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Abstract

We present a short proof of Klartag’s central limit theorem for convex bodies,
using only the most classical facts about log-concave functions. An appendix is
included where we give the proof that thin shell implies CLT. The paper is accessible
to anyone.

1 Introduction

The central limit theorem for convex bodies (Theorem 1 below) was conjectured by Brehm
and Voigt [3] and independently (at about the same time) by Anttila, Ball and Perissinaki
[1]. A 1998 preprint of [1] is cited in [2]. It took several years and various partial results
before a full proof by Klartag emerged in [8] (see p95 for the history). A different proof
was given soon afterwards by Fleury, Guédon, and Paouris [4]. Significantly improved
quantitative bounds (from logarithmic to power type) were given by Klartag [9], followed
by improved estimates by various authors on the related ’thin shell property’ [5, 7, 11].
More information can be found in [5, 7, 8, 9, 10, 12].

We present a simple proof that is self-contained (except for very classical results such
as the Prékopa-Leindler inequality) and is accessible to anyone. The bounds on εn and
ωn that this proof gives are poor; the contribution is simplicity. The methodology is a
variation of that in Klartag’s original proof and uses Fourier inversion; the main difference
being that we apply concentration directly to the Fourier transform as opposed to the
measure of half-spaces. The statement of Theorem 1 below is not identical to Theorem
1.1 in [8], however under log-concavity, a uniform estimate on the cumulative distribution
gives an estimate on the total variation distance, so we do indeed recover Theorem 1.1 in
[8]. The standard Euclidean norm and inner product on R

n are denoted as |·| and 〈·, ·〉
respectively.

Theorem 1 There exist sequences (εn)
∞
1 and (ωn)

∞
1 in (0,∞) with limn→∞ εn = limn→∞ ωn =

0 such that the following is true: Let n ∈ N, let X be a random vector in R
n with EX = 0
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and Cov (X) = In. Assume that X has a density f = dµ/dx that is log-concave, i.e.

f = e−g where g : Rn → (−∞,∞] is convex. Then there exists a set Θ ⊂ Sn−1 with

σn−1 (S
n−1) ≥ 1− ωn such that for all θ ∈ Θ,

sup
t∈R

|P {〈X, θ〉 ≤ t} − Φ (t)| ≤ εn

where σn−1 is Haar measure on Sn−1 normalized so that σn−1 (S
n−1) = 1, and Φ (t) =

(2π)−1/2 ∫ t

−∞
exp (−u2/2) du.

The proof uses two nontrivial properties of log-concave functions (see [8, 9, 10] for
more details): with f as in Theorem 1,
• If E ⊂ R

n is any linear subspace of dimension 1 ≤ k < n, then the projection PEf :
E → [0,∞) defined by

PEf(x) =

∫

E⊥

f (x+ y) dy (1)

is log-concave. Here integration is performed with respect to n− k dimensional Lebesgue
measure on E⊥. This is a consequence of the Prékopa-Leindler inequality. Interpreting a
convolution in terms of a projection of Rn × R

n onto R
n, we see that if ϕ : Rn → [0,∞)

is log-concave with
∫
Rn ϕ(x)dx = 1, then the convolution f ∗ ϕ is also log-concave.

• If X has the thin shell property, i.e.

P

{∣∣∣∣
|X|
R

− 1

∣∣∣∣ < ε′
}

> 1− ε′

for some ε′, R > 0 (here we can take R =
√
n), then the projection of X onto most

one dimensional subspaces is approximately Gaussian, with estimates depending on ε′.
Quantitative results of this type for log-concave measures can be found in [1, 2]. For
completeness, we give a precise statement with proof in Section 3.

2 Proof of Theorem 1

The proof is in three main steps.
Step 1: Approximately spherically symmetric projections. The first step

mimics Milman’s proof of Dvoretzky’s theorem [14], see for example [15], but in a different
way to Klartag [8, Sections 3 and 4]. Let Y = X + σZ for some σ > 0, where Z has the
standard normal distribution and is independent of X . The density of Y is h = f ∗ φσ,

where φσ(x) = (2πσ2)
−n/2

exp
(
−2−1σ−2 |x|2

)
and ∗ denotes convolution. Then ĥ = f̂ · φ̂γ,

where ·̂ denotes the Fourier transform,

ĥ (ξ) =

∫

Rn

exp (−2πi 〈ξ, x〉)h (x) dx

and
φ̂σ(ξ) = exp

(
−2π2σ2 |ξ|2

)
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For any ξ1, ξ2 ∈ R
n,

∣∣∣f̂ (ξ1)− f̂ (ξ2)
∣∣∣ ≤

∫

Rn

|exp (−2πi 〈ξ1, x〉)− exp (−2πi 〈ξ2, x〉)| f(x)dx

≤
∫

Rn

2π |〈ξ1, x〉 − 〈ξ2, x〉| f(x)dx

= 2π |ξ1 − ξ2|
∫

Rn

∣∣∣∣
〈

ξ1 − ξ2
|ξ1 − ξ2|

, x

〉∣∣∣∣ f(x)dx

≤ 2π |ξ1 − ξ2|
(
E

∣∣∣∣
〈

ξ1 − ξ2
|ξ1 − ξ2|

, X

〉∣∣∣∣
2
)1/2

and we see that f̂ is 2π-Lipschitz on R
n. Let F ∈ Gn,k be any fixed subspace and U

a random matrix uniformly distributed in O(n) (k < n to be determined later). Then
E = UF ∈ Gn,k is a random k-dimensional subspace uniformly distributed in Gn,k. Let
ε ∈ (0, 1/2) and let N ⊂ SF = Sn−1 ∩ F be an ε-dense subset (i.e. for all θ ∈ SF there
exists ω ∈ N such that |θ − ω| < ε. By considering the volume of disjoint balls, such a
subset can be chosen with cardinality |N | ≤ (3/ε)k. Assume that k ≤ c (log ε−1)

−1
δn.

By Lévy’s concentration inequality for Lipschitz functions on a sphere, see e.g. [10], and
the union bound, with probability at least

1−
∞∑

m=0

(
3

ε

)k

exp


−

{√
cδ2 +

2 lnm

n

}2

n


 ≥ 1− C exp

(
−cδ2n

)

the following event occurs: for all m ∈ {0, 1, 2 . . .}, and all θ ∈ N ,

∣∣∣f̂
(
U (1 + ε)m

√
kσ−1θ

)
−M

(
(1 + ε)m

√
kσ−1

)∣∣∣ < C

(
δ +

√
lnm

n

)
(1 + ε)m σ−1

√
k

where

M (t) =

∫

Sn−1

f̂ (tθ) dσn−1 (θ)

With the same probability, the same event holds with (1 + ε)m replaced with (1 + ε)−m.
Setting ξ′ = (1 + ε)±m

√
kσ−1θ, making m the subject of the formula, and using the

Lipschitz property of f̂ , with high probability, for all ξ ∈ F ,

∣∣∣f̂ (Uξ)−M (|ξ|)
∣∣∣ < C


δ + ε+

√
ln ε−1

n
+

√√√√ 1

n
ln lnmax

{
σ |ξ|√

k
,

√
k

σ |ξ|

}
 |ξ|

Optimizing over ε we set ε =
√

(lnn) /n. Let PE : R
n → E denote the orthogonal

projection onto E, let FRn : L1 (Rn) → L∞ (Rn) denote the Fourier transform on R
n and

let FE : L1 (E) → L∞ (E) denote the Fourier transform on E (E as a Hilbert space in
its own right). Recall the definition in (1). By Fubini’s theorem, the function PEh is the

3



density of the random vector PEX (with respect to k-dimensional Lebesgue measure in
E). The Fourier transform works well with orthogonal projections, in particular

(FRnh) |E = FE (PEh)

where (FRnf) |E denotes the restriction of FRnf to E. By Fourier inversion in E, for all
x ∈ E,

PEh (x) =

∫

E

exp (2πi 〈x, ξ〉) ĥ (ξ) dξ

so for all W ∈ O (E), (applying a change of variables)

|PEh (x)− PEh (Wx)|

≤
∫

E

∣∣∣ĥ (ξ)− ĥ (Wξ)
∣∣∣ dξ

≤ C
(
2πσ2

)−(k+1)/2
∫

E


δ +

√
lnn

n
+

√√√√ 1

n
ln lnmax

{
|y|√
2πk

,

√
2πk

|y|

}
 e−π|y|2 |y| dy

≤ C
(
2πσ2

)−(k+1)/2

(
δ +

√
lnn

n

)
√
k (2)

Step 2: Behavior of t 7→ PEh (tθ) (in the spirit of Lemmas 4.3 and 4.4 in [8]).
Consider any x, y ∈ SE = E ∩ Sn−1 and define A,B : [0,∞) → R by

PEh (tx) = e−A(t) PEh (ty) = e−B(t)

Since f and φ are log-concave, i.e. − log f and − logφ are convex with values in (−∞,∞],
h = f ∗ φ is also log-concave. It follows from the Prékopa-Leindler inequality (see for ex-
ample the discussion in [8]) that PEh too is log-concave, and therefore A and B are convex.
Since PEh = (PEf) ∗ (PEφσ), A and B are infinitely differentiable. In preparation for an
integral over E in polar coordinates, we now study t 7→ tk−1e−A(t) and t 7→ tk−1e−B(t),
t ∈ [0,∞). These functions are maximized at tx,ty ∈ (0,∞) that satisfy

A′ (tx) tx = k − 1 B′ (ty) ty = k − 1

Such numbers exist since A′(t)t is continuous with limit 0 (resp. ∞) as t → 0 (resp.
t → ∞), similarly for B. After a possible re-labeling of x and y we may assume that
tx ≤ ty. Our goal is to show that these numbers cannot be too far apart (in the sense
that their ratio is close to 1). If tx = ty there is nothing to show, so assume tx < ty. By
convexity,

A (ty)−A (tx) ≥ A′ (tx) (ty − tx) = (k − 1)

(
ty
tx

− 1

)

B (ty)−B (tx) ≤ B′ (ty) (ty − tx) = (k − 1)

(
1− tx

ty

)
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and therefore

sup
t∈{tx,ty}

|A(t)− B(t)| ≥ {A (ty)− A (tx)} − {B (ty)− B (tx)}
2

=
(k − 1) (ty − tx)

2

2txty
(3)

Assume momentarily that there exists t ∈ {tx, ty} such that A(t)−B(t) ≥ 1. Since PEh is
the log-concave density of a random vector in E with covariance (1 + σ2) I, it follows from

Theorem 5.14 in [13] (see also (6) here) that PEh (0) ≥ 2−7k (1 + σ2)
−k/2

. By convexity
again,

∣∣e−A(t) − e−B(t)
∣∣ = e−B(t)

∣∣eB(t)−A(t) − 1
∣∣ ≥

(
1− e−1

)
e−B(t)

≥
(
1− e−1

)
exp (−B(0)− tB′ (t))

≥
(
1− e−1

)
PEh (0) exp (−tyB

′ (ty))

≥ (e− 1) 2−7k
(
1 + σ2

)−k/2
exp (−k)

However, by (2),

∣∣e−A(t) − e−B(t)
∣∣ = |PEh (tx)− PEh (ty)| ≤ C

(
2πσ2

)−(k+1)/2

(
δ +

√
lnn

n

)
√
k

We will choose the parameters δ, k, and σ so that the upper bound on
∣∣e−A(t) − e−B(t)

∣∣ is
less than the lower bound, which implies that we may assume that B(t)−A(t) > −1 for
all t ∈ {tx, ty}. Now let t ∈ {tx, ty} such that

|A(t)−B(t)| = sup
u∈{tx,ty}

|A(u)−B(u)|

By (3),

∣∣e−A(t) − e−B(t)
∣∣ = e−B(t)

∣∣eB(t)−A(t) − 1
∣∣

≥ exp (−B(0)− B′(t)t) e−1 |B(t)− A(t)|

≥ 2−7k
(
1 + σ2

)−k/2
e−k (k − 1) (ty − tx)

2

2txty

so
ty − tx

ty
≤ γ := Ceck

(
1 + σ2

)k/4
σ−(k+1)/2

(
δ1/2 +

(
lnn

n

)1/4
)

For an appropriate choice of parameters this will achieve our goal of showing that tx
and ty cannot be too far apart (relatively). What this means is that in any direction
x ∈ Sn−1 ∩ E, the function t 7→ tk−1PEh (tx) achieves its peak in about the same place.
Our next goal is to show that the mass in

∫ ∞

0

tk−1PEh (tx) dt

5



is concentrated around tx. Since A lies above its tangent lines, defining q by

q(t) = tk−1e−A(t) ≤ exp ((k − 1) ln t− A (tx)− (t− tx)A
′ (tx))

= exp

(
−A (tx)−

(
t

tx
− 1− ln

t

tx
− ln tx

)
(k − 1)

)

= exp

(
−A (tx)−

(
− ln tx +

∞∑

j=2

j−1

(
t

tx
− 1

)j
)
(k − 1)

)

≤ tk−1
x e−A(tx) exp

(
−k − 1

3

(
t

tx
− 1

)2
)

provided
∣∣∣ t
tx
− 1
∣∣∣ < 1/2. We now translate this to tail probabilities. Fix any t ∈ [tx, 3tx/2]

and s ≥ t. By log-concavity of q,

q (s) ≤
[(

q(t)

q (tx)

)1/(t−tx)
]s−t

q(t) ≤ exp

(
−(k − 1) (s− t) (t− tx)

3t2x

)
q(t)

and therefore ∫ ∞

t

q(s)ds ≤ 3t2xq(t)

(k − 1) (t− tx)

On the other hand, for any s ∈ [tx, t],

q (s) ≥
[(

q(tx)

q (t)

)1/(t−tx)
]t−s

q(t) ≥ exp

(
(k − 1) (t− s) (t− tx)

3t2x

)
q(t)

so ∫ ∞

0

q(s)ds ≥
∫ t

tx

q(s)ds ≥ 3t2xq(t)

(k − 1) (t− tx)

[
exp

(
(k − 1) (t− tx)

2

3t2x

)
− 1

]

and ∫ ∞

t

q(s)ds ≤
[
exp

(
(k − 1) (t− tx)

2

3t2x

)
− 1

]−1 ∫ ∞

0

q(s)ds

A similar bound holds for the left hand tail. Combining these,

∫ (1+u)tx

(1−u)tx

q(s)ds ≥
(
1− C exp

(
−cku2

))(∫ ∞

0

q(s)ds

)
(4)

provided u ∈ [0, 1/2].
Step 3: Thin shell and small details. Now fix an arbitrary x ∈ Bn

2 ∩E. By polar
integration,

P

{∣∣∣∣
|PEY |
tx

− 1

∣∣∣∣ < C (u+ γ)

}
≥ 1− C exp

(
−cku2

)
(5)
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which is the so called ’thin shell property’ of PEY in E (see Section 3 for more details),
and by a result of Bobkov [2] (following Anttila, Ball and Perissinaki [1] in the symmetric
case) this implies that with probability at least

1− C
√
k exp

(
−ck

{
u+ γ + exp

(
−cku2

)}2)

a further random projection Pθ′PEY is approximately Gaussian (with mean zero and
variance 1 + σ2), where θ′ is uniformly distributed in SE ,

∣∣∣∣P {〈θ′, PEY 〉 ≤ t} − Φ

(
t√

1 + σ2

)∣∣∣∣ ≤ C
(
u+ γ + exp

(
−cku2

))

See Theorem 2. Now 〈θ′, PEY 〉 = 〈θ′, PEX〉 + 〈θ′, σPEZ〉, and 〈θ′, PEZ〉 ∼ N(0, 1).
Assume that t ≥ 0 and σ ≤ 1, and consider any ν ∈ (0, 1). Since

{〈θ′, PEY 〉 ≤ t− ν} ⇒ {〈θ′, PEX〉 ≤ t} ∨ {〈θ′, σPEZ〉 ≤ −ν}
{〈θ′, PEX〉 ≤ t} ⇒ {〈θ′, PEY 〉 ≤ t+ ν} ∨ {〈θ′, σPEZ〉 ≥ ν}

by the union bound and (7), P {〈θ′, PEX〉 ≤ t} is bounded below by

P {〈θ′, PEY 〉 ≤ t− ν} − P {〈θ′, σPEZ〉 ≤ −ν}

≥ Φ

(
t− ν√
1 + σ2

)
− C

(
u+ γ + exp

(
−cku2

))
− C exp

(
−cσ−2ν2

)

≥ Φ (t)− C
(
ν + σ + u+ γ + exp

(
−cku2

)
+ exp

(
−cσ−2ν2

))

and above by

P {〈θ′, PEY 〉 ≤ t + ν}+ P {〈θ′, σPEZ〉 ≥ ν}
≤ Φ (t) + C

(
ν + σ + u+ γ + exp

(
−cku2

)
+ exp

(
−cσ−2ν2

))

Choosing

k =
c1 ln (n+ 1)

ln ln (n+ 2)
δ =

ln (n+ 1)√
n

σ =
1

ln (n + 1)

u =
C2 ln ln (n+ 2)√

ln (n+ 1)
ν =

C2√
ln (n+ 1)

(a fairly arbitrary choice), where c1 is chosen first to be small and then C2 is chosen to
be appropriately large, we get γ ≤ Cn−1/5 and the error bound reduces to

|P {〈θ′, PEX〉 ≤ t} − Φ(t)| ≤ δn :=
C ln ln (n+ 2)√

ln (n+ 1)

the probability bound (of failure) reduces to

ωn ≤ C exp
(
−cδ2n

)
+ C

√
k exp

(
−ck

{
u+ γ + exp

(
−cku2

)}2) ≤ C (logn)−C3
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where C3 can be made arbitrarily large by taking C2 large enough. The upper and
lower bounds for

∣∣e−A(t) − e−B(t)
∣∣ earlier in the proof become (respectively) Cn−1/2+0.1

and Cn−0.1, which achieves the desired contradiction, and the required bound k ≤
cδ2 (lnn)−1 n is satisfied. Note that Pθ′PE = Pθ where θ is uniformly distributed in
Sn−1, so we have shown that the projection of X onto most one dimensional subspaces is
approximately Gaussian, and Theorem 1 follows.

Note: Radius of the thin shell. When stating and applying the fact that the
thin shell property implies CLT, it is convenient to replace tx with

√
k in (5). Let Wθ

(θ ∈ Sn−1 ∩ E) be a random variable with density proportional to qθ(t) = tk−1PEh (tθ),
t ≥ 0. From (4),

E |Wθ|2 = (E |Wθ|)2 +Var (Wθ) ≤
(
tθ + Ck−1/2tθ

)2
+

Ct2θ
k

≤ t2x (1 + Cγ)
(
1 + Ck−1/2

)
+

Ct2x
k

so

E |PEY |2 = volk−1

(
Sk−1

) ∫

Sn−1∩E

(∫ ∞

0

t2qθ(t)
dt∫∞

0
qθ(s)ds

)(∫ ∞

0

qθ(s)ds

)
dσk−1 (θ)

≤
(
1 + Cγ + Ck−1/2

)
t2x

The last inequality follows since volk−1

(
Sk−1

) ∫
Sn−1∩E

∫∞

0
qθ(s)dsdσk−1 (θ) = 1. Similarly,

E |PEY |2 ≥
(
1− Cγ − Ck−1/2

)
t2x

But E |PEY |2 = k, so

(
1− Cγ − Ck−1/2

)√
k ≤ tx ≤

(
1 + Cγ + Ck−1/2

)√
k

and (changing the constants involved) we may replace tx with
√
k in (5).

Note: Lower bound on PEf(0). To simplify notation we work with the original
function f : Rn → [0,∞), but the corresponding result can then be applied to PEf :
E → [0,∞) by replacing n with k. By log-concavity, {x ∈ R

n : f(x) > f(0)} is convex
and there exists θ ∈ Sn−1 such that 〈θ, x〉 > 0 implies f(x) ≤ f(0). It is an interesting
exercise to show that for any log-concave random variable in R with zero mean and unit
variance, such as 〈θ,X〉, P {〈θ,X〉 > 0} ≥ β for some universal constant β > 0 (actually
for β = e−1). Now

n = E |X|2 ≥ A2α2
n

n

2πe
P

{
|X| ≥ Aαn

√
n

2πe

}
≥ A2α2

n

n

2πe

(
β − f(0)

1

2
voln

(
Aαn

√
n

2πe
Bn

2

))

where αn is such that voln
(
αn

√
n

2πe

)
= 1 and αn → 1 as n → ∞ (and Bn

2 = {x : |x| ≤ 1}).
Optimizing in A yields

f(0) ≥ Cn−3/2
(
e
√
2π
)−n

(6)

In the symmetric case one gets the optimal base
√
2πe. The estimate f(0) ≥ 2−7n can be

found, for example, in [13, Theorem 5.14].
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3 Appendix: Thin shell implies CLT

For completeness we collect and prove various known results and tailor them to our specific
use. We refer the reader to [2, Theorems 1.1 and 1.2, Eq. (1.7) Proposition 3.1] and [1] for
a more extensive discussion. Our proof of Proposition 3.1 in [2] on the Lipschitz constant
of θ 7→ M (θ, t) is slightly simplified.

Theorem 2 Let ε > 0. Let µ be a probability measure on R
k with center of mass 0,

identity covariance, and log-concave density f = dµ/dx. If µ has the following thin shell

property:

µ

{
x ∈ R

k :

∣∣∣∣
|x|√
k
− 1

∣∣∣∣ > ε

}
< ε

then there exists Θ ⊂ Sk−1 with σn−1 (Θ) ≥ 1−C
√
k exp (−ckε2) such that for all θ ∈ Θ,

sup
t∈R

∣∣Φ (t)− µ
{
x ∈ R

k : 〈x, θ〉 ≤ t
}∣∣ ≤ Cε

Proof. Write M (θ, t) = µ
{
x ∈ R

k : 〈x, θ〉 ≤ t
}
. For any θ1, θ2 ∈ Sk−1 that are suffi-

ciently close, say |θ1 − θ2| < 1/10,

|M (θ1, t)−M (θ2, t)| = µ (M (θ1, t)∆M (θ2, t))

where A∆B = (A\B)∪(B\A) denotes the symmetric difference of A and B. By projecting
onto span {θ1, θ2} and identifying span {θ1, θ2} with R

2, we conclude that

|M (θ1, t)−M (θ2, t)| =
∫ t

−∞

∫ ∞

(1−x cos β)/ sinβ

q(x)dydx+

∫ ∞

t

∫ (1−x cos β)/ sinβ

−∞

q(x)dydx

where q is the density of the measure projection of µ into E (identified with R
2), see (1),

and cos β = 〈θ1, θ2〉. By the Prékopa-Leindler inequality q is log-concave, and defines a
probability measure with mean 0 and identity covariance. It is an elementary fact that
for such a function, q(x, y) ≤ C exp (−cx1 − cx2) with universal constants C, c > 0. By a
change of variables (through translation),

|M (θ1, t)−M (θ2, t)| ≤ 2C

∫ 0

−∞

∫ −y tan β

t

exp (−c′x− c′y)dxdy ≤ Ce−c|t| |θ1 − θ2|

This implies that M (θ, t) is Ce−c|t|-Lipschitz in θ. Now let θ ∈ Sk−1 be chosen randomly,
uniformly distributed on Sk−1 and let F (t) = EM (θ, t). By concentration on Sn−1 (see
e.g. [10]) and the union bound, with probability at least 1 − Cε−1 exp (−cnε2) = 1 −
C
√
k (kε2)

−1/2
exp (−ckε2), the following event occurs: for all 1 ≤ j ≤ m, |M (θ, tj)− F (tj)| <

ε, where m = ⌊ε−1⌋ and tj = F−1 (j/m). Using monotonicity in t, we conclude that (with
high probability) |M (θ, t)− F (t)| < Cε for all t ∈ R. We now compare F to Φ. Let

Φk (t) = P

{√
kθ1 ≤ t

}
, where θ is still uniform on Sk−1. Let X be a random vector in

9



R
k with distribution µ and independent of θ. The vector Y =

〈
θ, k1/2 |X|−1X

〉
is inde-

pendent of k−1/2 |X| and has the same distribution as θ1. Using Fubini’s theorem and
independence, and assuming t > 0,

F (t) = P {〈θ,X〉 ≤ t} = P

{
|X|√
k

〈
θ,

√
kX

|X|

〉
≤ t

}
= P

{
Y ≤ t

√
k

|X|

}

= P

{∣∣∣∣
|X|√
k
− 1

∣∣∣∣ < ε

}
P

{
Y ≤ t

√
k

|X| :

∣∣∣∣
|X|√
k
− 1

∣∣∣∣ < ε

}

+P

{∣∣∣∣
|X|√
k
− 1

∣∣∣∣ > ε

}
P

{
Y ≤ t

√
k

|X| :

∣∣∣∣
|X|√
k
− 1

∣∣∣∣ > ε

}

≤ 1 · Φk

(
t
√
k

(1− ε)
√
k

)
+ ε · 1

A similar lower bound holds. For any δ, x > 0,

Φ ((1 + δ) x)− Φ (x) ≤ Φ′ (x) δx ≤ Cδ (7)

It follows from rotational invariance of the standard normal distribution and uniqueness
of Haar measure that if Z is a standard normal vector in R

k then
√
k |Z|−1 Z is uniformly

distributed on
√
kSk−1. Simulating θ =

√
k |Z|−1 Z,

Φk(t)− Φk(−t) = P
{
|Z1| ≤ tk−1/2 |Z|

}
= P

{
|Z1| ≤ t

(
1− t2

k

)−1/2
(
1

k

k∑

i=2

Z2
i

)}

which (after a bit of fiddling using (7) and Gaussian concentration of |Z| about k1/2)
implies the well known estimate |Φ(t)− Φk(t)| ≤ ck−1/2 for all t ∈ R (this can also be
seen by considering the density Φ′

k, similar details in [6, Section 3]). Putting all this
together,

F (t) ≤ Φk

(
t

(1− ε)

)
+ ε ≤ Φ

(
t

(1− ε)

)
+

C√
k
+ ε ≤ Φ (t) + Cε+

C√
k

with a similar lower bound. Similarly, this also holds for t < 0.
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