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Abstract: The automatic tuning problem of multiple-input-multiple-output (MIMO) con-
trollers is considered within the framework of Bayesian optimisation and applied in simulation
to a bulk tailings treatment process. The aim is to develop a model free, on-line, automatic tuner
which can optimise the performance of a given controller to the task at hand. The automatic
tuning procedure can be conducted during commissioning, when poor controller performance
is observed or when the process has changed. Simulations indicate that the method is able to
locate the optimal tuning parameters for the bulk tailings treatment process as compared to
a de-coupled controller developed from a model of the process. The parameters were obtained
from an objective function which was balanced and weighted according to the response required.
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1. INTRODUCTION

Process controllers and especially proportional-integral-
derivative (PID) controllers are abundant in the industry.
Although the use of model predictive control (MPC) is
widespread (Qin and Badgwell, 2003), PID is by far the
most common feedback controller. A survey of eleven
thousand controllers in the continuous process industry
indicated that 97% of those controllers implemented the
PID algorithm (Desborough and Miller, 2002). Only a
third of these controllers provided an acceptable level
of performance. This is partly due to the fact that the
process of obtaining optimal tuning parameters can be
expensive as it is time consuming to conduct system
identification experiments which requires the attention of
domain experts. It is therefore evident that a need exists to
obtain optimal tuning parameters for industrial controllers
in an inexpensive manner.

Early auto-tuning methods such as the relay feedback
method (Astrém and Higglund, 1984) were primarily in-
tended to tune simple regulators of the PID type. Sub-
sequently the relay feedback method has received much
research and development attention resulting in the ex-
pansion of its application. In addition to the critical
gain and critical period parameters, more information on
process dynamics can be obtained from the same relay
feedback test using new identification techniques (Hang
et al., 2002). Machine learning has since expanded the
possibilities of auto-tuning controllers by introducing self-
learning techniques such as reinforcement learning (Nian
et al., 2020).
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Continuous action reinforcement learning automata (CAR-
LA) were developed as one of the first reinforcement
learning auto-tuning algorithms (Howell and Best, 2000).
CARLA was implemented to auto-tune Ford Motors Zetec
engines and showed a 60% improvement. By taking ad-
vantage of the on-line and model free learning properties
of reinforcement learning, an auto-tuning PID controller
was developed by Wang et al. (2007). The reinforcement
Q@-learning algorithm was used to auto-tune fuzzy PD
and PI controllers of a simulated inverted pendulum and
CE150 helicopter models (Boubertakh et al., 2010). A
hybrid Zeigler-Nichols fuzzy reinforcement learning multi-
agent system was used by Kofinas and Dounis (2019) to
control the flow rate of a desalination unit. The gains of the
controller were initialised using the Zeigler-Nichols method
and then adapted on-line using reinforcement learning.
Shipman and Coetzee (2019) applied reinforcement learn-
ing using deep neural networks to automatically tune a
PI controller suitable for use over a wide range of plant
models by changing the plant dynamics, disturbance and
measurement noise during the training process.

Reinforcement learning agents adjust the tuning parame-
ters of controllers in an adaptive way based on the best
reward associated with the observed states of the envi-
ronment, making the reinforcement learning agent and
controller combination potentially well suited for complex
non-linear systems. Reinforcement learning based auto-
tuning, however, does not provide a single, optimal set of
tuning parameters, since the parameters are continuously
adapted to the changing states within the environment.
The many training steps required to train reinforcement
learning agents could be impractical in processes with
significant time delays and long settling times as this will
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lead to substantial production down-time while training is
in progress.

An ideal auto-tuner operates on-line, is model free,
controller agnostic, data efficient and globally optimal
(Neumann-Brosig et al., 2020). Bayesian optimisation
(BO) is proposed as a method to auto tune controllers
due to its on-line sampling characteristics and capability
to obtain the global minimum of an objective function in
only a few steps (Bull, 2011).

BO has been demonstrated to optimise the tuning para-
ments of a quadrotor vehicle (Berkenkamp et al., 2021).
Neumann-Brosig et al. (2020) used BO to find optimal tun-
ing parameters of an active disturbance rejection controller
(ADRC) for a throttle valve without the need for a process
model and achieved better performance than hand tuning
after only 10 experiments. Fiducioso et al. (2019) used
safe contextual BO to optimise the PID parameters of a
room temperature controller without human intervention.
Lucchini et al. (2020) and Sorourifar et al. (2021) applied
BO to tune MPCs for torque vectoring of high performance
electrical vehicles and a continuously stirred tank reactor
respectively, to notably improve performance.

This paper demonstrates a machine learning technique
that can automatically tune existing process controllers
on-line, without having to identify the process model. The
output of the auto-tuner is an optimised set of controller
tuning parameters that can be applied to the target
controller on completion of the auto-tuning procedure.
The auto-tuner must interact with the live process, sample
proposed tuning parameters, evaluate the performance of
the proposed parameters and repeat the process until
the performance objective function has been minimised.
Process sampling must be cost efficient and be conducted
in as few as possible steps. In this paper, BO is used to tune
decentralised PID control loops that control a MIMO bulk
tailings treatment process in simulation. An appropriate
objective function is derived that is minimised by searching
for the optimal tuning parameters.

This paper is structured as follows: Section 2 presents
the problem statement of auto-tuning a MIMO process
controller and the objective function to be optimised.
Background information on BO, Gaussian processes and
acquisition functions is provided in Section 3. Section 4
describes the process to be controlled and the controller
structure used. Minimisation of the objective function by
means of BO is demonstrated by simulation and bench-
marked against results from Rokebrand et al. (2021). The
results are discussed in Section 5 and concluding remarks
provided in Section 6.

2. PROBLEM STATEMENT

Consider a dynamic MIMO process of an industrial plant
that is to be controlled by a feedback controller. The
tuning parameters of the controller that would provide
optimum performance are unknown and must be sought.
The tuning parameters o« € A are constrained in the
domain A C R. The performance of the tuning parameters
can be quantified by evaluating each of the observed
process variables in terms of time domain performance
indices.

Where multiple performance indices are used to evaluate a
controller, they must be balanced according to the required
response. The performance associated with each process
variable is weighted and combined to provide an objective
function representing the performance of the controller
as a single scalar quantity. The objective function for a
MIMO controller can be expressed as

Q= Zw(Zﬂiij(a)) (1)

where @ is the objective function, n is the total count of
process variables, w; is the process variable performance
weighting, p is the total count of performance indices
selected per process variable, @); is the performance index
and B;; is a balancing factor to scale the contribution of
each performance index.

The form of the performance indices as functions of the
tuning parameters is unknown, but can be calculated from
experiments conducted on the process. The experiments
are performed iteratively, with a new set of tuning param-
eters selected for each iteration, until the global minimum
of the objective function is found. The tuning of the
controller can be expressed as an optimisation function
to find the set of tuning parameters that minimises the
objective function @

min = Q(a) (2)
where « is a vector consisting of the all tuning parameters
as determined by the structure of the controller.

3. BACKGROUND

The Bayesian approach to optimisation is to first specify
prior knowledge about the objective function using a prob-
abilistic surrogate model, and then to locate the global
minimum of that model using an acquisition function
(Wilson et al., 2018). The surrogate model is computa-
tionally cheaper to evaluate and optimise compared to the
unknown objective function. In this work the surrogate is
modelled as a Gaussian process (Rasmussen and Williams,
2006). Gaussian processes not only provide predictions of
unsampled inputs, but also the confidence of those predic-
tions that can be interpreted in a natural way (Ackermann
et al., 2011). Several acquisition functions exist that can
interpret Gaussian processes and identify the next input to
be sampled. Compared to other surrogate models, Gaus-
sian processes have a small number of training parameters
(Azman and Kocijan, 2007). The computational complex-
ity of Gaussian processes increases cubically as the number
of sampling points increase (Liu et al., 2013), but since it is
an objective to limit the number of expensive experiments,
this limitation is not a concern.

8.1 Gaussian Processes

Gaussian processes are described by their mean and co-
variance function and can be written as

Q(ar) ~ GP(m(a), ke, &) (3)
where m(a) is the mean function, which is normally
taken to be zero for notational simplicity, and k(a, ') is

the covariance function of Q(a). The covariance function
is selected to capture prior knowledge about the shape
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of the objective function such as smoothness and rate
of change. The unrealistic smoothness of the commonly
used squared exponential function makes it impractical
for optimisation problems. Snoek et al. (2012) propose
the automatic relevance determination (ARD) Matérn
parameter 5/2 kernel as the covariance function.

Gaussian processes learn the input-output relationships
from a training dataset. For the problem statement defined
in (1) and (2), the input is the tuning parameter vector o
and the output is the objective function value Q (). Noisy
observations can be modelled as

Q=Q(a) +e (4)
where () is the observed noisy objective function. The
difference between the function value and observed value

is due to additive noise assumed to have a Gaussian
distribution with zero mean and variance o2

e~ N(0,02). (5)

The inputs and outputs can be combined to form the
training dataset D = {(ay,Q;)|"1} of n observations.
Of primary interest is the knowledge gained about the
function by incorporating the training dataset and prior
distribution. The joint distribution of the observed func-
tion values and test outputs according to the prior is

Sl oM SR E)]) @

where A denotes the design matrix consisting of all n
inputs «; as column vectors. Ihe observations Q,-Aare
collected in the column vector @ so that D = {(A,Q)}.
Q. is the objective function prediction corresponding to
test inputs A, and K(-,-) denotes covariances of the
datapoints.

The predictive equations are obtained by deriving the
conditional distribution from the joint distribution.

Q*|A7Qaf4* NN(Q*;COV(Q*)),W}IGI‘G (7)

Q. =k K +217'Q, (8)

cov(Qy)) = kux — k] [K + 021 'k,. (9)

Q. is the mean prediction and the variance is the diagonal

elements of cov(Q.). The compact notations are K =
K(AA), ke = K(Ay, A,) and ky = K(A, A,).

3.2 Acquisition Function

In BO, acquisition functions are used to search the param-
eter space to acquire the next input location to be sampled
based on the predictive mean and variance of the surrogate
objective function. Acquisition functions identify the next
input location to be sampled by finding the point where
the acquisition function £ is maximised, with (Snoek et al.,
2012)

o, = argmax L(a|D)

acA

where a, is the next input location to be sampled given
the training dataset D.

(10)

Acquisition functions that can interpret Gaussian pro-
cesses include amongst other, expected improvement (EI),
Gaussian process upper confidence bound, and probability
of improvement (Snoek et al., 2012). In this work EI
(Mockus, 1975) is selected, as it has been shown to escape

local optimums (Emmerich et al., 2006), is better behaved
than probability of improvement, and does not require
a tuning parameter such as the Gaussian process upper
confidence bound (Snoek et al., 2012).

EI is the maximum expected improvement over the current
best input location and is defined as

El(a) = Emax[0, Q(ctmin) — Q(av)] (11)
where aip, s the location of the current best (minimum)
posterior mean. When the posterior distribution is Gaus-
sian, EI can be solved analytically (Jones et al., 1998) as

El(a) = {;I}’(a) o), i ZEZ; ~ é (12)
where N _
¥(a) = (Q(amin) — Qu())¥(2), (13)
2(a) = o(a)o(2) (14)
5 (@) = Qule) 15)

o(a)
o(a) is the predicted standard deviation at «, ¢ and
¢ denote the probability density function (PDF) and
cumulative distribution function (CDF) of the normal
distribution respectively. Equation (12) is differentiable
and can be maximised with a gradient based optimiser
to obtain ok.

Algorithm 1: Bayesian optimisation

1: forn=12.. do

2:  select new o, by maximizing acquisition
function £
o, = argmaxgc 4 L(a|Dy,)

3:  sample process at a, to observe Q11

4:  augment data set
Dn+1 = {Dna (a*, Q7L+1)}

5:  update posterior distribution

6: end for

BO is a cyclic process that progresses as presented in
Algorithm 1.

4. SIMULATION
4.1 Plant

The controller selected to optimise by means of BO is the
controller for a bulk tailings treatment (BTT) plant as
described by Rokebrand et al. (2021). A brief introduction
of the process is provided here.

Fig. 1 illustrates the BTT surge tank process flow. The
surge tank is fed with chrome tailings from the tailings
dam at a feedrate ¢; and density p;. The tailings are
diluted with water at a flow rate of ¢,, and agitated in the
surge tank to promote mixing. The tank volume is v. The
control objective is to stabilise the chrome concentrator
supply density which makes use of spiral concentrators to
separate chrome grades. A stable density supply to the
concentrator improves separation efficiencies. The tank
output feedrate is ¢, and density p,. The tank output
feedrate is held constant at 750 m3/hr. Perfect mixing
is assumed and therefore p, = p, where p is the density
measured in the surge tank. The chrome tailings density
p; is not constant and is the disturbance that must be
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Fig. 1. Bulk tailings treatment surge tank (Rokebrand
et al., 2021).

rejected by the process controller. The process variables
to be controlled are the surge tank volume v and density
p. The manipulated variables are the water flow rate g,
and tailings supply flow rate g;.

The BTT transfer function matrix model in the form of

y = Gy(s)u+ Ga(s)d (16)
is given by
1 1
s s 0
Y1 U1
= 1
L/J 0.01 —0.04 [W] * % d {7
s+75 s+ 75 5+

which is linearised around an equilibrium operating point
where y = [v,] ", u = [g:qu] T, and d = p.

4.2 Controller

The plant is controlled in closed-loop by controller C'
which is structured as a decentralised controller with PI
controllers on the diagonal.

_ |c1 0
O_|:O 622:|

The PI controllers in Laplace domain are of the form

(18)

1
cjj = kpji(1+ Tijj3)7j 1,2
where k, is the proportional gain, and 7; is the integral
time. The tuning parameters to be optimised are kpi1, 7411,
kng and Ti22-

The Rokebrand et al. (2021) de-coupled PI controller
against which the BO results are benchmarked is

(19)

84(s + 50) .
CRokebrand = 3 —15057(8 + 75) (20)
S

4.8 Constraints

BO is a constrained regression process, and the constraints
must be considered with care. For the purposes of this
simulation the constraints are the ranges of the tuning
parameters within which the BO algorithm must search
for the optimal tuning parameters to minimize the objec-
tive function. The search space can be defined by either

selecting the existing tuning parameters or identifying new
ones by conducting step tests.

Step tests can be conducted to determine the magnitude
and direction of the process gains as well as the time con-
stants. Given the gains and time constants the candidate
tuning parameters can be sought using any of the known
PID tuning methods such as SIMC (Skogestad, 2003). The
observations need not be very accurate since they will be
used to determine the constraints around the candidate
and not the optimal set of parameters.

To expand the search space around the identified tun-
ing parameters, the gain constraints are conservatively
selected as a factor of 2 in the direction of instability,
and boldly selected as a factor of 0.2 in the opposite
direction. Selection of the integral time constraints follows
the inverse approach, i.e. a factor of 0.5 in the direction of
instability and a factor of 5 in the opposite direction. It
is possible that an optimum still exists beyond the search
space but as that optimum is approached, the possibility of
instability increases. For the objective functions selected,
an unstable controller will not return a measurable value,
so one needs to limit the number of unstable iterations to
take advantage of the ability of the acquisition function to
select the next sampling point.

For the purposes of the simulation, the search space is de-
fined by selecting the tuning parameters from Rokebrand
et al. (2021) and expanding the space around them as
described. The constraints selected are

kpi1 € [16.8, 168]
Ti11 € [0.01,0.1]
kpao € [—3010, —301]
Tina € [0.0067,0.067]

21
22
23
24

/_\AA,_\
o O — ~—

A safe BO algorithm SafeOPT has been develop by Sui
et al. (2015) and was further expanded on by Berkenkamp
et al. (2021) to address multiple safety constraints.
SafeOPT is suited for processes where exploration and ex-
ploitation by the BO algorithm could lead the equipment
damage or pose a risk to personnel safety. SafeOPT comes
at the expense of additional iterations required to expand
the constraints within which the optimal parameters can
be safely sought. The SafeOPT algorithm was not selected
for the BT'T process since unstable controller performance
will neither impact the safety of equipment nor personnel.

4.4 Objective function

The MIMO objective function was obtained by first finding
a convex objective function for the SISO controllers ¢;; in
(19), and then applying it to the MIMO controller of (18).
Two objective functions were identified for discussion. The
first objective function was constructed by only consider-
ing the settling time in both output channels with equal
unitary weights. The first objective function in the form
of (1) is

Q =Tgq +Ts (25)
where T is the settling time, i.e. the time taken for the
error to stay within 2% of |Yfinai — Yinitiar|- The second
objective function was constructed from a combination of
settling time and peak usage
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2
Q= (0.6 x Ty + (1.25 x 107 X tpeari)®)
i=1
where Upeqr is the maximum controller output.

(26)

The frequency of the iterations is determined by the
choice of objective function. Due to the objective functions
selected, the tuning parameters cannot converge at a rate
faster than the process time constants of 1/75 hours. Both
objective functions rely on the closed-loop settling time,
i.e. the time the error takes to reach and remain within the
2% tolerance region. The settling time must be measurable
so that the objective function can return a valid scalar
quantity to the update the posterior distribution.

5. RESULTS

Table 1 shows the results of the BO simulation using the
objective function from (25), iterations 31 through to 40.
Column @ represents the objective function value for each
set of tuning parameters applied. The global minimum of
the objective function is found by iteration 38 with the
optimal tuning parameters as shown in the highlighted
row. Note that the iterations do not stop once the global
minimum is located but continue until a predetermined
number of iterations have been reached or the controller
performance criteria have been met.

During simulation, the step test response was evaluated
over a period of 6 minutes. Therefore in practice it would
take a minimum of 8 hours to complete 40 iterations (as
suggested in Table 1), with each iteration consisting of two
step tests.

Table 1. Results of Bayesian optimisation sim-
ulations using the objective function from (25),
iterations 31 through 40

Tter Q kp11 Til1 kp22 Ti22

31 0.1953 163 0.0106 -2998 0.0425
32 0.2233 167 0.0128 -564 0.0164
33 0.1501 112 0.0131 -1763 0.0174
34 0.1496 132 0.0132 -2973 0.0298
35 0.2114 128 0.0991 -2996 0.0261
36 0.1718 89 0.0116 -1403 0.0071
37 0.2094 98 0.0148 -2960 0.0358
38 0.0550 167 0.0116 -2444 0.0116
39 0.2393 81 0.0998 -1085 0.0076
40 0.2612 168 0.0127 -2992 0.0570

Table 2 shows the results of the BO simulation using
the objective function from (26), iterations 14 through
to 23. The objective function global minimum is found
by iteration 21. The increased rate of convergence was
made possible by the use of balancing factors, 3;; of (1), to
shape the objective function surface. In practice it would
take a minimum of 4,6 hours to complete 23 iterations (as
suggested in Table 2).

To evaluate the performance of the optimal tuning param-
eters, the ability of the controller to reject disturbances are
benchmarked against results from Rokebrand et al. (2021).

Fig. 2 shows the disturbance rejection response of the
controllers tuned using BO with the objective functions
from (25) and (26) compared against the Rokebrand et al.

Table 2. Results of Bayesian optimisation sim-
ulations using the objective function from (26),
iterations 14 through 23

Tter Q kp11 Till kp22 Ti22
14 0.0974 160 0.0235 -1522 0.0124
15 0.1109 167 0.0256 -1502 0.0151
16 0.1016 167 0.0117 -1651 0.0126
17 0.1146 167 0.0311 -1521 0.0098
18 0.0983 165 0.0110 -1352 0.0117
19 0.0988 141 0.0103 -1488 0.0107
20 0.1068 144 0.0101 -1641 0.0126
21 0.0889 155 0.0153 -1424 0.0115
22 0.0915 144 0.0152 -1321 0.0120
23 0.1267 119 0.0122 -836 0.0116

(2021) de-coupled PI controller for a step disturbance of
0.1 t/m? in the chrome tailings density p;. The responses
in Fig. 2 and the Root Mean Squared Error (RMSE)
calculated in Table 3 shows that the BO controller with
objective function (25) suppresses both the level and
the density disturbance significantly better than the de-
coupled controller. Objective function (26) suppresses the
level disturbance better than the de-coupled controller,
but only shows a marginal improvement on the density
disturbance rejection. The peak usage performance index
in objective function (26) penalises actuator usage, hence
the slower suppression of the density disturbance.

T T T T
12+ —— BO controller (25)

~— BO controller (26)
— 1T De-coupled controller ||
“ D i — S Reference
Enop- —
2.l
s
0 002 004 006 008 01 012 014 016 018 0.2
145
—
%) k
E 14 -
QU

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
time (hours)

Fig. 2. Disturbance rejection response comparing the con-
troller tuned using Bayesian optimisation with the
objective functions from (25) and (26) against the
Rokebrand et al. (2021) de-coupled PI controller.

Table 3. RMSE comparison of controller dis-
turbance rejection

Controller Volume  Density
RMSE RMSE
De-coupled controller  0.2782 0.0105
BO controller (25) 0.1072 0.0066
BO controller (26) 0.1247 0.0101

6. CONCLUSION

BO is a data efficient, model free, on-line tuning method
that can locate optimal tuning parameters within 21 it-
erations for a MIMO BTT plant. The disturbance re-
sponse compared against the Rokebrand et al. (2021) de-
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coupled PI controller is favourable. The research shows
that objective functions can be constructed, balanced and
weighted according to the response required for the par-
ticular process. The method shows potential to optimally
tune PI controllers for MIMO systems. Future work will
evaluate the method for larger systems and will also aim
to minimize the number of iterations of the BO routine to
reduce the impact on plant performance.
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