tional method did not utilize that terms, those places were
left blank with dash to indicate that, metrics is not available.
The comparison is made based on number of recognition
accuracy, R2, RMSE, AICc, MAD, and MAPE, respectively.
The best result is achieved by ANFIS-SC. However, in some
instances SVM-ECOC is computationally efficient compared
to ANFIS-SC and LOG model. LOG models recognized
majority features efficiently, while disregarding minority
features as noise, which lead to mislcassification and low
computed accuracy. In addition, comparison is made against
performance of LOG-based classification as displayed in
Table 20. Results indicate applicability and superior per-
formance of ANFIS-SC in biometric recognition than the
LOG-based method.

Moreover, ANFIS-SC model has superior performance
when compared to other two models, therefore it is chosen
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TABLE 19. Performance comparison between AI-based methods with state-of-the-art method.

TABLE 20. Comparison of generalization performance between regression-based and AI-based recognition.

for further analysis according to two metrics: AICc index and
NSE index. AICc is adopted due to our small sample size (S)
and number of different parameters (θ). However, value of
AICc is obtained from Equation (33), with 1.86. We observed
that AICc from ANFIS-SCmodel achieved best result, which
lead to good model flexibility. Smaller criterion of AICc
depict model accuracy. In addition, final prediction error of
ANFIS-SC Model is obtained as 2.815 × 10−6. This value
demonstrates that ANFIS-SC model has good generalization
quality to biometric hand intrinsic cues. However, ANFIS-SC
model fitness of 99% is achieved through evaluation of
NSE metrics for the complete proposed features. Degree of
model information lost is evaluated through AICc with good
results and interpretation as detailed in Table 21. The value
of ηN−S is obtained through Equation (34), with 98.99%
model accuracy. Therefore, our obtained results demonstrates
computational flexibility and soft computing of ANFIS-SC
model to nonlinear datasets. Hence, this work focus only
on the performance accuracy of the algorithms rather than
speed performance of the adopted algorithms, however the
following section present the algorithms’ running time.

B. RUNNING TIME
As described from Tables 22-23, running-time complexity
for training and validating recognition of SVM-ECOC and

TABLE 21. Recognition error.

ANFIS-SC algorithms are provided. Running-time complex-
ities approximate all bounds of each algorithm during recog-
nition of the selected biometric information. Running time
from SVM-ECOC is obtained from its corresponding out-
put, which comes from response of classifier f, parameter to
observe whether recognition of SVM-ECOC classifiers can
be averted to best recognition, and variable which select best
input features to be used during validation ϕ. SVM-ECOC
running time is given by:

T (Ruℵϕ(n)2). (35)
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TABLE 22. Computational time needed to model right hand features.

TABLE 23. Computational time needed to model Left Hand features.

However, training of SVM-ECOC algorithm may amount to
run time from the following equation:

T (ℵnϕ)× T (n) = T (ℵϕ(n)2). (36)

The running time during validation is given as T (n). This is
because the best models with good accuracy settle at n fea-
tures, thus the overall run time complexity during validation
can be formulated as follows:

T (n)+ T (Ruϕn), (37)

where T stand as big T (time complexity), Ru denote max-
imum number of upper bounds, ℵ maximum number of
iterations, n number of samples in the data set, ϕ number
of selected features per each model combination. However,
time taken to verify unseen inputs in SVM-ECOC algorithm
raises based on the computation of (ϕ × n). This means that,
it depend on the number of selected features and number of
input sets. Therefore, it is finally settled at:

T (ϕ + nϕ). (38)

Furthermore, the ANFIS-SC run time can be obtained by
computing the time complexity of SC and ANFIS. In what
follows, the SC run time can be formulated as:

T (ℵ(n+ n2)). (39)

SC time complexity, computed distance matrix among data
set couplets, which need T (nm2) arithmetic operations. Since
distance matrix is obtained, then, SC resulted in having equal
number of iterations to that of the number of clusters. Per
each cycle, the running time of Eq. (9) is given as T(m).
In general, ANFIS run time is observed from T(1) which

is the run time from fuzzy rules. Whereas, Eq. (2) has run
time of T (n) and Eq. (3) has run time T (n2). Thus, the total
run time of ANFIS-SC is achieved by summing over all time
complexity among the SC and ANFIS, as follows:

T (ℵ(nU + obj.U ))+ T (1)+ T (n)+ T (n2) = T (n2), (40)

where U and obj. denote number of solutions and objective
function. Moreover, run time of the compared AI algorithms
have brief implementation as compared to other methods.

Moreover, the major drawback of extending SC with
ANFIS is the trial and error while selecting the most suitable
and stable radius. This is due to a small cluster radius that
may gives more centers, which as a result may lead to over-
fitting. Whereas large cluster radius may lead to less centers,
that may lead to under-fitting, as a result may decrease the
recognition accuracy of the models.

V. CONCLUSION
In this work, we initialized AI algorithms using ECOC
and subtractive clustering optimization schemes as poten-
tial enabler in conventional AIs to handle complex param-
eters estimation. The work aimed to investigates correla-
tion among intrinsic hand measurements and demographic
features. It particularly used AI algorithms and LOG for
comparison to analyzed and recognize sex, height, weight,
and foot-size from 21 hand features extracted through mea-
surement of hand bones. The compared models are realized
according to proper parameters chosen. The evaluation met-
rics show that AI recognition performed better than LOG
while predicting demographic characteristics. Our results
have shown to agree with and performed better than previ-
ous method. Specifically, ANFIS-SC based learning demon-
strates high performance in terms of accuracy and speed,
when compared to SVM-ECOC learning. ANFIS-SC learn-
ing results qualified it worthy in many applications such
as crime detection and soft-biometric features recognition.
This work has direct application in both biometric and foren-
sic industries. The major limitations of both methods are
related to accuracy and high number of computational bur-
den for a limited number of the hand corpus. This means
that, on restricted hand corpus, the quality of the biometric
recognition of AI algorithms would be already rather good.
Moreover, adding more demographic and psychological cues
such as race/ethnicity, life expectancy, and facial marks can
further improve the recognition capabilities by reducing the
number of classification errors. In addition, AI algorithms
yield premature and slow convergence.
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